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Predicting the 3D structure of RNA is an ongoing challenge
that has yet to be completely addressed despite continuous
advancements. RNA 3D structures rely on distances between
residues and base interactions but also backbone torsional
angles. Knowing the torsional angles for each residue could
help reconstruct its global folding, which is what we tackle in
this work. This paper presents a novel approach for directly
predicting RNA torsional angles from raw sequence data. Our
method draws inspiration from the successful application of
language models in various domains and adapts them to RNA.
We have developed a language-based model, RNA-
TorsionBERT, incorporating better sequential interactions
for predicting RNA torsional and pseudo-torsional angles
from the sequence only. Through extensive benchmarking,
we demonstrate that our method improves the prediction of
torsional angles compared to state-of-the-art methods. In
addition, by using our predictive model, we have inferred a
torsion angle-dependent scoring function, called TB-MCQ, that
replaces the true reference angles by our model prediction.
We show that it accurately evaluates the quality of near-native
predicted structures, in terms of RNA backbone torsion angle
values. Our work demonstrates promising results, suggesting
the potential utility of language models in advancing RNA 3D
structure prediction.
Source code is freely available on the EvryRNA platform:
https://evryrna.ibisc.univ-evry.fr/evryrna/RNA-TorsionBERT.
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RNA is a macromolecule that plays various biological
functions in organisms. Similarly to proteins, the biological
function of an RNA may be directly linked to its 3D struc-
ture. Experimental methods such as NMR, X-ray crystallog-
raphy, or cryo-EM can determine the 3D structure of RNAs,
but they remain tedious in cost and time. Computational
methods have been developed for predicting the 3D structure
from the sequence, with three different approaches: ab initio,
template-based and deep learning-based (1). Currently, no
existing method matches the performance of AlphaFold 2 for
proteins (2), as shown with the last results on the CASP-RNA
challenge (3). Reaching AlphaFold’s (2) level of accuracy is
a long shot, notably due to the lack of data (4). Very recently,
the release of AlphaFold 3 (5) has extended its predictions to
a wide range of molecules like DNA, ligand, ion and RNA,
but the results remain limited for RNA (5, 6).

RNA can adopt various secondary motifs, along with a
wide range of complex interactions that contribute to its 3D
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structure. Research efforts have focused on classifying both
the canonical and non-canonical pairs, further supported by
the description of the backbone conformation (7). Unlike
proteins, RNA backbone structures are defined by eight tor-
sional angles, the natural manifold of all these dihedral angles
combined being a 8-dimensional hypertorus, which presents
a significant challenge both statistically and computationally.
Pyle and colleagues have shown that they can be approxi-
mated by two pseudo-torsional angles (see Figure 1) (8). Un-
derstanding these torsional angles is crucial for comprehend-
ing the 3D structures of RNA, which in turn could aid in pre-
dicting their folding.

Current predictive methods for RNA 3D structure predic-
tion do not always integrate torsional angles, missing impor-
tant features to comprehend its folding. One work (9) has
focused on constructing libraries of RNA conformers with
torsional angles. It has been used for RNAfitme (10), which
allows editing and refining predicted RNA 3D structures. An-
other work has been done to predict exclusively torsional an-
gles from RNA sequence, SPOT-RNA-1D (11), using a resid-
ual convolutional neural network.

In this work, we aim to leverage language models to bet-
ter apprehend the prediction of RNA torsional angles from
its sequence. Indeed, works have been proposed through the
years to work on biological sequences, inspired by the suc-
cess of language models like BERT (12). Its adaptation for
RNA (13) or DNA (14) shows promising results which could
be leveraged for other RNA structural features prediction.

Another interest in torsional angles for RNA 3D struc-
tures is for quality assessment. Without the help of reference
structures, scoring functions have been developed to assess
structural quality. These methods can be knowledge-based
(15–17) using statistical potentials or deep learning (18). The
knowledge-based scoring functions consider RNA structural
features as inputs like pairwise distances (15, 16, 19) or with
the help of torsional angles (17). We propose here a new
scoring function based on the extension of our model to pre-
dict RNA torsional angles. This scoring function allows us to
assess structural quality in torsional angle space.

This paper is organized as follows: we describe our
contributions in two separate points. Each section is di-
vided into two parts: one for the work on torsional an-
gle prediction and the other for our proposed scoring func-
tion. We detail our experiments for the torsional angles
prediction and the structural quality assessment tasks be-
fore discussing our approaches’ results and limitations. We
then conclude by discussing the scope of our contribu-
tions. The results and the code of our RNA-TorsionBERT
and TB-MCQ are easily reproducible and freely avail-
able on the EvryRNA platform: https://evryrna.ibisc.univ-
evry.fr/evryrna/RNA-TorsionBERT.

Methods

This section presents our model for predicting RNA torsional
angles and then the scoring function derived from our model.

Torsional angles prediction

RNA-TorsionBERT approach. Current methods that use se-
quence as inputs for RNA-related approaches only repre-
sent sequences as one-hot-encoding vectors. This represen-
tation may be too sparse to consider sequential interactions
well. This encoding is usually associated with a convolu-
tional neural network, which is commonly limited by long-
range interactions. A solution could be using attention mech-
anisms. Attention-based architecture nonetheless requires a
huge amount of data to train well, which is not the case for
RNA 3D structure data. To counter this problem, we can use
models pre-trained on a large amount of unlabeled data. This
could bring a better input representation of the raw sequence,
which could then be fine-tuned to specific tasks. These pre-
trained models could input either RNA or DNA sequences.

Recent advances in language models started with BERT
(12), where the model was pre-trained on masking and next-
sentence prediction tasks before being fine-tuned on diverse
specific language tasks. DNA or RNA can be seen as a se-
quence of nucleotides, where their interactions have a bi-
ological meaning. Therefore, methods have been adapted
from BERT to develop a language-based architecture for ei-
ther RNA or DNA. The aim is to reproduce the success
of language comprehension for another language. As the
size of the vocabulary is different, modifications should be
made to fit the current language. An example for DNA is
DNABERT (14), where the training process was updated
compared to the original BERT by removing the next sen-
tence prediction and taking K-mers as inputs (contiguous se-
quence of k nucleotides). It was trained on human-genome
data. An example of adaptation of BERT for RNA is called
RNABERT (13). It is a six-transformer layer pre-trained on
two tasks: masking and structural alignment learning (SAL).
RNABERT was trained on 76,237 human-derived small ncR-
NAs. Other methods have been adapted to RNA language
but uses MSA as inputs like RNA-MSM (20). Nonetheless,
they require multiple sequence alignment (MSA) as inputs,
which restricts the use for RNAs. Indeed, there are a nu-
merous amount of unknown structures (21), and MSA will
restrict the adaptation to future unseen families. In this arti-
cle, we decided to only consider sequences as inputs, and so
for the language models.

The aim of our method is, given a pre-trained language
model (DNABERT or RNABERT), to adapt its neuronal
weights to predict RNA torsional and pseudo-torsional angles
from the sequence. We have added layers to adapt the meth-
ods to our multi-token label regression task. Each token in the
input would have 28 labels: two values (sine and cosine) for
each of the eight torsional angles (the phase P being repre-
sented by its five ribose ring angles) and two pseudo-torsional
angles. The use of pre-trained embedding would help the
model not to start from scratch and update the learned atten-
tion layers for RNA structural features.

RNA-TorsionBERT architecture. The architecture of our
method, when based on DNABERT, is described in Figure
2 (illustrated with 3-mers). An input sequence of size L is to-
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Figure 2. Schema of the proposed language model architecture for torsional and pseudo-torsional angles prediction. Given an RNA sequence, mapping is applied to each
sequence’s nucleotide into a token with embeddings from the language model. CLS and PAD tokens are added to the sequence tokens. We convert the Uracil (U) with its
equivalent in DNA: Thymine (T) for DNABERT model. Then, the language model will output hidden states with a representation of each token. This is fed into extra layers
before entering a last Tanh activation to have the cosine and sine per angle. A postprocessing is required to convert back to angles (and pseudo-torsional (PT) angles) from
the sine and cosine.

kenized and then fed to the network with token and positional
embeddings. The tokenization process usually adds specific
tokens (like the CLS and PAD tokens). As DNABERT could
input a maximum of 512 tokens, we set the maximum se-
quence length to 512 nucleotides. The last hidden state is
set to be 768 by the original DNABERT architecture. We
then apply extra layers to map the hidden state outputs to
the desired final output dimension (Lx28). These extra lay-
ers comprise layer normalisation, a linear layer (from 768 to
1024), a GELU activation, another linear layer (1024 to 28),
and a Tanh final activation. The final output layer is of size
28 because it outputs a sine and a cosine for the eight tor-
sional (α, β, γ, δ, ϵ, ζ, χ and the phase P being predicted
through the five ribose ring angles ν0, ν1, ν2, ν3 and ν4) and
two pseudo-torsional angles (η and θ). It allows the relief
of the periodicity of the different angles. The Tanh activation
maps the outputs to the cosine and sine range (between -1 and
+1), which is then converted into angle predictions using the
formula α = tan−1( sin(α)

cos(α) ) (adaptable for the other angles).
Details on the training process are in the Supplementary file.

Model quality assessment based on torsional angles
Torsional-based quality assessment metrics. Existing met-
rics have been developed to assess the quality of predicted
RNA 3D structures with access to a reference. The most fa-
mous one is the RMSD (root-mean-square deviation), which
assesses the general folding of structures. Other metrics have
been developed and adapted from proteins (22, 23). Some
specific metrics have also been designed to consider RNA
specificities (24). Only two metrics are torsional-angles-
based: the MCQ (25) (mean of circular quantities), and the
Longest Continuous Segment in Torsion Angle space (LCS-
TA) (26). The MCQ computes the deviation in angle space
without any superposition of structures and complements
other existing metrics. LCS-TA computes the longest num-
ber of continuous residues with an MCQ below a threshold
(usually 10°, 15°, 20° and 25°). It is also a superposition-
independent metric.

In SPOT-RNA-1D (11), the authors introduced the mean-
average error (MAE) metric to assess the performance of

their method SPOT-RNA-1D in the prediction of torsional
and pseudo-torsional angles. Nonetheless, the MAE is an
arithmetic mean and is not designed for angles.
To compute deviation for circular quantities, we use the mean
of circular quantities (MCQ) (25). We don’t consider the
LCS-TA as it is more expensive to compute, and the MCQ is
more widely used in RNA-Puzzles (27–30). We define the set
of angles for the torsional angles as T = {α,β,γ,δ,ϵ,ζ,P,χ}
and for pseudo-torsional angles PT = {η,θ}. Following the
notation in (25), for a given structure S of L residues, let’s
note ti,j the torsional angle of type j of the residue at po-
sition i. We denote the difference between two structures S
and S′ as the MCQ(S,S’), defined by:

MCQ(S,S′) = arctan(
∑r

i=1
∑|T |

j=1 sin∆(ti,j , t′
i,j)∑r

i=1
∑|T |

j=1 cos∆(ti,j , t′
i,j)

)

where r is the number of residues in S ∩S′ and with:

∆(t, t′) =


0 if both undefined,
π if either t or t’ is undefined,
min{diff(t, t′),2π −diff(t, t′)}

and:
diff(t, t′) = |mod(t)−mod(t′)|

The difference aims to consider periodicity of 2π with

mod(t) = (t+2π) modulo 2π

To have more details on the performances for a specific angle,
we define the MCQ for a specific type of angle j:

MCQ(j)(S,S′) = arctan
(∑r

i=1 sin∆(ti,j , t′
i,j)∑r

i=1 cos∆(ti,j , t′
i,j)

)

We extend the formulation for pseudo-torsion angles
by just changing the set of angles used, and we name it
MCQP T .
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Figure 3. TB-MCQ scoring function computation. Given a predicted RNA 3D structure, we extract the sequence and calculate the different torsional angles. The sequence
is fed to our RNA-TorsionBERT model to predict torsional angles. The scoring function is computed by taking the MCQ between the predicted angles and the real angles.

Quality assessment scoring functions. Quality assessment
of RNA 3D structures requires two structures, with one being
the experimentally solved structure. Having this reference is
a strong asset that is hardly possible in practice. To rank near-
native structures without a reference, scoring functions have
been developed, adapting free-energy (15–17). Other meth-
ods employ deep learning approaches like ARES (18).
To discriminate near-native structures in the torsional space,
we have derived a scoring function from our RNA-
TorsionBERT model. First, we have replicated a quality as-
sessment metric that uses torsional angles features: the mean
of circular quantities (MCQ) (25). Then, we replaced the true
torsional angles with the predicted angles from our model to
compute the MCQ over the near-native structure. Therefore,
the MCQ computation compares the prediction of our model
angles with the angles from the predicted non-native struc-
tures. This MCQ now becomes a scoring function, as it only
takes as input a structure without any known native structure.
We named this scoring function TB-MCQ for TorsionBERT-
MCQ. Figure 3 shows the architecture of TB-MCQ. Given a
structure, we extract the torsional angles and the sequence.
The sequence is then pre-processed by RNA-TorsionBERT,
and the inference gives predicted angles. Then, we compute
the MCQ to finally output a structural quality measure for an
RNA 3D structure.

Results and Discussion

Results on Torsional Angles prediction
We present here the different experiments for the torsional
angles prediction task. We used the MCQ presented above
as a criterion to assess our model performances. We mainly
focus on the results for torsional angles, while the results
of MCQP T for pseudo-torsional angles are available in the
Supplementary file.

Datasets. To validate the performances of torsional angle pre-
diction models, we used different datasets of native struc-

tures:
Training: we downloaded each available PDB structure

and removed the structures from the non-redundant Valida-
tion and Test sets presented below. We also ensure the struc-
tures from this dataset have a sequence similarity below 80%
compared to the other used datasets. We considered only the
structures of a maximum sequence length of 512 (DNABERT
can only input 512 tokens). The final set is composed of
4,267 structures with sequences from 11 to 508 nucleotides.

Validation: we used the validation structures from SPOT-
RNA-1D (11). It contains 29 structures with sequences be-
tween 33 and 288 nucleotides.

Test: we combined two well-known test sets: RNA-
Puzzles (31) and CASP-RNA (3). We combined both of these
datasets as a whole Test set to assess the robustness of our
model. It leads to a Test set of 34 structures (22 from single-
stranded RNA of RNA-Puzzles and 12 from CASP-RNA),
with sequences from 27 nucleotides to 512 (we cropped the
RNA of PDB ID R1138 (720nt) to 512 nucleotides).

The distribution of the eight torsional angles and the two
pseudo-torsional angles is given in Figure 4. As the pseu-
dorotation phase P is defined with the five ribose ring angles,
their distributions are shown in Figure S1 of the Supplemen-
tary file. These distributions are similar for the three datasets,
meaning the learned distribution from the training set could
allow good generalisation for the model.

Language model selection. Each language model has a dif-
ferent format of inputs (K-mers for DNABERT and single
nucleotides for RNABERT), we had to select the best to-
kenization of our RNA sequences. We also had to decide
which pre-trained model was the best for our task. Therefore,
we trained the same DNABERT model with the different val-
ues of K (3, 4, 5 or 6) and RNABERT on the Training set and
observed the performances on the Validation set.

The results are shown in Table 1 on the Validation set.
In terms of K-mers, DNABERT trained on 3-mers has bet-
ter results (MCQ of 19.0) than the other K-mers and RN-
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Figure 4. Polar distribution of the eight torsional angles (α, β, γ, δ, ϵ, ζ, P , and χ) and the two pseudo-torsional angles (η and θ) for the Training, Validation and Test
datasets. For each angle, the logarithm of the normalized count is depicted.
Table 1. MCQ for each torsional angle and using all the torsional angles for the
Validation set for DNABERT (3,4, 5 or 6-mers) and RNABERT.

RNABERT DNABERT
- 3-mer 4-mer 5-mer 6-mer

MCQ(α) 32.3 31.0 31.8 33.9 36.3
MCQ(β) 17.6 17.6 17.6 17.8 17.8
MCQ(γ) 26.3 22.8 26.5 26.7 28.1
MCQ(δ) 14.4 12.1 15.6 16.7 17.3
MCQ(ϵ) 16.1 15.8 16.0 16.0 16.0
MCQ(ζ) 22.5 21.7 21.6 21.8 22.2
MCQ(P ) 8.6 8.7 8.8 8.7 8.7
MCQ(χ) 18.2 18.2 18.3 18.5 18.7
MCQ 20.2 19.0 20.2 20.7 21.4

ABERT, even if it does not outperform them for each tor-
sional angle. The results for the pseudorotation phase P
show that the model does not change the prediction for this
angle. RNABERT only outperforms the other methods for
the P angle, which does not lead to any significant conclu-
sion for the selection of this model. We observe that for
some angles (β, P and χ), the choice of models does not
have an impact on the performances. DNABERT with 3-
mers outperforms RNABERT, which does not input K-mers.
This result remains surprising as we could have thought that
RNABERT, as pre-trained specifically on RNA data, could
have done better than the DNABERT model. This difference
might be explained by the K-mers representation that is used
by DNABERT compared to RNABERT, where the size of
the vocabulary is extended, and thus a finer representation
of the inputs is embedded. This could help the model learn
a higher number of interactions and be more adaptable for
other tasks. What could also explain the difference in per-
formances is the size of the model: DNABERT has a size of
around 328MB, whereas RNABERT has around 2MB. From
now on, we name RNA-TorsionBERT (for RNA torsional
BERT) the DNABERT with 3-mers.

Performances. We present here the prediction results ob-
tained by our method RNA-TorsionBERT on the Test set
(presented above) compared to the state-of-the-art approach
SPOT-RNA-1D (11), which is the only method that predicts
RNA torsional angles from the sequence only. We repro-
duced the architecture of SPOT-RNA-1D (because we only
had the code to do inference) and trained it with the ex-
act same data as RNA-TorsionBERT. We also included the
results for the inferred angles from methods benchmarked
in State-of-the-RNArt (1). The methods benchmarked in-
cluded either ab initio with IsRNA (32) and RNAJP (35),

or template-based with RNAComposer (34), Vfold-Pipeline
(33), MC-Sym (37) and 3dRNA (36). We also include three
deep learning methods: trRosettaRNA (38) and RhoFold (39)
and the newly AlphaFold 3 (5). We report the MCQ per an-
gle on the Test Set in Table 2. MCQP T (pseudo-torsional)
results are available in Table S1 of the Supplementary file.
Our RNA-TorsionBERT model has better performances than
SPOT-RNA-1D for every angle. It has an average MCQ of
17.4 compared to 19.4 for SPOT-RNA-1D. The MCQ im-
provement over SPOT-RNA-1D ranges between 0.2° (for ϵ)
and 4.3° (for δ). It also outperforms the angles inferred from
state-of-the-art methods for RNA 3D structure prediction, in-
cluding the last published method, AlphaFold 3 (5). Nonethe-
less, the performances compared to AlphaFold 3 remains
close. RNA-TorsionBERT does not outperform it for every
angle. trRosettaRNA and RhoFold, two deep learning meth-
ods, have the worst MCQ compared to ab initio and template-
based approaches. It can be explained by the use of physics
in ab initio and template-based methods that are inferred in
the torsional angles. The use of deep learning approaches
might have the counterpart to not include physics enough,
except for AlphaFold 3. Deep learning methods, while hav-
ing the best overall results, as shown in the benchmark done
in State-of-the-RNArt (1), remain limited in torsional angle
predictions.

Figure 5. MCQ depending on sequence length (with a window of 25nt from 25nt to
200nt) for RNA-TorsionBERT, SPOT-RNA-1D and AlphaFold 3 for the Test set.

Results according to sequence length To study more in
details the performances based on the RNA length, we report
in Figure 5 the MCQ obtained by our method, SPOT-RNA-
1D and AlphaFold 3 depending on the sequence length for the
Test set. We can see our method outperforms SPOT-RNA-1D
for each of the sequence slot. AlphaFold 3 has lower MCQ
for structures with sequences between 75 and 175nt. For
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Table 2. MCQ per torsional angle and for all torsional angles over the Test set for RNA-TorsionBERT compared to SPOT-RNA-1D. We also include inferred torsional angles
from state-of-the-art methods that predict RNA 3D structures from State-of-the-RNArt (1). Methods are either deep learning (DL), ab initio (AB) or template-based (TP).

Type MCQ(α) MCQ(β) MCQ(γ) MCQ(δ) MCQ(ϵ) MCQ(ζ) MCQ(P ) MCQ(χ) MCQ

RNA-TorsionBERT DL 29.9 19.0 23.7 9.5 15.3 19.1 8.4 12.2 17.4
SPOT-RNA-1D (11) DL 32.5 19.6 26.6 13.7 15.5 20.2 9.8 13.2 19.4
AlphaFold3 (5) DL 29.8 19.9 23.9 8.8 15.2 18.8 8.8 14.1 17.8
IsRNA1 (32) AB 41.9 23.8 33.5 12.5 22.8 31.3 18.9 17.5 24.9
Vfold-Pipeline (33) TP 41.3 24.1 32.3 14.7 23.4 29.3 17.3 20.6 25.3
RNAComposer (34) TP 43.6 27.5 38.8 13.3 21.4 27.4 16.4 20.6 25.9
RNAJP (35) AB 41.3 28.0 33.3 14.0 24.4 32.1 11.2 20.7 26.6
3dRNA (36) TP 50.4 31.9 42.3 21.4 31.0 36.1 24.2 23.2 32.5
MC-Sym (37) TP 66.5 26.0 57.9 27.8 22.1 39.6 17.5 23.4 36.0
trRosettaRNA (38) DL 59.1 33.8 60.2 21.9 27.9 41.1 28.3 55.4 40.4
RhoFold (39) DL 91.4 61.3 67.4 48.1 45.0 53.6 46.7 32.3 54.8

Table 3. MCQ for torsional angles averaged over the Test set for RNA-TorsionBERT,
AlphaFold 3 and SPOT-RNA-1D for three secondary structure motifs: single-
stranded, loops and stems. Motifs are extracted using RNApdbee (40).

Motifs RNA-
TorsionBERT

AlphaFold 3 SPOT-
RNA-1D

Single-stranded 24.9 25.3 25.3
Loops 24.1 24.9 24.8
Stems 16.2 16.3 17.7

sequences higher than 200 nucleotides, our method demon-
strates superior performances compared to both SPOT-RNA-
1D and AlphaFold 3, showing the interest for long range se-
quences. Results for the MCQP T are shown in Figure S2 of
the Supplementary file.

Results according to secondary structure motifs We re-
port the results of MCQ for three types of secondary struc-
ture motifs (single-stranded, loop and stem) averaged over
the Test set for RNA-TorsionBERT, AlphaFold 3 and SPOT-
RNA-1D in Table 3. We observe that our method delivers im-
proved performances for each secondary structure motif (ex-
tracted from RNApdbee (40)). It has an overall MCQ higher
for single-stranded than stem motifs. This behaviour is also
similar to SPOT-RNA-1D and AlphaFold 3, which could be
explained by the fact that stem and loop motifs are easier to
predict than single-stranded motifs (and so are the base pair-
ings). Details on the results for pseudo-torsional angles are
available in Table S2 of the Supplementary file.

Results according to RNA types In CASP-RNA, structures
can be described as either natural with or without homologs,
or synthetic RNAs. To further study the different cases where
our approach is better than existing tools, we report the re-
sults for the natural (with or without homologs) and synthetic
RNAs in Table 4. Our method outperforms AlphaFold 3 and
SPOT-RNA-1D for natural RNAs, with the largest gap for
RNA without homologs. This could be explained by the reli-
ability of AlphaFold 3 on multiple sequence alignment, and,
thus, on the availability and quality of homologs for the pre-
diction. AlphaFold 3 has better performances for synthetic
RNAs. More details on the results for different RNA families

Table 4. MCQ per RNA type for the CASP-RNA dataset for RNA-TorsionBERT, Al-
phaFold 3 and SPOT-RNA-1D. Molecules are either natural RNAs with homolog(s)
(Natural (H)), natural RNAs without homolog(s) (Natural (nH)) or synthetic RNAs.
The number of times each model outperforms the others is described in parenthe-
ses.

Type RNA-
TorsionBERT

AlphaFold 3 SPOT-
RNA-1D

Natural (H) 20.6 (3/5) 22.3 (1/5) 22.3 (1/5)
Natural (nH) 11.8 (3/3) 15.5 (0/3) 13.6 (0/3)
Synthetic 16.1 (2/4) 15.9 (2/4) 19.1 (0/4)
All 16.9 (8/12) 18.5 (3/12) 18.8 (1/12)

on RNA-Puzzles are available in Table S3 of the Supplemen-
tary file. Examples of structures are provided in Figure S3 of
the Supplementary file.

Model quality assessment based on torsional angles
In this part, we describe the different datasets used for eval-
uating our scoring function. We used correlation scores to
compare the links of our scoring function to existing metrics.

Datasets. Datasets of near-native structures (or decoys) are
necessary to compare model quality assessment metrics. In-
deed, scoring functions are used to discriminate between
near-native structures, meaning that we need to have non-
native structures to evaluate the quality of our scoring func-
tion.

We used three different datasets with different strategies
of structure generation:

Decoy Test Set I is from RASP (15), composed of 85
native RNAs with decoys generated with a predictive model
(by applying different sets of Gaussian restraint parameters).
Each RNA has 500 decoys, which are close to the native
structure. We only kept 83 RNAs and removed the two RNAs
that have sequence lengths higher than 512 nucleotides (PDB
ID: 3df3A and 3f1hA).

Decoy Test Set II corresponds to the prediction-models
(PM) subset from rsRNASP (17). It has 20 non-redundant
single-stranded RNAs. For each RNA, 40 decoys are gen-
erated with four RNA 3D structure prediction models The
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decoys are not as near to native structures as with the Decoy
Test Set I.

Decoy Test Set III is the RNA-Puzzles standardized
dataset (41). This dataset comprises 21 RNAs and dozens of
decoy structures for each RNA. The decoys are not all close
to the native structures.

Evaluation measures. Scoring functions aim to discriminate
near-native structures. The Pearson correlation coefficient
(PCC) and the enrichment score (ES) are used to assess the
correctness of a given scoring function. They assess the link
between a scoring function and a given metric.

The Pearson coefficient correlation (PCC) is computed
between the ranked structures based on scoring functions and
structures ranked by metrics. It is defined as:

PCC =
∑Ndecoys

i=1 (En − Ē)(Rn − R̄)√∑Ndecoys

n=1 (En − Ē)2
√∑Ndecoys

n=1 (Rn − R̄)2

where En and Rn the energy and metric of the nth struc-
ture, respectively. PCC ranges from 0 to 1, where a PCC of
1 means the relationship between metric and energy is com-
pletely linear.

The enrichment score (ES) considers top-ranked struc-
tures from both scoring function and metric. It is defined
as:

ES = 100×
|Etop10% ∩Rtop10%|

Ndecoys

where |Etop10% ∩ Rtop10%| is the number of common struc-
tures from the top 10% of structures (measured by the met-
ric) and the top 10% of structures with the lowest scoring
function. ES ranges between 0 and 10 (perfect scoring). An
enrichment score of 1 means a random prediction, whereas
below 1 means a bad score.

Figure 6. PCC and ES between five different scoring functions (RASP, ϵSCORE,
DIFRE-RNA, rsRNASP and our scoring function TB-MCQ) and the angle-based
metric MCQ. Values are averaged over the three decoy test sets.

TB-MCQ as scoring function. To assess the validity of
our scoring function, we computed with RNAdvisor (42)
the available scoring functions RASP (15), ϵSCORE (19),
DFIRE-RNA (16) and rsRNASP (17) for the three different
Decoys test sets. We compared TB-MCQ with the state-of-
the-art scoring functions using PCC and ES with the MCQ.
The averaged values are shown in Figure 6.
TB-MCQ is the scoring function that is the more correlated
to MCQ (PCC of 0.87 and ES of 5.39). rsRNASP still shows
a high correlation to MCQ (PCC of 0.67 and ES of 4.41),
which is surprising as it does not integrate explicit torsional

angles in its computation. What is missing for both scoring
functions to reproduce the MCQ metric perfectly is the accu-
racy of predicted torsional angles. It might be ineffective for
structures that are really close to the native one and where the
inferred angles from these structures are closer to the native
than the predicted ones from RNA-TorsionBERT. PCC and
ES for other distance-based metrics are shown in Figure S4
of the Supplementary file.

Conclusion
In this work, we have developed a language-based model,
RNA-TorsionBERT, to predict RNA torsional and pseudo-
torsional angles from the sequence. With a DNABERT 3-
mers model, the learned embeddings have been used as a
starting point to infer structural features from the sequence.
We have achieved improvement compared to SPOT-RNA-1D
(11), the only tool for RNA torsional angle prediction from
the raw sequence.

Through an extensive benchmark of state-of-the-art
methods, we have outperformed the angles inferred from the
predictive models. We have also included in the benchmark
the new release of AlphaFold, named AlphaFold 3 (5), which
gives the best results compared to ab initio, template-based
and deep learning solutions in terms of MCQ on inferred an-
gles. Our method, RNA-TorsionBERT, remains better for the
prediction of RNA torsional angles with only the sequence as
input, while AlphaFold 3 uses MSA as inputs.

Most protein methods or current deep learning methods
for predicting RNA 3D structures use MSA as inputs, which
is a huge restriction. Indeed, significant families are still un-
known (21). It also increases the inference time, where a
homology search should be made for each prediction. Our
method leverages language model without the need of ho-
mology, which is a benefit for the prediction of RNA from
unknown families.

Through the evaluation of our model for backbone tor-
sional angles prediction, we have extended this evaluation as
a model quality assessment for RNA 3D structures. Then, we
have inferred a scoring function named TB-MCQ. This scor-
ing function could help the selection of near-native structures
in terms of angle deviation. It is also specific to torsional
angles and, thus, is more related to the angle-based metric
MCQ.

Improvements could be made for both RNA-
TorsionBERT and TB-MCQ. The RNA-TorsionBERT
performances remain limited to reconstruct the structures
from just the torsional angles. MCQ remains of high values
for the different test sets, meaning there are still improve-
ments to be made to torsional angle prediction. Indeed,
the reconstruction from torsional angles alone is difficult
as small angle deviation could lead to high cumulative
divergence. The number of solved structures remain the
main bottleneck to train robust methods. Different structural
tasks could be added to the model, with the prediction of
secondary structure, interatomic distances, hydrogen bonds
or non-canonical base interactions. Efforts could be made
to improve the language-based model used, where a model
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pre-trained more efficiently on RNA data could help improve
the overall performances. The quality of the scoring function
could be enhanced by incorporating distance atom features,
or directly by improving the prediction of torsional angles
itself.

Our RNA-TorsionBERT method can nonetheless be used
as a starting point for the reconstruction of RNA 3D struc-
tures, with ab initio methods, for instance, that include
molecular dynamics to relax the structure. It could also be
used as a feature in a bigger network to predict RNA 3D con-
formation.
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