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Abstract
The use of alkylzinc bromides in the multicomponent Mannich reaction is described. Heteroleptic organozinc compounds were ob-
tained in THF or 2-MeTHF by direct insertion of zinc dust into the C–Br bond of alkyl bromides. It was found that the presence of
a stoichiometric amount of LiCl was essential for the efficiency of the subsequent three-component coupling with aldehydes and
amines. A variety of primary, secondary, and tertiary organozinc reagents as well as secondary amines and aromatic aldehydes
could be used for the straightforward preparation of α-branched amines. Interestingly, whereas previously reported work describing
the preparation and reaction of organozinc iodides in acetonitrile showed higher reactivity of secondary organozinc reagents over
primary ones, reactions in THF in the presence of LiCl led to opposite results, with higher reactivity of primary organozinc
reagents.
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Introduction
The multicomponent Mannich reaction is one of the most pow-
erful tools available in organic synthesis for the straightforward
generation of α-branched amines [1-3]. Since its discovery in
1912, the reaction has benefitted from regular improvements
over the years and recent developments, such as the use of
organometallic species as nucleophiles in the so-called “organo-
metallic Mannich reaction”, which have helped to expand the
boundaries of the original process [4]. In this context, while sig-

nificant contributions have highlighted the reliable use of
diverse organometallic species in the three-component cou-
pling, most examples of sp3-hybridized compounds have
remained restricted to allyl [5] or benzyl [5,6] organometallic
reagents. Conversely, examples of organometallic Mannich
couplings involving nonstabilized organometallics are
uncommon and mostly limited to dialkylzinc reagents, likely
due to their commercial availability, their significant reactivity,
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and their functional-group tolerance [7-10]. However, the mo-
lecular diversity accessible with these reagents is rather limited.
Indeed, most examples involve dimethyl- or diethylzinc com-
pounds as more elaborated dialkylzinc reagents represent a con-
siderable synthetic challenge. Indeed, dialkylzinc reagents are
accessible essentially through nucleophilic displacement of
ZnCl2 by Grignard reagents or organolithium reagents, thus
limiting functional-group tolerance [11-13]. By contrast,
heteroleptic (mixed) alkylzinc species (i.e., RZnX) are readily
available and can typically be prepared from alkyl halides by
direct insertion of metallic zinc into the carbon–halogen bond
[14-21]. Thus, whereas Rieke et al. reported the insertion of
activated zinc into alkyl bromides in THF at room temperature
[16,17], Knochel et al. described the direct metalation of alkyl
iodides in THF at 30 °C [18]. More recently, Knochel et al. im-
proved their original method by the use of zinc dust in the pres-
ence of LiCl in THF for the metalation of alkyl bromides at
room temperature [19]. Besides, Huo described the insertion of
zinc dust into alkyl bromides at 80 °C in DMA or DMF [20].

Despite the high synthetic interest in mixed organozinc com-
pounds, their use in the preparation of α-branched amines
remains tenuous. Indeed, until recently, mixed alkylzinc species
were only employed by Carretero and co-workers in related
nucleophilic additions to activated imines under Cu catalysis
[22]. In 2022, our group demonstrated that alkyl iodides offer a
reliable source of heteroleptic organozinc compounds through
the direct insertion of zinc dust into the C–I bond in acetonitrile
at 50 °C [23]. Secondary as well as tertiary organozinc iodides
were found to be more reactive than primary ones. Recently,
Gaunt and co-workers confirmed this tendency in a related re-
ductive multicomponent procedure involving alkyl iodides [24].
It was indeed noticed that the reactivity of primary iodides in
the multicomponent carbonyl alkylative amination (CAA) reac-
tion was quite sluggish compared to the secondary counterparts.
In addition, primary alkyl bromides were found to be almost
inactive in the process. Therefore, we reasoned that replacing
alkyl iodides by alkyl bromides could be relevant to the field
due to interesting assets such as better availability and lower
cost of the parent alkyl halides.

Results and Discussion
We investigated new conditions that would allow for the syn-
thesis of mixed alkylzinc bromides in order to explore their
consecutive use in multicomponent Mannich reactions
(Table 1).

While our experience in the development of multicomponent
reactions involving organozinc compounds prompted us to
initially consider acetonitrile as probably the most adapted sol-
vent for the whole process [26-28], we observed that this sol-

Table 1: Optimization of the organozinc synthesis.a

entry Li salt solvent yieldb

1 — CH3CN 0%
2 — THF 95%
3 LiCl THF 71%
4 LiBr THF 10%
5 LiF THF 52%
6 LiClO4 THF 0%
7 LiCl THFc 73%
8 LiCl 2-MeTHF 66%

aReaction conditions: Zn dust (6.0 equiv) in bulk solvent (c = 1.0 M)
activated by chlorotrimethylsilane (20 mol %) and 1,2-dibromoethane
(60 mol %), then alkyl bromide (10 mmol), 80 °C, 16 h. bTitration by I2:
A 5 mL round-bottom flask was charged with accurately weighed I2
(between 20 and 30 mg) and THF (2.5 mL). After the iodine was com-
pletely dissolved, the solution of organometallic reagent was added
dropwise via a 1.00 mL syringe (0.01 mL graduations) until the brown
color disappeared (see also [25] for details). cTHF was distilled over
Na and benzophenone prior to use.

vent was not well-suited for the preparation of the organozinc
species from the corresponding bromides, with no metalation
being observed after 16 h at 80 °C (Table 1, entry 1). Converse-
ly, the organozinc compound was formed in THF in nearly
quantitative yield after 16 h at 80 °C (Table 1, entry 2). Howev-
er, its suitability in the multicomponent coupling with an amine
and an aldehyde still had to be demonstrated as there was no
precedent for such a Mannich multicomponent coupling involv-
ing nonstabilized organozinc halides using THF or 2-MeTHF as
solvent. To our delight, we found that the subsequent multicom-
ponent coupling of the organozinc bromide with piperidine and
benzaldehyde was possible, although it required the additional
presence of lithium chloride to furnish a satisfactory result. We
attributed the beneficial role of LiCl to the formation of more
nucleophilic organozincate complexes (e.g., LiBuZnBrCl),
which is a well-established process in THF [29,30]. Due to the
hygroscopic character of LiCl and the necessity to determine
the amount of organozinc by iodolysis [20] in order to adjust
the stoichiometry of the reagents for the multicomponent cou-
pling step, this salt was more conveniently introduced to the
medium at the stage of organozinc preparation. We observed
that the presence of LiCl was not deleterious for the metalation,
although the organozinc yield decreased to 71% (Table 1, entry
3), probably due to the initial presence of water traces in the
reaction medium. With these results in hands, we tried to deter-
mine whether LiCl could be replaced by other common lithium
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Scheme 1: Scope of organozinc reagents. Yield was determined by titration with I2. Reaction conditions: Zn dust (6.0 equiv) in bulk THF (c = 1.0 M)
activated by chlorotrimethylsilane (20 mol %) and 1,2-dibromoethane (60 mol %), then alkyl bromide (10 mmol), 80 °C, 16 h. a2-MeTHF was used as
solvent.

salts that could lead to improved metalation (Table 1, entries
4–6). These experiments revealed that LiCl gave the best
results, as a significant drop of the zincation yield was obtained
with both LiBr (Table 1, entry 4) and LiClO4 (Table 1, entry 6),
whereas LiF gave an acceptable yield of organozinc reagent
(Table 1, entry 5). Therefore, additional experiments were
carried out with LiCl. We first tried to determine whether the
use of distilled (Table 1, entry 7) instead of commercial THF
(Table 1, entry 3) could have a significant impact on the zinca-
tion step and observed that this was not the case, with a compa-
rable yield obtained under both conditions. Finally, we evalu-
ated the influence of another ethereal solvent on the metalation
and, notably, found that the use of biosourced 2-MeTHF led to
a comparable result (Table 1, entry 8).

With these results in hands, we evaluated the scope of the zinca-
tion. The results are presented in Scheme 1.

The zincation conditions proved to be general, with a good
yield of the organozinc compounds being obtained after 16 h at
80 °C in THF. It could be noted that comparable results were
obtained in both THF and 2-MeTHF (i.e., organozinc com-
pounds 2a and 2d). Interestingly, whereas simple primary (i.e.,
compounds 2a–g) and secondary (i.e., compounds 2h–j) ali-
phatic organozinc species could be obtained efficiently, a
tertiary bromide furnished deceiving zincation results (i.e., com-
pound 2k). However, we were delighted to notice that functio-

nalized organozinc species could be accessed from the corre-
sponding bromides (i.e., organozinc compounds 2c–g). After
reaction and centrifugation, the solutions of the organozinc
species 2 were collected using a syringe and allowed to react
with an amine 3 and an aldehyde 4 under moderate heating
(Scheme 2).

The multicomponent couplings proceeded smoothly, with an
acceptable yield of the α-branched amine being obtained after
3 h at 50 °C. A range of secondary amines as well as various ar-
omatic aldehydes could be used in the multicomponent cou-
pling. Interestingly, functionalized organozinc reagents gave the
multicomponent coupling product, except for the cyanated
organozinc compound 2d, which only provided traces of the ex-
pected α-branched amine. It can be noted that in sharp contrast
to our previous reports on the related multicomponent reaction
involving organozinc iodides in acetonitrile, for which second-
ary organozinc compounds provided better results than primary
ones, primary organozinc bromides reacted more efficiently
than secondary ones in THF in the presence of LiCl. In addi-
tion, whereas tert-butylzinc iodide was efficient in the multi-
component coupling (99% yield), tert-butylzinc bromide led to
a very low yield (16% 5kaa). The coupling presented some
other limitations. It was not possible to carry out the reaction
when a primary amine was employed. In addition, a secondary
aniline only furnished traces of the expected product. Aliphatic
aldehydes also failed to deliver the multicomponent adduct.
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Scheme 2: Scope of the reaction. Yield of isolated product is given.

Conclusion
In conclusion, we have shown in this work that alkyl bromides
can be used instead of alkyl iodides in a direct zincation–multi-
component organometallic Mannich reaction sequence to
furnish α-branched amines in an acceptable yield. The reaction
sequence is conducted in THF or 2-MeTHF, and the presence of
LiCl is essential. Although the scope of the reaction is narrower

than the analogous process relying on organozinc iodides, the
reaction offers significant assets associated to the use of alkyl
bromides, which are more easily prepared (or commercially
available), less costly, and more stable than the corresponding
alkyl iodides. In addition, the reaction can be conducted in com-
mercial THF or 2-MeTHF and without special precautions. We
also found a reversed reactivity order of primary and secondary
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organozinc bromides in comparison to that of organozinc
iodides. Herein, primary organozinc compounds reacted better
than secondary ones.

Supporting Information
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