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ERGODICITY OF COCYLES OVER 2-DIMENSIONAL ROTATIONS

NICOLAS CHEVALLIER AND JEAN-PIERRE CONZE

Abstract. We study recurrence and ergodicity of cocycles with values in Rd, d ≥ 1, over
rotations by badly approximable irrational numbers on Tρ, ρ > 1. The discontinuities of
the functions generating the cocycles also satisfy a Diophantine condition. For simplicity
of notation we mainly consider the cases ρ = 2, d = 1 and 2.

Contents

Introduction 1

1. Preliminaries 2

1.1. Recurrence and essential values 2

1.2. Diophantine conditions, BadZ(α) 5

2. About recurrence, examples 7

2.1. Examples of recurrent cocycles over rotations in dimension ≥ 1 8

2.2. Recurrence for a special class of functions 9

2.3. The triangle ∆0 = {(x, y) ∈ [0, 1]2 : x < y} 14

3. Examples of ergodic cocycles over rotations on T2 15

3.1. Class F1 15

3.2. Ergodicity of (ϕn) for ϕ ∈ F1 18

3.3. Class F2 21

3.4. Ergodicity of (ϕn) for ϕ = (ϕ1, ϕ2) ∈ F2 22

4. Ergodicity of compact extensions for the triangle ∆0 24

5. Appendix 29

5.1. Badly approximable numbers and W. M. Schmidt’s games 29

5.2. A version of the Lebesgue density theorem 31

References 32

Date: January 24, 2025.
2010 Mathematics Subject Classification. Primary: 28D05, 22D40, 37A25, 37A45.
Key words and phrases. rotation on T2, recurrent Rd-cocycle, ergodic cocycle, badly approximable

numbers, BadZ(α).
1



2 NICOLAS CHEVALLIER AND JEAN-PIERRE CONZE

Introduction

Let T : X → X be an ergodic measure preserving transformation on a probability space
(X,B, µ). Let ϕ be a measurable function on X with values in Rd, d ≥ 1.

The ergodic sums of ϕ under the iteration of T , denoted by ϕn or Snϕ, are defined as

ϕn(x) :=

n−1
∑

j=0

ϕ(T jx), n ≥ 1, ϕ0(x) = 0.

The sequence (ϕn, n ≥ 0) will be called a “cocycle” (over the dynamical system (X, µ, T ))
and denoted by (T, ϕ), or (ϕn), or (ϕn,α), when T = Tα is a rotation by α on a torus.

We denote by T̃ϕ the skew-product map (also called “cylinder map”)

T̃ϕ : (x, z) → (Tx, z + ϕ(x)),

acting on X × Rd endowed with the infinite invariant measure µ̃ product of µ by the
Lebesgue measure λ (also denoted dz) on Rd.

The cocycle (T, ϕ) is said to be ergodic if the dynamical system (X×Rd, µ̃, T̃ϕ) is ergodic.

In what follows, after general reminders, we take for T a rotation Tα on the torus X =
Tρ = Rρ/Zρ, ρ ≥ 1, with its Haar measure (denoted µ or dx):

T = Tα : x = (x1, ..., xρ) → (x1 + α1, ..., xρ + αρ),

where α = (α1, ..., αρ) ∈ Tρ is totally irrational (i.e., 1, α1, ..., αρ are linearly independent
over Q).

Given a cocycle (T, ϕ), the main questions are: is it recurrent, is it ergodic?

A first remark is that, under a mild Diophantine condition on α, too much regularity for
ϕ is an obstruction to ergodicity. Consequently, the presence of discontinuities plays a
role in the construction of explicit ergodic cocycles.

Nevertheless, let us mention that three examples of ergodic cocycles over a 1-dimensional
rotation are given in [14]: an analytic, a “smooth” and a continuous cocycle. The latter
example is constructed over an arbitrary irrational rotation.

For ρ = 1, in particular in the class of step functions, many examples of ergodic cocycles
have been given from the late Seventies and later (cf. for instance [17, 12, 7, 9]). For a one-
dimensional rotation, Koksma’s inequality gives a uniform bound along the denominators
of the rotation for ergodic sums of centered functions with bounded variation. It provides
a way to prove the existence of non-trivial essential values and then ergodicity.

For ρ > 1, there are fewer results due to the lack of such an inequality (cf. [24]). An
alternative approach is based on Lebesgue density theorem, existence of recurrence times
of the cocycle and control of its discontinuities which introduces “bad Diophantine ap-
proximation” conditions.

The main aim here is to give examples of ergodic cocycles over rotations on Tρ, ρ > 1.
The method of proof will be based on Lebesgue density theorem and recurrence times as
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mentioned above. For simplicity of notation we will present mainly examples on T2. In
addition, we also review and extend some results on recurrence of cocycles over rotations.

The main recurrence result of Section 2, Theorem 2.5, applies to all rotations outside a
small exceptional set, while the ergodicity results of Section 3, Theorems 3.5, 3.9 and 4.3,
require badly approximable rotations and discontinuities.

1. Preliminaries

1.1. Recurrence and essential values.

For the sake of completeness, we start with reminders summarizing some results, in par-
ticular on recurrence. A basic reference on cocycles is K. Schmidt’s seminal work [19].

Let (ϕn) be a cocycle generated by a measurable function ϕ with values in Rd over an
ergodic dynamical system (X,B, µ, T ). 1

Recall that (ϕn) is recurrent if, for every neighborhood V of the origin in Rd, for µ-a.e.
x ∈ X, there is a strictly increasing sequence (nk(x)) in N such that ϕnk(x)(x) ∈ V . It is

recurrent if and only if T̃ϕ is conservative. It is transient if limn |ϕn(x)| = +∞ for µ-a.e.
x. A cocycle (ϕn) over an ergodic dynamical system is either recurrent or transient

Recall also that a ∈ Rd∪{∞} is called an essential value of (ϕn) if, for every neighborhood
V of a, for every measurable subset B of positive measure in X, there is n ∈ N such that

µ(B ∩ T−nB ∩ {x : ϕn(x) ∈ V }
)

> 0.(1)

We denote by E(ϕ) the set of essential values and by E(ϕ) the set of finite essential values.
Observe that E(ϕ) contains always 0 and that E(ϕ) = {0,∞} if the cocycle is transient.

Suppose that (ϕn) is recurrent. The group P(ϕ) of periods of the measurable T̃ϕ-invariant
functions is a closed subgroup of Rd which coincides with E(ϕ). (See [19] or [1]).

Therefore, proving ergodicity of a cocycle (ϕn) with values in Rd amounts to showing that
E(ϕ) contains elements generating a dense subgroup of Rd.

Induced map and induced cocycle

Let B ⊂ X be a set of positive measure. On B equipped with the measure µB =
µ(B)−1µ|B, the induced transformation is TB(x) = TR(x)(x), with R(x) = RB(x) :=
inf{j ≥ 1 : T jx ∈ B}. It is well defined for a.e. x ∈ B if the system is conservative,
in particular (by Poincaré recurrence property) if it has a finite measure. Clearly if T
is conservative, then TB is conservative for every B of positive measure. The successive
return times of a point x in B are R1(x) = R(x), R2(x) = R(x) + R(TR(x)x), ..., Rn(x) =
R(x) +Rn−1(T

R(x)x), ....

1In this general subsection, in view of Lemma 1.1, (X,B, µ) is a Radon measure space. The values of
ϕ could be in a locally compact group G, but we restrict ourselves to G = Rd provided with a norm | |.
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Let ϕ be a measurable function on X. The "induced" cocycle (for the induced map TB
on B) is, for n ≥ 1,

ϕBn (x) := ϕB(x) + ϕB(TBx) · · · + ϕB(T n−1
B x) = ϕRn(x)(x), x ∈ B,

with ϕB(x) :=

R(x)−1
∑

j=0

ϕ(T jx) = ϕR(x)(x).

We see that a ∈ Rd ∪ {∞} is an essential value if, for every neighborhood V of a,
and every measurable subset B of positive measure in X, there is n ∈ N such that
µ({x ∈ B : ϕBn (x) ∈ V }) > 0.

Remarks 1. a) A cocycle (ϕn) is recurrent, if and only if, for each neighborhood V of
the origin and each B ⊂ X of positive measure, there exists n ≥ 1 such that

µ(B ∩ T−nB ∩ (ϕn ∈ V )) > 0.(2)

b) E(ϕ) = {0} if and only if ϕ is a coboundary (cf. [19]), meaning that there exists a
measurable function ψ : X → Rd such that ϕ = ψ − ψ ◦ T .

c) Two cocycles which differ by a coboundary have the same set of essential values.

d) A transient cocycle is never ergodic when (X, µ, T ) is aperiodic (i.e. such that the set
of periodic points is µ-negligible). Indeed, let a ∈ Rd be different from the origin and V a
neighborhood of a. By transience there is a set A of positive measure such that, for some
N ≥ 1, ϕn(x) 6∈ V for n ≥ N and all x ∈ A. By Rohklin’s lemma for aperiodic dynamical
systems, there is a set B ⊂ A such that the return time in B is > N . This shows that (1)
is not satisfied and a 6∈ E(ϕ). Hence (ϕn) is not ergodic.

The following lemma will be useful in the proof of ergodicity.

Lemma 1.1. [19, Proposition 3.8] If K ⊂ Rd is a compact set such that K ∩ E(ϕ) = ∅,
there exists a set B of positive measure such that µ(B ∩ T−nB ∩ (ϕn ∈ K)) = 0, ∀n ∈ Z.

Proof. For the sake of completeness, we give a proof. It uses induced cocyles.

The hypothesis implies the existence, for every z ∈ K, of a subset Bz of positive measure
in X and of a neighborhood Uz of the origin such that ϕBz

n (x) 6∈ Uz + z, ∀n ≥ 0, ∀x ∈ Bz.

Let Vz be a neighborhood of the origin such that Vz + Vz ⊂ Uz. By compactness of K,
there is a finite number of points z1, ..., zr such that K ⊂ ∪ri=1(Vzi + zi).

We proceed by induction on r, denoting simply Bi, Ui, Vi subsets and neighborhoods.

Suppose we have constructed a subset D = Dr−1 of positive measure such that the values
of the cocycle (ϕnD) never belong to Vi+zi, for i = 1, ..., r−1. We are going to construct a
subset Dr of positive measure of D such that the values of (ϕnDr

) never belong to Vr + zr.

Since Dr is a subset of D, the values of the induced cocycle (ϕnDr
) are contained in those

of (ϕnD), so they still never belong to Vi + zi, for i = 1, ..., r − 1.

The set Dr is the set B of the statement, since, for x ∈ Dr, we have ϕnDr
(x) 6∈ ∪ri=1(Vi+zi),

hence ϕnDr
(x) 6∈ K and we will be done.
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It remains to construct Dr. By ergodicity of T , there is k ≥ 1 and D′ ⊂ D of positive
measure such that T kD′ ⊂ Br. By Lusin’s theorem, there is a subset Dr of D′ of positive
measure such that ϕk(x)− ϕk(y) ∈ Vr, ∀x, y ∈ Dr.

For k, n ≥ 0, we have ϕn(x) = ϕk(x) + ϕn(T
kx) − ϕk(T

nx). Therefore, if x, T nx ∈ Dr,
then ϕk(T

nx)− ϕk(x) ∈ Vr and therefore ϕn(T
kx) ∈ Vr + ϕn(x).

For x ∈ Dr and n such that T nx ∈ Dr, as T kx, T k+nx ∈ Br, ϕn(T
kx) is a value of the

induced cocycle ϕnBr
and therefore 6∈ Ur + zr. It follows that ϕn(x) 6∈ Vr + zr, because,

otherwise, ϕn(T
kx) ∈ Vr + Vr + zr ⊂ Ur + zr, a contradiction.

We conclude that ϕnDr
never takes its values in Vr+zr and Dr has the desired property. �

Regularity of a cocycle

Let (ϕn) be a recurrent cocyle. The function x → ϕ(x)mod E(ϕ) on X defines a cocycle
with values in Rd/E(ϕ) whose finite essential values, as a quotient of ϕ, belong to the
class of E(ϕ), hence are trivial. By Remark 1.a) either ϕmod E(ϕ) is a coboundary, or
Rd/E(ϕ) is not compact and the set of essential values of ϕmod E(ϕ) is {0,∞}.
In the first case, the cocycle defined by ϕ with values in Rd is said to be regular. There
exists then a measurable map η : X → Rd such that the cocycle ψ := ϕ+η−Tη takes a.e.
its values in E(ϕ). Moreover, since the group of periods of the T̃ψ-invariant functions is

still E(ϕ), it follows that T̃ψ : (x, z) → (Tx, z+ψ(x)) is ergodic for its action on X×E(ϕ).
Therefore regularity for a cocycle ϕ means that, if it is not ergodic, it can be reduced up
to a coboundary to an ergodic cocycle with values in a closed subgroup.

1.2. Diophantine conditions, BadZ(α).

Notation. The Hausdorff dimension of a set E ⊂ Rd is denoted by dimH E.

For u ∈ R, let {u} = u − k if u ∈ [k, k + 1[, k ∈ Z, denote its fractional part and let
‖u‖ := inf({u}, 1−{u}) = infn∈Z |u− n| denote its distance to Z. The set Z2 \ {(0, 0)} is
denoted by Z2

∗.

For h = (h1, h2) and x = (x1, x2) in R2, we denote by 〈h, x〉 or h.x the scalar product
h1x1 + h2x2.

If α = 1
a1+

1

a2+
1

a3+...

, with partial quotients (an)n≥1, is an irrational number, its denomina-

tors are qn: q0 = 1, q1 = a1 and qn+1 = an+1qn + qn−1 for n ≥ 1.

We recall now some facts about Diophantine properties of irrational numbers.

For s ≥ 0, D(s) denotes the set of irrational numbers α such that, for a finite constant
A = A(α, s), the partial quotients of α satisfy

an ≤ Ans, ∀n ≥ 1.(3)

By a theorem of Borel-Bernstein, a.e. α is in D(s) for every s > 1. Moreover, thanks
to the inequality qn+1‖qnα‖ ≥ 1

2
, we see that for all n ≥ 0 and all qn ≤ k < qn+1, we

have ‖kα‖ ≥ ‖qnα‖ ≥ 1
2qn+1

≥ 1
4an+1k

. As the sequence (qn) grows at least exponentially,
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it follows that, if α satisfies (3), there is a constant c > 0 such that

‖kα‖ ≥ c

k (log k)s
, ∀k > 1.(4)

Recall also that the type (or Diophantine exponent) of an irrational number α is the real
η ≥ 1 such that

inf
k
[kη−ε‖kα‖] = 0, inf

k
[kη+ε‖kα‖] > 0, ∀ε > 0.(5)

The type of α satisfying (4) for some s > 1 is 1 and therefore by what precedes the type
of a.e. α is 1.

More directly, it can be observed that, if α is not of type 1, there is an integer r ≥ 1 such
that k1+1/r‖kα‖ ≤ 1 for infinitely many k. For each n, the set of α’s satisfying the latter
property is negligible by the Borel-Cantelli lemma.

Badly approximable numbers

Recall that a number θ is badly approximable (θ ∈ Bad), if

∃c > 0 : ‖qθ‖ ≥ c

|q| , ∀q ∈ Z \ {0}.(6)

This is equivalent for θ to have bounded partial quotients (bpq). Clearly the type of
numbers in Bad is 1. The set Bad has Lebesgue measure 0 and Hausdorff dimension 1,
see [13].

The set BadZ(θ) of badly approximable numbers with respect to an irrational θ is

BadZ(θ) = {x ∈ [0, 1] : ∃c(x) > 0 : ‖qθ − x‖ ≥ c(x)

|q| , ∀q ∈ Z \ {0}}.

Observe that BadZ(θ) = −BadZ(θ) and that 0 ∈ BadZ(θ) is equivalent to θ ∈ Bad.

The set BadZ(θ) has measure 0, but its Hausdorff dimension dimH BadZ(θ) is 1. Actually
(cf. Proposition 5.1 in appendix), the set of n-tuples (β1, ..., βn) which are in BadZ(θ)
as well as the differences βj − βi for all i, j, i 6= j, is big in the sense that its Hausdorff
dimension is n.

Role of Diophantine conditions in the question of ergodicity

Let (ϕn) be a recurrent cocycle with values in Rd over a rotation x → x+ α on Tρ. It is
easily seen that first possible obstruction to ergodicity is when some component ϕi of the
function ϕ generating the cocycle is a coboundary (meaning that there is a measurable
function ψ : Tρ → R such that ϕi = ψ − Tαψ a.e.).

The reduction of a component to a coboundary is related to the decay of its Fourier
coefficients. For an example, when ρ = 1, we can use (see [7, Lemma 2.2] for a proof):

Lemma 1.2. If α is an irrational of type η, then
∑

k≥1

1

kη+δ
1

‖kα‖ <∞ for every δ > 0.
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Proposition 1.3. If α is of type η and if ϕ(x) =
∑

n 6=0 cn(ϕ)e
2πinx is such that cn(ϕ) =

O(n−(η+δ)) for some δ > 0, then ϕ is a coboundary: ϕ = Tαψ − ψ, with ψ continuous.

Proof. The Fourier coefficients of an integrable solution ψ of the coboundary equation

ϕ = Tαψ − ψ, are given by cn(ψ) =
cn(ϕ)

e2πinα−1
. By Lemma 1.2 we have

∑

n 6=0

|cn(ψ)| ≤
∑

n 6=0

|cn(ϕ)
‖nα‖ | ≤ C

∑

n 6=0

1

nη+δ
1

‖nα‖ < +∞.

Therefore the coboundary equation has a solution which is continuous. �

For example, ϕ : x→ x(1− x)− 1
6

coincides on [0, 1] with the continuous, 1-periodic and

1-lipschitz function on R given by the Fourier expansion −1
π2

∑

n≥1
cos(2πnx)

n2 .

If α is of type < 2, then this function ϕ is a coboundary for the rotation by α and the
cocycle (ϕn,α) in not ergodic.

A non-regular BV cocycle

As an illustration of the role of Diophantine properties, let us also mention an example
of a non regular (hence non ergodic) cocycle (cf. [7]).

If α is an irrational 6∈ Bad, it can be shown that there are β, r in ]0, 1[ such that

ϕ : x→ ϕ(x) = 1[0,β](x mod 1)− 1[0,β](x+ r mod 1)

satisfies E(ϕ) = {0,∞}. This implies that the cocycle (ϕn,α) is not regular and that T̃α,ϕ
is not ergodic on T1×Z endowed with the product of the Lebesgue measure on T1 by the
counting measure on Z.

2. About recurrence, examples

A sufficient condition for recurrence

The question of recurrence for a cocycle with values in Rd, d ≥ 1 is natural and plays a
key role in the proof of ergodicity. Let us first consider the general case of a cocycle (ϕn)
generated by a function ϕ : X → Rd, d ≥ 1, over an ergodic dynamical systems (X, µ, T ).

If d = 1 and ϕ is integrable, a necessary and sufficient condition for the recurrence of (ϕn)
is
∫

X
ϕdµ = 0. (cf. [3])

For d ≥ 2, the question of recurrence is more difficult, but sometimes recurrence can be
deduced from the growth rate of the cocycle (ϕn). The following general lemma gives a
simple sufficient condition for recurrence (cf. [6]).

For ϕ : X → Rd in L2(µ), denote by ‖ϕn‖2 := (
∫

X
|ϕn(x)|2 dµ(x))

1
2 its L2-norm.

Lemma 2.1. Let (ϕn) be a cocycle over a dynamical system (X,B, µ, T ) with values in
Rd. If there exist a strictly increasing sequence of integers (kn) and a sequence of real
numbers (δn > 0) such that: limn→∞ µ(x : |ϕkn(x)| ≥ δn) = 0 and δn = o(n1/d), then the
cocycle is recurrent.

In particular, if ϕ ∈ L2(µ) and ‖ϕn‖2 = o(n
1
d ), the cocycle is recurrent.
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Cocycles over 1-dimensional rotations

Let C be the class of centered real valued functions with bounded variation (BV) on T. It
contains the centered step functions with a finite number of discontinuities. If ϕ belongs
to C, its Fourier coefficients cr(ϕ) satisfy:

cr(ϕ) =
γr(ϕ)

r
, ∀r 6= 0, with K(ϕ) := sup

r 6=0
|γr(ϕ)| < +∞.(7)

For ϕ ∈ C with variation V (ϕ), for a rotation Tα on T and any denominator q of α, the
ergodic sum ϕq over Tα satisfies:

‖ϕq‖∞ = sup
x

|
q−1
∑

j=0

f(x+ jα)| ≤ V (ϕ) (Koksma’s inequality).(8)

If ϕ centered in L2(T) satisfies (7), then ‖ϕq‖2 ≤ 2πK(ϕ). Indeed, for ψ(x) = {x} − 1
2
,

we have ‖ψq‖2 ≤ ‖ψq‖∞ ≤ V (ψ) = 1, by (8). Hence for ϕ, it holds:

‖ϕq‖2 = (
∑

r 6=0

|γr(ϕ)|2
r2

|sin πqrα
sin πrα

|2) 1
2 ≤ K(ϕ) (

∑

r 6=0

1

r2
|sin πqrα
sin πrα

|2) 1
2 = 2πK(ϕ) ‖ψq‖2 ≤ 2πK(ϕ).

For ϕ ∈ C, by (8) we get a bound on the growth of the ergodic sum ϕn for a.e α:

Proposition 2.2. Let ϕ be a centered BV function on T. If (3) is satisfied for some
s ≥ 0 (a condition which holds for a.e. α), there is a constant Ks > 0 such that:

‖ϕn‖∞ ≤ Ks(logn)
1+s, ∀n ≥ 2.(9)

When α is of type 1, for every ε > 0 there is a constant K(ε) > 0 such that:

‖ϕn‖∞ ≤ K(ε)nε, ∀n ≥ 1.(10)

Proof. Let (qk) be the denominators of α. For n ≥ 1, let m = m(n) be the integer such
that n ∈ [qm(n), qm(n)+1[. As the growth of the sequence (qn) is at least exponential, we
have m(n) = O(logn).

Now (9) and (10) follow easily from Koksma’s inequality and the α-Ostrowski’s represen-
tation of the integers (cf [18]) which reads:

if n < qm+1, n =

m
∑

k=0

bk qk,with 0 ≤ b0 ≤ a1 − 1, 0 ≤ bk ≤ ak+1 for 1 ≤ k ≤ m. �

If ϕ is a centered function satisfying (7), the previous proposition is valid with the L2-norm
instead of the uniform norm.

2.1. Examples of recurrent cocycles over rotations in dimension ≥ 1.

Now we give examples where recurrence can be proved or disproved in dimension ≥ 1.
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2.1.1. Examples and counterexamples.

For cocycles over 1-dimensional rotations, (8) can be used for cocycles with values in Rd,
d ≥ 1. When the dimension ρ is > 1, an estimation of the rate of growth of ϕn) can be
obtained in some cases by Fourier analysis methods under an hypothesis on α.

Example 1. (Case ρ = 1) If the cocycle (ϕn) with values in Rd is generated over a one
dimensional rotation by ϕ centered with BV components (or more generally satisfying
(7)), then it is recurrent for any ergodic rotation and any d ≥ 1 by Koksma’s inequality.

Example 2. (Case d = ρ > 1) Let ϕ = (ϕ1, ..., ϕd) be such that ϕj , for each j, is a
centered BV function of the one-dimensional variable xj ∈ T.

In this example, the cylinder map on Tρ × Rρ : (x, z) → (x+ α, z + ϕ(x)) is the product
of the cylinder maps on T × R: (xi, zi) → (xi + αi, zi + ϕi(xi)). Recurrence follows then
immediately for a large class of rotations from Lemma 2.1 and Proposition 2.2:

Proposition 2.3. If the components ϕj are in the class C (or more generally satisfy (7)),
for α = (α1, ..., αρ), with each αi of type 1, the cocycle is recurrent.

As a.e.α is of type 1, the conclusion holds for a.e.α. However, as recalled below, for ϕ
with component in C, recurrence can fail in dimension ≥ 2 for special choices of α.

Example 3. Transient cocycles over a 2-dimensional rotation

In [24] J.-C. Yoccoz constructed a centered transient cocycle given by an analytical func-
tion over a particular 2-dimensional rotation.

The following centered cocycle is another example of transient cocycle (cf. [6, Theo-
rem 4.1]): Let ϕ : T2 → R2 be the function ϕ(x) = (ϕ1(x1), ϕ

2(x2)), with ϕ1 = ϕ2 =
1[0, 1

5
]({.})− 1

5
. There exists an ergodic rotation in T2, x→ x+ α, α = (α1, α2), such that

|
n−1
∑

k=0

ϕ1(x1 + kα1)|+ |
n−1
∑

k=0

ϕ2(x2 + kα2)| n→+∞−→ +∞, for a.e. (x1, x2) ∈ T2.

A question: Recall that a pair α ∈ R2 is singular if ∀ε > 0, ∃Q > 1, ∀q > Q, ∃n ≤
q, d(nα,Z2) ≤ εq−1/2.

Singular pairs and more generally singular vectors were defined by Khintchine who showed
that the set of singular vectors is of zero Lebesgue measure. Recently Y. Cheung [5] showed
that the set of singular pairs has Hausdorff dimension 4/3, hence is rather small.

In the previous examples of transient cocycles, the rotation Tα on T2 turns out to be
associated with a singular pair α. Both constructions were designed to exhibit at least
one α for which the cocycle is transient. So the fact that α is singular might just be a
technical convenience, and a natural question is to construct a transient cocycle over a
rotation defined by a non singular pair α ∈ R2.



10 NICOLAS CHEVALLIER AND JEAN-PIERRE CONZE

2.2. Recurrence for a special class of functions.

Notation. Recall the notation |u|+ = max(|u|, 1), for u ∈ R. If ℓ1, ℓ2 : R2 → R are two
independent linear forms, for h ∈ R2 we put R(h) = Rℓ1,ℓ2(h) = |ℓ1(h)|+|ℓ2(h)|+ and
define for s > 1:

W (ℓ1, ℓ2, s) := {α ∈ R2 : R(h)s‖h.α‖ ≤ 1 for infinitely many h ∈ Z2}.

Definition 2.4. We denote by G the class of centered functions f : T2 → R such that
there exists a finite partition of [0, 1[2 into triangles ∆j such that f has bounded continuous
partial derivatives f ′

x, f
′
y, f

′′
xy, f

′′
yx on the interior of each ∆j .

Theorem 2.5. If Φ = (ϕ1, . . . , ϕd) : T2 → Rd is such that each component ϕi ∈ G, then
1) dimH{α ∈ R2 : (Φn,α)n is not recurrent} ≤ 2− 1

2d−1
;

2) (Φn,α)n is recurrent if α is a totally irrational algebraic pair.

Remark: The class G contains in particular the functions ϕ∆ := 1∆ − µ(∆), where 1∆ is
the indicator of a subset ∆ of the 2-torus whose boundary is a finite union of segments.

In this case Theorem 2.5 is related to the following result: It is shown in [6, Theorem 3.1]
that the cocycle (ϕ∆

n,α) generated by ϕ∆ over a two dimensional rotation by α satisfies,

for every γ > 0, for almost every α ∈ T2 the bound ‖ϕ∆
n,α‖2 = O(nγ).

For a finite family (ϕ∆i, i = 1, · · · , d) with sets ∆i as ∆ above, it follows from this bound
and Lemma 2.1 that the d-dimensional cocycle (Φn,α) generated over the rotation by α
on T2 by Φ = (ϕ∆i)i=1,··· ,d is recurrent for a.e. α.

Theorem 2.5 improves this result. Its proof follows the same guideline. It will be used to
show that the assumptions of Theorem 3.9 below about ergodicity of some cocycles are
satisfied by a set of rotations in T2 of Hausdorff dimension 2. It is based on the following
two propositions whose proof is postponed to the next subsection.

Proposition 2.6. Let ℓ1, ℓ2 : R2 → R be two independent linear forms and let R(h) =
Rℓ1,ℓ2(h) = |ℓ1(h)|+|ℓ2(h)|+ for h ∈ R2. Let 1 < t < 2. Then

dimH{α ∈ R2 :
∑

h∈Z2
∗

1

R(h)2‖h.α‖t = ∞} ≤ 3 + 2/t

1 + 2/t
.

Proposition 2.7. If ϕ ∈ G, there exist a constant C and 2m linear forms ℓϕ1 , . . . , ℓ
ϕ
2m :

R2 → R such that for k = 1, . . . , m, ℓϕ2k−1, ℓ
ϕ
2k are linearly independent and the Fourier

coefficients of ϕ satisfy

|cn(ϕ)| ≤ C
m
∑

k=1

1

|ℓϕ2k−1(n)|+|ℓϕ2k(n)|+
, ∀n ∈ Z2

∗.(11)

Proof of Theorem 2.5. 1) Let Φ = (ϕ1, . . . , ϕd) be such that each ϕi is in G and cen-
tered. With ϕ = ϕi, let ℓϕ1 , . . . , ℓ

ϕ
2m be the linear forms given by Proposition 2.7.
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Let 0 < t < 2. If α is not in the set

Et
ϕ =







α ∈ R2 :
m
∑

k=1

∑

h∈Z2
∗

1

(|ℓϕ2k−1(h)|+|ℓϕ2k(h)|+)2‖h.α‖t
= ∞







,

then by (11)

∑

h∈Z2
∗

|ch(ϕ)|2
‖h.α‖t ≤ C2

∑

h∈Z2
∗

(

m
∑

k=1

1

|ℓϕ2k−1(h)|+|ℓϕ2k(h)|+
)2 1

‖h.α‖t

≤ C2m
m
∑

k=1

∑

h∈Z2
∗

1

(|ℓϕ2k−1(h)|+|ℓϕ2k(h)|+)2‖h.α‖t
<∞.

Since ϕ is centered, we have

‖
N−1
∑

k=0

ϕ(.+ kα)‖22 = ‖
N−1
∑

k=0

∑

h∈Z2
∗

ch(ϕ)e
2iπ〈h,(.+kα)〉‖22 =

∑

h∈Z2
∗

|ch(ϕ)|2|
N−1
∑

k=0

e2iπk〈h,α〉|2

≤
∑

h∈Z2
∗

|ch(ϕ)|2 inf(N,
1

‖h.α‖)
2 ≤

∑

h∈Z2
∗

|ch(ϕ)|2(N1−t/2 1

‖h.α‖t/2 )
2 ≤ N2−t

∑

h∈Z2
∗

|ch(ϕ)|2
‖h.α‖t .

It follows that, if 2− 2
d
< t < 2 and α /∈ ∪di=1E

t
ϕi

, then ‖∑N−1
k=0 Φ(.+ kα)‖22 = O(N2−t) =

o(N
2
d ), which implies that the cocycle (Φn,α)n is recurrent by Lemma 2.1.

Therefore, if α /∈ ⋂

2− 2
d
<t<2

⋃d
i=1E

t
ϕi

, (Φn)n is recurrent. Finally, by Proposition 2.6,

dimH

(

⋂

2− 2
d
<t<2

d
⋃

i=1

Et
ϕi

)

≤ inf
2− 2

d
<t<2

3 + 2/t

1 + 2/t
=

3 + 2/(2− 2
d
)

1 + 2/(2− 2
d
)
= 2− 1

2d− 1
.

2) If α is algebraic, by W. Schmidt’s theorem [21, Theorem 2] on simultaneous approxi-
mation to irrational numbers by rationals, α 6∈ W (ℓ1, ℓ2, s) for s = 1 + ε, for every ε > 0.

By Lemma 2.9 below it follows
∑

h∈Z2
∗

1

R(h)2‖h.α‖t <∞, ∀t ∈]1, 2

1 + ε
[ and as above, taking

ε small enough we obtain recurrence in any dimension d by Lemma 2.1. �

2.2.1. Proof of Propositions 2.6 and 2.7.

For Proposition 2.6 we need two lemmas. The first one is a simple consequence of the
Hausdorff-Cantelli lemma (see [4]). The second lemma is adapted from Niederreiter [16].

Lemma 2.8. Let ℓ1, ℓ2 : R2 → R be two independent linear forms and let s > 1. Then,

dimHW (ℓ1, ℓ2, s) ≤
3 + s

1 + s
.

Proof. Given h = (h1, h2) ∈ Z2
∗, the set L(h) = {x ∈ T2 : h.x ∈ Z} is a union of

gcd(h1, h2) one dimensional tori. The total length of L(h) is the Euclidean norm |h| of h.
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The set V (s, h) := {x ∈ T2 : R(h)s‖h.x‖ ≤ 1} is included in a strip around L(h) of width
1

|h|R(h)s and can be covered with n(h) = |h|2R(h)s balls of radius r(h) =
4

|h|R(h)s .

By the Hausdorff-Cantelli lemma, for t > 0, if
∑

h∈Z2
∗
n(h)r(h)t = 4t

∑

h∈Z2
∗
|h|2−tR(h)s−st <

∞, then the Hausdorff dimension of W (ℓ1, ℓ2, s) is ≤ t.

For 0 < t < 2, using the equivalence of norms, we obtain
∑

h∈Z2
∗

|h|2−tR(h)s−st ≤ C
∑

h∈Z2
∗

(|ℓ1(h)|+ |ℓ2(h)|)2−tR(h)s−st

= C
∑

h∈Z2
∗

(|ℓ1(h)|+ |ℓ2(h)|)2−t(|ℓ1(h)|+|ℓ2(h)|+)s(1−t).

So it suffices to bound from above the two series
∑

h∈Z2
∗
|ℓi(h)|2−t(|ℓ1(h)|+|ℓ2(h)|+)s(1−t),

i = 1, 2. The set Λ = {(ℓ1(h), ℓ2(h)) : h ∈ Z2} is a lattice in R2.

Let P = {x ∈ R2 : −1
2
≤ xi <

1
2
, i = 1, 2}. Since for all x ∈ R2, CardΛ∩ (x+P ) ≤ C ′ for

some constant C ′, we have for 1 < t < 2,
∑

h∈Z2
∗

|ℓ1(h)|2−t(|ℓ1(h)|+|ℓ2(h)|+)s(1−t) =
∑

(x1,x2)∈Λ\{0}
|x1|2−t(|x1|+|x2|+)s(1−t)

=
∑

(n1,n2)∈Z2

∑

(x1,x2)∈(Λ\{0})∩((n1 ,n2)+P )

|x1|2−t(|x1|+|x2|+)s(1−t)

≤ C ′
∑

(n1,n2)∈Z2

(|n1|+)2−t(|n1|+|n2|+)s(1−t) = C ′
∑

n1∈Z
|n1|2−t+s(1−t)+

∑

n2∈Z
|n2|s(1−t)+ .

The product of the two series is finite when s(1 − t) < −1 and 2 − t + s(1 − t) < −1.
Since s > 1, the product of the series converges when 2 > t > max(1+s

s
, 3+s
1+s

) = 3+s
1+s

.

The conclusion is the same for i = 2. �

Lemma 2.9. Let ℓ1, ℓ2 : R2 → R be two independent linear forms. Let s > 1 and let
α 6∈ W (ℓ1, ℓ2, s) be totally irrational. Then,

∑

h∈Z2
∗

1

R(h)2‖h.α‖t <∞, ∀t ∈]1, 2/s[.

Proof. Since α is totally irrational and since Rℓ1,ℓ2(h)
s‖h.α‖ ≤ 1 has only finitely many

solutions h ∈ Z2 for α 6∈ W (ℓ1, ℓ2, s), there exists a constant c > 0 such that for all h ∈ Z2
∗,

R(h)s‖h.α‖ ≥ c.

Let us estimate the sum
∑

h∈Z2
∗:|ℓi(h)|+≤ni,i=1,2

1

‖h.α‖t , for n = (n1, n2) ∈ Z2 with n1, n2 ≥ 1.

Observe that |‖x‖ − ‖y‖| = min(‖x− y‖, ‖x+ y‖) for any x, y ∈ R (where ‖u‖ = inf |un|,
for u ∈ R).
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For every pair (h, h′) with h 6= h′ and h, h′ both in the domain of summation, we have
|ℓi(h± h′)|+ ≤ |ℓi(h)|+ + |ℓi(h′)|+ ≤ 2ni. It follows

|‖h.α‖ − ‖h′.α‖| = min(‖(h− h′).α‖, ‖(h+ h′).α‖)
≥ cmin(R(h− h′)−s, R(h+ h′)−s) ≥ c

(2n1)s(2n2)s
.

Therefore, putting δ =
c

4s
1

ns1n
s
2

, each interval [kδ, (k + 1)δ[, k = 1, . . . , ⌈1/δ⌉ contains at

most one point ‖hα‖ with h in the domain of summation. We also have ‖h.α‖ ≥ c

R(h)s
≥

c

ns1n
s
2

for h in the domain of summation. Since t > 1, it follows

∑

h∈Z2
∗,|ℓi(h)|+≤ni,i=1,2

1

‖h.α‖t ≤
∑

k≥1

1

(kδ)t
≤ C

1

δt
.

Using the inequality
∑

(n1,n2):ni≥|ℓi(h)|+, i=1,2

1

n3
1n

3
2

≥ c′

|ℓ1(h)|2+|ℓ2(h)|2+
=

c′

R(h)2
,

satisfied for some constant c′ > 0, we obtain
∑

h∈Z2
∗

1

R(h)2‖h.α‖t ≤ C
∑

h∈Z2
∗

1

‖h.α‖t
∑

(n1,n2):ni≥|ℓi(h)|+,i=1,2

1

n3
1n

3
2

.

Then, by permuting the order of summation, we obtain
∑

h∈Z2
∗

1

R(h)2‖h.α‖t ≤
C

c′

∑

(n1,n2)∈N2
∗

1

n3
1n

3
2

∑

h∈Z2
∗:|ℓi(h)|+≤ni,i=1,2

1

‖h.α‖t

≤ C ′
∑

(n1,n2)∈N2
∗

1

n3
1n

3
2

1

δt
≤ C ′

∑

(n1,n2)∈N2
∗

1

n3−ts
1 n3−ts

2

.

The last series converges if 3− ts > 1, i.e., if t < 2/s. �

Proof of Proposition 2.6. Let 1 < t < 2 and s ∈ (1, 2/t). By Lemma 2.8, the Hausdorff

dimension of the set W (ℓ1, ℓ2, s) is ≤ 3 + s

1 + s
. By Lemma 2.9, if

∑

h∈Z2
∗

1

R(h)2‖h.α‖t = ∞,

with 1 < t < 2/s, then α ∈ W (ℓ1, ℓ2, s).

Therefore, dimH{α ∈ R2 :
∑

h∈Z2
∗

1

R(h)2‖h.α‖t = ∞} ≤ inf
1<s<2/t

3 + s

1 + s
=

3 + 2/t

1 + 2/t
. �

Proof of Proposition 2.7. (Bound on the Fourier coefficients of f in G)

From the definition of G, it suffices to prove (11) for f supported by a triangle ∆ such
that f has bounded continuous partial derivatives f ′

x, f
′
y, f

′′
xx, f

′′
xy, f

′′
yx on the interior of ∆.

Using translations, vertical axis symmetries and by cutting the triangle along a vertical
line through one of its vertices, we can reduce to the triangles ∆ = ∆(a, b, c) where
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(0, 0), (a, b), (0, c) are the vertices of ∆ and a, b, c are real numbers such that 0 < a, c ≤ 1
and c− 1 ≤ b ≤ 1. So we are reduced to the proposition:

Proposition 2.10. Let f be a function supported in ∆(a, b, c) with bounded continuous
partial derivatives f ′

x, f
′
y, f

′′
xx, f

′′
xy, f

′′
yx on the interior of ∆(a, b, c). Then its Fourier coeffi-

cients cf (s, t) =
∫ 1

0

∫ 1

0
f(x, y)e−2πi(sx+ty) dxdy satisfy, for a finite constant K,

|cf(s, t)| ≤ K
( 1

|t|+|s|+
+

1

|t|+|bt+ as|+
+

1

|t|+|(b− c)t+ as|+
)

, ∀s, t ∈ Z.(12)

Proof. We have cf(s, t) =
∫ a

0
It(x) e

−2πisxdx, with It(x) =
∫

b−c
a
x+c

b
a
x

f(x, y) e−2πity dy.

Fort t 6= 0, using integration by parts we get It(x) =
1

−2πit
[At(x)−Bt(x)−Ct(x)], with

At(x) = f(x, b−c
a
x+ c) e−2πit( b−c

a
x+c),

Bt(x) = f(x, b
a
x) e−2πit b

a
x, Ct(x) =

∫
b−c
a
x+c

b
a
x

f ′
y(x, y) e

−2πity dy.

If t(b− c) + sa 6= 0, then
∫ a

0

At(x)e
−2πisx dx = e−2πitc

∫ a

0

f(x,
b− c

a
x+ c) e−2πi(t( b−c

a
)+s)x dx

=
a

−2πi(t(b− c) + sa)
[f(a, b) e−2πi(tb+sa) − f(0, c) e−2πitc

−e−2πitc

∫ a

0

(

f ′
x(x,

b− c

a
x+ c) +

b− c

a
f ′
y(x,

b− c

a
x+ c

)

e−2πi(t( b−c
a

)+s)x dx].

If tb+ sa 6= 0, then

∫ a

0

Bt(x)e
−2πisx dx =

∫ a

0

f(x,
b

a
x) e−2πi(t b

a
+s)x dx

=
a

−2πi(tb + sa)
[f(a, b)e−2iπ(tb+sa) − f(0, 0)−

∫ a

0

(

f ′
x(x,

b

a
x) +

b

a
f ′
y(x,

b

a
x)
)

e−2πi(t b
a
+s)x dx].

If s 6= 0, then

∫ a

0

Ct(x)e
−2πisx dx =

∫ a

0

(

∫ b−c
a
x+c

b
a
x

f ′
y(x, y) e

−2πity dy) e−2πisx dx

=
1

−2πis
[−

∫ c

0

f ′
y(0, y) e

−2πity dy −
∫ a

0

d

dx
(

∫ b−c
a
x+c

b
a
x

f ′
y(x, y) e

−2πity dy) e−2πisx dx].

The last integrand above is uniformly bounded with respect to t, s, as shown by

d

dx
(

∫ b−c
a
x+c

b
a
x

f ′
y(x, y) e

−2πity dy) =
b− c

a
f ′
y(x,

b− c

a
x+ c) e−2πit( b−c

a
x+c)

− b

a
f ′
y(x,

b

a
x) e−2πit b

a
x +

∫ b−c
a
x+c

b
a
x

f ′′
yx(x, y) e

−2πity dy.
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The previous computation shows that, for a finite constant K, if |t| ≥ 1, |t(b−c)+sa| ≥ 1,
|tb+ sa| ≥ 1 and |s| ≥ 1, then

|cf(s, t)| ≤ K

|t|+|t(b− c) + sa|+
+

K

|t|+|tb+ sa|+
+

K

|t|+|s|+
.

If t 6= 0, since the integrals |
∫ a

0
At(x)e

−2πisx dx|, |
∫ a

0
Bt(x)e

−2πisx dx|, |
∫ a

0
Ct(x)e

−2πisx dx|
are bounded by some constant depending only on f , the above inequality holds even when
|t(b− c) + sa| ≤ 1 or |tb+ sa| ≤ 1 or |s| ≤ 1.

Likewise, if t = 0 and s 6= 0, then, for a constant K, |cf(s, 0)| ≤
K

|s|+
. �

2.3. The triangle ∆0 = {(x, y) ∈ [0, 1]2 : x < y}.
Since {x} = x+ 1 for x ∈]− 1, 0[, the characteristic function of ∆0 = ∆(1, 1, 1) reads

1∆0(x, y) = {x− y}+ {y} − {x}, (x, y) ∈ [0, 1]2.(13)

For this special triangle a bound for the ergodic sums generated by ϕ := 1∆0 − 1
2

can be
obtained as in the proof of Theorem 2.5 or by a simple method based on (13):

Proposition 2.11. 1) If the partial quotients of α1, α2 and α1 − α2 satisfy (3) for some
s > 0 (a condition which holds for a.e. α = (α1, α2)), there is a constant Cs such that

‖
n−1
∑

k=0

ϕ(.+ kα1, .+ kα2)‖∞ ≤ Cs(logn)
1+s, ∀n ≥ 2.(14)

2) If α1, α2 are algebraic, then for every ε > 0, there is a constant C(ε) such that

‖
n−1
∑

k=0

ϕ(.+ kα1, .+ kα2)‖∞ ≤ C(ε)nε, ∀n ≥ 2.(15)

Proof. 1) Putting ψ(x) = {x} − 1
2
, the ergodic sums of 1∆0 − 1

2
are

n−1
∑

k=0

ψ(x− y + k(α1 − α2)) +

n−1
∑

k=0

ψ(y + kα2)−
n−1
∑

k=0

ψ(x+ kα1).

If α1, α2 and α1−α2 are in the set Ds of irrational numbers satisfying (3) for some s ≥ 0,
then by Proposition 2.2 there is a constant C > 0 such that, ∀n ≥ 2,

‖
n−1
∑

k=0

ψ(.+ k(α1 − α2))‖∞ ≤ C(logn)1+s, ‖
n−1
∑

k=0

ψ(.+ kαi)‖∞ ≤ C(logn)1+s, i = 1, 2.

By (13) of 1∆0, we obtain the same bound for ϕ: there is C1 such that (14) is satisfied.

The set Ds has full measure. The set D2,s of pairs (α1, α2) such that α1, α2 and α1 − α2

are in Ds is a set of full measure in R2. This is because D2,s = (Ds × Ds) ∩ {(α1, α2) :
α1 ∈ Ds + α2} and by Fubini the second set in the intersection has full measure.
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2) If α1, α2 are algebraic, since α1−α2 is also algebraic, by Roth’s theorem, α1, α2, α1−α2

are of type 1. By Proposition 2.2, for every ε > 0 there is a constant C(ε) > 0 such that
(15) is satisfied. �

The triangle ∆0 will be considered again in Section 4.

3. Examples of ergodic cocycles over rotations on T2

There are relatively few known examples of ergodic cocycles over a 2-dimensional rotation.
Let us mention some of them:
- In [15] it is shown that for ϕ : (x, y) ∈ T2 → {x} sin 2πy ∈ R, for uncountably many α1,
there are uncountably many α2 such that the cocycle (ϕn) over the rotation by (α1, α2)
is ergodic.
- Let Tα, α = (α1, α2), be an ergodic rotation on T2 with α1, α2 ∈ Bad. Let ϕ be a
function on T2 of the form ϕ(x, y) = (ϕ1(x), ϕ2(y)) with ϕi : T → Z, i = 1, 2, centered
step functions with rational discontinuities. In [8] it is shown that the Z2-cocycle (ϕn)
over Tα is ergodic if the jumps of (ϕ1, 0) and (0, ϕ2) generate Z2.
- In [2] the ergodicity of some cocycles over rotations on T2 is shown for a class of examples
quite different from those we consider here. The results are for rotations by α = (α1, α2)
of Liouville type rather than badly approximable and for cocycles generated by indicators
of some rectangles.

In this section, under Diophantine conditions, we prove ergodicity for two families of
1-dimensional and 2-dimensional cocycles generated over some rotations Tα on T2 by
functions with (locally) non zero derivatives.

Once for all, we suppose α = (α1, α2) totally irrational (i.e., 1, α1, α2 linearly independent
over Q), a necessary and sufficient condition for the ergodicity of the rotation Tα on T2.

3.1. Class F1.

First we define on T2 a class F1 of R-valued functions with discontinuities, but with local
regularity. Then, after preliminary results, we prove a result of ergodicity (Theorem 3.5).

Definition 3.1. F1 is the class of centered functions ϕ on T2 such that, for two finite
sets depending on ϕ: Ji = {βi0 = 0 ≤ βi1 < ... < βiri−1 ≤ βiri = 1}, with ri ≥ 1, i = 1, 2,

the partial derivative ∂ϕ
∂x1

exists on the open rectangles Pj,j′ =]β1
j , β

1
j+1[× ]β2

j′, β
2
j′+1[, j =

0, ..., r1−1, j′ = 0, ..., r2−1. Moreover, we suppose that ϕ and ∂ϕ
∂x1

are continuous on each
Pj,j′ and can be continuously extended to its closure.

Pϕ will denote the partition of the unit square 2 into the rectangles Pj,j′.

Observe that, if ϕ ∈ F1, the limits 3

ϕ(β−, x2) := lim
x1→β, x1<β

ϕ(x1, x2), ϕ(β+, x2) := lim
x1→β, x1>β

ϕ(x1, x2)

2In what follows, we will call “partition of the unit square” any finite collection of disjoint subsets of
the unit square which covers it up to a Lebesgue negligible set.

3It is understood that ϕ(0−, x2) := limx1→1, x1<1 ϕ(x1, x2) and ϕ(1+, x2) := limx1→0, x1>0 ϕ(x1, x2).
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exist and are finite for every β ∈ J1 and every x2 6∈ J2.

For every n ≥ 1, if we write each set of numbers ({βij − ℓαi}, j ∈ Ji, 0 ≤ ℓ < n), i = 1, 2,

as an ordered set of distinct points (γin,ℓ)ℓ=1,...,pi,n, with pi,n = rin, then the atoms of

Pn
ϕ := Pϕ ∧ T−1

α Pϕ ∧ ... ∧ T−(n−1)
α Pϕ

are the rectangles

Rn
ℓ,ℓ′ =]γ1n,ℓ, γ

1
n,ℓ+1[× ]γ2n,ℓ′, γ

2
n,ℓ′+1[.(16)

On each atom of Pn
ϕ , ϕn is continuous, the partial derivative ∂ϕn

∂x1
exists and can be

extended to its closure.

Examples 3.2. a) Let {0 ≤ βi1 < ... < βir1−1 ≤ 1}, i = 1, 2, be two finite sequences in
[0, 1], vj continuous functions, γj,j′ coefficients. Then the sum ϕ(x1, x2) =

∑

j,j′ γj,j′[{x1−
β1
j } vj′({x2 − β2

j′})− 1
2

∫ 1

0
vjdx2] is in F .

b) Let us taking a finite partition of the unit square into open rectangles Pj,j′ and a
family ϕj,j′ such that each ϕj,j′ is defined and C1 on an open set containing the closure
of Pj,j′. The function ϕ defined by ϕ |Pj,j′ = ϕj,j′ |Pj,j′ (and arbitrarily on the negligible
complement [0, 1]× [0, 1] \ ∪j,j′Pj,j′) is then in F1.

Hypothesis H1 on α and the discontinuities β1
j :

β1
j − β1

j′ ∈ BadZ(α1), ∀j, j′ ∈ {1, . . . , r1}.
Remark 2. a) In particular, 0 ∈ BadZ(α1), meaning that α1 ∈ Bad. Recall that once for
all α = (α1, α2) is assumed to be totally irrational.

b) There is no condition on β2
j . It will be shown in Subsection 5.1 that

• given α1 ∈ Bad, the set of (β1
j , j = 1, ..., r1) satisfying condition H1 has Hausdorff

dimension r1 in Rr1;
• given β1

j , j = 1, . . . , r1, the set of α such that H1 holds has Hausdorff dimension 2.

Lemma 3.3. Under hypothesis H1, there exist two constants 0 < c ≤ c′ such that

(17)
c

n
≤ γ1n,ℓ+1 − γ1n,ℓ ≤

c′

n
, ∀n ≥ 1, ℓ = 1, . . . , p1,n.

Proof. By H1, there is a constant c > 0 such that for all j, j′ ∈ {1, . . . , r1} and all k ∈
{1, . . . , n}, ‖kα1 − (β1

j − β1
j′)‖ ≥ c

n
. Therefore, for all 1 ≤ j, j′ ≤ r1 and all 0 ≤ k, k′ ≤ n,

if βj + kα1 6= βj′ + k′α1 mod Z, then ‖βj + kα1 − (βj′ + k′α1)‖ ≥ min( c
n
, δ) ≥ min(c,δ)

n
,

with δ = minj 6=j′ ‖βj − βj′‖.
For the right hand side of (17), it is enough to show that, for all positive integers q, the
largest gap in T1 \ {0, . . . , qα1} is at most c′

q
for some constant c′. First with j = j′, we

obtain that ‖nα1‖ ≥ c
n
, for all n ≥ 1. Next, let (pn

qn
)n≥0 be the sequence of convergents

of α1. Since for all n ∈ N, qn+1|qnα1 − pn| = qn+1‖qnα1‖ ≤ 1 and qn‖qnα1‖ ≥ c, we have
qn+1

qn
≤ 1

c
and |k pn

qn
− kα1| ≤ 1

qn+1
for all 0 ≤ k ≤ qn. This implies that the largest gap in
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T1 \ {0, . . . , qnα1} is at most 1
qn

+ 2
qn+1

≤ 3
qn

. Hence, for all qn ≤ q ≤ qn+1, the largest gap

in T1 \ {0, . . . , qα1} is at most 3
qn

≤ 3
cq

. �

Variation of the ergodic sums of ϕ ∈ F1.

We associate with ϕ ∈ F1 the following quantity λ1(ϕ) :=

∫

T2

∂ϕ

∂x1
dx, which reads

∑

j,j′

∫

Pj,j′

∂ϕ

∂x1
dx =

∑

j=0,...,r1−1,j′=0,...,r2−1

∫ β2
j′+1

β2
j′

[ϕ((β1
j+1)−, x2)− ϕ((β1

j )+, x2)] dx2

=
∑

j=0,...,r1−1

∫ 1

0

[ϕ((β1
j+1)−, x2)− ϕ((β1

j )+, x2)] dx2.

For instance, if ϕ1(x1, x2) = {x1} {x2} − 1
4
, we have r1 = r2 = 1, ϕ1(1−, x2) = {x2} − 1

4
,

ϕ1(0+, x2) = −1
4
, and λ1(ϕ

1) =
∫ 1

0
[ϕ1(1−, x2)− ϕ1(0+, x2)] dx2 =

1
2
.

Lemma 3.4. Let ϕ be in F1. Suppose that λ1(ϕ) 6= 0. Then, there exists N ∈ N such
that for all integers n ≥ N ,

• if x is not in the boundary of a rectangle of the partition Pn, then ∂ϕn(x)
∂x1

and λ1(ϕ) have
the same sign,
• if (x1, x2) and (x1 + u1, x2) belong to interior of the same element of Pn, then

1
2
n|λ1(ϕ)u1| ≤ |ϕn(x1 + u1, x2)− ϕn(x1, x2)| ≤ 2n|λ1(ϕ)u1|.

Proof. We can assume λ1(ϕ) > 0 w.l.g. Since the rotation Tα is uniquely ergodic and

since ∂ϕ
∂x1

is Riemann integrable, the sequence of ergodic sums (
1

n

n−1
∑

k=0

∂ϕ

∂x1
◦ T kα , n ≥ 1)

converges uniformly to

∫

T2

∂ϕ

∂x1
dx = λ1(ϕ) > 0. It follows that there exists an integer N

such that for every n ≥ N and every x ∈ T2 not in the boundary of a rectangle in Pn,

1

2
λ1(ϕ) ≤

1

n

n−1
∑

k=0

∂ϕ

∂x1
(T kα (x)) ≤ 2λ1(ϕ).(18)

It follows that
∂ϕn(x)

∂x1
and λ1(ϕ) have the same sign.

To prove the second item, we can assume u1 > 0. By the hypothesis on (x1, x2) and
(x1 + u1, x2), for each 0 ≤ k < n, their images T kα(x1, x2), T

k
α(x1 + u1, x2), belong to

the interior of the same rectangle Pj,j′ for some j, j′. By definition of the class F , the

derivative ∂ϕ
∂x1

exists on each segment [T kα (x1, x2), T
k
α(x1 + u1, x2)], hence

ϕn(x1 + u1, x2) = ϕn(x1, x2) +

∫ x1+u1

x1

n−1
∑

k=0

∂ϕ

∂x1
(T kα(x1 + t, x2)) dt.
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Now the second item of the lemma follows, since by (18),

1

2
u1λ1(ϕ) ≤

∫ x1+u1

x1

1

n

n−1
∑

k=0

∂ϕ

∂x1
(T kα (x1 + t, x2)) dt ≤ 2u1λ1(ϕ). �

3.2. Ergodicity of (ϕn) for ϕ ∈ F1.

Theorem 3.5. Let ϕ be a function in F1 such that λ1(ϕ) 6= 0. Let α = (α1, α2) be totally
irrational. Suppose that the hypothesis H1 for the discontinuities of ϕ is satisfied. Then
the R-valued cocycle (ϕn,α) over the rotation Tα on T2 is ergodic.

Proof. We can suppose λ1 = λ1(ϕ) > 0 w.l.g. Let θ1, θ2 be positive real numbers such
that, with c defined in Lemma 3.3,

0 < θ1 < θ2 <
c

100
λ1,(19)

Let B ⊂ T2 be any measurable set of positive measure. We are going to show that there
are infinitely many integers n ∈ N such that

µ(B ∩ T−n
α B ∩ {|ϕn| ∈ [θ1, θ2]}) > 0.(20)

As θ1, θ2 are arbitrary in ]0, c
100

λ1[, this will imply that θ or −θ is an essential value of
the cocycle (ϕn) for every θ ∈]0, c

100
λ1[. Since E(ϕ) is a closed subgroup of R, this shows

ergodicity. It remains to prove (20).

Proof of (20).

The proof is divided into two steps. The first step aims to Inequality (21) below on
density of subsets with respect to partitions Un associated with (ϕn). The proof of (21)
relies on a version of the Lebesgue density theorem adapted to the partitions Un. Thanks
to recurrence, the second step combines Lemma 3.4 and (21).

1a) Definition of the partitions Un
For ε > 0, let ω(ε) be a modulus of (local) continuity for the function ϕ, i.e., if two
points (x1, x2) and (y1, y2) of the torus T2 are in the same rectangle of the partition Pϕ
associated with ϕ and if maxi |yi − xi| ≤ ω(ε), then |ϕ(x1, x2)− ϕ(y1, y2)| ≤ ε.

Let n ≥ 1. The partition Un will be a refinement of the partition Pn
ϕ . First, each of the

sets J i = {βij − kαi : 1 ≤ j ≤ ri, 0 ≤ k < n}, i = 1, 2, cuts T1 into a set Iin of half-open

intervals open on the right. Next, let δn = min{|I| : I ∈ I2
n} and let en = min(δn, ω(

1
2n2 )).

These quantities are non-increasing with n.

All the intervals in I2
n have a length ≥ en. We divide each I ∈ I2

n into sub-intervals of
length 1

2
en, except the last sub-interval with a length between 1

2
en and en.

We obtain a new set of non-overlapping intervals J 2
n such that

• every interval in J 2
n is included in an interval of I2

n,
• every interval in I2

n is a union of intervals in J 2
n ,

• the length of every interval of J 2
n is in [ en

2
, en[.
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In the sequel of the proof, we write simply T for the rotation Tα on T2. We define

Un = {R := I × J : I ∈ I1
n, J ∈ J 2

n}.
We will also use the partition Ũn = {R̃ := T nR : R ∈ Un}. We denote Rn(x) (resp.

R̃n(x)) the rectangle of Un (resp. Ũn) that contains x ∈ T2 (well defined for x outside a
set of 0 measure).

1b) Application of Lebesgue density theorem

We want to use a Lebesgue density theorem (see appendix, Theorem 5.6) twice, once with
the partitions Un, n ≥ 1, and once with the partitions Ũn, n ≥ 1. We need to check that
Conditions (37) and (38) of Theorem 5.6) hold for both sequences of partitions. Condition
(38) about the diameters is clearly satisfied.

Next, let Ln := max{|I| : I ∈ I1
n}. The sequence (Ln) is non-increasing and, by Lemma

3.3, Ln ≤ Cℓn, where ℓn = min{|I| : I ∈ I1
n} and C = c′

c
. Let I × J ∈ Un or Ũn. On the

one hand, µ(I × J) ≥ ℓnen/2. On the other hand, if a product of intervals, I ′ × J ′, with
lengths respectively ≤ Lk and ≤ ek for some k ≥ n, intersects I × J , then

I ′ × J ′ ⊂ I ′′ × J ′′ = (I + [−Ln, Ln])× (J + [−en, en]).
Since µ(I ′′ × J ′′) ≤ 3Ln × 3en ≤ 9Cµ(I × J), (37) holds.

Thanks to the Lebesgue density theorem for the set B with respect to the two families of
rectangles Un and Ũn, we have:

lim
n→∞

µ(Rn(x) ∩B)

µ(Rn(x))
= lim

n→∞

µ(R̃n(x) ∩ B)

µ(R̃n(x))
= 1, for a.e. x ∈ B.

Therefore, for all ε > 0, there exist an integer nε and a subset Bε of B of positive measure
such that, for all u ∈ Bε and all n ≥ nε,

µ(Rn(u) ∩ B)

µ(Rn(u))
≥ 1− ε,

µ(R̃n(u) ∩B)

µ(R̃n(u))
≥ 1− ε.

Let n ≥ nε and let u be in Bε ∩ T−nBε.

Since u ∈ Bε, the first previous inequality implies

µ(B ∩Rn(u)) ≥ (1− ε)µ(Rn(u)).

Since T nu ∈ Bε, the second inequality implies

µ(B ∩ R̃n(T
nu)) ≥ (1− ε)µ(R̃n(T

nu)).

Now, T−nR̃n(T
nu) = Rn(u) and T−n(B ∩ R̃n(T

nu)) = T−nB ∩Rn(u). Hence

µ(T−nB ∩Rn(u)) ≥ (1− ε)µ(Rn(u)).

In brief, for every ε > 0, there are nε ≥ 1 and a set of positive measure Bε ⊂ B such that

µ(B ∩ T−nB ∩ Rn(u)) ≥ (1− 2ε)µ(Rn(u)),(21)

for all n ≥ nε and all u ∈ Bε ∩ T−nBε. It follows, for n ≥ nε,

µ((B ∩ T−nB)c ∩ Rn(u)) ≤ 2εµ(Rn(u)), ∀u ∈ Bε ∩ T−nBε.(22)
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With c′ defined in Lemma 3.3, we take ε such that

0 < ε <
θ2 − θ1
32c′λ1

.(23)

2) Application of recurrence

Let N be the integer defined in Lemma 3.4. As the function ϕ is centered, the cocycle (ϕn)
is recurrent. Therefore, by Remark 1.a), there exists n ≥ max(nε, N) and a = (a1, a2) ∈
Bε ∩ T−nBε such that |ϕn(a)| < 1

2
θ1.

Let Rn(a) = [s1, t1]× [s2, t2] ∈ Un be the rectangle of Un that contains a. By Lemma 3.3,
c
n
≤ t1 − s1 ≤ c′

n
.

The real number a1 is either in the first half of the interval [s1, t1], or in the second half
of this interval. Suppose that a1 in the first half of this interval (if it is in the second half,
just move in the negative direction instead of the positive direction).

Let x2 ∈ [s2, t2] and consider the function fx2 : t ∈ [0, t1 − a1[→ ϕn(a1 + t, x2). We want
to bound from below the length of the set of t such that fx2(t) ∈ [θ1, θ2]. By Lemma 3.4,
since n ≥ N , for all t ∈ [0, t1 − a1] the derivative f ′

x2(t) is positive and

1
2
nλ1t ≤ fx2(t)− fx2(0) ≤ 2nλ1t.

By the definitions of J 2
n , of ω( 1

2n2 ) and en, we have |fx2(0)| ≤ |ϕn(a1, a2)|+n× 1
n2 ≤ 1

2
θ1+

1
n
,

so that |fx2(0)| ≤ θ1 provided that n ≥ 2
θ1

. Using (19), we also have

fx2(
1
2
(t1 − s1)) ≥ fx2(0) +

1
2
nλ1 × 1

2
(t1 − s1) ≥ −θ1 + 1

4
nλ1

c
n
≥ −θ1 + 25θ2 ≥ θ2.

It follows that [θ1, θ2] ⊂ fx2([0,
1
2
(t1 − s1)] which in turn implies that

|{t ∈ [0, 1
2
(t1−s1)] : ϕn(a1+t, x2) ∈ [θ1, θ2]}| ≥

θ2 − θ1
max{|f ′

x2(t) : t ∈ [0, (t1 − a1)]}
≥ θ2 − θ1

2nλ1
.

By Fubini’s theorem, the set A := {(x1, x2) ∈ Rn(a) : ϕn(x1, x2) ∈ [θ1, θ2]} has a measure

µ(A) ≥ θ2 − θ1
2nλ1

× en
2

. This implies by (23):

µ(A)

µ(Rn(a))
≥

θ2−θ1
2nλ1

× en
2

c′

n
× en

=
θ2 − θ1
4c′λ1

≥ 4ε.(24)

By definition of A, ϕn(A) ⊂ [θ1, θ2]. As A ⊂ Rn(a), it follows, using (22) and (24):

µ(B ∩ T−nB ∩ ϕ−1
n [θ1, θ2]) ≥ µ(B ∩ T−nB ∩ A)

= µ(A)− µ((B ∩ T−nB)c ∩ A) ≥ µ(A)− µ((B ∩ T−nB)c ∩ Rn(a))

≥ µ(A)− 2εµ(Rn(a)) ≥ 4εµ(Rn(a))− 2εµ(Rn(a)) = 2εµ(Rn(a)) > 0.

This shows (20). �
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3.3. Class F2.

Now we consider a class F2 of functions from T2 to R2 whose components belong to the
class F1, but with a stronger regularity condition in both variables x1, x2.

Definition 3.6. F2 is the class of centered functions ϕ = (ϕ1, ϕ2) on T2 such that, for
two finite sets J1, J2 depending on ϕ: Ji = {βi0 = 0 ≤ βi1 < ... < βiri−1 ≤ βiri = 1}, i = 1, 2,
ϕ is C1 on the elements of the partition P = Pϕ of [0, 1]× [0, 1] into the open rectangles
Pj,j′ =]β1

j , β
1
j+1[× ]β2

j′, β
2
j′+1[, j = 0, ..., r1 − 1, j′ = 0, ..., r2 − 1.

Moreover, we assume that the partial derivatives of ϕi, i = 1, 2, can be extended to
continuous functions on the closure of the elements of Pϕ.

The following quantities are associated to a function ϕ = (ϕ1, ϕ2) ∈ F2:

λ1(ϕ
i) :=

∫

T2

∂ϕi

∂x1
dx, λ2(ϕ

i) :=

∫

T2

∂ϕi

∂x2
dx, i = 1, 2.

As in Lemma 3.4, by unique ergodicity of the rotation and since ∂ϕi

∂x1
and ∂ϕi

∂x2
are Riemann

integrable, we have uniformly for x = (x1, x2) ∈ T2:

λj(ϕ
i) = lim

n

1

n

n−1
∑

k=0

∂ϕi

∂xj
(T k(x1, x2)), i, j = 1, 2.(25)

Hypothesis H2 on α and the discontinuities βij :

βij − βij′ ∈ BadZ(αi), ∀j, j′ ∈ {1, . . . , ri}, for i = 1, 2.

Remark 3. In particular, α1, α2 are in Bad (cf. Remark 2 a)). It will be shown in
Subsection 5.1 that

• given α, the set of (βij, j = 1, ..., ri, i = 1, 2) satisfying (H2) has Hausdorff dimen-
sion r1 + r2 in Rr1+r2 ;

• given (βij, j = 1, . . . , ri, i = 1, 2), the set of α such that (H2) hold has Hausdorff
dimension 2.

Example 3.7. Let γ1 < γ2 ∈ [1, 2[. Consider the function ϕγ1,γ2(x1, x2) = {γ1x1}{γ2x2}
restricted to [0, 1[×[0, 1[. By an elementary computation, we obtain

∫ 1

0

∫ 1

0

ϕγ1,γ2 dx1dx2 = µ(ϕγ1,γ2) = (
1

2
γ1 − 1 + γ−1

1 )(
1

2
γ2 − 1 + γ−1

2 ),

λ1(ϕγ1,γ2) = γ1(
1

2
γ2 − 1 + γ−1

2 ), λ2(ϕγ1,γ2) = γ2(
1

2
γ1 − 1 + γ−1

1 ).

Putting ϕ1 = ϕγ1,γ2 − µ(ϕγ1,γ2), ϕ
2 = ϕ1,1 − 1

4
, the function Φ := (ϕ1, ϕ2) is in F2.

The sets J1, J2 of the definition of F2 in 3.6 are:

J1 = {β1
0 = 0 < β1

1 = γ−1
1 < β1

2 = 1}, J1 = {β2
0 = 0 < β2

1 = γ−1
2 < β2

2 = 1}.
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If α1 and α2 are in Bad, the condition H2 is satisfied if γi is rational or more generally if
γ−1
i ∈ BadZ(αi), i = 1, 2. Moreover, if γ1 6= γ2 and γ1+γ2

γ1γ2
6= 1, it holds

λ1(ϕγ1,γ2)λ2(ϕ1,1)− λ2(ϕγ1,γ2)λ1(ϕ1,1) =
1

2
(γ2 − γ1)(1−

γ1 + γ2
γ1γ2

) 6= 0.

We use the notation of the previous subsection (cf. (16). For every n ≥ 1, the ergodic
sums ϕn are C1 on the atoms Rn

ℓ,ℓ′ =]γ1n,ℓ, γ
1
n,ℓ+1[× ]γ2n,ℓ′, γ

2
n,ℓ′+1[ of the partition Pn

ϕ :=

P ∧ T−1
α P ∧ ... ∧ T n−1

α P. We consider also the partition P̃n = T nαPn.
We will use the following variant of Lemma 3.4:

Lemma 3.8. Let ϕ = (ϕ1, ϕ2) be in F2. If x = (x1, x2) and x + u = (x1 + u1, x2 + u2)
belong to the same element of the partition Pn

ϕ , we have,

ϕin(x+ u) = ϕin(x) + (λ1(ϕ
i)u1 + λ2(ϕ

i)u2)n+ o(n)|u|+ ε(u)|u|n,(26)

with ε(t), defined for |t| small, depending only on ϕ and such that limt→0 ε(t) = 0.

Proof. By the hypothesis on x and x+u, their images T kαx, and T kα(x+u), for 0 ≤ k < n,
belong to the same rectangle Pj,j′ for some j, j′. For i = 1, 2, as the partial derivatives
of ϕi can be extended to continuous functions on the closure of Pj,j′, by the mean value
theorem, we have, with ε as in the statement:

|ϕi(T kα(x+ u))− [ϕi(T kαx) + u1
∂ϕi

∂x1
(T kαx) + u2

∂ϕi

∂x2
(T kαx)]| ≤ ε(u)|u|.

It follows:

|ϕin(x+ u)− [ϕin(x) + u1

n−1
∑

k=0

∂ϕi

∂x1
(T kαx) + u2

n−1
∑

k=0

∂ϕi

∂x2
(T kαx)]| ≤ ε(u)|u|n.

Using (25), we get (26). �

3.4. Ergodicity of (ϕn) for ϕ = (ϕ1, ϕ2) ∈ F2.

Theorem 3.9. Let ϕ = (ϕ1, ϕ2) ∈ F2 be such that λ1(ϕ
1)λ2(ϕ

2)− λ2(ϕ
1)λ1(ϕ

2) 6= 0.

A) Let α = (α1, α2) be totally irrational. Suppose that the hypothesis H2 for the discon-
tinuities of ϕ1, ϕ2 is satisfied. If the R2-valued cocycle (Φn,α) generated by Φ = (ϕ1, ϕ2)
over the rotation Tα on T2 is recurrent, then it is ergodic.

B) Suppose that ϕ1, ϕ2 have bounded partial derivatives of first and second order on the
interior of their continuity domain. Given the discontinuities βj, the set of α ∈ R2 such
that the cocycle (Φn,α) is ergodic is of Hausdorff dimension 2.

Proof. A) We keep the notations of Section 3.1. By Lemma 3.3, Hypothesis H ′
2 implies

the existence of two positive constants c, c′ such that

(27)
c

n
≤ γin,ℓ+1 − γin,ℓ ≤

c′

n
, ℓ = 1, . . . , |J i|n, i = 1, 2.
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For x ∈ [0, 1] × [0, 1] \ ⋃

k ∂Pk
ϕ, let Rn(x) be the rectangle element of the partition Pn

ϕ

containing x. Likewise let R̃n(x) be the element of the partition P̃n
ϕ containing x.

Let x = (x1, x2) and u = (u1, u2) be such that x and x+ u belong to the same element of
the partition Pn

ϕ . It follows from Lemma 3.8 for n big and |u| small:

ϕin(x+ u) = ϕin(x) + (λ1(ϕ
i)u1 + λ2(ϕ

i)u2)n+ o(n)|u|+ o(|u|)n, i = 1, 2.

We set M =

(

λ1(ϕ
1) λ2(ϕ

1)
λ1(ϕ

2) λ2(ϕ
2)

)

and ut =

(

u1
u2

)

. Since |u| = O( 1
n
) by (27), there is for

every ε > 0 an integer N1
ε depending only on ϕ and ε such that

|ϕn(x+ u)− [ϕn(x) + nMut]| ≤ ε, for n > nε.(28)

Therefore, for n > N1
ε ,

|ϕn(x+ u)− nMut| ≤ ε+ |ϕn(x)|.(29)

Recall that c and c′ are defined in (27). The matrix M is invertible by the hypothesis of
the theorem. For c0 =

1
2
c, the image byM of a square Q = [0, c0]×[0, c0] is a parallelogram

L0 with a vertex at the origin.

Suppose that E(ϕ) 6= R2. According to the form of the closed subgroups of R2, there is
an open ball U of radius r > 0 in R2, such that its closure, the compact set K = U , is
contained in L0 and is disjoint from E(ϕ). For a constant ν > 0, we have λ(U) ≥ νλ(L0).
Calling U0 ⊂ U the ball of radius r−2ε with the same center as U , we take ε small enough
so that λ(U0) ≥ 1

2
νλ(L0) and 1

2
ν( c0

c′
)2 > 2ε.

The theorem will be proved by contradiction if we show:

Claim: K contains an essential value of ϕ.

Proof of the claim.

Suppose that K ∩ E(ϕ) = ∅. To get a contradiction, we use Lemma 1.1 which implies
that there exists B ∈ B such that µ(B) > 0 and

µ(B ∩ T−nB ∩ (ϕn ∈ K)) = 0, ∀n ∈ Z.(30)

As in Theorem 3.5, using the Lebesgue density theorem (Theorem 5.6) for B, we obtain:

For every ε > 0, there are N2
ε ≥ 1 and a set of positive measure Bε ⊂ B such that

µ(B ∩ T−nB ∩Rn(u)) ≥ (1− 2ε)µ(Rn(u)), ∀u ∈ Bε ∩ T−nBε, for n ≥ N2
ε .(31)

The recurrence of (ϕn) implies (cf. Remark 1.a) that there exist infinitely many integers
n ≥ N2

ε such that

µ(Bε ∩ T−n
α Bε ∩ (|ϕn| < ε)) > 0.(32)

Therefore, we can choose n ≥ sup(N1
ε , N

2
ε ) and x0 ∈ T2 such that |ϕn(x0)| < ε and

x0 ∈ Bε ∩ T−nBε, which implies by (31):

µ(B ∩ T−nB ∩ Rn(x
0)) ≥ (1− 2ε)µ(Rn(x

0)).(33)
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We can assume that x0, which belongs to Rn(x
0), is one of the corners of a square Qn ⊂

Rn(x
0) of size c0

n
× c0

n
. Up to a change of the signs of u1, u2, we can also assume that x0

is the lower left corner.

According to the definition of L0 at the beginning of the proof, nM(Qn − x0) = L0

and the measure of the open set W = (nM)−1U0 + x0 satisfies µ(W ) = µ(Qn)
λ(U0)
λ(L0)

≥
1
2
ν( c0

c′
)2µ(Rn(x

0)) by (27). Recall that ε is such that 1
2
ν( c0

c′
)2 − 2ε > 0.

Clearly, W ⊂ Qn ⊂ Rn(x
0). Moreover, since |ϕn(x0)| < ε, by (29) we have

W = {x : nM(x−x0) ∈ U0} ⊂ {x : d(ϕn(x), U0) ≤ 2ε} ⊂ {x : ϕn(x) ∈ U} ⊂ {x : ϕn(x) ∈ K}.
Observe that for any three sets E1, E2, E3,

µ(E1 ∩ E2 ∩ E3) ≥ µ(E1 ∩ E2)− µ(E2) + µ(E2 ∩ E3).

Using (33), it follows, with E1 = B ∩ T−nB, E2 = Rn(x
0), E3 =W :

µ(B ∩ T−nB ∩ Rn(x
0) ∩ {x : ϕn(x) ∈ K}) ≥ µ(B ∩ T−nB ∩ Rn(x

0) ∩W )

≥ (1− 2ε)µ(Rn(x
0))− µ(Rn(x

0)) + µ(Rn(x
0) ∩W ) ≥ (

1

2
ν(
c0
c′
)2 − 2ε)µ(Rn(x

0)) > 0.

This gives a contradiction with (30) and concludes the proof of A).

B) If (ϕ1, ϕ2) is in F and also satisfy the hypothesis of B), then ϕ1 and ϕ2 are in G (cf.
Definition 2.4).

By Theorem 2.5, the set of α ∈ R2 such that the cocycle (ϕn) is not recurrent has a
Hausdorff dimension ≤ 2 − 1/3. Let B be its complement (the set of α such that (Φn)
is recurrent). The set A of α such that the condition H2 is satisfied has a Hausdorff
dimension 2 by Corollary 5.3. Therefore the Hausdorff dimension4 of A ∩B is 2.

By A) it follows that the set of α ∈ R2 such that the cocycle (ϕn) is ergodic, is of Hausdorff
dimension 2. �

An algebraic example: If α1, α2 are quadratic, then recurrence follows from Theorem 2.5
2). As α1, α2 are in Bad, we obtain ergodicity for the cocycle defined in Example 3.7.
This gives an explicit example of an ergodic cocycle.

4. Ergodicity of compact extensions for the triangle ∆0

In Theorems 3.5 and 3.9, the discontinuities of the function Φ : T2 → Rd generating an
ergodic cocycle lie along lines parallel to the coordinate axes. It is not easy to adapt our
method to construct cocycles generated by a function with more general discontinuities.

When the set of discontinuities is the boundary of the triangle ∆0 = {(x1, x2) ∈ [0, 1]2 :
x1 > x2}, the diameters of the connected components of the continuity set of the ergodic

sum Φn, vary at least from 1/nγ to 1/n for arbitrarily large values of n where γ = 1+
√
5

2
is the golden ratio.

4For the sets A and B, we have 2 = dimH A ≤ max(dimH(A ∩ B), dimH(A ∩ Bc)) ≤ max(dimH(A ∩
B), dimH(Bc)) ≤ max(dimH(A ∩B), 2− 1/3); hence dimH(A ∩B) = 2.
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Specifically, the distance from the discontinuity line x1 = x2 mod Z to (−n1α1,−n2α2),
intersection of the vertical discontinuity line x1 = −n1α1 mod Z and of the horizontal
discontinuity line x2 = −n2α2 mod Z, is 1√

2
‖n1α1 − n2α2‖. Moreover, according to a

result by W.M. Schmidt [21], if (α1, α2) is totally irrational, there exist infinitely many
integers n such that there are integers 0 < n1, n2 < n with ‖n1α1 − n2α2‖ ≤ n−γ .

This large ratio between small and large diameters implies that Lebesgue’s density the-
orem cannot be used directly. Furthermore, the diameter of the image by Φn of a small
component is ≤ n × 1/nγ, which is insufficient to establish the existence of non-zero
essential values.

Nevertheless, some partial results for ∆0 can be shown, notably the ergodicity of compact
extensions.

Ergodicity of compact extensions for 1∆0, ∆0 = {(x, y) ∈ [0, 1]2 : x < y}.
For a general compact extension T̃ϕ : (x, y) → (Tx, y + ϕ(x)), where T is an ergodic
measure preserving transformation on a probability space (X,B, µ) and ϕ a measurable
function on X with values in Td, d ≥ 1, one obtains easily a criterium of ergodicity:

Lemma 4.1. T̃ϕ is ergodic on X × Td if and only if the functional equation

H(Tx) = e2πi〈k,ϕ(x)〉H(x)(34)

has no measurable solution H of modulus 1 for k ∈ Zd \ {0}.

Proof. Let F : X × Td → R be a measurable T̃ϕ-invariant function. By truncation, we
can suppose F bounded. For k ∈ Zd \{0}, its Fourier coefficient with respect to y satisfies

Fk(x) =

∫

Td

F (x, y)e−2πi〈k,y〉dy =

∫

Td

F (T̃ϕ(x, y))e
−2πi〈k,y〉dy = e2πi〈k,ϕ(x)〉Fk(Tx).

Therefore, |Fk| is a.e.-constant and must be a.e. zero by the sufficient condition of the
lemma. �

Now we take a = (a1, ...ad) ∈ Rd, put Φa = 1∆0 a and consider the skew-product on
T2 × Td defined for α = (α1, α2) by

T̃α,Φa
: (x, y) → (x+ αmod 1, y + Φa(x)mod 1).

Our aim in this section is to prove that T̃α,Φa
is ergodic, when α and a are totally irra-

tional and α satisfies a Diophantine condition. We start by a definition and an auxiliary
proposition.

Coding of a map: Given a space X, a map T : X → X and a partition Q of X, for
an integer n ≥ 1 the (Q, n)-coding of x ∈ X associated with T and Q, is the sequence
(wi, i = 0, . . . , n− 1) ∈ Qn such that T i(x) ∈ wi for i = 0, . . . , n− 1.

Proposition 4.2. Let (X,B, µ, T ) be a dynamical system, where X is a compact metric
space with a distance dX , B is borelian and T is an isometry which preserves µ. Let G be
a group endowed with a bi-invariant distance δ and ϕ a measurable function from X to
G taking a finite number of values and non constant a.e. Let δ0 = δ0(ϕ) := min{δ(g, g′) :
g, g′ distinct values of ϕ} > 0.
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Let Q be the partition of X into the sets on which ϕ is constant. Suppose that for each
integer ℓ ≥ 1, there exists a finite partition5 Pℓ of X such that for each P ∈ Pℓ, there
exists mℓ(P ) ∈ Qℓ which is the (Q, ℓ)-coding of all x ∈ P .

Assume also that there is a sequence (ℓk)k≥1 such that

1) lim
k→∞

max
P∈Pℓk

diam(P ) = 0;

2) for some ρ ≥ 1, for all k ≥ 1 and all P ∈ Pℓk , there are at most ρ elements P ′ ∈ Pℓk
such that the closures satisfy P ∩ P ′ 6= ∅;
3) there is a family Cc,ℓk ⊂ Pℓk and positive constants c and λ such that
3a) for all P ∈ Cc,ℓk , µ(P ) ≥ c

Card(Pℓk
)
;

3b) Nk := Card(Cc,ℓk) ≥ λCard(Pℓk);
3c) for all P ∈ Cc,ℓk , there is at least one element P ′ in Cc,ℓk such that P ∩P ′ 6= ∅ and the
codings mℓk(P ) and mℓk(P

′) have exactly one different component.

Then there is no measurable solution f : X → G of the functional equation

ϕ(x) = (f(x))−1 f(Tx), µ-a.e.(35)

Proof. We act by contradiction and suppose that there is a measurable function f : X → G
such that ϕ(x) = (f(x))−1 f(Tx), µ− a.e.

Let ε be such that 0 < 2ε <
cλ

1 + ρ
.

There exists a closed set F in X of measure > 1− ε such that the restriction f|F (hence

also f−1
|F ) is uniformly continuous. Let η > 0 be such that the conditions x, y ∈ F ,

dX(x, y) < η imply δ(f(x), f(y)) and δ((f(x))−1, (f(y))−1) < δ0/2.

By 1), there exists k0 such that, for all k ≥ k0 and all P ∈ Pℓk , diam(P ) < η/2. For

k ≥ k0, if P and P ′ are in Pℓk and such that P ∩P ′ 6= ∅, we have then d(x, y) ≤ η for any
x ∈ P and y ∈ P ′.

Let H := F ∩ T−ℓkF and Bc,ℓk := {P ∈ Cc,ℓk : P ∩H 6= ∅}. Let N1,k := Card(Bc,ℓk).
Let P 6= P ′ ∈ Pℓk be such that P ∩ P ′ 6= ∅ and mℓk(P ) = (u0, . . . , uℓk−1) and mℓk(P

′) =
(u′0, . . . , u

′
ℓk−1) have exactly one different component. We claim that P and P ′ cannot

both intersect H .

For each Q ∈ Q, denote gQ the constant value of ϕ on Q. Since ϕℓk(x) depends only on
the coding of x, ϕℓk is constant on P and on P ′, and these constants are the products
πP = gu0 . . . guℓk−1

and πP ′ = gu′0 . . . gu′ℓk−1
. Since ui = u′i for all i except for one i, say i0,

the bi-invariance of the distance δ implies that δ(πP , πP ′) = δ(gui0 , gui0 ) ≥ δ0.

Now by assumption we have ϕ = f−1f ◦ T , hence ϕℓk = f−1f ◦ T ℓk . If x ∈ P and y ∈ P ′,
we have δ(x, y) ≤ η because P ∩ P ′ 6= ∅. Since the distance δ is bi-invariant and since T

5up to a set of 0 measure
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is an isometry, if there exist x ∈ P ∩H and y ∈ P ′ ∩H , we have

δ0 ≤ δ(πP , πP ′) = δ(ϕℓk(x), ϕℓk(y)) = δ(f−1(x)f(T ℓk(x), f−1(y)f(T ℓk(y))

≤ δ((f(x))−1f(T ℓk(x), (f(y))−1f(T ℓk(x)) + δ((f(y))−1f(T ℓk(x), (f(y))−1f(T ℓk(y))

< δ0/2 + δ0/2,

hence either P ∩H = ∅ or P ′ ∩H = ∅, which shows the claim.

Since Bc,ℓk ⊂ Cc,ℓk , by 3c), for each P ∈ Bc,ℓk, there exists P ′ in Cc,ℓk such that P ∩P ′ 6= ∅
and mℓk(P ) and mℓk(P

′) have exactly one different component. By the previous claim,
P ′ ∩H = ∅.
On the one hand, according to 2), the number of such distinct P ′ ∈ Cc,ℓk when P ranges
in Bc,ℓk is ≥ ρ−1N1,k. Hence, by 3a) µ(X \H) ≥ ρ−1N1,k c/Card(Pℓk).
On the other hand, we have P ⊂ X \ H for all P ∈ Cc,ℓk \ Bc,ℓk , hence µ(X \ H) ≥
(Nk −N1,k)

c

Card(Pℓk)
. Using 3b) and µ(F ) ≥ 1− ε, we obtain

2ε ≥ µ(X \H) ≥ max((Nk −N1,k)
c

Card(Pℓk)
, ρ−1N1,k

c

Card(Pℓk)
)

=
c

Card(Pℓk)
max(Nk −N1,k,

N1,k

ρ
) ≥ c

Card(Pℓk)
Nk

1 + ρ
≥ cλ

1 + ρ
.

This leads to a contradiction by the choice of ε. �

Delta0b

Figure 1. Partition Pℓ, ℓ = 20 (α1 =
√
2, α2 = e)
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Theorem 4.3. Let (α1, α2) be totally irrational. If α1, α2 or α1 − α2 is in Bad, then the
compact extension T̃α,Φa

is ergodic on T2 × T if a is totally irrational.

Proof. There are three cases, which can be reduced to the case α1 ∈ Bad as follows:

If α2 ∈ Bad, simply invert the roles of the first and the second component in the proof.

If α2 − α1 ∈ Bad, we use that T̃α,Φa
is conjugate to

T̃β,Ψa
: (x1, x2, y) ∈ T2 × Td → (x1 + β1, x2 + β2, y + 1∆1 a mod 1),

where β = (β1, β2) = (α1, α2−α1), ∆1 = {(x1, x2) ∈ [0, 1]2 : x1+x2 ≤ 1} and Ψa = 1∆1 a.

Indeed, with S : (x1, x2, y) ∈ T2 ×T1 → (x1, x2 − x1, y) ∈ T2 ×Td, if (x1, x2) is not in the
boundary of ∆1, we have

(S ◦ Tα,s ◦ S−1)(x1, x2, y) = S(x1 + α1, x2 + x1 + α2, y + 1∆0(x1, {x2 + x1}) a mod 1)

= S(x1 + α1, x2 + x1 + α2, y + 1∆1(x, y) a mod 1)

= (x1 + α1, x2 + α2 − α1, y + 1∆1(x, y) a mod 1) = T̃β,Ψa
(x1, x2, y).

Then we can prove the ergodicity of T̃β,Ψa
like that of T̃α,Φa

.

We suppose now that α1 is in Bad and we use Proposition 4.2 with X = T2, T = Tα,
G the group of complex numbers of modulus 1, Q = {∆0,T

2 \ ∆0} and ϕ = ϕk,a =
exp(2πi〈k, a1∆0〉) to conclude that the functional equation

H(Tx) = e2πi〈k,1∆0
(x)a,〉H(x)(36)

has no measurable solution H : X → Td of modulus 1 for k ∈ Zd \ {0}.
Observe that (with the notation of the proposition) δ0(ϕk,a) is > 0 since a is totally
irrational. It remains to check the hypotheses of Proposition 4.2.

As α1 is in Bad, by Lemma 3.3 there exists a constant c1 > 0 such that for all n ≥ 1 the
lengths of the n intervals of T1 \ {0, α1, . . . , (n− 1)α1} are ≥ c1

n
.

Let V0 = {0} × T1, H0 = T1 × {0} and D0 = {(x, x) mod Z2 : x ∈ [0, 1[}. The boundary
of ∆0 is V0 ∪H0 ∪D0. For each ℓ > 0 consider the three sets of lines in T2,

Vℓ = {T−k
α (V0) : 0 ≤ k < ℓ}, Hℓ = {T−k

α (H0) : 0 ≤ k < ℓ}, Dℓ = {T−k
α (D0) : 0 ≤ k < ℓ}.

Let Pℓ (resp. Rℓ) be the set of connected components of T2 \ (∪L∈Vℓ∪Hℓ∪Dℓ
L) = T2 \

∪0≤i<ℓT
−i(∂∆0) (resp. of T2 \ (∪L∈Vℓ∪Hℓ

L)). (See figure 1)

We will show that Pℓ satisfies the assumption of the previous proposition. Observe first,
that two points x and y in a same P ∈ Pℓ have the same (Q, ℓ) coding because the
translates T kα ([x, y]), 0 ≤ k < ℓ, of the segment [x, y] never cross a boundary of ∆0. Next,
since α is totally irrational, we have limℓ→∞maxP∈Pℓ

diam(P ) = 0, hence 1) holds.

Let P ∈ Pℓ. It is an open convex polygon with at most 6 edges and there are at most
three lines through each vertex of P . It follows that there exist at most 6+5×6 polygons
P ′ ∈ Pℓ such that P ∩ P ′ 6= ∅, hence 2) holds with ρ = 36.

It remains to find the subsequence (ℓk) and to prove that 3a), 3b) and 3c) hold.
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We take ℓk = qk, where (qk)k≥1 is the sequence of denominators of α2. Observe that for
each R ∈ Rℓk , the length of the vertical edge is ≥ 1

2ℓk
, while the length of the horizontal

edge is ≥ c1
ℓk

.

Let Cc,ℓk be the family of polygons P ∈ Pℓk with a vertical edge of length ≥ 1

10ℓk
.

Since the lengths of the horizontal edges of the rectangle in Rℓk are ≥ c1
ℓk

, the measure of

any P ∈ Pℓk with a vertical edge of length ≥ 1

10ℓk
is at least

c2
ℓ2k

for some positive constant

c2 not depending on ℓk.

One can show by induction that Card(Pℓ) = 3ℓ2−ℓ (actually the bounds cℓ2 ≤ Card(Pℓ) ≤
Cℓ2 are sufficient for the proof). Therefore µ(P ) ≥ c2

3Card(Pℓk)
, ∀P ∈ Cc,ℓk ; hence 3a).

For 3b), let R5,ℓk be the family of rectangles R ∈ Rℓk that contain at most 5 elements P ∈
Pℓk . In each of these rectangles there exists P ∈ Pℓk with a vertical edge of length ≥ 1

10ℓk
.

Therefore Card(Cc,ℓk) ≥ Card(R5,ℓk). Now Card(R5,ℓk) ≥ ℓ2k/2, because Card(Rℓ) = ℓ2

and Card(Pℓ) ≤ 3ℓ2. It follows that Card(Cc,ℓk) ≥
1

6
Card(Pℓk); hence 3b).

At last, let P0 ∈ Cc,ℓk . It has a vertical edge e of length ≥ 1
10ℓk

. This edge is shared with
another P1 ∈ Pℓk . By definition of Cc,ℓk , we have P1 ∈ Cc,ℓk . Also this edge is included
in T−j

α (∂∆0) for some j ∈ {0, . . . , ℓk − 1}. It follows that the arc-wise connected set
P0 ∪ e ∪ P1 is included in T2 \⋃0≤i<ℓk, i 6=j T

−i
α (∂∆0). Therefore, for all x ∈ P0, all y ∈ P1

and all i 6= j we have T iα(x) and T iα(y) both in ∆0 or both not in ∆0, while one exactly of
the points T jα(x) and T jα(y) is in ∆0; hence 3c). �

Remarks: 1) Under the assumptions of Theorem 4.3, the cocycle with values in Rd gen-
erated by (1∆0 − 1

2
) a is not a Tα-coboundary.

2) Using irreducible representations, Proposition 4.2 provides a method for the extension
of Theorem 4.3 to skew-products by topological compact groups instead of the torus Td.

5. Appendix

5.1. Badly approximable numbers and W. M. Schmidt’s games.

In this section, we explain how results of W. M. Schmidt [20] combined with those of J.
Tseng [23] or M. Einsiedler and J. Tseng [10] give an information about “badly approx-
imable” numbers.

Notice that the terminology and the notation used in this section is that of the “Schmidt’s
games”: α is a number in ]0, 1[ and θ is an irrational number.

Proposition 5.1. Let θ ∈ R be an irrational number. For n ≥ 1, let Bn ⊂ Rn be the set
{β = (β1, . . . , βn) ∈ Rn such that βi and βj −βi ∈ BadZ(θ), for all 1 ≤ i < j ≤ n}. Then
dimH Bn = n.
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Proof. We use the following results of W. M. Schmidt [20] about α-winning subsets in R:
i) If X ⊂ R is α-winning for some α ∈]0, 1[, then dimH X = 1.
ii) A bi-Lipschitz image of an α-winning subset is α-winning.
iii) Any finite or countable intersection of α-winning subsets is α-winning.

We proceed by induction to prove the proposition. We have B1 = BadZ(θ) which is
1
8
-winning for any irrational number θ, by a result of J. Tseng [23]; hence dimH B1 = 1.

Then suppose that Bn has Hausdorff dimension n. Let β = (β1, . . . , βn) ∈ Bn. Consider
the set Eβ = BadZ(θ) ∩ (BadZ(θ) + β1) · · · ∩ (BadZ(θ) + βn).

If βn+1 ∈ Eβ, then βn+1 ∈ BadZ(θ) and for all 1 ≤ i ≤ n, βn+1 − βi ∈ BadZ(θ), so that
(β1, . . . , βn, βn+1) ∈ Bn+1.

By ii) and iii), Eβ is 1
8
-winning, which in turn implies that dimH Eβ = 1.

By Corollary 7.12 in [11], it follows that dimH Bn+1 = dimH Bn + 1 = n+ 1. �

Remark: If θ ∈ Bad, since 0 ∈ BadZ(θ), the same conclusion holds when the condition
1 ≤ i < j ≤ n above is replaced by 1 ≤ i, j ≤ n.

Proposition 5.2. Let β1, . . . , βr ∈ R. The set of θ = (θ1, θ2) ∈ R2 such that
a) 1, θ1, θ2 are linearly independent over Q,
b) θ1 has bounded partial quotients (i.e., θ1 ∈ Bad),
c) The differences βj − βj′, j, j

′ ∈ {1, . . . , r}, are in BadZ(θ1),
is winning and therefore has Hausdorff dimension 2.

Proof. By a result of M. Einsiedler and J. Tseng ([10, theorem 1.1]), given β ∈ R, the
set of θ1 ∈ R such that β ∈ BadZ(θ1) is α-winning, for some winning parameter α > 0
independent of β.

By iii), it follows that the set

E(β1, . . . , βr) = {θ1 ∈ R : βj − βj′ ∈ BadZ(θ1), j, j
′ ∈ {1, . . . , r1}}

is winning which implies that E(β1, . . . , βr1)× R is winning as a subset of R2. Since the
sets of (θ1, θ2) such that a) and b) hold are winning, we are done. �

Corollary 5.3. Let β1
1 , . . . β

1
r1
, β2

1 , . . . β
2
r2
∈ R. The set of θ = (θ1, θ2) ∈ R2 such that

a) 1, θ1, θ2 are linearly independent over Q,
b) θi, θ2 have bounded partial quotients (i.e., θi ∈ Bad),
c) the differences βij − βij′, j, j

′ ∈ {1, . . . , ri}, are in BadZ(θi), i = 1, 2,
is winning and therefore has Hausdorff dimension 2.

5.2. A version of the Lebesgue density theorem.

In this section we recall a version of the Lebesgue density theorem used in Section 3.

Let (X, d) be a locally compact metric space equipped with a positive measure µ on the
σ-algebra of its Borelian sets.

For every n ≥ 1, let Un be a covering (up to a set of µ-measure 0) of X by measurable sets
of positive measure. We denote by Un(x) an element of Un containing x ∈ X. Assume
that the following conditions are satisfied:
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There is a constant C such that,

∀n ≥ 1, ∀U ∈ Un, µ
(

⋃

k≥n

⋃

V ∈Uk:µ(U∩V )>0

V
)

≤ Cµ(U)(37)

lim
n

diamUn(x) = 0, ∀x ∈ X.(38)

For a non negative integrable function f on (X, µ), we set

M(f)(x) = sup
n≥1

1

µ(Un(x))

∫

Un(x)

fdµ.

We will use the following “Vitali covering lemma”:

Lemma 5.4. Suppose that all the coverings Un are finite and that (37) holds. Let V ⊂
∪n≥1Un. Then there exists W ⊂ V such that

i) for all U, U ′ ∈ W, U 6= U ′ =⇒ µ(U ∩ U ′) = 0,
ii) µ(∪U∈VU) ≤ Cµ(∪U∈WU).

Proof. Let us define inductively a sequence of subsets Wn ⊂ V∩Un. Let W1 be a maximal
subset of V ∩ U1 such that for all U 6= U ′ ∈ W1, µ(U ∩ U ′) = 0. Let Wn+1 be a maximal
subset of V ∩ Un+1 such that for all U ∈ Wn+1, µ(U ∩ U ′) = 0 whenever U ′ ∈ Wn+1 and
U ′ 6= U , or U ′ ∈ ∪1≤k≤nWk. Let W = ∪n≥1Wn.

Clearly i) holds. Next, if V ∈ V ∩ Un, then V is either in W or V cannot be add to Wn,
so that there exists U ∈ ∪k≤nWk such that µ(U ∩ V ) > 0. It follows that any V ∈ V ∩Un
is included in

⋃

1≤k≤n

⋃

U∈Wk

⋃

m≥k

⋃

W∈Um:µ(W∩U)>0)

W.

Therefore, by (37),

µ(∪V ∈VV ) ≤
∑

k≥1

∑

U∈Wk

µ(
⋃

m≥k

⋃

W∈Um:µ(W∩U)>0)

W ) ≤
∑

k≥1

∑

U∈Wk

Cµ(U).

Thanks to i), we obtain ii). �

Lemma 5.5. Under Condition (37), for all positive λ > 0 and all non negative integrable
functions f ,

µ{M(f) > λ} ≤ C
‖f‖1
λ

.(39)

Proof. For all x ∈ A := {M(f) > λ}, there is an integer r(x) ≥ 1 such that
∫

Ur(x)(x)

fdµ > λµ(Ur(x)(x)).(40)

Let V = {Ur(x)(x) : x ∈ A}. By the previous lemma, there exists W ⊂ V such that i) and
ii) hold. Therefore,

‖f‖1 ≥
∫

∪U∈WU

f dµ
by i
=

∑

U∈W

∫

U

f dµ > λ
∑

U∈W
µ(U)

by ii

≥ λ

C
µ(∪V ∈VV ) ≥ λ

C
µ(A). �
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Theorem 5.6. Under Conditions (37) and (38), for all f in L1(µ), we have

lim
n→∞

1

µ(Un(x))

∫

Un(x)

fdµ = f(x), for µ-a.e. x ∈ X.

In particular if B is a measurable set of positive measure, for every ε, there are n(ε) and
Bε ⊂ B of measure ≥ 1

2
µ(B) such that:

µ(B ∩ Un(x)) ≥ (1− ε)µ(Un(x)), ∀n ≥ n(ε), ∀x ∈ Bε.

Proof. It is enough to prove that, for all f ∈ L1(µ), for almost all x,

f ∗(x) := lim sup
n

1

µ(Un(x))

∫

Un(x)

|f(y)− f(x)|dµ(y) = 0.

For all ε > 0, there exists a continuous function gε ∈ L1(µ) such that ‖f − gε‖1 ≤ ε.

By Condition (38), for all x there is an integer N(x) such that, for each n ≥ N(x), the
variation of gε on Un(x) is less than ε. Therefore, with hε = f−gε, we have for n ≥ N(x):

1

µ(Un(x))

∫

Un(x)

|f(y)− f(x)|dµ(y)

≤ 1

µ(Un(x))

∫

Un(x)

|hε(y)− hε(x)|dµ(y) +
1

µ(Un(x))

∫

Un(x)

|gε(y)− gε(x)|dµ(y)

≤ M(|hε|)(x) + |hε(x)| + ε.

Hence, for all x and ε > 0, f ∗(x) ≤ M(|hε|)(x) + |hε(x)| + ε.

For λ > 0, taking ε such that 0 < ε < λ, it follows by Lemma 5.5 that

µ(f ∗ > λ) ≤ µ(M(|hε|) >
λ− ε

2
) + µ(|hε| >

λ− ε

2
) ≤ 2(1 + C)

‖hε‖1
λ− ε

≤ ε
2(1 + C)

λ− ε
→ 0,

when ε goes to zero. As λ is arbitrary > 0, this implies f ∗ = 0 a.e.

The last assertion follows by taking f = 1B. �
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