
HAL Id: hal-04911540
https://hal.science/hal-04911540v1

Submitted on 24 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Memetic Semantic Boosting for Symbolic Regression
Alessandro Leite, Marc Schoenauer

To cite this version:
Alessandro Leite, Marc Schoenauer. Memetic Semantic Boosting for Symbolic Regression. Genetic
Programming and Evolvable Machines, In press. �hal-04911540�

https://hal.science/hal-04911540v1
https://hal.archives-ouvertes.fr

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Memetic Semantic Boosting for Symbolic Regression

Alessandro Leite1,2* and Marc Schoenauer1

1TAU, Inria Saclay, LISN, Paris-Saclay University, France
firstname.lastname@inria.fr .

2INSA Rouen Normandie, France.

Abstract
This paper introduces a novel approach called semantic boosting regression (SBR),
leveraging the principles of boosting algorithms in symbolic regression using
a Memetic Semantic GP for Symbolic Regression (MSGP) algorithm as weak
learners. Memetic computation facilitates the integration of domain knowledge
into a population-based approach, and semantic-based algorithms enhance local
improvements to achieve targeted outputs. The fusion of memetic and semantic
approaches allows us to augment the exploration and exploitation capabilities
inherent in Genetic Programming (GP) and identify concise symbolic expressions
that maintain interpretability without compromising the expressive power of
symbolic regression. Our approach echoes the boosting algorithm’s characteristic,
where weak learners (e.g., MSGP) are sequentially improved upon, focusing on
correcting previous errors and continuously enhancing overall performance. This
iterative strategy, intrinsic to boosting methods, is adeptly adapted to our SBR
model. Experimental results demonstrate that our memetic-semantic approach
has equal or better performance when compared to state-of-the-art evolutionary-
based techniques when addressing real-world symbolic regression challenges. This
advancement helps tackle the bloating issue in GP and significantly improves
generalization capabilities. However, akin to classic boosting algorithms, one
limitation of our approach is the increased computational cost due to the sequential
training of boosting learners.

Keywords: Genetic Programming, Gradient Boosting, Memetic Semantic, Symbolic
Regression

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092

1 Introduction
This paper addresses the challenge of finding a function f(X) : Rn 7→ R that

represents the underlying relationship between the input features (X) and an output
(y) of a given dataset through Genetic Programming (GP) [1]. GP has gained the
attention of the machine learning (ML) community due to its capacity to learn both the
model structure and its parameters without making assumptions about the data [2, 3].
Moreover, the symbolic aspects of its solutions and their flexible representation enable
it to learn complex data relationships. These properties have made it a candidate
solution to replace neural networks, which are usually considered a black-box solution
and, consequently, hard to understand and explain.

Traditional GP-based methods rely on the outcome of a program to decide how well
it solves a task, ignoring intermediate results such as the semantics of its subtrees [4, 5].
The semantics of an individual and its subtrees represent its behavior concerning a set
of input values. Thus, one can consider them to guide the search during its exploration
process and to favor short expressions that are usually easier for users to understand
and analyze. Furthermore, semantics can contribute to improving subtrees’ reuse
based not only on the performance of the whole tree but also on their effectiveness
in approximating a desired output. Semantic backpropagation (SB) algorithm [5, 6]
has shown to be an effective strategy for dealing with such endeavors. Semantic
backpropagation tries to find a set of subtrees that better approximate the desired
outputs for a given node in a supervised setting. In other words, for each subtree of
a tree, SB computes the desired semantics, which they should have to minimize the
fitness of the tree, assuming all the rest is unchanged. Many works have used this
strategy to design different operators in GP. Random Desired Operator (RDO) [5, 7] is
one example. RDO randomly chooses a subtree in a tree. Then, it uses SB to compute
the desired semantics of its parent. Finally, it replaces this subtree with one from
a predefined library of trees that is mostly closest to the desired semantics. As this
semantics replacement occurs locally, one can see the RDO operator as a first direction
to define a memetic operator [6].

At the same time, small changes in a GP solution can dramatically change its
fitness and, thus, harm the search efficiency. Memetic algorithms (MAs) [2] provide
an effective way to compensate for the capability of global exploration of general
evolutionary methods with the increased exploitation that can be obtained through
local search. They combine population-based evolutionary algorithms and individual-
based local search strategies. In this context, this paper proposes a novel evolutionary
multi-objective algorithm that combines both memetic and semantic backpropagation
algorithms for symbolic regression problems. We tackle the challenge of finding shorter
expressions with a lower error, representing a way to tackle the accuracy vs. bloat
trade-off of symbolic regression approaches. Bloat in this context can be seen as the
excessive growth of a symbolic expression without improvement in its fitness [8].

Our proposed approach, named memetic semantic algorithm, iteratively fine-tunes
a randomly created solution (i.e., a tree) by using the semantics of other small trees
available in a pre-computed library. The library comprises a set of randomly generated
trees up to a predefined height. Likewise, each library tree includes its outputs (i.e.,
fitness cases) and desired semantics vectors. This strategy helps us find shorter and

2

093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

more diverse expressions. Thus, we decide to keep the fine-tuned individual at each
iteration based on its performance in the validation set and size (i.e., number of terms
in the expressions).

Different from traditional semantic backpropagation operators (e.g., RDO [5]) that
selects a target subtree in a tree at randomly, our approach (Section 4.1) selects
the best possible semantics match between all possible subtrees in the tree and all
the trees in the library. Likewise, it only tunes the real-valued constants after a
suitable tree has been found for the problem, and it computes them through linear
scaling (LS) (i.e., regression) [9], and not randomly. Finally, it computes them at each
iteration, as implemented by the RDO operator [5]. Linear scaling aims to minimize
the mean squared error (MSE) of a tree by performing a linear transformation on its
outputs [9, 10]. Consequently, it frees GP from the time-consuming task of adjusting
the ephemeral constants, allowing it to focus exclusively on the tree’s shape that fits the
data structure without bothering to find a scale that approximates the target output.
Last but not least, linear scaling helps in dealing with GP bloat problem [9, 10].

Based on our Memetic Semantic GP for Symbolic Regression (MSGP) method,
this paper proposes semantic boosting regression algorithm (Section 4.2). It combines
a set of MSGP learners trying to improve the generalization performance.

Experimental results on various real-world benchmark datasets show that our
proposed methods can have equal or better performance compared to state-of-the-
art (SOTA) non GP-based (e.g., Decision Tree and Random Forest [11]), GP-based
methods (e.g., GP-GOMEA [12], gplearn [13]), and SyRBO [14], which is a GP-based
boosting method.

The paper is organized as follows. In the next section, we present the background
of the paper. Section 3 reviews the related works on managing bloat in GP, focusing
on obtaining short and possibly interpretable symbolic expressions. The memetic
algorithm and two memetic methods are presented in Section 4. Section 5 describe
the experimental setup, and Section 6 analyzes and compares the performance of the
proposed methods with standard GP, SOTA GP-based methods, classical machine
learning methods, and boosting algorithms. Finally, Section 7 concludes the paper and
describes the envisioned future works.

2 Background
2.1 Semantic GP

In GP, semantics describes the behavior of a program on a specific dataset. In
other words, it is the output vector for the fitness cases of a problem [15]. More
formally, in a supervised setting, assume the data is a set D made of N fitness cases:
D = {(X1, y1), (X2, y2), . . . , (XN , yN)}, where Xi ∈ Rn and yi ∈ R1 are the inputs,
and the corresponding desired outputs. The semantics (s) of a program p is the vector
of outputs values computed by p from the set of all fitness cases D, defined as [5]:

s(p) = [p(X1), p(X2), . . . , p(XN)] (1)

1We are focusing in this work on the specific case of symbolic regression (SR), but Xi and yi could belong
to some other spaces, for instance, discrete spaces in the case of classification or Boolean functions.

3

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

Similar operations can be performed for every subtree of a given tree: the semantics
can be computed from the tree terminals up to the subtree root sequentially, defining
the semantics for every node (i.e., subtree) of a GP tree.

Semantic backpropagation algorithms [5, 6] try to find the subtrees whose semantics
better approximate the desired outputs (dN

i) of a node N ∈ p. A prerequisite is that
one can compute the desired outputs for every node in p, conditional on the target
output and the semantics of the other nodes in the program. This operation can be
done downward from the root node (where the desired outputs are the target values
yi of the problem definition given in the initial dataset). For all the other nodes, this
is done by performing the inverse operation of the function implemented in the node,
assuming that the semantics of all other nodes are fixed: from the target values are the
root, semantic backpropagation recursively computes the desired output for a node N
at depth D as [5, 16]:

dN
i = F −1

AD−1
(dAD−1 , Sd) (2)

where A represents the ancestor of N at depth Di, S the siblings of A, and F −1

comprehends the inverse of the function implemented by node A.
It is fundamental to highlight the difference between the semantics of subtrees

and the semantics of contexts. On the one hand, in the semantics of subtrees,
the semantics of a node N only depends on its output for each fitness case, which
means that if nodes N1 and N2 have the same semantics and a program p contains
the former, replacing it with the latter will not change the semantics of p. On the
other hand, in the semantics of contexts, given a node N /∈ p, it is usually hard
to know how it will impact the semantics of the entire program (i.e., tree) since such
information is conditioned to the semantics of the node that it will replace, as well
as the semantics of its ancestors and siblings [4]. In some contexts, it can remain the
same (i.e., a fixed context independent of the replaced node) or change (i.e., variable
context). Consequently, the semantics of a node are uniquely defined by the function
it implements and the value of its arguments, and they are independent of the position
in the tree. In contrast, the contexts depend on the function implemented by the
immediate parent, the parent semantics, and the semantics of the siblings [4]. As a
result, local improvements may degrade the global performance.

2.1.1 Library building and searching
For the desired outputs of a given node, we want to search for a tree that better

approximates these outputs than the current subtree. This can be achieved by building
a library in a static or dynamic setting. In the static setting, the semantics of all
possible subtrees with a maximum height are pre-computed, and redundant semantics
are pruned to keep only one tree for each unique semantics. In the dynamic setting,
also known as population-based, new trees are added based on the observed subtrees
of every generation [5, 17]. This strategy keeps only the subtrees with the smallest
number of nodes if different ones exist in the library with the same output. Moreover,
both strategies ignore the subtrees with constant outputs.

4

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

Once a library has been built, the search process looks for the individuals whose
outputs o are the closest to the desired semantics dj

i based on some distance metric (e.g.,
Euclidean or Minkowski distance). It means, finding a minimal distance dj

i that
minimizes |dj

i − oi|k,∀k ∈ {1, 2, . . . , N} [5]. Additionally, if the distance value remains
the same, whatever the subtree, its value is defined as zero (i.e., | ∗ −oi|k = 0). Finally,
as subtrees with constant outputs are ignored, the search process checks if a constant
semantics could reduce the distance between the tree outputs and the desired ones.

2.2 Memetic algorithm
Memetic algorithms combine population-based search strategies with local search

heuristics inspired by the concept in genetics [18]. They have been used across different
domains due to their capacity to establish a good balance between exploration and
exploitation when looking for a solution for a complex optimization problem [19, 20].
In this case, a meme represents transferable knowledge built through local refinement
procedures, which one can see as domain-specific expert knowledge on how a solution
can be improved [19]. From an optimization viewpoint, prototypical memetic algorithm
comprises three main phases named creation, local improvement, and evolution (Algo-
rithm 1)2. A population of randomly created individuals is set up in the creation phase.
Then, each individual is locally improved up to a predefined level in the improvement
phase. Finally, the evolution phase is the usual phase of evolutionary algorithms. It
starts by selecting individuals based on their fitness and combining/mutating them
through variation operators (e.g., crossover and mutation), enabling them to share
information in a cooperative manner. The last two phases repeat until they meet a
stopping criterion [19].

Algorithm 1 Memetic algorithm
create a population of individuals
repeat

improve some or all individuals with some local search algorithm
select, then combine and/or mutate the individuals

until stopping criteria

3 Related Work
Fighting the bloat has been considered an issue in GP since the early days of the

field [8, 21–23]. However, with the advent of powerful machine learning techniques
like deep learning (DL), the niche for GP has shifted from accuracy to interpretability.
Moreover, because the interpretability is closely related to the length of the models,
many works in the Genetic Programming aim to reduce the sizes of the obtained
models, equivalent to some extreme bloat fighting.

2Though other types of hybridization between Evolutionary Computation (EC) and local search have
been proposed, like using the local search as pre- or post-processor, as a mutation operator, among others
that are beyond the focus of this work.

5

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

Several approaches have been proposed to fight bloat in Genetic Programming. For
example, Bleuler et al. used SPEA2 to identify candidate solutions based on fitness and
size. Experimental results showed that the proposed strategy could reduce GP bloat
and speed up convergence. In [22], the authors proposed a pseudo-hill-climbing strategy
to control the tree size during the crossover operation. In this case, the proposed
approach discards an offspring if it either degrades the fitness or increases a tree’s size.
Although this approach can slow down GP bloating, it penalizes the running time
of GP algorithms. In [25], the authors integrated a local search strategy into Geometric
Semantic Genetic Programming (GSGP) to speed up convergence and limit overfitting.
Experimental results showed that although the proposed strategy only required a few
generations to find suitable candidate solutions, they were lost over the next generations,
leading to a performance drop. Other works have proposed semantic-based operators
to handle both bloat and generalization issues. Some examples include [5, 15, 26, 27]
among others.

Uy et al. proposed a semantic-based crossover operators, named Semantic Aware
Crossover (SAC) and Semantic Similarity-based Crossover (SSC). Their main difference
is in the definition of the semantic distances, which, when exchanging two subtrees, must
be different but not widely different. Similarly, Moraglio et al. suggested a semantic
crossover operator that creates offspring with a weighted average of their parents’
semantics. Notwithstanding, it cannot properly handle GP bloat without further
simplification procedures. Geometric Semantic Crossover (AGX) [28] tries to handle
these endeavors by replacing the ancestor’s subtrees with those semantically close to
their parents’ midpoint semantic. Random Desired Operator (RDO) [5] introduces
back-propagation. In this case, after a crossover operation, the semantics of the new
subtree are back-propagated as described in Section 2.1. Different studies have shown
that RDO outperforms the other operators on both regression [5] and Boolean [6]
problems.

Nguyen and Chu [29] rely on semantic similarity for controlling bloat in GP. In this
case, a random subtree of an individual is selected during crossover. Then, the first
strategy replaces it with a small tree of approximate semantics, whereas the second one
grows the tree to approximate the desired semantics of the selected subtree. The Gene-
pool Optimal Mixing Evolutionary Algorithm (GP-GOMEA) [12] combines GP with
linkage learning to learn a model of interdependencies and thus estimates the patterns
to propagate that lead to small solutions. Finally, Sipper and Moore [14] proposes
a Symbolic-regression boosting (SyRBO). SyRBO combines boosting with symbolic
regression to improve the performance through a few boosting stages.

In this work, we rely on the idea of the RDO [5] to improve the fitness of a candidate
solution. Likewise, a memetic algorithm selects the solutions based on their fitness on
a validation set and size. Moreover, we use linear scaling [28] to compute the scale
of the constants once a candidate solution has been found. Finally, we propose to
combine memetic semantics and a boosting algorithm to improve the accuracy without
penalizing the size of the expressions. It is different from SyRBO [14], which relies
on standard GP and does not consider the size of the expressions. Nevertheless, we
observe increased computational cost during the training phase. To the best of our

6

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

knowledge, this is the first work to propose a semantic boosting algorithm for symbolic
regression problems.

4 Methods
This section describes how semantic backpropagation (SB) and memetic algorithm

(MA) are combined to evolve GP models for symbolic regression (SR) problems that
are interpretable and have a lower learning error.

4.1 Memetic Semantic for Symbolic Regression
Although semantic backpropagations and memetic algorithms have been separately

used on SR problems, combining them can improve the interpretability and the gener-
alization efficiency of GP-based model. While SB helps one in finding programs (i.e.,
trees) with the approximated desired output, MAs contribute to improving them by
considering the semantics of their components (i.e., subtrees).

In a standard SB-based approach, once a subtree is selected to replace a node
in a tree, it adds some constants to enable the tree to output the desired output.
Consequently, as evolution proceeds, the trees often undergo excessive growth, known
as bloat, which penalizes the search process, drastically increases the evaluation cost,
and hinders the generalization of the trees (i.e., the accuracy on unseen data). We
handle these issues by using LS [9] to search for constants that correct the residual
errors of the tree. As a result, at each iteration, semantic backpropagation and memetic
algorithm can concentrate on the structure of the tree, leaving the scaling of the
coefficients to linear scaling.

Given a dataset composed of N independent samples (Xi) with m independent
input variables (Xi = [xi,1, xi,2, . . . , xi,m]) and a corresponding target output (yi), the
task of symbolic regression is to find a tree (T (.)) that minimizes the distance between
its outputs and the target output (y) [30, 31]. Such tree T (.) is built from a set of
predefined functions and a set of terminals (a.k.a. the input variables and ephemeral
constants).

For instance, using the mean squared error (MSE) as the distance metric (a.k.a.
fitness function) for T (.), and denoting ŷ the outputs of tree T , the task of symbolic
regression is to find a tree T (.) that minimizes MSE(T) defined as:

MSE(T) ≡MSE(y, ŷ) = 1
N

N∑
i=1

(yi − ŷi)2 (3)

4.1.1 Algorithm
The semantic part of the proposed Memetic Semantic GP for Symbolic Regression

(MSGP) algorithm (Algorithm 2), maintains a tree T with a set of subtrees S =
{s1, s2, . . . , sn}, and it iteratively tries to improve its accuracy (MSE) using a predefined
library L composed of l small subtrees. The goal of Algorithm 2 is to improve this
main tree interactively T by checking for each subtree si ∈ S if there exists a subtree
s⋆ ∈ L whose semantics are closest to the desired ones for si. At each iteration, after

7

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

attempting to locally improve a tree (Line 4, MSGP calculates the constants of the
improved tree (Line 5), and replaces the current tree with the new one (Line 6) when
the latter demonstrates superior performance in terms of accuracy (MSE) and size in
the validation set.

The starting tree T is usually created randomly. However, it can also be, for instance,
the output of another GP-based SR approach to make it simpler and consequently
more straightforward to understand by the users. In other words, MSGP does not
make any assumption about the size or nature of the initial tree when it uses the
library (L) to search the nodes that can better replace a given subtree of the main
tree. Consequently, the size and heterogeneity of the library L plays a vital role.

The memetic part of MSGP, linear scaling, computes a scaled version of
the MSE [9] with a computing cost that is linear with the dataset size N , (i.e., O(n)):

MSEa,b(y, ŷ) = 1
N

n∑
i=1

(yi − (a + bŷi))2 (4)

With a and b defined as:

a = ȳ − b¯̂y (5)

b =
N∑

i=1

(yi − ȳi)(ŷi − ¯̂y)
(ŷi − ¯̂y)2

(6)

These coefficients a and b are then added to the final tree. Moreover, the algorithm
ignores trees with constant outputs.

Algorithm 2 Memetic semantic for symbolic regression
Require: Initial tree (T), library (L)
Require: # epochs, and fitness cases (X, y)

1: T ′ ← clone(T)
2: Evaluate(T ′)
3: while e ≤ epochs do
4: T ⋆ ← lti(T ′,L, X, y) ▷ local tree improvement (Algorithm 3)
5: T ⋆ ←LS(T ⋆, y) ▷ linear scaling [9] computes the coefficients of T ⋆

(Equations (5) and (6))
6: T ′ ← best(T ⋆, T ′)

7: return T ′

4.1.2 Local tree improvement
Local Tree Improvement (LTI) algorithm (Algorithm 3) identifies the subtrees with

equal or better semantics than a randomly selected subtree of the main tree. It is
thus repeatedly applied to the target tree to improve its fitness gradually. It performs

8

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

an exhaustive search in the library L, which contains a set of small trees with pre-
computed semantics using the ancestor semantics of the target subtree. Hence, LTI
algorithm finds a subtree s⋆ in L that realizes

arg min
s⋆∈L

min
t∈{ti,...tn}

d(t, s(s⋆)) (7)

where t is the desired semantics and s(z) represents the semantics of subtrees z ∈ L.
Consequently, similar to the SB algorithm, LTI requires (a) a fitness measure

function and (b) a function to compute from the current context at each subtree and
for each fitness case, the desired semantics which subtrees should have to enable the
target tree evaluates to the expected semantics.

During the search process, the algorithm keeps track of the semantics distance
between the already analyzed subtrees to avoid replacing them several times. The
error function computes the distance between the semantics of the subtrees, which, in
this case, comprises the semantics of the candidate subtree and the ancestor semantics
of the selected subtree. If no local improvement is identified, the algorithm randomly
replaces a subtree in T by one also randomly selected from the library, which, in this
case, can be seen as a mutation operation. One can observe that local enhancement
may degrade global criteria (e.g., accuracy, size, and generalization). Thus, it is up to
the superior level to keep or ignore the newly proposed modified tree. Further work
will evolve each proposed tree during a predefined number of generations and then
crossover them using the LTI algorithm.

This work considers a static library composed of trees up to a certain height and
with heterogeneous semantics. Only the smallest tree is included in the library when
two candidates have the same semantics. Moreover, we also individually include the
problems’ variables and the operators (i.e., functions) into the library.

4.2 Memetic Semantic Boosting
We propose a boosting version of MSGP, called semantic boosting regression (SBR).

Boosting algorithms comprise a class of ensemble machine learning techniques designed
to improve the accuracy of “weak learners” when combined with a “strong learner”.
Weak learners are simple models with limited predictive power capacity. It means that
their output hypotheses are only slightly better than those of random guessing. In
contrast, strong learners are models with significant accuracy and robustness, which
means they can, with high probability, output hypotheses that are correct in all but
limited samples of the observations [32]. The essence of boosting methods relies on their
iterative strategy. In this case, each subsequent model focuses on correcting the errors
made by its predecessors, thus continuously improving the overall performance. This
process continues until a predefined number of models are built. Boosting algorithms
are popular in various application domains due to their effectiveness and adaptability
in handling complex datasets. One drawback is the increased computing time to train
the boosting learners sequentially.

In our case, the proposed SBR algorithm (Algorithm 4) includes a set of MSGP
models (Algorithm 2) as weak learners. Hence, training a model comprises fitting

9

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

Algorithm 3 Local tree improvement
Require: Tree (T), library (L)

1: compute-semantics(T) ▷ ∀ node N ∈ T
2: S ← subtrees(T)
3: τ ← sort(S) ▷ by error ascending and height descending
4: s← rank-select(τ)
5: best[s]← ∅
6: k ← ∅
7: min_error ← error(S)
8: for all s⋆ ∈ L do
9: if (s, s⋆) ∈ k then

10: continue
11: e← error(s, s⋆)
12: if e < min_error then
13: best[s] ← (s⋆, 0)
14: min_error ← e
15: else if e == min_error then
16: best[s] ← ∪ {(s⋆, e)}
17: if |best[s]| > 0 then
18: k ← k ∪ {(s, s⋆)}
19: T ⋆ ← crossover(ancestor(s), s⋆, T)
20: SemanticBackprogration(ancestor(s), s⋆, T ⋆)
21: return T ⋆

22: s← random(τ)
23: s⋆ ← random(L)
24: T ⋆ ← crossover(ancestor(s), s⋆, T)
25: SemanticBackprogration(ancestor(s), s⋆, T ⋆)
26: k ← k ∪ {(s, s⋆)}
27: return T ⋆

an MSGP model (Line 3) and updating the target values for the next stage to be the
residuals of the current model (Line 4), as usually done by traditional gradient boosting
algorithms. The output model is a large tree made of the sum of each individual learner
tree (Line 5) after undergoing a global linear scaling phase (Line 6). The prediction
phase then simply applies the trained model to the fitness cases.

10

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

Algorithm 4 Semantic Boosting Regression Training
Require: fitness cases (X, y)
Require: stages ▷ number of boosting stages
Require: kwargs ▷ arguments of MSGP

1: boosters ← []
2: for i← 1 to stages do
3: boosters[i] ← MSGP(kwargs).train(X,y) ▷ includes “local” linear scaling
4: y ← y - boosters[i].predict(X) ▷ updates the target values to the remaining

residuals (Algorithm 2)
5: T ← join_trees(boosters) ▷ concatenates (i.e., sum) the trees of all boosters
6: T ←LS(T , y) ▷ computes the coefficients of the tree T (Equations (5) and (6))
7: return T

5 Experimental settings
We evaluate the proposed semantic boosting regression algorithm on different

real-world regression dataset benchmarks. The datasets have heterogeneous fea-
tures and samples, as depicted in Table 1. Moreover, they are commonly used in
the GP literature [12, 33, 34] as overfitting the training set occurs either when com-
plex models are learned or when models are built using discontinuous functions.
Furthermore, the Dow Chemical and Tower datasets are recommended bench-
marks [35], taken from the UCI machine learning repository (archive.ics.uci.edu) and
the repository (shortest.link/8n9V) provided by Martins et al. [33].

Preliminary experiments on a few datasets lead to consider for SBR the parameter
settings given in Table 6 to define the library, the initial tree, and the number of
iterations. Note that following [12, 36], we use analytical quotient (AQ) instead of
protected division to avoid discontinuous behaviors but keep the general properties of
the division. Likewise, the literature has shown that it helps generalize at prediction
time [12, 36, 37]. It is defined as:

AQ(x1, x2) = x1√
1 + x2

2
(8)

As baselines, we consider both evolutionary and non-evolutionary algorithms: Decision
Tree (DT) and Random Forest (RF) [11]) for non-evolutionary approaches, and GP-
GOMEA [12] and gplearn [13] as the GP-based approaches. We use the scikit-learn [38]
implementations of decision tree and random forests as they are commonly used in
the GP and machine learning literature [14, 39, 40]: While decision trees are generally
considered to be interpretable models, random forests are considered as black-box
models. Nevertheless, the latter often outperforms the former. Consequently, they
are more often employed by practitioners across different domains. We rely on the
scikit-learn [41] implementation of these methods. We use grid search with cross-
validation equal to five for fine-tuning their main parameters to minimize the impact of

11

http://archive.ics.uci.edu
http://shortest.link/8n9V

507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

experimental parameters on their performance and interpretability. Table 2 describes
the range of values for each tuned parameter.

Table 3 describes the parameters settings for GP-GOMEA. They are the same
as in [12] to avoid impacting its performance on the benchmark datasets. Similarly,
for SyRBO, we follow the parameters’ values defined in [14] and depicted in Table 4.
SyRBO uses gplearn as the weak learners. We highlight that the SyRBO algorithm only
exposes the parameters: number of stages, population size, and number of generations.
All the other parameters described in Table 4 are the default values defined by gplearn,
and we list them here for completeness reasons.

In this work, we also compare the performance of gplearn in the selected bench-
marks, using its default parameters, as illustrated in Table 5. Finally, we include
the XGBoost [42] algorithm as another boosting machine learning method, using its
Python implementation version with its default parameters.

In this work, each experiment comprised 30 independent runs. For all datasets, the
fitness was evaluated such that lower values represent the best fitness, and the median of
the results are reported. MSGP was implemented in python using the DEAP library [43],
and we performed the experiments on a MacBook Pro with one Apple M1 processor (8
cores) and 16 GB of RAM memory. Table 6 describes the parameters of MSGP. An
initial tree was created with the Ramped Half-and-Half (H&H) method [1] with a
maximum depth of 4. We consider a library with 200 subtrees also initialized with the
Ramped (H&H) approach with a height between 2 and 4. The terminal set includes
all the covariates of the dataset, and we consider a maximum of 10,000 iterations (i.e.,
epochs) in which each candidate tree is tuned using the training set and evaluated on
the validation set.

We use the Wilcoxon signed-rank test [44] to assess the statistical significance of the
null hypothesis of no difference when comparing the performance of two methods on a
given dataset. This statistical test is set up to compare competing methods based on
the same prior conditions. In particular, we employ pairs of executions where a dataset
is split into identical training, validation, and test sizes for the tested approaches. We
consider a difference significant if a smaller p-value than 0.05/β is found, with β being
the Bonferonni correction coefficient used to prevent false positives.

Table 1: Regression datasets benchmarks considered by this
work

Name Acronym # Features # Samples

Airfoil AF 5 1503
Boston housing BH 13 506

Concrete compressing strength CCS 8 1030
Dow Chemical DC 57 1066
Energy cooling EC 8 768
Energy heating EH 8 768

Tower TW 25 4999
Wine red WR 11 1599

Wine white WW 11 4898
Yacht hydrodynamics YH 6 308

12

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

Table 2: Range of values of the grid search
for decision tree (DT) and random for-
est (RF) algorithms

Parameter Values
max_depth [3, 5, 7, 10]

min_samples
split [2, 5, 7, 10]

DT & RF min_samples
leaf [1, 2, 3, 4, 5, 6]

RF n_estimators [10, 20, 50, 100]

Table 3: GP-GOMEA parameters

Parameter Value

Function set {+, −, ×, ÷(AQ)}
Terminal set x ∪ {ERC}
ERC bounds [min x, max x]

Initialization for
GP-GOMEA Half-and-Half

Tree height 4
Initial population

size 64
Batch size 256

Linear scaling True
Max number of

generations -1
Max number of

evaluations -1
Train-validation-

test-split 50%-25%-25%
Interleaved

multi-start scheme 4:1

Table 4: SyRBO parameters
Parameter Value

Function set
{+, −, ×, ÷, √, log, |x|,
max, min, 1

x }
Terminal set x ∪ {ERC}

Population size 200
Number of generations 200

Initial depth [1, 6]
Trials 30

Loss function MSE
Tournament size 20

Initialization Ramped H&H [1-2]
Train-test-split 70%-30%

Table 5: gplearn parameters

Parameter Value

Function set {+, −, ×, ÷}
Terminal set x ∪ {ERC}

Population size 1000
Number of

generations 20
Initial depth [1, 6]

Trials 30
Loss function MSE

Tournament size 20
Initialization Ramped H&H [1-2]

Train-test-split 70%-30%

Table 6: MSGP parameters
Parameter Value

Function set {+, −, ×, ÷(AQ)}
Terminal set Features

Initial tree height 2
epochs 1e4
Max time 500 seconds

Trials 30
Loss function MSE

Library size 200
Initialization Ramped H&H [1-2]

Train-validation-test-
split 50%-25%-25%

Table 7: SBR parameter settings

Parameter Value

Function set {+, −, ×, ÷(AQ)}
Terminal set Problem’s variables

Initial tree height 2
epochs 6e3
Max time 300 seconds

Trials 30
Loss function MSE

Library size 300
Initialization Ramped H&H [1-2]

Train-validation-test-
split 50%-25%-25%

6 Results
Table 8 shows the median error on the testing set for each of the considered

methods. The experimental results confirm that XGBoost [42] and Random Forest
(RF) [11] outperform evolutionary-based methods and also decision tree for almost all

13

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

the benchmark datasets. The exceptions include the results of the dow chemical (DC),
wine red (WR), and yacht hydrodynamics datasets, in which our methods MSGP
and SBR achieve similar performance (e.g., DC and WR). Although XGBoost and RF
achieve high accuracy, they sacrifice the intrinsic interpretability of a single decision
tree. For example, while it may be easy to follow the path taken by a decision tree
to make a decision, it may be much more challenging to follow the paths of dozens
or even hundreds of trees. For example, Section 6 illustrate the decision tree for the
Boston housing dataset and one of the trees of RF. It is essential to highlight that
both approaches were fine-tuned to balance the interpretability and accuracy trade-off,
as described in Section 5. Moreover, a decision tree requires users to translate the
decision paths into some if-then rules, which represents a workload when compared
to a symbolic expression outputted by an evolutionary method such as GP-GOMEA,
MSGP, and SBR, as we can see in Tables 9 and 10. Nonetheless, MSGP and SBR
have a high computational training cost when compared to classical machine learning
methods such as Random Forest and XGBoost due to their need to evaluate the
different candidate trees during the refinement of the target tree. The experiments

Table 8: Performance on the test set for each benchmark dataset. Boldface highlights
the best result in each row, while underlines indicate superior performance compared to
the corresponding algorithm types. XGBoost demonstrates overall superior performance
across datasets. Our boosting method (SBR) achieves comparable or better performance
than evolutionary-based (EA) methods, without penalizing the size of the discovered
symbolic expressions, as detailed in Table 10.

Boosting methods

EA-based methods

Non EA EA SBR SyRBO

DS DT RF gplearn GP- MSGP 5 10 5 10 XGBGOMEA

AF 8.7 4.3 607.14 33.3 20.0 19.3 17.81 93.49 59.66 2.61
BH 21.63 12.9 51.05 20.04 26.2 23.09 20.24 120.55 144.89 11.2
CCS 50.91 28.4 173.55 98.26 87.8 74.14 61.2 73.54 66.02 23.1
DC 0.03 0.02 0.14 0.08 0.05 0.04 0.03 0.12 0.12 0.02
EC 3.72 3.19 17.07 12.25 10.89 10.78 10.4 14.49 14.5 0.77
EH 0.33 0.29 14.98 10.92 8.97 8.12 7.33 9.56 8.15 0.14
TW 488 269 4451 1714 1577 1473 1265 2459 31596 260
WR 0.48 0.36 0.53 0.62 0.42 0.42 0.41 0.49 0.48 0.39
WW 0.55 0.43 0.69 0.69 0.55 0.55 0.55 0.71 0.78 0.42
YH 1.83 1.44 40.85 0.58 12.1 54.08 52.21 16.61 13.39 0.95

reveal that MSGP and SBR have a performance comparable to the one obtained
by GP-GOMEA, and that they outperform gplearn and SyRBO. Moreover, Figure 2
shows that over the trials, the expressions’ size and error stay concentrated around
small values for the different datasets. Such a result confirms that our algorithms can
improve the fitness of a tree while keeping it smaller. Such behavior allows users to
pick a tree that includes some features—for example, a tree with features invoking
causal relationships or any other feature of interest. In an ideal setting, one would

14

645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

squared_error = 4.133
samples = 36

value = 24.186

squared_error = 6.209
samples = 113
value = 20.784

squared_error = 9.576
samples = 16
value = 31.1

squared_error = 8.214
samples = 18

value = 25.489

squared_error = 7.078
samples = 5

value = 22.34

squared_error = 8.921
samples = 28

value = 19.029

squared_error = 3.784
samples = 30

value = 15.543

squared_error = 8.276
samples = 16

value = 12.125

squared_error = 1.569
samples = 6

value = 11.55

squared_error = 4.245
samples = 21
value = 8.624

squared_error = 0.707
samples = 4

value = 31.875

squared_error = 4.109
samples = 6

value = 34.35

squared_error = 11.438
samples = 11
value = 44.9

squared_error = 0.422
samples = 4

value = 49.625

X13 <= 7.57
squared_error = 7.828

samples = 149
value = 21.606

X7 <= 43.1
squared_error = 16.699

samples = 34
value = 28.129

X1 <= 0.147
squared_error = 10.051

samples = 33
value = 19.53

squared_error = 4.421
samples = 8

value = 14.712

X13 <= 19.72
squared_error = 7.997

samples = 46
value = 14.354

X5 <= 0.675
squared_error = 5.13

samples = 27
value = 9.274

squared_error = 3.545
samples = 7

value = 32.829

squared_error = 21.952
samples = 8

value = 37.95

X6 <= 7.183
squared_error = 4.218

samples = 10
value = 33.36

squared_error = 36.806
samples = 5

value = 24.88

X12 <= 390.425
squared_error = 12.866

samples = 15
value = 46.16

squared_error = -0.0
samples = 4
value = 50.0

squared_error = 91.577
samples = 4

value = 44.475

X6 <= 6.594
squared_error = 15.913

samples = 183
value = 22.818

X11 <= 20.95
squared_error = 12.598

samples = 41
value = 18.59

X1 <= 11.45
squared_error = 12.952

samples = 73
value = 12.475

X11 <= 17.6
squared_error = 19.89

samples = 15
value = 35.56

X12 <= 395.4
squared_error = 31.061

samples = 15
value = 30.533

X1 <= 0.577
squared_error = 12.608

samples = 19
value = 46.968

squared_error = 61.423
samples = 4

value = 34.65

X8 <= 1.385
squared_error = 27.35

samples = 187
value = 23.281

X5 <= 0.607
squared_error = 21.436

samples = 114
value = 14.675

X13 <= 5.44
squared_error = 31.792

samples = 30
value = 33.047

X11 <= 17.9
squared_error = 42.898

samples = 23
value = 44.826

X13 <= 14.4
squared_error = 42.54

samples = 301
value = 20.022

X6 <= 7.435
squared_error = 70.696

samples = 53
value = 38.158

X6 <= 6.971
squared_error = 88.631

samples = 354
value = 22.737

(a) Decision tree generated by a decision tree
algorithm

squared_error = 0.0
samples = 1
value = 20.6

squared_error = 0.0
samples = 1
value = 20.4

squared_error = 0.023
samples = 2

value = 22.95

squared_error = 0.0
samples = 1
value = 22.1

squared_error = 0.0
samples = 1
value = 22.9

squared_error = 0.424
samples = 8

value = 24.458

squared_error = 0.0
samples = 1
value = 24.4

squared_error = 0.162
samples = 5

value = 22.738

squared_error = 0.0
samples = 1
value = 16.1

squared_error = 0.023
samples = 2

value = 15.15

squared_error = 0.0
samples = 1
value = 19.6

squared_error = 0.0
samples = 1
value = 19.9

squared_error = 0.997
samples = 7

value = 19.022

squared_error = 0.202
samples = 2

value = 20.95

squared_error = 1.816
samples = 20

value = 21.612

squared_error = 1.814
samples = 10
value = 19.7

squared_error = 0.0
samples = 1
value = 24.8

squared_error = -0.0
samples = 1
value = 24.5

squared_error = 0.0
samples = 1
value = 19.8

squared_error = 0.864
samples = 12

value = 22.389

squared_error = 0.0
samples = 1
value = 35.1

squared_error = 0.0
samples = 1
value = 34.9

squared_error = 0.0
samples = 1
value = 23.7

squared_error = 0.0
samples = 1
value = 25.0

squared_error = 0.0
samples = 1
value = 21.4

squared_error = -0.0
samples = 1
value = 20.5

squared_error = 0.033
samples = 6

value = 19.35

squared_error = 0.0
samples = 1
value = 20.0

squared_error = 0.0
samples = 1
value = 18.3

squared_error = 0.0
samples = 1
value = 18.7

squared_error = 0.0
samples = 1
value = 17.1

squared_error = 0.002
samples = 2

value = 17.46

squared_error = 0.0
samples = 2
value = 13.1

squared_error = 0.0
samples = 1
value = 11.5

squared_error = 0.227
samples = 10

value = 14.241

squared_error = 0.239
samples = 5

value = 14.909

squared_error = 0.0
samples = 1
value = 13.4

squared_error = -0.0
samples = 1
value = 13.8

squared_error = 0.0
samples = 1
value = 10.9

squared_error = 0.001
samples = 3

value = 10.417

squared_error = 0.0
samples = 1
value = 23.7

squared_error = 0.0
samples = 1
value = 24.6

squared_error = 0.0
samples = 1
value = 29.4

squared_error = 0.0
samples = 1
value = 28.7

X9 <= 4.5
squared_error = 0.01

samples = 2
value = 20.5

X7 <= 41.05
squared_error = 0.192

samples = 3
value = 22.525

X6 <= 6.189
squared_error = 0.564

samples = 9
value = 24.338

X2 <= 23.5
squared_error = 0.417

samples = 6
value = 22.922

squared_error = 0.0
samples = 1
value = 17.2

X7 <= 81.4
squared_error = 0.226

samples = 3
value = 15.72

squared_error = 0.0
samples = 1
value = 23.1

X11 <= 17.45
squared_error = 0.018

samples = 2
value = 19.814

X7 <= 64.6
squared_error = 1.406

samples = 9
value = 19.373

X7 <= 70.15
squared_error = 2.571

samples = 30
value = 21.054

X5 <= 0.418
squared_error = 0.02

samples = 2
value = 24.6

X8 <= 2.456
squared_error = 1.153

samples = 13
value = 22.253

squared_error = 0.0
samples = 1
value = 35.4

X11 <= 15.95
squared_error = 0.009

samples = 2
value = 35.033

squared_error = 0.0
samples = 1
value = 22.8

squared_error = 0.0
samples = 1
value = 22.0

squared_error = 0.0
samples = 1
value = 23.6

squared_error = -0.0
samples = 3
value = 23.9

squared_error = 0.0
samples = 1
value = 28.4

squared_error = -0.0
samples = 1
value = 27.5

X13 <= 8.62
squared_error = 0.376

samples = 2
value = 24.567

squared_error = 0.0
samples = 1
value = 26.5

X13 <= 16.37
squared_error = 0.202

samples = 2
value = 20.95

X7 <= 98.35
squared_error = 0.071

samples = 7
value = 19.422

X13 <= 16.425
squared_error = 0.03

samples = 2
value = 18.4

squared_error = 0.0
samples = 1
value = 17.5

squared_error = 0.0
samples = 1
value = 16.2

X8 <= 1.908
squared_error = 0.028

samples = 3
value = 17.357

squared_error = 0.0
samples = 1
value = 18.1

squared_error = 0.0
samples = 1
value = 18.9

squared_error = 0.0
samples = 1
value = 17.7

squared_error = 0.0
samples = 1
value = 16.7

X7 <= 98.85
squared_error = 0.569

samples = 3
value = 12.567

X7 <= 96.95
squared_error = 0.338

samples = 15
value = 14.504

squared_error = 0.0
samples = 1
value = 15.6

X6 <= 6.117
squared_error = 0.04

samples = 2
value = 13.6

squared_error = 0.0
samples = 1
value = 8.5

X1 <= 20.134
squared_error = 0.03

samples = 4
value = 10.486

squared_error = 0.0
samples = 1
value = 8.3

squared_error = 0.0
samples = 1
value = 8.8

squared_error = 0.0
samples = 1
value = 8.4

squared_error = 0.0
samples = 1
value = 8.8

squared_error = 0.0
samples = 1
value = 33.2

squared_error = -0.0
samples = 1
value = 33.3

squared_error = 0.0
samples = 1
value = 22.5

X6 <= 6.412
squared_error = 0.152

samples = 2
value = 24.375

squared_error = 0.0
samples = 1
value = 27.0

X11 <= 17.65
squared_error = 0.122

samples = 2
value = 29.05

squared_error = 0.0
samples = 1
value = 20.7

squared_error = -0.0
samples = 1
value = 22.2

X3 <= 7.76
squared_error = 1.043

samples = 5
value = 21.85

X8 <= 6.473
squared_error = 0.989

samples = 15
value = 23.759

X3 <= 11.245
squared_error = 0.608

samples = 4
value = 16.143

X12 <= 236.51
squared_error = 1.197

samples = 3
value = 20.225

X3 <= 6.065
squared_error = 2.782

samples = 39
value = 20.741

X12 <= 381.665
squared_error = 1.647

samples = 15
value = 22.573

squared_error = 0.0
samples = 1
value = 29.1

squared_error = -0.0
samples = 1
value = 27.9

squared_error = 0.0
samples = 1
value = 37.0

X12 <= 394.565
squared_error = 0.038

samples = 3
value = 35.18

squared_error = 0.0
samples = 1
value = 29.6

squared_error = 0.0
samples = 1
value = 32.4

squared_error = 0.0
samples = 1
value = 28.6

squared_error = -0.0
samples = 1
value = 28.7

X1 <= 0.107
squared_error = 0.154

samples = 2
value = 22.32

X10 <= 271.5
squared_error = 0.017

samples = 4
value = 23.825

X1 <= 0.373
squared_error = 0.18

samples = 2
value = 28.1

X11 <= 20.55
squared_error = 1.081

samples = 3
value = 25.211

X8 <= 2.097
squared_error = 0.442

samples = 9
value = 19.7

X11 <= 18.5
squared_error = 0.2

samples = 3
value = 18.1

X8 <= 1.819
squared_error = 0.253

samples = 4
value = 17.1

X10 <= 453.0
squared_error = 0.142

samples = 2
value = 18.367

squared_error = 0.0
samples = 1
value = 19.1

X1 <= 7.39
squared_error = 0.222

samples = 2
value = 17.033

X8 <= 1.806
squared_error = 0.688

samples = 18
value = 14.316

squared_error = -0.0
samples = 1
value = 17.8

X8 <= 1.415
squared_error = 0.916

samples = 3
value = 14.267

squared_error = 0.0
samples = 1
value = 11.8

squared_error = 0.0
samples = 1
value = 12.7

squared_error = -0.0
samples = 1
value = 11.7

squared_error = 0.0
samples = 1
value = 8.3

squared_error = -0.0
samples = 1
value = 7.2

X7 <= 87.25
squared_error = 0.457

samples = 5
value = 10.237

X7 <= 98.0
squared_error = 0.063

samples = 2
value = 8.55

X1 <= 16.881
squared_error = 0.04

samples = 2
value = 8.6

squared_error = -0.0
samples = 1
value = 10.2

squared_error = 0.0
samples = 1
value = 7.4

squared_error = 0.0
samples = 1
value = 7.2

X2 <= 40.0
squared_error = 0.002

samples = 2
value = 33.225

squared_error = -0.0
samples = 1
value = 32.9

squared_error = 0.0
samples = 1
value = 34.9

squared_error = 0.0
samples = 1
value = 33.8

X1 <= 0.096
squared_error = 0.684

samples = 3
value = 24.0

X6 <= 6.34
squared_error = 1.058

samples = 3
value = 27.82

X6 <= 6.313
squared_error = 0.5

samples = 2
value = 21.2

X6 <= 6.145
squared_error = 1.614

samples = 20
value = 23.35

squared_error = 0.0
samples = 1
value = 19.4

squared_error = 0.0
samples = 1
value = 11.9

X13 <= 12.975
squared_error = 5.07

samples = 7
value = 18.32

X6 <= 6.236
squared_error = 3.138

samples = 54
value = 21.238

squared_error = 0.0
samples = 1
value = 30.5

X2 <= 70.0
squared_error = 0.32

samples = 2
value = 28.3

X12 <= 384.955
squared_error = 0.491

samples = 4
value = 35.483

X7 <= 19.85
squared_error = 1.742

samples = 2
value = 31.467

squared_error = 0.0
samples = 1
value = 30.1

X7 <= 58.1
squared_error = 0.003

samples = 2
value = 28.65

X12 <= 395.61
squared_error = 0.652

samples = 6
value = 22.989

X12 <= 391.73
squared_error = 2.421

samples = 5
value = 25.933

squared_error = 0.0
samples = 1
value = 23.7

squared_error = 0.0
samples = 1
value = 23.1

X10 <= 387.5
squared_error = 0.941

samples = 12
value = 19.135

X12 <= 394.375
squared_error = 0.526

samples = 6
value = 17.417

X5 <= 0.648
squared_error = 0.967

samples = 3
value = 17.55

X4 <= 0.5
squared_error = 1.338

samples = 19
value = 14.527

squared_error = 0.0
samples = 1
value = 19.1

squared_error = -0.0
samples = 1
value = 15.4

X13 <= 28.545
squared_error = 1.828

samples = 4
value = 13.65

squared_error = 0.0
samples = 1
value = 12.3

squared_error = 0.0
samples = 1
value = 9.5

squared_error = 0.0
samples = 1
value = 7.5

X6 <= 6.048
squared_error = 0.25

samples = 2
value = 12.2

squared_error = 0.0
samples = 1
value = 10.8

X5 <= 0.686
squared_error = 0.269

samples = 2
value = 7.933

X8 <= 1.675
squared_error = 0.834

samples = 7
value = 9.9

X7 <= 95.6
squared_error = 0.596

samples = 3
value = 9.133

X7 <= 93.8
squared_error = 0.009

samples = 2
value = 7.333

squared_error = 0.0
samples = 1
value = 37.9

squared_error = 0.0
samples = 1
value = 37.3

X8 <= 7.481
squared_error = 0.025

samples = 3
value = 33.117

X6 <= 7.194
squared_error = 0.269

samples = 2
value = 34.167

squared_error = 0.0
samples = 1
value = 44.8

squared_error = 0.0
samples = 1
value = 45.4

squared_error = 0.0
samples = 1
value = 48.3

squared_error = 0.0
samples = 1
value = 48.8

X13 <= 5.2
squared_error = 4.519

samples = 6
value = 25.91

X10 <= 228.5
squared_error = 2.089

samples = 22
value = 22.971

X1 <= 0.041
squared_error = 12.5

samples = 2
value = 14.4

X12 <= 367.67
squared_error = 4.563

samples = 61
value = 20.782

X11 <= 15.4
squared_error = 1.148

samples = 3
value = 28.85

X3 <= 4.65
squared_error = 4.494

samples = 6
value = 34.144

X3 <= 8.93
squared_error = 0.527

samples = 3
value = 29.375

X1 <= 0.114
squared_error = 3.786

samples = 11
value = 24.671

X7 <= 19.3
squared_error = 0.08

samples = 2
value = 23.3

X11 <= 20.95
squared_error = 1.486

samples = 18
value = 18.424

squared_error = 0.0
samples = 1
value = 13.6

squared_error = 0.0
samples = 1
value = 7.0

X13 <= 15.36
squared_error = 2.179

samples = 22
value = 14.854

X5 <= 0.727
squared_error = 2.567

samples = 2
value = 18.175

X1 <= 7.521
squared_error = 1.623

samples = 5
value = 13.2

X13 <= 24.935
squared_error = 0.889

samples = 2
value = 8.833

X5 <= 0.727
squared_error = 0.57

samples = 3
value = 11.36

X1 <= 15.867
squared_error = 1.39

samples = 9
value = 9.446

squared_error = 0.0
samples = 1
value = 5.0

X12 <= 384.91
squared_error = 0.763

samples = 5
value = 7.783

squared_error = 0.0
samples = 1
value = 36.1

X8 <= 3.909
squared_error = 0.086

samples = 2
value = 37.54

squared_error = 0.0
samples = 1
value = 33.0

squared_error = 0.0
samples = 1
value = 34.9

squared_error = 0.0
samples = 1
value = 36.5

X3 <= 3.165
squared_error = 0.422

samples = 5
value = 33.642

squared_error = 0.0
samples = 1
value = 31.0

squared_error = -0.0
samples = 1
value = 30.7

squared_error = 0.0
samples = 1
value = 46.7

X8 <= 3.795
squared_error = 0.08

samples = 2
value = 45.2

X6 <= 8.322
squared_error = 0.062

samples = 2
value = 48.55

squared_error = 0.0
samples = 3
value = 50.0

squared_error = 0.0
samples = 1
value = 42.8

squared_error = 0.0
samples = 1
value = 43.5

squared_error = 0.0
samples = 1
value = 38.7

squared_error = -0.0
samples = 1
value = 37.6

X13 <= 5.51
squared_error = 4.159

samples = 28
value = 23.639

X13 <= 7.89
squared_error = 7.285

samples = 63
value = 20.407

X6 <= 6.748
squared_error = 9.435

samples = 9
value = 32.515

X11 <= 16.5
squared_error = 6.238

samples = 14
value = 25.424

X7 <= 38.2
squared_error = 3.374

samples = 20
value = 18.881

X13 <= 21.02
squared_error = 10.89

samples = 2
value = 10.3

X13 <= 21.085
squared_error = 3.188

samples = 24
value = 15.178

X1 <= 8.666
squared_error = 5.616

samples = 7
value = 11.744

squared_error = 0.0
samples = 1
value = 11.9

squared_error = -0.0
samples = 1
value = 17.9

X1 <= 14.075
squared_error = 1.897

samples = 12
value = 9.978

X13 <= 30.605
squared_error = 1.85

samples = 6
value = 7.227

X3 <= 2.32
squared_error = 0.485

samples = 3
value = 37.129

X3 <= 2.165
squared_error = 0.802

samples = 2
value = 33.633

X8 <= 2.021
squared_error = 0.97

samples = 6
value = 33.862

X8 <= 2.106
squared_error = 0.022

samples = 2
value = 30.85

X6 <= 7.753
squared_error = 0.482

samples = 3
value = 45.575

X1 <= 0.524
squared_error = 0.488

samples = 5
value = 49.517

X5 <= 0.503
squared_error = 0.109

samples = 2
value = 43.267

X7 <= 81.25
squared_error = 0.29

samples = 2
value = 38.26

squared_error = 0.0
samples = 1
value = 27.9

squared_error = -0.0
samples = 3
value = 50.0

X13 <= 7.81
squared_error = 8.542

samples = 91
value = 21.381

X13 <= 5.3
squared_error = 18.65

samples = 23
value = 27.85

X10 <= 590.0
squared_error = 7.893

samples = 22
value = 18.376

X13 <= 22.37
squared_error = 5.365

samples = 31
value = 14.56

X6 <= 4.383
squared_error = 6.75

samples = 2
value = 13.4

X13 <= 29.435
squared_error = 3.752

samples = 18
value = 8.727

X8 <= 5.259
squared_error = 3.146

samples = 5
value = 36.08

X13 <= 10.42
squared_error = 1.892

samples = 8
value = 33.46

X1 <= 0.323
squared_error = 4.214

samples = 8
value = 47.94

X7 <= 64.3
squared_error = 6.097

samples = 4
value = 40.137

X12 <= 339.985
squared_error = 91.577

samples = 4
value = 44.475

X6 <= 6.599
squared_error = 17.487

samples = 114
value = 22.717

X1 <= 0.812
squared_error = 9.897

samples = 53
value = 16.105

X5 <= 0.665
squared_error = 6.182

samples = 20
value = 9.232

X10 <= 258.0
squared_error = 4.041

samples = 13
value = 34.508

squared_error = -0.0
samples = 1
value = 15.0

X12 <= 387.345
squared_error = 20.083

samples = 12
value = 44.472

squared_error = -0.0
samples = 1
value = 21.9

X8 <= 1.385
squared_error = 28.922

samples = 118
value = 23.18

X1 <= 11.945
squared_error = 18.787

samples = 73
value = 14.003

X3 <= 11.525
squared_error = 17.959

samples = 14
value = 33.758

X6 <= 8.753
squared_error = 44.431

samples = 13
value = 43.284

X13 <= 14.48
squared_error = 45.015

samples = 191
value = 19.586

X6 <= 7.443
squared_error = 51.276

samples = 27
value = 37.78

X6 <= 7.01
squared_error = 82.54

samples = 218
value = 21.899

(b) A single tree from a random forest model

Fig. 1: Examples of decision trees produced by the decision tree and random forest
algorithms on the Boston housing dataset

expect to see most points concentrated around the bottom left of the plot, representing
small trees with a minimal training error.

Fig. 2: Fitness versus MSGP expression sizes across all the benchmarks. Each dot
represents a trial, with different colors distinguishing the trials.

Figure 3 illustrates the performance of the best solutions over the 30 runs on the
training, validation, and test sets. We can note a small variance across the different
runs. Moreover, Figure 4 shows that MSGP requires only a few iterations to fine-tune
a target tree for an acceptable performance.

Figure 5 show that SBR algorithm outperforms MSGP and SyRBO except for the
yacht hydrodynamics dataset for five and ten stages. As SyRBO solely focuses only on
performance, we observe outputted expressions with hundreds and even thousands of
terms, as shown in Figure 6a. It may be due to its reliance on gplearn as the weak
learner. Contrarily, Figure 6b shows that SBR can output short symbolic expressions.

15

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

Table 9: Examples of the best symbolic expressions find by MSGP (Section 4.1) and
GP-GOMEA [12]

DS MSGP GP-GOMEA

AF
−55.66∗X2∗X3∗(X4−X5)∗(X1∗X5+X2∗
X3−X2−X3+2∗X5)÷(X4∗X5∗(X1∗X5+
X4+X5÷X4)∗(X2∗X3−X2−X4))+131.67

(108.14 ∗ X0 ∗ X3 − 25.89 ∗ X1 − 1055.88 ∗ X2 +
25.89 ∗ X3) ÷ (X0 ∗ X3)

BH 54.67 − 2.70 ∗ (X11 + X5) ∗ (X13 + X8) ÷ X11 1.0 ∗ (10.59 ∗ X10 ∗ X9 − 2.11 ∗ X12 ∗ X9 −
92.10 ∗ X5) ÷ (X9 ∗ (X10 + X12))

CCS
4.63+9.25∗ (X1+X5)∗ (X4∗X8÷X6+X3÷
(X2∗X4∗X8))∗ (X2+X4+X5+X6)÷ (X4∗
(X4 ÷ X1 + X4 ÷ (X1 ∗ X2 ∗ X8)) ∗ (X4 − X5 +
X6 + X8))

(−152.56 ∗ X0 − 152.56 ∗ X1 − 152.56 ∗ X2 −
190.26 ∗ (X2 + 3.94) ∗ (X3 − X7) − 199.95) ÷
((X2 + 3.94) ∗ (X3 − X7))

DW −6623.32 ∗ X35 ∗ X6 ÷ (X37 ∗ X9 ∗ (−X14 +
X31) ∗ (X19 − X32)) + 6.75

−1710.01 ∗ X15 − 1710.01 ∗ X18 − 1710.01 ∗
X20 + 1710.01 ∗ X48 + 1710.01 ∗ (X20 − X34) ∗
(X23 + 0.13) + 2.94

EC 6.18 ∗ X5 ∗ (X3 ÷ X7 + X6 ∗ X8) ÷ ((X1 −
X7) ∗ (−X2 + X6)) − 1.17

(X2 ∗ (−37894.76 ∗ X0 + 13312.61 ∗ X2 ∗ X4 −
267.99) + 13312.61 ∗ X7 ∗ (X6 + 0.02)) ÷ X2

EH 11.06 ∗ X5 ÷ (X1 + X1 ÷ X7 − X7) − 12.86 (X1∗(−26642.41∗X0+16280.46∗X6−97.05)+
3492.47 ∗ X4 + 102.44) ÷ X1

TW −13.77∗X1−13.77∗X21∗(X1+X4)÷(−X12+
X15 + X23) + 13.77 ∗ X6 + 659.31

−12927.68 ∗ (−2 ∗ X0 + X22 + X5) ∗ (X0 −
X10 − X14 + X8) − 1210.43

Table 10: Examples of the best expressions found by SBR for each benchmark dataset.
DS 5 stages 10 stages

AF −0.006411 ∗ X1 ∗ X3 − 0.006411 ∗ X1 ∗ X5 +
0.006411 ∗ X2 − 0.006411 ∗ X4 + 127.71

−0.006711 ∗ X1 ∗ X3 − 0.006711 ∗ X1 ∗ X5 −
0.006711 ∗ X2 − 0.013422 ∗ X3 ÷ X4 +

0.006711 ∗ X4 + 127.257606 − 0.006711 ∗ X2 ÷
X1 − 0.013422 ∗ X3 ÷ X1

BH 5.17 ∗ X1 ∗ X4 + 10.86 + 5.17 ∗ X6 ÷ X13 +
5.17 ∗ X6 ÷ X11 + 5.17 ∗ X12 ÷ X10

−0.14∗X1−0.14∗X11÷X4+0.14∗X13−0.14∗
X3−0.14∗X5÷X9−0.14∗X8+26.14−0.14∗
X6 ÷ X3 − 0.14 ∗ X6 ÷ X11 − 0.14 ∗ X13 ÷ X10

CCS
0.026 ∗ X1 ÷ X4 + 0.026 ∗ X2 + 0.026 ∗ X4 ÷
X8 + 0.026 ∗ X5 ∗ X8 + 0.026 ∗ X8 + 25.40 +

0.026 ∗ X8 ÷ X5
0.021 ∗ X1 − 0.01 ∗ X2 + 0.01 ∗ X3 ÷X5 + 0.01 ∗
X4 + 0.02 ∗ X4 ÷ X8 + 0.03 ∗ X5 ∗ X8 + 21.17

DW
−0.01 ∗ X16 + 0.01 ∗ X29 + 0.01 ∗ X30 ÷ X4 +

0.01 ∗ X49 + 0.017203 ∗ X55 − 7.772227 +
0.01 ∗ X55 ÷ X35

−9.3e − 5 ∗ X16 ÷ X7 − 9.3e − 5 ∗ X18 − 9.3e −
5∗X18÷X19−9.3e−5∗X29−9.3e−5∗X32−
9.3e−5∗X35−9.3e−5∗X36−9.3e−5∗X36÷
X53 − 9.3e − 5 ∗ X49 + 3.16 − 9.3e − 5 ∗ X9 ÷
X37−9.3e−5∗X5÷X30−9.3e−5∗X47÷X16

EC 1.55 ∗ X1 ∗ X2 + 1.55 ∗ X1 ÷ X3 − 762.86 +
1.55 ∗ X5 ÷ X1

0.10 ∗ X1 ∗ X2 + 0.15 ∗ X1 ÷ X3 + 0.05 ∗ X3 ∗
X7 + 0.05 ∗ X4 ∗ X5 + 0.05 ∗ X4 ∗ X7 −

80.28 + 0.05 ∗ X5 ÷ X1

EH −0.12 ∗ X1 ∗ X2 − 0.24 ∗ X1 ÷ X5 + 83.96 −
0.12 ∗ X7 ÷ X4

0.19 ∗ X1 ∗ X2 + 0.19 ∗ X1 ÷ X3 + 0.09 ∗
X2 ÷ X4 + 0.09 ∗ X3 ∗ X7 + 0.09 ∗ X5 +

0.09 ∗ X7 − 87.27 + 0.09 ∗ X7 ÷ X5

TW
−5.86 ∗ X1 − 5.86 ∗ X1 ÷ X23 − 5.86 ∗ X2 ÷
X25 − 5.86 ∗ X23 ÷ X5 + 5.86 ∗ X6 + 27.51 −

5.86 ∗ X6 ÷ X4

−2.54∗X1+2.54∗X1÷X3−2.54∗X13+2.54∗
X15+2.54∗X24+2.54∗X4÷X7+2.54∗X5+
2.54 ∗ X8 − 76.27 + 2.54 ∗ X8 ÷ X22 + 2.54 ∗
X16 ÷ X13 + 2.54 ∗ X2 ÷ X1 + 2.54 ∗ X6 ÷ X1

WR 0.36 ∗ X10 ∗ X5 + 0.36 ∗ X11 ÷ X2 + 0.36 ∗
X2 ÷ X4 + 2.28

−0.007 ∗ X10 ∗ X5 − 0.003 ∗ X11 − 0.003 ∗
X11 ÷ X9 − 0.007 ∗ X3 − 0.003 ∗ X7 ∗ X8 −

0.003 ∗ X9 + 5.90 − 0.003 ∗ X9 ÷ X2

WW 0.01 ∗ X1 ÷ X4 + 0.01 ∗ X11 ∗ ∗2 + 0.02 ∗
X2 ÷ X6 + 4.39 + 0.01 ∗ X2 ÷ X11

0.11 ∗ X10 + 0.11 ∗ X11 + 0.11 ∗ X2 + 0.11 ∗
X2 ÷ X4 + 0.11 ∗ X4 ÷ X7 + 0.11 ∗ X5 ∗ X9 +

0.11 ∗ X9 + 3.76 + 0.11 ∗ X9 ÷ X6 + 0.11 ∗
X2 ÷ X11 + 0.11 ∗ X6 ÷ X11 + 0.11 ∗ X2 ÷ X1

YT 85.80 ∗ X6 ∗ ∗2 + 86.77 18.12 ∗ X2 ÷ X3 + 72.49 ∗ X62 + 67.801051

16

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

Train Val Test

14
16
18
20
22
24

M
SE

Airfoil (AF)

Train Val Test
10

20

30

40

50

60
Boston housing (BH)

Train Val Test

50

75

100

125

150

175
Concrete compressing strength (CCS)

Train Val Test

0.04

0.06

0.08

0.10
Dow chemical (DC)

Train Val Test

6

8

10

12

14
Energy cooling (EC)

Train Val Test

6

8

10

12

14

16

M
SE

Energy heating (EH)

Train Val Test

1000

1500

2000

2500

Tower (TW)

Train Val Test

0.35

0.40

0.45

0.50
Wine red (WR)

Train Val Test

0.525

0.550

0.575

0.600

0.625
Wine white (WW)

Train Val Test
0

20

40

60

Yacht hydrodynamics (YH)

Fig. 3: Accuracy of the best solution across 30 runs on the training, validation, and
test sets for MSGP. White dots indicate the median and the bars represent the first
and third quartiles.

0 5000 10000
Epoch

20

40

Tr
ai

n
M

SE

0 (15.4)
1 (20.9)
2 (18.3)
3 (20.9)4 (19.9)5 (19.6)6 (20.3)7 (19.0)8 (18.7)
9 (22.0)

10 (14.6)
11 (20.7)
12 (17.5)13 (17.8)14 (19.5)15 (19.2)16 (20.2)17 (18.4)18 (20.0)19 (21.1)
20 (17.5)21 (18.6)22 (17.4)23 (19.0)24 (20.6)25 (21.4)26 (19.2)27 (19.5)28 (21.6)29 (21.8)

Airfoil (AF)

0 5000 10000
Epoch

50

100

Tr
ai

n
M

SE

0 (23.2)
1 (15.1)2 (19.1)3 (22.7)4 (17.0)5 (14.1)6 (16.6)

7 (36.7)

8 (18.2)9 (18.3)10 (18.2)11 (20.1)12 (17.5)13 (18.4)14 (23.8)
15 (16.1)16 (18.3)17 (19.3)18 (18.4)19 (23.7)20 (24.7)21 (26.0)22 (24.6)
23 (15.9)
24 (28.5)
25 (20.9)
26 (27.7)
27 (17.2)28 (19.0)29 (24.6)

Boston housing (BH)

0 5000 10000
Epoch

100

200

300

Tr
ai

n
M

SE

0 (65.5)1 (68.6)2 (64.6)3 (69.3)
4 (93.5)
5 (68.9)6 (76.4)
7 (102.2)8 (96.6)9 (80.1)10 (91.1)11 (85.7)
12 (63.1)13 (54.9)14 (64.8)
15 (88.7)
16 (106.2)
17 (73.9)
18 (54.5)19 (70.2)
20 (106.4)
21 (129.5)

22 (65.3)

23 (116.6)24 (107.2)25 (95.3)
26 (59.2)
27 (83.4)28 (83.6)29 (73.1)

Concrete compressing strength (CCS)

0 5000 10000
Epoch

0.05

0.10
Tr

ai
n

M
SE

0 (0.0)
1 (0.0)

2 (0.1)

3 (0.0)4 (0.0)5 (0.1)6 (0.1)7 (0.0)8 (0.0)9 (0.0)

10 (0.1)

11 (0.0)

12 (0.1)

13 (0.1)

14 (0.0)
15 (0.0)
16 (0.0)17 (0.0)
18 (0.0)19 (0.0)20 (0.0)21 (0.0)

22 (0.1)

23 (0.0)
24 (0.1)

25 (0.0)
26 (0.0)27 (0.0)28 (0.0)

29 (0.1)

Dow chemical (DC)

0 5000 10000
Epoch

25

50

75

Tr
ai

n
M

SE

0 (9.5)1 (10.8)2 (10.2)3 (8.0)4 (9.6)5 (8.4)6 (10.5)7 (10.4)8 (9.3)9 (10.9)10 (9.5)11 (9.7)12 (7.6)13 (8.4)14 (8.9)15 (9.7)16 (10.3)17 (9.8)18 (9.7)19 (8.9)20 (10.0)21 (8.7)22 (10.6)23 (8.0)24 (10.8)25 (10.0)26 (9.0)27 (9.6)28 (9.8)29 (11.3)

Energy cooling (EC)

0 5000 10000
Epoch

50

100

Tr
ai

n
M

SE

0 (7.5)1 (8.0)2 (7.5)3 (7.4)4 (8.3)5 (11.8)6 (7.6)7 (8.3)8 (7.1)9 (9.9)10 (7.0)11 (8.8)12 (6.9)13 (7.0)14 (7.9)15 (7.4)16 (8.4)17 (6.9)18 (7.1)19 (8.9)20 (15.0)
21 (7.3)22 (7.3)23 (10.5)24 (9.2)25 (6.6)26 (9.8)27 (11.2)28 (8.1)29 (8.9)

Energy heating (EH)

0 5000 10000
Epoch

2500

5000

7500

Tr
ai

n
M

SE

0 (1016.2)1 (1459.6)2 (1553.9)
3 (981.6)
4 (1588.8)
5 (2215.7)
6 (1519.4)7 (1509.0)8 (1233.5)9 (1536.4)10 (1398.2)
11 (1895.9)
12 (1028.8)13 (1432.3)
14 (1976.3)15 (1593.5)16 (1946.6)
17 (1356.1)18 (1441.1)19 (1100.2)20 (1422.2)21 (1274.5)
22 (1781.7)
23 (1241.5)24 (1479.6)25 (1547.6)26 (1821.3)
27 (2441.5)
28 (1398.7)29 (1784.9)

Tower (TW)

0 5000 10000
Epoch

0.4

0.6

Tr
ai

n
M

SE

0 (0.4)
1 (0.4)
2 (0.4)
3 (0.4)4 (0.4)5 (0.4)
6 (0.4)
7 (0.4)
8 (0.4)9 (0.4)10 (0.4)11 (0.4)12 (0.4)13 (0.4)14 (0.4)15 (0.4)16 (0.4)17 (0.4)18 (0.4)19 (0.4)20 (0.4)21 (0.4)
22 (0.4)23 (0.4)24 (0.4)
25 (0.4)26 (0.4)
27 (0.4)28 (0.4)29 (0.4)

Wine red (WR)

0 5000 10000
Epoch

0.6

0.8

Tr
ai

n
M

SE

0 (0.6)1 (0.5)
2 (0.6)3 (0.6)4 (0.5)
5 (0.6)6 (0.6)
7 (0.6)8 (0.6)
9 (0.6)10 (0.6)11 (0.5)12 (0.6)13 (0.5)14 (0.6)15 (0.6)16 (0.5)
17 (0.6)18 (0.6)
19 (0.5)
20 (0.6)
21 (0.5)

22 (0.6)
23 (0.5)
24 (0.6)
25 (0.5)26 (0.6)27 (0.6)28 (0.5)29 (0.5)

Wine white (WW)

0 5000 10000
Epoch

0

100

200

Tr
ai

n
M

SE

0 (35.7)
1 (1.4)
2 (27.1)3 (24.6)4 (16.2)5 (0.7)6 (2.1)
7 (27.9)
8 (1.2)9 (5.0)10 (11.9)11 (5.0)12 (11.7)13 (1.2)14 (1.0)15 (6.5)16 (5.7)17 (5.8)
18 (24.6)19 (16.3)20 (1.9)21 (11.9)22 (1.0)23 (11.0)24 (0.8)25 (1.4)
26 (46.0)
27 (1.4)28 (2.2)29 (2.1)

Yacht hydrodynamics (YH)

Fig. 4: Performance of the best MSGP trees during training across 30 trials for each
dataset. Each line represents a trial, with different colors distinguishing the trials. The
MSGP method requires a few iterations to identify a suitable tree. The y-axis represents
the MSE during training, and the x-axis represents the epochs (i.e., iterations of the
MSGP algorithm).

17

783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

0 5 10 15 20 25 30
14

16

18

20

22

24

M
SE

Airfoil (AF)

5 stages
10 stages
MSGP

0 5 10 15 20 25 30
10

20

30

40

50

60

Boston housing (BH)

5 stages
10 stages
MSGP

0 5 10 15 20 25 30

50

75

100

125

150

175

Concrete compressing strength (CCS)

5 stages
10 stages
MSGP

0 5 10 15 20 25 30
0.02

0.04

0.06

0.08

0.10

Dow chemical (DC)

5 stages
10 stages
MSGP

0 5 10 15 20 25 30

8

10

12

14

M
SE

Energy cooling (EC)

5 stages
10 stages
MSGP

0 5 10 15 20 25 30

6

8

10

12

14
Energy heating (EH)

5 stages
10 stages
MSGP

0 5 10 15 20 25 30

1000

1500

2000

2500

Tower (TW)

5 stages
10 stages
MSGP

0 5 10 15 20 25 30

0.35

0.40

0.45

0.50

Wine red (WR)

5 stages
10 stages
MSGP

0 5 10 15 20 25 30
Trial

0.500

0.525

0.550

0.575

0.600

0.625

M
SE

Wine white (WW)

5 stages
10 stages
MSGP

0 5 10 15 20 25 30
Trial

0

20

40

60

80
Yacht hydrodynamics (YH)

5 stages
10 stages
MSGP

Fig. 5: Accuracy of semantic boosting regression on the test set across 30 independent
runs, using one MSGP, five, and ten boosters for each benchmark dataset. The shaded
area represents the 95% confidence interval.

AF BH CCS DC EC EH TW WR WW YH
Datasets

101

102

103

Ex
pr

es
sio

n
siz

e
(lo

g
sc

al
e)

SyRBO
5 stages
10 stages

(a) SyRBO expression sizes (y-axis in logarithmic scale)

AF BH CCS DC EC EH TW WR WW YH
Datasets

10

20

30

40

Ex
pr

es
sio

n
siz

e

SBR

5 stages
10 stages

(b) SBR expression sizes

Fig. 6: Sizes of expressions outputted by SBR and SyRBO for each benchmark dataset.

18

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

7 Conclusion
Symbolic regression (SR) searches for a set of mathematical expressions that

better approximate a target variable of a given dataset. It is commonly implemented
through Genetic Programming due to its characteristics in exploring the search space
free of constraints’ assumptions about the underlying data distribution. Nevertheless,
GP-based approaches still face the challenge of overfitting the data expressed through
complex symbolic expressions (a.k.a. bloat). Semantic-based strategies [5, 28] have
been seen as a way to handle this issue. This paper proposes and evaluates a memetic
semantic boosting algorithm for symbolic regression in this context. The memetic
semantic algorithm combines a population-based search strategy with semantics-
guided ones to output short symbolic expressions without penalizing the accuracy.
In this case, rather than selecting a subtree in a target tree at random, as semantic-
based operators [5, 7] usually do, our method repeatedly selects the closest semantics
match between all possible nodes in the tree and all trees in a pre-computed library.
Our semantic boosting-style algorithm integrates a set of Memetic Semantic GP for
Symbolic Regression (MSGP) algorithms as weak learners. Consequently, the final
model comprises a tree compound of the individual learner tree. Experimental results
show that the proposed algorithm can achieve equal or better performance when
compared to state-of-the-art evolutionary-based and traditional machine learning
methods on various real-world datasets. Notwithstanding, our methods are restricted
to tabular and continuous data. Moreover, the size of the predefined library and
the length of its subtrees may also penalize the computational cost of our proposed
methods. Furthermore, one might observe a high training time in a big data setting
compared to the training time of classical boosting algorithms such as XGBoost [42].

Future works include investigating the performance when using a dynamic library,
new strategies to select an individual in a library, and new strategies to guide the
construction of the semantics library to enhance the exploration and exploitation
features of memetic semantic-based algorithms. We are also interested in integrating
the Operator Equalisation [8, 45, 46] into our memetic semantic-based approaches as
a new strategy to speed up discovering short symbolic expressions. Likewise, we plan
to evaluate the performance of our proposed approach on reinforcement learning (RL)
problems, such as done in [47]. Finally, we want to apply our methods to different
real-world applications, including temporal data.

Declarations
Ethical statements

The authors have no competing interests to declare relevant to this article’s content.

Authors’ contributions
A.L. wrote the manuscript, prepared the figures, and wrote the code accompanying

the manuscript. All authors reviewed the manuscript.

19

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

Acknowledgements
The authors thank the European Commission for partially funding this work

through the TRUST-AI project. We also sincerely thank the reviewers for their
insightful and constructive feedback, which has significantly contributed to improving
the quality of this paper.

Funding information
The European Commission partially funded this research within the HORIZON

program (TRUST-AI Project, Contract No. 952060).

Data availability
The data utilized in this paper were sourced from two repositories: the UCI

Machine Learning Repository (archive.ics.uci.edu) and the repository (bit.ly/47wQHgO)
provided by Martins et al. [33]

References
[1] Koza, J.R.: Genetic Programming: On the Programming of Computers by Means

of Natural Evolution. MIT Press, Massachusetts (1992)

[2] Ong, Y.-S., Lim, M.-H., Neri, F., Ishibuchi, H.: Special issue on emerging trends
in soft computing: memetic algorithms. Soft Computing 13(8), 739–740 (2009)

[3] Udrescu, S.-M., Tegmark, M.: AI Feynman: A physics-inspired method for symbolic
regression. Science Advances 6(16), 2631 (2020)

[4] McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic pro-
gramming. In: European Conference on Genetic Programming, pp. 134–145
(2008)

[5] Pawlak, T.P., Wieloch, B., Krawiec, K.: Semantic backpropagation for designing
search operators in genetic programming. IEEE Transactions on Evolutionary
Computation 19(3), 326–340 (2014)

[6] Ffrancon, R., Schoenauer, M.: Memetic semantic genetic programming. In: Annual
Conference on Genetic and Evolutionary Computation, pp. 1023–1030 (2015)

[7] Nguyen, Q.U., Pham, T.A., Nguyen, X.H., McDermott, J.: Subtree semantic
geometric crossover for genetic programming. Genetic Programming and Evolvable
Machines 17, 25–53 (2016)

[8] Silva, S., Dignum, S., Vanneschi, L.: Operator equalisation for bloat free genetic
programming and a survey of bloat control methods. Genetic Programming and
Evolvable Machines 13, 197–238 (2012)

20

http://archive.ics.uci.edu
http://bit.ly/47wQHgO

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

[9] Keijzer, M.: Improving symbolic regression with interval arithmetic and linear
scaling. In: European Conference on Genetic Programming, pp. 70–82 (2003)

[10] Keijzer, M.: Scaled symbolic regression. Genetic Programming and Evolvable
Machines 5(3), 259–269 (2004)

[11] Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

[12] Virgolin, M., Alderliesten, T., Witteveen, C., Bosman, P.A.: Improving model-
based genetic programming for symbolic regression of small expressions.
Evolutionary computation 29(2), 211–237 (2021)

[13] Stephens, T.: Genetic programming in python with a scikit-learn inspired API:
gplearn. github.com/trevorstephens/gplearn (2016)

[14] Sipper, M., Moore, J.H.: Symbolic-regression boosting. Genetic Programming and
Evolvable Machines 22, 357–381 (2021)

[15] Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: International Conference on Parallel Problem Solving from Nature, pp.
21–31 (2012)

[16] Krawiec, K.: Semantic genetic programming. In: Behavioral Program Synthesis
with Genetic Programming, pp. 55–66 (2016)

[17] Chen, Q., Zhang, M., Xue, B.: Geometric semantic genetic programming with
perpendicular crossover and random segment mutation for symbolic regression. In:
Asia-Pacific Conference on Simulated Evolution and Learning, pp. 422–434 (2017)

[18] Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford, U.K. (1976)

[19] Moscato, P.: On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Technical Report 826, Caltech Concurrent
Computation Program, California Institute of Technology (1989)

[20] Chen, X., Ong, Y.-S., Lim, M.-H., Tan, K.C.: A multi-facet survey on memetic
computation. IEEE Transactions on Evolutionary Computation 15(5), 591–607
(2011)

[21] Langdon, W.B., Poli, R.: Fitness causes bloat. In: Second On-line World Conference
on Soft Computing in Engineering Design and Manufacturing, pp. 13–22 (1997)

[22] Langdon, W.B., Poli, R.: Genetic programming bloat with dynamic fitness. In:
1st European Workshop on Genetic Programming, pp. 97–112 (1998)

[23] Langdon, W.B., Poli, R.: Fitness causes bloat: Mutation. In: 1st European
Workshop on Genetic Programming, pp. 37–42 (1998)

21

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

[24] Bleuler, S., Brack, M., Thiele, L., Zitzler, E.: Multiobjective genetic programming:
Reducing bloat using SPEA2. In: Congress on Evolutionary Computation, vol. 1,
pp. 536–543 (2001)

[25] Castelli, M., Trujillo, L., Vanneschi, L., Silva, S., Z-Flores, E., Legrand, P.:
Geometric semantic genetic programming with local search. In: Annual Conference
on Genetic and Evolutionary Computation, pp. 999–1006 (2015)

[26] Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space. In:
11th Annual Conference on Genetic and Evolutionary Computation, pp. 987–994
(2009)

[27] Uy, N.Q., Hoai, N.X., O’Neill, M., McKay, R.I., Galván-López, E.: Semantically-
based crossover in genetic programming: application to real-valued symbolic
regression. Genetic Programming and Evolvable Machines 12(2), 91–119 (2011)

[28] Krawiec, K., Pawlak, T.: Approximating geometric crossover by semantic backprop-
agation. In: 15th Annual Conference on Genetic and Evolutionary Computation,
pp. 941–948 (2013)

[29] Nguyen, Q.U., Chu, T.H.: Semantic approximation for reducing code bloat in
genetic programming. Swarm and Evolutionary Computation 58, 100729 (2020)

[30] Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data.
Science 324(5923), 81–85 (2009)

[31] Korns, M.F.: A baseline symbolic regression algorithm. In: Genetic Programming
Theory and Practice X, pp. 117–137 (2013)

[32] Schapire, R.E.: The strength of weak learnability. Machine learning 5, 197–227
(1990)

[33] Martins, J.F.B., Oliveira, L.O.V., Miranda, L.F., Casadei, F., Pappa, G.L.: Solving
the exponential growth of symbolic regression trees in geometric semantic genetic
programming. In: Genetic and Evolutionary Computation Conference, pp. 1151–
1158 (2018)

[34] Liu, D., Virgolin, M., Alderliesten, T., Bosman, P.A.N.: Evolvability degeneration
in multi-objective genetic programming for symbolic regression. In: Genetic and
Evolutionary Computation Conference, pp. 973–981 (2022)

[35] White, D.R., McDermott, J., Castelli, M., Manzoni, L., Goldman, B.W., Kro-
nberger, G., Jaśkowski, W., O’Reilly, U.-M., Luke, S.: Better GP benchmarks:
community survey results and proposals. Genetic Programming and Evolvable
Machines 14(1), 3–29 (2013)

[36] Ni, J., Drieberg, R.H., Rockett, P.I.: The use of an analytic quotient operator in

22

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

genetic programming. IEEE Transactions on Evolutionary Computation 17(1),
146–152 (2013)

[37] Chen, Q., Xue, B., Niu, B., Zhang, M.: Improving generalisation of genetic
programming for high-dimensional symbolic regression with feature selection. In:
IEEE Congress on Evolutionary Computation, pp. 3793–3800 (2016)

[38] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

[39] Ferreira, J., Pedemonte, M., Torres, A.I.: A genetic programming approach for
construction of surrogate models. In: Computer Aided Chemical Engineering vol.
47, pp. 451–456 (2019)

[40] Sathia, V., Ganesh, V., Nanditale, S.R.T.: Accelerating Genetic Programming
using GPUs (2021)

[41] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in python. The Journal of Machine Learning Research 12, 2825–2830
(2011)

[42] Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
785–794 (2016)

[43] Fortin, F.-A., De Rainville, F.-M., Gardner, M.-A.G., Parizeau, M., Gagné, C.:
DEAP: Evolutionary algorithms made easy. Journal of Machine Learning Research
13(1), 2171–2175 (2012)

[44] Demšar, J.: Statistical comparisons of classifiers over multiple data sets. The
Journal of Machine Learning Research 7, 1–30 (2006)

[45] Dignum, S., Poli, R.: Operator equalisation and bloat free GP. In: 11th European
Conference on Genetic Programming, pp. 110–121 (2008)

[46] Silva, S., Dignum, S.: Extending operator equalisation: Fitness based self adaptive
length distribution for bloat free GP. In: 12th European Conference on Genetic
Programming, pp. 159–170 (2009)

[47] Videau, M., Leite, A., Teytaud, O., Schoenauer, M.: Multi-objective genetic
programming for explainable reinforcement learning. In: European Conference on
Genetic Programming, pp. 278–293 (2022)

23

	Introduction
	Background
	Semantic GP
	Library building and searching

	Memetic algorithm

	Related Work
	Methods
	Memetic Semantic for Symbolic Regression
	Algorithm
	Local tree improvement

	Memetic Semantic Boosting

	Experimental settings
	Results
	Conclusion

