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Predicting the 3D structure of RNA is a significant chal-
lenge despite ongoing advancements in the field. Although Al-
phaFold has successfully addressed this problem for proteins,
RNA structure prediction raises difficulties due to fundamen-
tal differences between proteins and RNAs, which hinder direct
adaptation. The latest release of AlphaFold, AlphaFold 3, has
broadened its scope to include multiple different molecules like
DNA, ligands and RNA. While the article discusses the results
of the last CASP-RNA dataset, the scope of performances and
the limitations for RNAs are unclear. In this article, we provide
a comprehensive analysis of the performances of AlphaFold 3
in the prediction of RNA 3D structures. Through an extensive
benchmark over five different test sets, we discuss the perfor-
mances and limitations of AlphaFold 3. We also compare its per-
formances with ten existing state-of-the-art ab initio, template-
based and deep-learning approaches. Our results are freely
available on the EvryRNA platform: https://evryrna.
ibisc.univ-evry.fr/evryrna/alphafold3/.
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Introduction

Ribonucleic acids (RNAs) are fundamental molecules cru-
cial to cellular activities. While their functions are directly
linked to their structures, the prediction of the latter remains
an open challenge to be addressed. Knowing the structure of
RNA could be of great interest for drug design or the com-
prehension of biological processes like cancer (1). While
experimental methods like X-ray crystallography, NMR, or
cryo-EM can determine the RNA 3D structures, their use is
costly (in terms of time and resources) and hardly scalable
for the number of RNAs in the living. Computational ap-
proaches have emerged with ab initio, template-based and,
more recently, deep learning methods. Ab initio methods
(2–11) tend to reproduce the physics of the system, with
force field applied to a coarse-grained representation (low-
resolution where a nucleotide is replaced by some of its
atoms). The template-based approaches (12–21) create a
mapping between sequences and fragments of structure be-
fore refining the assembled structures.

With the recent success of AlphaFold for proteins (22,
23), approaches have been made to replicate its success to
RNAs. Directly using protein methods to infer RNA 3D
structures is impossible, as RNAs and proteins are chemi-
cally and physically different molecules. Current methods
try to adapt what exists for proteins to RNAs like DeepFol-
dRNA (24), RhoFold (25), DrFold (26), NuFold (27), and tr-

RosettaRNA (28). They consider coarse-grained representa-
tion and predict Euclidean transformation before reconstruct-
ing the full-atom structure. The use of torsional angles is also
adapted to RNAs, with either the standard torsional angles
(25, 27) or angles from their coarse-grained representations
(24, 26).

While being better than existing template-based or ab ini-
tio methods, deep learning approaches do not solve the pre-
diction of RNA structures yet, as shown in CASP-RNA (29)
and in our recent benchmark State-of-the-RNArt (30). Re-
cently, a critical review (31) explains the reasons why the
AlphaFold for RNA has not yet happened, and might not ar-
rive for the next decades. However, AlphaFold has released
its latest version, named AlphaFold 3 (32), that extends its
predictions to different molecules, including RNAs. In this
work, we aim to provide a response to (31) in order to know
if AlphaFold 3 meets its success for RNAs.

To extend its range of molecules, AlphaFold 3 has made
changes in its architecture to better adapt to the variety
of available inputs. It no longer relies on torsional angles
to prevent the restriction to specific molecules, as was
the case in AlphaFold 2 (23). It directly predicts atom
coordinates with the use of a multi-cross diffusion model.
Through a benchmark on CASP-RNA (32), the authors
mentioned good results, but AlphaFold 3 did not outperform
human-helped methods. Furthermore, it is not clear what the
current limitations are and how well it performs compared to
state-of-the-art solutions.

This article aims to provide a comprehensive extension
on the evaluation and benchmark of AlphaFold 3 for RNAs.
We first describe the main differences between RNAs and
proteins to highlight the challenges of RNA 3D structure
prediction and we describe the AlphaFold 3 solution be-
fore discussing the benchmark we did. Then, we evaluate
AlphaFold 3 and comment on the results of AlphaFold 3
and the current limitations of the model. Our benchmark
also compares the performances with state-of-the-art solu-
tions to provide a complete comparison. The results and the
data are freely available and usable in the EvryRNA plat-
form: https://evryrna.ibisc.univ-evry.fr/
evryrna/alphafold3/.

RNAs vs proteins
RNAs and proteins are both molecules that play crucial roles
in the living. They share the characteristic of having a 3D
structure that directly defines their function. However, it is
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important to acknowledge that dynamics, transient structures,
and the role of unstructured proteins also play a significant
role in protein function, making this relationship more com-
plex. This section discusses the differences between RNAs
and proteins, highlighting the reasons why adapting existing
protein models has been challenging.

RNAs comprise four nucleotides (A, C, G and U),
whereas proteins comprise 20 amino acids. This difference
has a high consequence on the adaptation of protein algo-
rithms to RNA. The vocabulary available for RNA is limited
to four unique elements, making the use of protein vocab-
ulary not directly adaptable. The sequence length of RNA
molecules also has a high variability (from a dozen to thou-
sands of nucleotides) compared to proteins (from a dozen to
hundreds of amino acids).

A major difference between RNAs and proteins lies in
the folding stabilisation. RNA structure is maintained by
base pairing and base stacking, while protein structure is sup-
ported by hydrogen interactions in the skeleton. The protein
backbone is also modelled by torsion angles (Φ and Ψ) for
each amino acid because the peptide bond is planar. This is
not the case for RNA, where each nucleotide can be described
by seven torsion angles (α, β, γ, δ, ϵ, ξ and χ) and the sugar-
pucker pseudorotation phase P . An approximation usually
involves pseudo-torsion η and θ (33). However, the com-
plexity of the RNA backbone arises not only from the num-
ber of torsional degrees of freedom but also from their intri-
cate correlations. Specifically, the structural divergence at the
phosphodiester linkage is influenced by the sugar pucker and
glycosidic bond orientation of both nucleotides connected to
the phosphate group. This interdependence often necessitates
describing RNA structure using dinucleotide-like fragments
to accurately capture the backbone geometry (34). Protein
models, therefore, learn a conformational mechanism funda-
mentally different from the RNA folding process, where such
adaptations and structural dependencies must be carefully ac-
counted for.

The nature of pairwise interactions of RNA 3D molecules
differ from those of proteins. The RNA interactions can be
made through three different edges of the RNA base: WC
edge, Hoogsteen edge and sugar edge (35) shown in Figure 1.
In addition, the orientation of the glycosidic bonds gives an-
other property to an interaction: cis or trans. The combina-
tion of edge and orientation gives 12 possibilities of interac-
tion between bases. The standard Watson-Crick (WC) base
pair corresponds to the cis WC/WC pairing. Given the ori-
entations (cis or trans), the edges and the base pairing, there
are more than 200 possible base pairs. Only the standard
WC pairs (cis WC/WC) of AU and CG (and also GU wob-
ble pair) are used for the 2D structure representation. RNA
bases also have common patterns of interactions, where a
base stacks on another one. The base-stacking (36, 37) refers
to the four base-stacking types from relative orientations (up-
ward, downward, outward and inward) (38). The extended
secondary and tertiary interactions (long-range base pairs)
play a crucial role in the overall topology of the RNA fold-
ing process. They help stabilise the structure and can not be

Figure 1. Description of the three different edges of the Adenine RNA nucleotide:
Watson-Crick edge, Hoogsteen edge and Sugar edge. The three other nucleotides
share similar edges.

ignored when working on RNA 3D structures.
The stability of the RNA and protein structures is differ-

ent. More than five decades ago, the Nobel Prize-winning
work of Christian B. Anfinsen established that, under phys-
iological conditions, the protein chain spontaneously folds
into its native structure, which is the conformation corre-
sponding to a minimum of the Gibbs free energy that is both
a kinetically accessible and thermodynamically stable (39).
This native structure of the protein is also characterized by
its uniqueness—although it may be altered by dynamic be-
haviours, such as domain motions, the global fold of the pro-
tein remains the same. On the contrary, RNA molecules often
have a more rugged Gibbs free energy landscape, thus pop-
ulating multiple conformational states (40). The switching
between these conformations supports some RNA functions,
such as riboswitches or ribozymes, and may be driven by en-
vironmental changes, such as ions (notably Mg2+), pH, tem-
perature, or ligand binding (41, 42).

There is a huge disparity in the protein and RNA data.
Even if there is a higher proportion of RNAs than proteins in
the living, this is not reflected in the available data: only a
small amount of 3D RNA structures are known. Up to June
2024, 7,759 RNA structures were deposited in the Protein
Data Bank (43), compared to 216,212 protein structures. The
quality and diversity of data are also different: a huge propor-
tion of RNAs come from the same families. It implies several
redundant structures that could prevent a model from being
generalized to other families. In addition, a huge amount of
RNA families have not yet solved structures in the PDB, usu-
ally long RNAs. This means there is no balanced and rep-
resentative proportion of RNA families through the known
structures.

Finally, no standard dataset has been used through the
community for RNAs. Each research group uses its dataset
with different preprocessing associated. It prevents using
deep learning methods, as a lot of work is needed for a clean
dataset. While the community agrees to use RNA-Puzzles
(44–48) or the newly CASP-RNA (29) to test the general-
ization of proposed models, no clear training set is available.
The first solution has been RNANet (49), developed in our
lab to solve this issue. It is a database that uses MySQL
and gathers diverse RNA information to train deep learning
methods. A new approach, RNA3DB (50), creates indepen-
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dent datasets for deep learning approaches where clustering
is done based on sequence and structure disparity.

AlphaFold 3
Building on the recent success of AlphaFold 2 (23) in pro-
tein structure prediction, AlphaFold 3 (32) expands its pre-
dictions to structures from all molecules available in the PDB
(43). The authors highlight several differences from the pre-
vious architecture, contributing to successful predictions of a
wide range of molecules. One key difference is the introduc-
tion of a diffusion model that reconstructs coordinates from
the residue level to the atom level. AlphaFold 3 also out-
puts directly the coordinate atom positions compared to the
prediction of rotation/translation vectors (and torsional an-
gles) in the previous version. It also weights less the mul-
tiple sequence alignment (MSA) in the overall model. In
the case of RNA, AlphaFold 3 has been evaluated on the
CASP-RNA dataset (29), demonstrating improved predic-
tions compared to RosettaFold2NA (51) and AIchemy_RNA
(25) (the best AI-based submission in the competition). De-
spite these advancements, AlphaFold 3’s performance lags
behind AIchemy_RNA2 (52) (the top human-expert-aided
submission). More details on the architecture, the training
procedure and the differences between AlphaFold 2 and Al-
phaFold 3 are provided in the Supplementary file.

Benchmark
To assess the extent of AlphaFold 3 performances, we have
evaluated and compared it with other state-of-the-art meth-
ods on five datasets. This section describes the datasets, the
methods as well as the metrics used to evaluate AlphaFold 3.

Datasets
To evaluate the prediction of RNA structures, we considered
the following five test sets, with the first three from our pre-
vious work (30).

• RNA-Puzzles: the first dataset is composed of the
single-stranded structures from RNA-Puzzles (44–48),
a community initiative to benchmark RNA structures.
We considered only single-stranded solutions to have a
fair comparison between the benchmarked models. It
is composed of 22 RNAs of length between 27 and 188
nt (with a mean of 83 nt).

• CASP-RNA: the second test set is CASP-RNA (29)
structures, which is a collaboration between the CASP
team and RNA-Puzzles. It is composed of 12 RNAs
with wide-range sequences, from 30 to 720 nt (with a
mean of 209 nt).

• RNASolo: the third test set is a custom test set com-
posed of independent structures from RNAsolo (53).
We downloaded the representative RNA molecules
from RNAsolo (53) with a resolution below 4 Å and
removed the structures with sequence identity higher
than 80%. Then, we considered only the structures

with a unique Rfam family ID (54), leading to 25 non-
redundant RNA molecules, with a sequence between
45 and 298 nt (and a mean of 100 nt). It can not be en-
sured that the structures from this dataset were not used
in the training set of the different models. We keep this
dataset for comparison, as we already have the results
for the benchmarked methods.

• RNA3DB_0: this dataset is composed of a non-
redundant set of structurally and sequentially indepen-
dent structures from RNA3DB (50). It comprises the
component #0, which is composed of orphan struc-
tures that are advised to be used as a test set. These
structures do not have Rfam families (54) and include
synthetic RNAs, small messenger RNAs crystallized
as part of larger complexes. After removing structures
with sequences below ten nucleotides and sequence
identity below 80% (using CD-HIT (55)), we ended up
with a dataset of 224 structures from 10 to 339 nt (with
a mean of 55 nt). Nonetheless, these structures come
from complexes, meaning they do not behave well in
isolation, and thus their experimentally observed con-
formations depend on other chains. To account for
this, in evaluating models, we considered 113 struc-
tures with their full context, and we predicted the struc-
tures with AlphaFold 3 (the other structures have a too
large context, and we failed in predicting them using
AlphaFold 3). We name this subset RNA3DB_0 (Con-
text).

• RNA3DB_Long: the last dataset comprises long RNA
structures from RNA3DB (50). We considered struc-
tures with a release date after January 2023 to avoid
any structure leakage for fair comparison. We consid-
ered structures with sequences between 800 nt (800 nt
being the limit from previous test sets) and 5,000 nt, as
we wanted to study the performances of long RNAs.
It leads to 58 structures with a sequence between 828
and 3,619 nt (with a mean of 2005 nt). It comprises 57
ribosomal RNAs and one structure of a Group II intron.

We have also ensured that all the datasets (except RNA-
Puzzles and CASP-RNA) have a sequence identity below
80% to have non-redundant structures for robust evaluation.

To comprehend and detail the predictions of AlphaFold 3,
we studied in detail three main interactions in the folding of
RNA 3D structures: Watson-Crick (WC), non-Watson-Crick
(nWC) and stacking (STACK). The proportion of these in-
teractions is presented in Table ??. All datasets have the
same proportion of stacking (around 75%), except for the
RNA3DB_0 dataset (around 56%). As RNA3DB_0 con-
tains orphan structures, it implies structures with less com-
mon folding, reflected by the lower proportion of stacking
interactions. For all the datasets, there is a higher propor-
tion of stacking interactions, followed by Watson-Crick and
non-Watson-Crick interactions. The number of non-Watson-
Crick interactions ranges from 5 to 10%, meaning that these
interactions would be challenging for predictive models as
they are rare in the original structure. When comparing
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Table 1. Proportion of key RNA interactions for the five test sets (and the subset of
RNA3DB with context). The interactions are normalised by the number of residues.
Interactions are either stacking (STACK), Watson-Crick (WC) or non-Watson-Crick
(nWC), extracted from MC-Annotate (36). Interactions for RNA3DB_0 are computed
without context, while RNA3DB_0 (C) includes the context.

Interaction type STACK WC nWC

RNA-Puzzles 0.78 0.33 0.10
CASP-RNA 0.75 0.35 0.05
RNASolo 0.77 0.31 0.09
RNA3DB_0 0.56 0.14 0.04
RNA3DB_0 (C) 0.61 0.16 0.04
RNA3DB_Long 0.74 0.29 0.10

RNA3DB_0 with or without the context, we observe a greater
proportion of stacking and Watson-Crick interactions in the
presence of context. However, the number of non-Watson-
Crick interactions remains unchanged.

State-of-the-art methods
Existing solutions for the prediction of RNA 3D structures
are based on three main types of methods: ab initio, template-
based and deep-learning ones. As discussed previously in our
work (30), ab initio methods (2, 4, 6) integrate the physics of
the system by usually simplifying the representation of nu-
cleotide (coarse-grained). Instead of using all the atoms for
one nucleotide, they create a low-resolution representation
that simplifies the computation time while losing informa-
tion. They use approaches like molecular dynamics (56) or
Monte Carlo (57) to perform sampling in the conformational
space and use a force field to simulate real environment con-
ditions. On the other hand, template-based methods (12, 16–
18, 58) create a mapping between sequences and known mo-
tifs with, for instance, secondary structure trees (SSEs) be-
fore reconstructing the full structure from its subfragments.
Finally, the recent methods tend to incorporate deep learning
methods (24–28) by using attention-based architectures with
self-distillation and recycling as done in AlphaFold 2 (23).

To compare the performances of AlphaFold 3 (32), we
benchmarked ten approaches, the ones used in our previous
work (30). For the ab initio methods, we benchmarked Sim-
RNA (6), IsRNA1 (4) and RNAJP (2). Only RNAJP was used
locally. For the template-based approaches, we benchmarked
MC-Sym (58), Vfold3D (18), RNAComposer (17), 3dRNA
(16) and Vfold-Pipeline (12). For the deep learning meth-
ods, we benchmark trRosettaRNA (28) and RhoFold (25).
More details on each method are provided in our previous ar-
ticle (30). For RNA-Puzzles and CASP-RNA, we included in
the benchmark the predictions from the official results of the
competitions. We refer to them as "Challenge best" and cor-
respond to different methods for each RNA. We normalised
each prediction using RNA-tools (59) to have a standard for-
mat for all structures. It gives standardised names for chains,
residues and atoms and removes ions and water.

We used the web servers with default parameters to com-
pare available models fairly, where each user could reproduce
our experiments. As we made most of the predictions us-
ing web servers, the predictions on RNA3DB_0 were hardly

applicable to all the methods. Therefore, we benchmarked
the RNA3DB_0 dataset with one method per approach (the
quickest method per approach): RhoFold (25) for deep learn-
ing, RNAComposer (17) for template-based and RNAJP (2)
for ab initio. For the RNA3DB_Long dataset, only Al-
phaFold 3 could predict structures with sequences up to 3000
nt. For this dataset, we only considered the predictions from
AlphaFold 3.

Evaluation metrics

To compare the predictions, we used the RNAdvisor tool (60)
developed by our team, which enables the computation of a
wide range of existing metrics in one command line. For
the evaluation of RNA 3D structures, a general assessment of
the folding of the structure can be done with either the root-
mean-square deviation (RMSD) or its extension adding RNA
features ϵRMSD (61). Protein-inspired metrics can also be
adapted to assess structure quality like the TM-score (62, 63)
of the GDT-TS (64) (counts the number of superimposed
atoms). There are also the CAD-score (65) (which mea-
sures the structural similarity in a contact-area difference-
based function) and the lDDT (66) (which assesses the in-
teratomic distance differences between a reference structure
and a predicted one). Finally, RNA-specific metrics have
been developed, like the P-VALUE (67) (which assesses
the non-randomness of a given prediction). The INF-ALL
(38) and DI (38) have been developed to consider RNA-
specific interactions. The INF score incorporates canoni-
cal and non-canonical pairing with Watson-Crick (INF-WC),
non-Watson-Crick (INF-NWC), and stacking (INF-STACK)
interactions. The consideration of torsional angles has been
developed with the mean of circular quantities (MCQ) (68)
and LCS-TA (longest continuous segments in torsion angle
space) (69). As discussed in (60), all these metrics are com-
plementary and can infer different aspects of RNA 3D struc-
ture behaviour. For the rest of the article, we will discuss the
RMSD, INF-ALL, lDDT, TM-score and MCQ and let the re-
sults on the other metrics in the Supplementary file. Indeed,
the RMSD is the most used metric in the literature, and the
INF-ALL incorporates key RNA interactions. The lDDT and
TM-score allow for evaluating global conformations (widely
used in AlphaFold 3), and MCQ gives the torsional devia-
tion. We only mention all the metrics when comparing the
different models to ensure a complete evaluation.

Results

This section presents the results of AlphaFold 3 predictions
on the discussed test sets. We start by comparing the results
of AlphaFold 3 with existing solutions and then discuss in
detail the link between the performances relative to sequence
length. Next, we discuss the results of AlphaFold 3 on ribo-
somal structures (RNA3DB_Long dataset) and orphan struc-
tures (RNA3DB_0 dataset). Then, we discuss the results of
specific RNA key interactions in detail before shedding light
on the computation time.
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Figure 2. Cumulative normalised metrics (the higher, the better) for each of the benchmarked methods for our five test sets. Each metric is normalised by the maximum
value over the five test sets, and the decreased metrics are inversed to have better values close to 1. The Challenge-best means the best solutions from the RNA-Puzzles
and CASP-RNA competitions ( and corresponds to different solutions for each challenge). Types of methods are also mentioned with the names: DL for deep learning, TP
for template-based, and Ab for ab initio. Methods are sorted by release time (except for Challenge-best). AlphaFold 3 (Context) stands for the predictions of AlphaFold 3 for
113 structures of RNA3DB_0 dataset with the context of the structures added as inputs.

AlphaFold 3 compared to the state-of-the-art

We compare the predictions of ten existing methods pre-
sented above and AlphaFold 3 on our different test sets. Fig-
ure 2 presents the different normalised metrics computed
for the prediction of the different models over the five test
sets. We included all metrics to show the cumulative perfor-
mances. The RNA3DB_Long dataset has only predictions
from AlphaFold 3, which is the only method capable of pro-
cessing long sequences. All the metrics are normalised by
the maximum values and converted to be better where near to
1 and worst when near to 0. Real values for each metric for
the five test sets are reported in Table S1, S2, S3, S4 and S5
of the Supplementary file.

The best models from the CASP-RNA competitions,
which are human-guided, outperform AlphaFold 3 (p-
value=0.007; Wilcoxon signed-rank test) for every metric
(except for LCS-TA with a threshold of 10° and MCQ) for
the CASP-RNA dataset. On the other hand, AlphaFold 3
shows a cumulative sum of metrics greater than the other
methods for the other test sets (p-value< 10−5 for RNA-
Puzzles, p-value< 10−4 for RNASolo). For RNA-Puzzles,
the challenge-best solutions are from older solutions, with
less advanced architectures compared to the more recent

CASP-RNA solutions. For the RNA3DB_0 dataset, Al-
phaFold 3 performances are slightly better compared to Rho-
Fold, which has a better RMSD but a worst MCQ and LCS-
TA. AlphaFold 3 always has a high MCQ value, indicating
it returns structures which are more physically plausible than
ab initio methods (that use physics properties in their predic-
tions). Nonetheless, it does not always have the best RMSD
(outperformed in CASP-RNA and RNA3DB_0), suggesting
that AlphaFold 3 does not always have the best alignment (in
terms of all atoms) compared to the reference structure.

To compare the global performances of each type of ap-
proach, we report in Figure 3 the averaged metrics over
the different types of approaches depending on the sequence
length. We grouped the results for structures with a sequence
length window of 25 nt (each point represents the mean
computed on the best results per approach with sequence
length from this 25 nucleotide window). Results on the other
metrics are shown in Figure S2 in the Supplementary file.
None of the benchmarked ab initio methods successfully pre-
dicted structures for sequences exceeding 200 nt, particularly
when using web servers. The best results from CASP-RNA
and RNA-Puzzles challenges outperform AlphaFold 3 across
most metrics, except for sequences between 150 and 250 nt,
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where AlphaFold 3 showed comparable results. Values for
RMSD, TM-score, MCQ, and lDDT tend to worsen with se-
quence length, reflecting a general trend of loss of accuracy
with longer RNA structures. For INF, there is no clear degra-
dation tendency, meaning that the reproduction of the inter-
actions does not have a strong link to the sequence length.
Ab initio and template-based methods have competitive MCQ
values, while ab initio methods tend to have global alignment
worse than the other methods (due to high simulation time,
which is a bottleneck for web server usage). Deep learning
approaches, in particular, produced worse MCQ scores than
traditional methods. AlphaFold 3 demonstrated especially
strong MCQ performance, with comparative results for the
best solutions of challenges for sequences greater than 250
nt.

These results suggest that AlphaFold 3 achieves competi-
tive performance, particularly in capturing more realistic tor-
sional angles through better MCQ scores (which is not the
case for other existing deep learning methods), although it re-
mains outperformed by global assessment for structures with
more than 200 nt.

The performance of AlphaFold 3 relative to sequence
length.
As seen previously, the prediction of RNA 3D structures usu-
ally becomes harder when the sequence length increases. In-
deed, the ab initio methods fail to predict long interactions
as the computation time highly increases with the sequence
length. The template-based approaches are limited by the
small number of long RNAs, as well as the deep learning
methods, as shown in (30).
To observe more in detail the relation between sequence
length and AlphaFold 3 performances, we report in Figure 4
the RMSD, MCQ, TM-score, lDDT and INF-ALL metrics
depending on sequence length (for the five test sets). Links
between the other metrics and the sequence length are avail-
able in Figure S3 of the Supplementary file.

Figure 4 indicates that, except for the RNA3DB_0
dataset, the RMSD becomes worse for sequences between 0
and 1000 nt. For the RNA3DB_Long dataset with sequences
higher than 1000 nt, the predictions have good results for ev-
ery metric. We also observe a tendency for degradation in the
lDDT, TM-score, and INF-ALL (smaller decrease) when the
structures have sequences higher than 100 nt (and below 1000
nt). For every metric, the predictions for the RNA3DB_0
(with or without context) dataset seem to have no clear de-
pendence on the sequence length. For the other test sets with
structures with sequences between 200 and 1000 nt, there is
a common tendency to worsen in terms of performances for
the AlphaFold 3 predictions.

AlphaFold 3 results on long RNAs
Current methods for the prediction of RNA 3D structures are
limited for long RNAs and hardly predict structures with se-
quences longer than 200 nt. AlphaFold 3 is, to the best of
our knowledge, the only method that can predict long RNAs
(with sequences higher than 1000 nt). Its predictions on

RNA3DB_Long are of good performance, as shown in Fig-
ure 2. The only metrics where the results are not good are
the GDT-TS, the CAD-score and the LCS-TA (threshold of
10°), which might be due to an error in computation. For the
LCS-TA, the small score could be explained by the difficulty
of keeping a low MCQ for a high proportion of the structure,
as the sequences are long for this dataset.

The good results for long RNAs can be explained by the
types of structures used in RNA3DB_Long. Indeed, all of
the structures (except for one) are ribosomal RNAs, and thus
have a lot of redundancy. This might be reflected in the PDB,
which has been memorised by AlphaFold 3 during its train-
ing. As AlphaFold 3 uses the MSA as inputs, it could find
similarities with trained structures and thus return excellent
predictions if the families are well known. Most of the long
RNAs in the PDB share common structures in the ribosomal
family. Therefore, these results show a good generalisation
of already-seen families from AlphaFold 3.

We report the two worst predictions of AlphaFold 3 on
the RNA3DB_Long dataset in Figure 5. The two worst pre-
dictions for the other test sets are provided in Figure S4 of the
Supplementary file. The RMSD for the two structures is rela-
tively high (more than 19Å). The second worst structure has a
high TM-score (0.74), meaning that even for a long structure
(1487 nt), the global alignment of atoms is well predicted.
The INF-ALL is also high for these structures (higher than
0.68), meaning it returns a high proportion of key RNA inter-
actions. In details, it is most likely no coincidence that the
worst prediction (TM-score=0.38) corresponds to the only
non-ribosomal RNA of the RNA3DB_Long dataset, while
the overwhelming majority of available native structures for
long RNA sequences belong to ribosomes. In addition, the
lack of structural context did not help AlphaFold 3 either,
as this Group II intron RNA can be found in complex with
its large maturase/reverse transcriptase (PDB entry: 8FLI
(71)). The medium-to-high quality of the second worst pre-
diction (TM-score=0.74) can be explained by the fact that
it occurred for the 15S mitochondrial ribosomal RNA (PDB
entry: 8OM4 (72)). This RNA is analogous, yet evolutionar-
ily distant, from its bacterial and eukaryotic counterparts (the
16S and 18S RNAs, respectively) and its 3D structure has
rarely been studied, as it was reported in only three articles
(73–75).

AlphaFold 3 results on orphan structures

The RNA3DB_0 dataset is mainly composed of structures
without any hit in the Rfam family, which constitutes orphan
structures. The results of AlphaFold 3 for this dataset, as pre-
sented in Figure 2 and Figure 4, show overall lower perfor-
mances compared to the other datasets when there is no use of
context. AlphaFold 3 performs slightly better than RhoFold
for this dataset (p-value=0.015). When having the context,
AlphaFold 3 produces improved results compared to without
context (p-value< 10−19).

We detail the two worst predictions for RNA3DB_0 and
RNA3DB_0 (Context) from AlphaFold 3, in Figure 5. We
observe bad results in terms of metrics (high RMSD and
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Figure 3. Averaged metrics depending on the sequence length for the different approaches (AlphaFold 3, ab initio, deep-learning, template-based and challenge-best).
Each point represents the metric averaged over the best models of each approach for a window of 25 nt, from 25 to 750 nt. Ab initio methods group RNAJP, IsRNA1 and
SimRNA while template-based methods group Vfold-Pipeline, 3dRNA, RNAComposer, Vfold3D and MC-Sym. Deep learning methods group trRosettaRNA and RhoFold.
Metrics are computed for the RNA-Puzzles, CASP-RNA and RNASolo datasets. The Challenge-best corresponds to the best results from either RNA-Puzzles or CASP-RNA
competitions but does not appear for the RNASolo dataset. The metrics are RMSD, MCQ, TM-score, lDDT and INF-ALL. RMSD and MCQ are reversed to have the best
values near the top and the worst values at the bottom.

Figure 4. Dependence of metrics with the sequence length on the prediction of AlphaFold 3 (32) on the five test sets. For some of the predictions, we show the predicted
structure (in blue or purple if predicted using context) aligned with the native one (in orange) using US-Align (70). Metrics are RMSD, MCQ (68), TM-score (62, 70), lDDT (66)
and INF-ALL (38). RMSD and MCQ are reversed to have the best values near the top and the worst values at the bottom.
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Figure 5. Worst two predicted structures (based on cumulative sum of metrics) from AlphaFold 3 (32) for RNA3DB_0 (left), RNA3DB_Long (right) and RNA3DB_0 (Context)
(bottom) datasets. The RMSD, MCQ (68), TM-score (62, 70), lDDT (66) and INF-ALL(38) are provided for each structure. The predictions from AlphaFold 3 (in blue) are
aligned with the native ones (in orange) using US-align (70). The predictions of AlphaFold 3 with context (only for RNA3DB_0 (Context)) are provided in purple.

MCQ values and low TM-score and INF-ALL) for the two
structures without context. With the context, AlphaFold 3
seems to understand that the predictions are not only helices
but still fail in these two worst examples to predict the com-
plex non-common folding of these RNAs. These structures
also have a small number of nucleotides (81nt, 42nt, 45nt and
58nt), meaning that AlphaFold 3 might not fail because of the
long-range interactions. Instead, these structures do not have
a known family and rely on a complex environment of other
molecules. With the context, AlphaFold 3 has a better chance
to predict well the structural folding, but the generalisation is
not always robust to structures without known families, even
with small structures (as shown by the mean value of TM-
score which is less than 0.5 in Table S4).

To further study the impact of the context for the predic-
tion of RNA structures, we report in Figure 6 the differences
per metric between predictions of AlphaFold 3 with and with-
out context depending on the sequence length. Details of
each metric value for each RNA are provided in Figure S7 of
the Supplementary file. For all metrics, there is an improve-
ment in using the context: 91.1% of structures with context
have better TM-Score than those without context. For the
MCQ metric, 62.5% of structures with context outperform
those without context, which is less dominant than for the
other metrics. For example, in the case of structure 7WM4
(76), the context effectively facilitates identifying the correct

scale for one half of the double helix. Similarly, for struc-
ture 8BVJ (77), which features a discontinuity, the context
enables AlphaFold 3 to accurately detect the discontinuities.
However, this does not result in better alignment in terms of
the lDDT metric.
Incorporating contextual information significantly enhances
global alignment performance, as reflected by improvements
in RMSD, TM-Score, and lDDT metrics. This is followed
by moderately smaller, but still notable, improvements in re-
producing key RNA interactions (INF metric) and torsional
angles (MCQ metric). Among the benchmarked models, the
possibility to use the context for the prediction is only avail-
able with AlphaFold 3. The other models are specialised on
RNA and are not designed to process different molecules.

AlphaFold 3 results on key RNA interactions
To evaluate the ability of AlphaFold 3 to predict non-
canonical interactions, we depict the scatter plots between
non-Watson-Crick INF (INF-NWC) and Watson-Crick INF
(INF-WC) in Table 7. The size of the points is proportional
to the RMSD of structures and, thus, to their global atoms
alignment. We observe a tendency to have a low RMSD
(small points) whenever the INF-WC and INF-NWC are
high. There are also many structures with an INF-NWC of 0,
suggesting that AlphaFold 3 does not predict any of the non-
Watson-Crick interactions (mostly for the RNA3DB dataset).
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Figure 6. Difference per metric between results from AlphaFold 3 with context and without context for the common structures of the RNA3DB_0 dataset depending on
the sequence length. Regions higher than the red line correspond to structures where the results from AlphaFold 3 with context are better than those without the context.
We reversed the RMSD and MCQ metrics so that higher regions always depict the same behavior. The percentage of cases where AlphaFold 3 with context outperforms
predictions without context is reported in the top right corner of each plot. Structures are reported with the native one in orange, predictions with AlphaFold 3 without context
in blue and with context in purple.

Examples of successful and missing non-Watson-Crick inter-
actions are shown in the Figure. For the results on stacking
interactions, there are predictions where AlphaFold 3 does
not predict the Watson-Crick interactions well but still pre-
dicts the stacking ones. It can be explained by good skeleton
predictions while lacking the base conformations that pro-
duce the WC interactions. Secondly, there is an increased
tendency between the INF-STACK and INF-WC: when Al-
phaFold 3 predicts the WC interactions well, it also tends to
estimate the stacking well. Indeed, the stacking interactions
tend to align with the correct base pairing, but the correlation
is likely influenced by whether the sequence can fold into the
observed conformation. For instance, in Figure 7, parts of
8ex9_B can fold, whereas others cannot.

To compare the key RNA interactions predicted from Al-
phaFold 3 with existing solutions, we present in Figure 8 the
mean INF metrics (INF-WC, INF-NWC and INF-STACK)
over RNA-Puzzles, CASP-RNA and RNASolo for the ten
benchmarked models. Details for each dataset are provided
in Table S6 of the Supplementary file. We show the results
only on these datasets as we had complete predictions for
each model only for these three datasets. AlphaFold 3 has
better values for each INF metric compared to the other meth-
ods. The second best method to reproduce RNA key interac-
tions is RNAComposer. While having good overall results in
terms of cumulative metrics, trRosettaRNA shows bad results
in terms of key RNA interactions. Even if AlphaFold 3 out-
performs other solutions for all the INF metrics, the results
for nWC interactions remain low (below 0.5), meaning there

is still progress to reproduce RNA-specific interactions well.

Computation time
AlphaFold 3 is a deep learning method that has a complex
architecture. Compared to existing ab initio methods, deep
learning methods tend to be faster for inference. We report
the computation time for a small RNA molecule (27 nt) and
a long RNA (434 nt) for RNAComposer (17), RhoFold (25),
trRosettaRNA (28), RNAJP (2) and AlphaFold 3 (32) in Ta-
ble 2. We report the computation time of the fastest methods,
while the time for the rest of the methods is available in our
previous work (30). As we could only run RNAJP locally and
each web server has different configurations, there is a bias in
the comparison. RNAComposer, RhoFold and trRosettaRNA
all predict small RNA (in less than a minute) very quickly,
while RNAJP takes two hours (with default parameters). For
a structure with a longer sequence, this is RNAComposer that
has the fastest computation time (around three minutes). The
ab initio method, RNAJP, takes 15 hours. AlphaFold 3 re-
turns prediction in around five minutes, which shows fast in-
ference. For RNA of very long sequences (around 3000 nt),
AlphaFold 3 take multiple hours to predict (and sometimes
returns errors and needs to be run multiple times to get re-
sults).

Discussion
AlphaFold 3 is a deep learning method that has widened its
scope to predict RNA structures (as well as other molecules)
compared to its previous approach. Through our benchmark,
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Figure 7. Link between INF Watson-Crick (WC) and non-Watson-Crick (nWC) and stacking (STACK) interactions for the predictions of AlphaFold 3 for our five test sets. The
area of each point is proportional to the RMSD: the lower, the better. Only structures with at least one non-Watson-Crick interaction are shown in the figures. An INF (38)
value of 1 means accurate reproduction of key RNA interactions, while a value near 0 means the structure does not reproduce the interactions. Left: INF non-Watson-Crick
(INF-nWC) depending on INF Watson-Crick (INF-WC) interactions. Right: INF stacking (INF-STACK) depending on INF Watson-Crick (INF-WC) interactions.

Figure 8. INF metrics for the different benchmarked models averaged over three
test sets: RNA-Puzzles, CASP-RNA and RNASolo. INF metrics consider Watson-
Crick (INF-WC), non-Watson-Crick (INF-NWC), and stacking (INF-STACK) interac-
tions.Table 2. Computation time for a sequence of 27 nt (PDB ID: 6Y0Y) and 434 nt
(PDB ID: 7XD6 (78)). Computation time is computed using web servers except for
RNAJP. Methods are sorted by release time. The types of approaches are either
template-based (TP), ab initio (Ab) or deep learning (DL).

Model Approach Time
(27nt)

Time
(434nt)

RNAComposer (17) TP 1 3
RhoFold (25) DL 1 10
trRosettaRNA (28) DL 1 600
RNAJP∗ (2) Ab 120 900
AlphaFold 3 (32) DL 2 5

∗ RNAJP computation time is computed locally with a simulation time set
to 50 × 10 6 steps on an NVIDIA P1000.

we showed that AlphaFold 3 is a competitive method that
outperforms most of the existing solutions. It yields better
results for the CASP-RNA challenge and RNASolo, but re-
mains outperformed by the best solutions from CASP-RNA
challenge.

AlphaFold 3 has achieved good generalisation properties
for the ribosomal structures (RNA3DB_Long dataset). This
shows bias from existing data for RNA: most of the long
RNA available in the PDB is ribosomal-related RNA.

AlphaFold 3 returns results with an overall good repro-
duction of RNA key interactions compared to existing solu-
tions. It is also the best method to reproduce RNA torsional
angles (best results in terms of MCQ), which was lacking in
the existing deep learning methods (30).

There remain limitations that need to be addressed re-
garding the RNA folding problem. AlphaFold 3 does not
reproduce all the non-Watson-Crick interactions, which is es-
sential for the stability of RNA 3D structures. Furthermore,
AlphaFold 3 fail to predict structures from orphan families
(RNA3DB_0 dataset) without the context. These structures
are hard to predict as there is no hint in the available data,
and reliable information is often supported by the context and
the environment of the RNA. AlphaFold 3 achieves better re-
sults when having the context, but there remains a limitation
of generalisation for these orphan RNAs for our evaluation.
Evaluating orphan structures remains challenging, as envi-
ronmental information or context is lacking. There is also no
easy way to correctly evaluate the alternative solutions pro-
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posed by AlphaFold 3, whereas multiple conformations are
possible for RNAs. AlphaFold 3, while reducing the impact
of MSA on its architecture, still uses it, restricting its scope
for RNA (as there are still unknown families). The computa-
tion time for the inference is very fast but remains limited by
its usage in web servers. The source code has been released
but requires huge computational resources to be easily used.

Conclusion
AlphaFold 2 had a huge success in the prediction of protein
folding and has changed the field by the quality of its predic-
tions. The new release of AlphaFold, named AlphaFold 3,
has extended the model to predict all molecules from the
PDB, like ions, ligands, DNA or RNA.

Through an extensive benchmark on five different test
sets, we have evaluated the quality of predictions of Al-
phaFold 3 for RNA molecules. We have also compared the
results with ten existing methods, which are easily repro-
ducible as their predictions are available using web servers.

Our results show that AlphaFold 3 is of competitive qual-
ity, as it outperforms most of the existing solutions. It returns
more physically plausible structures than ab initio meth-
ods. It outclasses existing deep-learning approaches for ev-
ery dataset while better reproducing key RNA interactions
and torsional angles. It also returns predictions very quickly
compared to ab initio or current template-based approaches
(but does not exceed RNAComposer (17) for inference time).

For ribosomal long RNAs, AlphaFold 3 returns highly
accurate predictions. It could be explained by its capability
to generate structures from known families, which has been
seen in its training data. As there is not a lot of data available,
it is difficult to find complex structures without any homologs
to evaluate performances fairly.

Nonetheless, AlphaFold 3 has not yet reached RNAs with
the same success as proteins. Its new architecture allows the
prediction of wide molecules but remains limited and hardly
predicts non-Watson-Crick interactions. It does not general-
ize well on orphan structures, which are not related to any
RNA-known families. Predictions of these structures require
the knowledge of the context, which is possible to integrate
with AlphaFold 3.

The prediction of atom coordinates instead of base
frames, as done in AlphaFold 2, allows the extension of pre-
dictions for a wide range of molecules but prevents the gen-
eralisation of RNA-specific interactions. The lack of data is
also a limitation that prevents the robustness of deep learning
methods in general, and so is AlphaFold 3.
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