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ABSTRACT

We present an adaptation of the so-called structural method Clain et al. [2023a] for Hamiltonian
systems, and redesign the method for this specific context, which involves two coupled differential
systems. Structural schemes decompose the problem into two sets of equations: the physical equations,
which describe the local dynamics of the system, and the structural equations, which only involve
the discretization on a very compact stencil. They have desirable properties, such as unconditional
stability or high-order accuracy. We first give a general description of the scheme for the scalar
case (which corresponds to e.g. spring-mass interactions or pendulum motion), before extending the
technique to the vector case (treating e.g. the n-body system). The scheme is also written in the case
of a non-separable system (e.g. a charged particle in an electromagnetic field). We give numerical
evidence of the method’s efficiency, its capacity to preserve invariant quantities such as the total
energy, and draw comparisons with the traditional symplectic methods.

Keywords Structural method · Compact schemes · Hamiltonian systems

1 Introduction

Hamiltonian systems, a class of ordinary differential equations (ODEs) that arise from Hamiltonian mechanics, play a
fundamental role in the mathematical modeling of physical systems with conserved quantities, such as total energy
for a closed system. The dynamics of such systems are described by the principle of stationary action, leading to
the Euler-Lagrange equations and the associated Lagrangian function Leimkuhler and Reich [2005]. Derived from
the Hamiltonian function, Hamiltonian systems govern the time evolution of state variables such as positions and
momenta. Hamiltonian systems are ubiquitous in various fields, including celestial mechanics, where they describe
planetary orbits, or plasma physics, capturing the behavior of charged particles. Their inherent structure, characterized
by symplectic geometry and energy preservation, has to be taken into account in their numerical approximation.

Due to their rich structure, the numerical approximation of Hamiltonian systems presents several challenges. One of the
main issues is the preservation of geometric features, such as symplecticity and conserved quantities like energy or
angular momentum, which are integral to the physical behavior of the system. Standard numerical methods, even of very
high order, such as explicit or implicit Runge-Kutta schemes, often fail to maintain these properties during simulations,
generating error accumulations in the long run that can become critical and totally spoil the quality of the solution
Beust [2003]. Additionally, the typically oscillatory nature of the solutions to such systems, particularly in applications

https://orcid.org/0000-0003-2295-5118
https://orcid.org/0000-0001-6180-9485
https://orcid.org/0000-0002-3859-8517


Structural schemes for Hamiltonian system ARTICLE

like plasma physics, require specific methods enable of handling multiple time scales without compromising accuracy
or stability. On the other hand, the high-dimensional phase spaces involved in many problems further exacerbate
computational costs, requiring efficient algorithms that balance precision with practicality.

These challenges have motivated the development of structure-preserving methods, such as symplectic integrators
and geometric numerical schemes Feng and Qin [1987], that ensure robust long-term stability by providing a good
approximation of the total energy or other invariants. The design of schemes that preserve geometric structures for
ODEs provide accurate and stable numerical methods. Some classes of partial differential equations, after well-adapted
spatial discretizations, are written as high-dimensional Hamiltonian ODEs. As examples, we mention the works of
Kraus et al. [2017], Li et al. [2024] in plasma physics or Shepherd [1990] in climatology where these approaches, using
geometric structure-preserving time discretizations, have shown their superiority.

Hamiltonian systems typically involve a system of two coupled ODEs, one describing the time evolution of a position in
phase space, and the second one governing the time evolution of the momentum (or velocity). The simplest symplectic
algorithm is a semi-implicit Euler integrator, where the first equation is integrated explicitly, and the second one
implicitly. Therefore, it requires solving a (potentially nonlinear) implicit equation at each time step. However, this
integrator is only first-order accurate. In fact, one of the most well-known symplectic algorithms for Hamiltonian
systems is the Strömer-Verlet method, see Verlet [1967], Hairer et al. [2003], which can be seen as a second-order
accurate version of the semi-implicit Euler scheme. From this second-order algorithm, it is relatively easy to construct
high-order methods thanks to the composition strategy, introduced in Suzuki [1990], Yoshida [1990], McLachlan [1995]
and summarized in Hairer et al. [2006]. Nevertheless, one drawback of this approach is that the number of function
evaluations increases exponentially with the order of accuracy. Other examples of high-order schemes are provided in
McLachlan and Atela [1992], Sanz-Serna and Calvo [1993], and other composition schemes include the ones from
Kahan and Li [1997], which still stuffer from the same drawback in terms of number of function evaluations.

The structural method was recently introduced, in Clain et al. [2023a], to solve ODE systems. It provides a systematic
way of constructing implicit schemes with a highly compact stencil, which have an arbitrarily high order of accuracy
together with unconditional stability. The technique relies on separating the physical part of the problem, i.e., the system
of ODEs, from the discretization, which only involves the unknown quantities associated with the grid. In practice, the
data is gathered into blocks, corresponding to several time steps to be solved simultaneously. This methodology was
also adapted to one-dimensional boundary-valued problems in Clain et al. [2023b]. In this case, the structural method
achieves a sixth-order accurate approximations using a tiny stencil of three points.

In this paper, we develop and adapt the structural method to Hamiltonian systems, taking into account the specificities
of such systems, namely the conservation of several invariants, and the two-variable nature of the problem. The paper is
organized as follows. First, we present the structural method for ordinary differential equations in Section 2, introducing
two formulations, the first using only the ODE and the second adding information related to the time derivative of the
ODE. Then, the structural method is applied to Hamiltonian scalar problems in Section 3 and to general Hamiltonian
systems in Section 4, thus constructing high-order accurate and stable schemes for Hamiltonian systems. Finally, we
present numerical results in Section 5 to demonstrate the efficiency and accuracy of the proposed schemes. Several
Hamiltonian systems are considered, from simple separable examples to more complex non-separable ones, to illustrate
the performance of the structural method in various contexts.

2 The structural method for ODEs

We provide a short review of the structural method based on the so-called Physical and Structural Equations (denoted
PE and SE respectively) detailed in Clain et al. [2023a]. To this end, let us consider the Ordinary Differential Equation
(ODE) for t ∈ [0, T ]

ẋ = f(x), x(0) = x0. (1)
Traditional schemes blend the discretization with the physical equation, that is, the function that describe the dynamic
of the physical system. For example, the popular Crank-Nicholson scheme reads

xn+1 − xn

∆t
=

f(xn) + f(xn+1)

2

where the left-hand side is the time derivative discretization, while the right-hand side represents the physics (i.e., the
function f that characterizes the physical problem). Obviously, one can split the scheme into two equations, namely

Dn+1 = f(Zn+1) and
Zn+1 − Zn

∆t
− Dn +Dn+1

2
= 0,

where Zn and Dn are approximations of the Zeroth-order derivative x(tn) and the first-order Derivative ẋ(tn), applying
the same notations for Zn+1 and Dn+1 at the time tn+1. The left relation is called the Physical Equation since it only
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involves the physics of the problem and not the discretization; the right one is called the Structural Equation since it
only depends on the grid structure, and involves no physics.

An extension relies on taking the time derivative of the ODE, which reads ẍ = f ′(x)ẋ. Denoting by Sn an approximation
of the Second derivative ẍ(tn), we now obtain two physical equations, respectively denoted by PE[1] and PE[2]:

Dn+1 = f(Zn+1) and Sn+1 = f ′(Zn+1)Dn+1.

Since we have three unknowns (Zn+1, Dn+1, Sn+1), we need one additional equation that represents the discretization.
We choose the following relation, exact for polynomial functions up to degree 4, and called the structural equation
SE[1]:

12
Zn+1 − Zn

∆t2
− 6

Dn+1 +Dn

∆t
+ (Sn+1 − Sn) = 0.

Given the values (Zn+1, Dn+1, Sn+1) at a time tn, we seek solutions at tn+1 of PE[1], PE[2], and SE[1]. Note that the
problem is fully implicit and requires solving a small nonlinear system as soon as f is nonlinear.

Following the example, the idea of structural method consists in splitting the problem with, on the one hand, the Physical
Equations and, and the other hand, the Structural Equations. The two sets of equations involve the unknowns over a
block of size R steps corresponding to the time step tn+1 until tn+R, given the initial configuration at the time tn. We
obtain a nonlinear system combining the function approximations together with the derivatives for all the intermediate
steps.

We now detail the structural method for the scalar ODE (1) in the ZD and ZDS formulations, respectively involving the
zeroth- and first-order derivatives in Section 2.1, and the zeroth-, first- and second-order derivatives in Section 2.2. The
complete algorithm is then given, for each formulation, in Section 2.3.

2.1 ZD equations

We first tackle the simple version called the ZD scheme, where one only uses implicit combinations of the approximate
function and first derivative as unknowns. The generic ZD structural equation then reads

R∑
r=0

ar,0Zn+r + ar,1Dn+r = 0, (2)

where (ar,s)r∈{0,...,R},s∈{0,1} are the coefficients of the SE, independent of n by assuming a uniform time discretization
with time step ∆t. It is important to remark that r = 0 corresponds to the time tn where all the variables are given. In
total, 2(R+ 1) coefficients characterize the structural equation. They can be reshaped as a vector

a = [a0,0, a1,0, . . . , aR,0, a0,1, a1,1, . . . , aR,1] .

On the other hand, the implicit problem involves 2R unknowns with R physical equations PE[1], . . . , PE[R] correspond-
ing to the relations

Dn+r = f(Zn+r), for all r ∈ {1, . . . , R}.
Hence, the structural method requires R linearly independent structural equations, i.e. R vectors, (am)m∈{1,...,R}
whose components are denoted by (amr,s)r,s,m, to close the system of size 2R.

We wish to provide this set of R structural equations by ensuring that the resulting scheme is high-order accurate. To
this end, for any vector a and function ϕ, we define the functional

E(a, ϕ) =

R∑
r=0

ar,0ϕ(tr) + ar,1ϕ
′(tr). (3)

Taking the particular case of polynomial functions πℓ(t) = tℓ−1 for ℓ ∈ {1, . . . , 2(R + 1)}, we consider the linear
system E(a, πℓ) = 0, which rewrites as the 2(R+ 1) equations

∀ℓ ∈ {1, . . . , 2(R+ 1)}, E(a;πℓ) =

R∑
r=0

ar,0πℓ(r∆t) + ar,1π
′
ℓ(r∆t) = 0.

We obtain a 2(R+ 1)× 2(R+ 1) non-singular linear system given by Ma = 0, where the matrix M gathers all the
coefficients πℓ(r∆t) and π′

ℓ(r∆t), for all ℓ ∈ {1, . . . , 2(R+ 1)} and r ∈ {0, . . . , R}.
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To determine the R structural equations, we simply withdraw the R last lines of the matrix M , leading to a reduced
matrix whose kernel has dimension R. To build the structural equations, we select an orthogonal basis of this kernel
and place it in the vector (am)m∈{1,...,R}. Thanks to this procedure, the obtained relations

R∑
r=0

amr,0Zn+r + amr,1Dn+r = 0, m = 1, · · · , R, (4)

remain exact for polynomials up to degree R+ 1.
Remark: For small values of R (say R = 2), we derive an explicit analytic expression for the structural equation. However,
this becomes intractable for largerR > 4, and so we compute the kernel and determine an orthogonal basis to automatically
provide the R structural equations (see Clain et al. [2023a] for details).

At the end of the day, we get a set of R structural equations SE[1], . . . , SE[R], linearly independent, exact for polynomials
up to degree R+ 1.

2.2 ZDS equations

The ZD scheme is quite effective and provides accurate solutions, but one can upgrade the method by introducing the
second derivatives. Indeed, differentiating the original physical equation provides a second physical equation. Therefore,
the scheme is more compact and accurate for the same block size. More precisely, the ZDS scheme involves the zeroth-,
first- and second-order derivatives as unknowns, with the structural equation reading

R∑
r=0

ar,0Zn+r + ar,1Dn+r + ar,2Sn+r = 0, (5)

with a = (ar,s)r,s its coefficients, independent of the time index n, the block number r and the derivation order s.

The ZDS method involves the 3R unknowns (Zn+r, Dn+r, Sn+r) with r ∈ {1, . . . , R}. The physical equations
provide 2R relations between these unknowns:

∀r ∈ {1, . . . , R}, Dn+r = f(Zn+r) and Sn+r = f ′(Zn+r)Dn+r.

To close the system, we need R linearly independent structural equations of type (5) with respective coeffi-
cients (am)m∈{1,...,R}, whose entries are amr,d with r ∈ {0, . . . , R} and d ∈ {0, 1, 2}.

To this end, we introduce the functional

E(a, ϕ) =

R∑
r=0

ar,0ϕ(r∆t) + ar,1ϕ
′(r∆t) + ar,2ϕ

′′(r∆t)

and recall the set of polynomial functions πℓ = tℓ−1. Then the 3(R + 1)(R + 1) linear system E(a, πℓ) = 0 is
non-singular and reads Ma = 0 where M is an invertible matrix.

Eliminating the R last rows of the matrix M , we get a kernel of dimension R with an orthogonal basis (am)m∈{1,...,R}
that provides the R structural equation PE[1], . . . , PE[R]. Note that the relations

R∑
r=0

amr,0Zn+r + amr,1Dn+r + amr,2Sn+r = 0 for m ∈ {1, . . . , R} (6)

are exact for all polynomials of degree lower than 2(R+ 1). The solution of the 2R physical equations together with
the R structural equations provide an approximation of the 3R variables.

2.3 Full algorithm for a scalar ODE

Equipped with the physical and structural equations in the ZD and ZDS formulations, we now detail the full algorithm to
compute a full R-block of solutions with each of these formulations.

2.3.1 ZD formulation

Assume that we know the solution (Zn, Dn) at the time tn. We seek the solution of the nonlinear problem with 2R
unknowns

∀m ∈ {1, . . . , R}, Dn+m = f(Zn+m) and
R∑

r=0

amr,0Zn+r + amr,1Dn+r = 0. (7)
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Let ♭Zn = (Zn+r)r∈{1,...,R} ∈ RR and ♭Dn = (Dn+r)r∈{1,...,R} ∈ RR be the R-blocks for the approximations of x
and ẋ at time tn+r, for each r ∈ {1, . . . , R}. We rewrite the structural equations under a matrix form

Az ♭Zn +Ad ♭Dn +As az +Dn ad + Sn = 0,

with

Az = (amr,0)m,r, az =
(
a10,0, a

2
0,0, · · · , aR0,0

)t
,

Ad = (amr,1)m,r, ad =
(
a10,1, a

2
0,1, · · · , aR0,1

)t
.

Assuming the matrix Az ∈ RR×R is non-singular, we rewrite the system as

♭Zn +Bd ♭Dn + Zn bz +Dn bd = 0

with Bd = (Az)
−1Ad, bz = (Az)

−1az , bd = (Az)
−1ad.

To solve problem (7), we proceed with a fixed-point method by producing a sequence (♭Z
(k)
n , ♭D

(k)
n ) that converges to

the solution. We sketch the algorithm hereafter.

• Initialization. To build ♭Z
(0)
n and ♭D

(0)
n , we set for r ∈ {1, . . . , R}

Z
(0)
n+r = Z

(0)
n+r−1 +∆tD

(0)
n+r−1, D

(0)
n+r = f(Z

(0)
n+r),

with Z
(0)
n = Zn, D(0)

n = Dn.

• Iteration. We first compute a new approximation for the solution ♭Zn using the structural equations:

♭Z
(k+1)
n = −

(
Zn bz +Dn bd +Bd ♭D

(k)
n

)
Then, we update the first derivative with the physical equations:

∀r ∈ {1, . . . , R}, D
(k+1)
n+r = f(Z

(k+1)
n+r ).

• Stopping criterion. We end the fixed-point when two successive solutions are close enough, according to the
tolerance parameter tol, that is ∥♭Z(k+1)

n − ♭Z
(k)
n ∥ ≤ tol.

Remark: Notice that R = 2 provides a 4th-order unconditionally stable scheme while R = 4 reaches sixth-order accuracy.
Methods with R = 6 and R = 8 will also be experimented in the numerical section.

Remark: The nonlinear part of the problem does not require some local linearization, hence the computation of the
derivative is straightforward.

2.3.2 ZDS formulation

Assume that we knew the solution (Zn, Dn, Sn) at the time tn. We seek the solution of the following nonlinear problem
with 3R unknowns: for all m ∈ {1, . . . , R},

Dn+m = f(Zn+m), Sn+m = f ′(Zn+m)Dn+m and
R∑

r=0

amr,0Zn+r + amr,1Dn+r + amr,2Sn+r = 0. (8)

Denoting by ♭Sn the R-block of the second derivative approximations, we rewrite the structural equations under a
matrix form

Az ♭Zn +Ad ♭Dn +As ♭Sn + Zn az +Dn ad + Sn as = 0,

with

Az = (amr,0)m,r, az =
(
a10,0, a

2
0,0, · · · , aR0,0

)t
,

Ad = (amr,1)m,r, ad =
(
a10,1, a

2
0,1, · · · , aR0,1

)t
,

As = (amr,2)m,r, as =
(
a10,2, a

2
0,2, · · · , aR0,2

)t
.

Remark: For the sake of simplicity, we still use the notation Az , Ad, az and ad introduced in the ZD formulation for the
sake of simplicity. Of course, the matrix entries are different from the ones corresponding to the ZD method.
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Assuming the matrix Az ∈ RR×R is non-singular, we rewrite the system as
♭Zn +Bd ♭Dn +Bs ♭Sn + Zn bz +Dn bd + Sn bs = 0, (9)

with Bd = (Az)
−1Ad, Bs = (Az)

−1As, bz = (Az)
−1az , bd = (Az)

−1ad,bs = (Az)
−1as.

A fixed-point procedure is applied to solve the system (8), by producing a sequence (♭Z(k)
n , ♭D

(k)
n , ♭S

(k)
n ) that converges

to the solution. We give the algorithm for the ZDS case.

• Initialization. To build ♭Z
(0)
n , ♭D(0)

n , ♭S(0)
n , we set for r ∈ {1, . . . , R}

Z
(0)
n+r = Z

(0)
n+r−1 +∆tD

(0)
n+r−1 +

∆t2

2
S
(0)
n+r−1, D

(0)
n+r = f(Z

(0)
n+r), S

(0)
n+r = f ′(Z

(0)
n+r)D

(0)
n+r,

with Z
(0)
n = Zn, D(0)

n = Dn, S(0)
n = Sn.

• Iteration. We first compute a new approximation for the solution using the structural equations:

♭Z
(k+1)
n = −

(
Zn bz +Dn bd + Sn bs +Bd ♭D

(k)
n +Bs ♭S

(k)
n

)
.

Then, we update the first and second derivatives with the physical equations, by computing

∀r ∈ {1, . . . , R}, D
(k+1)
n+r = f(Z

(k+1)
n+r ) and S

(k+1)
n+r = f ′(Z

(k+1)
n+r )D

(k+1)
n+r .

• Stopping criterion. We end the fixed-point when two successive solutions are close enough according to the
tolerance parameter tol, that is ∥♭Z(k+1)

n − ♭Z
(k)
n ∥ ≤ tol.

Remark: It has been shown that R = 1 provides a 4th-order unconditionally stable scheme while R = 2 reaches sixth-order
accuracy. Methods with R = 3 and R = 4 are also investigated in the numerical section.

Remark: Given a grid, the structural equations’ coefficients are computed independently of the problem, and their evalu-
ations may be obtained in a pre-processing process or be stored with the grid points.

3 Structural method for Hamiltonian problems: scalar equations

We reach the main novelty of the present work by adapting the structural method to Hamiltonian systems. The main
difference is the introduction of a second variable p, that requires to handle both the approximations of t → x(t) ∈ R
and t → p(t) ∈ R, coupled through Hamilton’s equations. This section is dedicated to scalar Hamiltonian equations,
while systems will be considered in the next section. We first introduce the physical equations for the scalar Hamiltonian
problem in Section 3.1, and then detail the structural equations and the algorithm to solve the coupled physical and
structural equations in Section 3.2.

3.1 Physical equations

Consider a smooth function H : R2 → R that takes as input position x and momentum p. We seek solutions x = x(t)
and p = p(t) such that H (x(t), p(t)) is constant. Differentiating in time gives ∂xH (x, p)ẋ+ ∂pH (x, p)ṗ = 0, and we
define the trajectories as the solution of the ODE

ẋ = ∂pH (x, p) and ṗ = −∂xH (x, p),

with the initial condition x(0) = x0, p(0) = p0. This ODE makes up the first physical equations PE[1]. We reformulate
the problem within the Z, D framework by denoting by Zx and Dx the approximations of x and ẋ, and adopt similar
notations for Zp and Dp. The physical equations then read

Dx = ∂pH (Zx, Zp), (10)
Dp = −∂xH (Zx, Zp). (11)

For each time step, we have 2 physical equations, with 4 unknowns in total, and so we need 2 structural equations to
close the system.

In the ZDS case, to provide the second physical system PE[2], we differentiate in time the first physical equations, and
we obtain

ẍ = ∂xpH (x, p)ẋ+ ∂ppH (x, p)ṗ and p̈ = −∂xxH (x, p)ẋ− ∂xpH (x, p)ṗ.
Reformulating the problem within the Z, D, S framework yields the second physical equations PE[2]:

Sx = ∂xpH (Zx, Zp)Dx + ∂ppH (Zx, Zp)Dp, (12)
Sp = −∂xxH (Zx, Zp)Dx − ∂xpH (Zx, Zp)Dp. (13)

Note that we have 4 physical equations, with 6 unknowns in total, and so 2 structural equations are required to close the
system for each time step.

6
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3.2 Structural equations and algorithms

Equipped with the physical and structural equations in the ZD and ZDS formulations, coupling x and p, we now give the
algorithm to solve them in both cases.

3.2.1 ZD schemes

Approximations of the function x and the derivative ẋ are connected via the structural equations (4), and similarly for
the function p and its derivative. Hence, the structural equations read

∀m ∈ {1, . . . , R},



R∑
r=0

amr,0Zxn+r + amr,1Dxn+r = 0,

R∑
r=0

amr,0Zpn+r + amr,1Dpn+r = 0.

It is important to note that the x and p use the same structural equations (the same coefficients amr,s) and only differ
through the physical ones. Let denote by

♭Zxn =
(
Zxn+1, Zxn+2, . . . , Zxn+R

)t
and ♭Zpn =

(
Zpn+1, Zpn+2, . . . , Zpn+R

)t
,

the respective R-block vectors for the functions x and p. Similarly, the R-block vectors for the first derivatives are
denoted by ♭Dxn and ♭Dpn. The structural equations for the ZD scheme of size R then read

0 = ♭Zxn +Bd ♭Dxn + Zxn bz +Dxn bd, (14)
0 = ♭Zpn +Bd ♭Dpn + Zpn bz +Dpn bd. (15)

Remark: These two linear systems are independent and should be treated in parallel.

To solve the ODEs deriving from the Hamiltonian, we proceed in a very similar way as in Section 2.3.1. We produce
two sequences

(
♭Zx(k)

n , ♭Dx(k)
n

)
and

(
♭Zp(k)

n , ♭Dp(k)n

)
that converge to the solution. The fixed-point algorithm is then

given by the following iterative procedure.

• Initialization. To build ♭Zx(0)
n , ♭Dx(0)

n , ♭Zp(0)n , ♭Dp(0)n , we set for r ∈ {1, . . . , R}

Zx(0)n+r = Zx(0)n+r−1 +∆tDx(0)n+r−1,

Zp(0)n+r = Zp(0)n+r−1 +∆tDp(0)n+r−1,

Dx(0)
n+r = ∂pH

(
Zx(0)n+r, Zp(0)n+r

)
,

Dp(0)n+r = −∂xH
(
Zx(0)n+r, Zp(0)

n+r

)
,

with Zx(0)n = Zxn, Dx(0)
n = Dxn and Zp(0)n = Zpn, Dp(0)n = Dpn.

• Iteration. We first compute a new approximation for the solution using the structural equations

♭Zx(k+1)
n = −

(
Zxn bz +Dxn bd +Bd ♭Dx(k)n

)
,

♭Zp(k+1)
n = −

(
Zpn bz +Dpn bd +Bd ♭Dp(k)n

)
,

and then update the first derivatives with the physical equations deriving from the Hamiltonian

Dx(k+1)
n+r = ∂pH

(
Zx(k+1)

n+r , Zp(k+1)
n+r

)
,

Dp(k+1)
n+r = −∂xH

(
Zx(k+1)

n+r , Zp(k+1)
n+r

)
.

• Stopping criterion. We end the fixed-point when two successive solutions are close enough according to the
tolerance parameter tol, that is ∥♭Zx(k+1) − ♭Zx(k)∥ ≤ tol.

Remark: As in the case of the scalar ODE problem, no local linearization is required, leading to elementary formulations.

7
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3.2.2 ZDS schemes

Approximations of the function x and its two derivatives ẋ and ẍ are connected via the structural equations (6), as are p
and its derivatives. Therefore, the structural equations read

∀m ∈ {1, . . . , R},



R∑
r=0

amr,0Zxn+r + amr,1Dxn+r + amr,2Sxn+r = 0,

R∑
r=0

amr,0Zpn+r + amr,1Dpn+r + amr,2Spn+r = 0.

It is important to note that x and p once again use exactly the same structural equations and only differ through the
physical ones. We complete the notation with

♭Sxn =
(
Sxn+1, Sxn+2, · · · , Sxn+R

)t
, ♭Spn =

(
Spn+1, Spn+2, · · · , Spn+R

)t
,

the R-block vectors for the second derivatives. The two structural equations of size R then read

0 = ♭Zxn +Bd ♭Dxn +Bs ♭Sxn + Zxn bz +Dxn bd + Sxn bs, (16)
0 = ♭Zpn +Bd ♭Dpn +Bs ♭Spn + Zpn bz +Dpn bd + Spn bs. (17)

To solve the ODE deriving from the Hamiltonian, we proceed similarly as in the previous section. We produce
two sequences

(
♭Zx(k)n , ♭Dx(k)n , ♭Sx(k)

n

)
and

(
♭Zp(k)n , ♭Dp(k)

n , ♭Sp(k)
n

)
that converge to the solution. The fixed-point

algorithm is detailed below.

• Initialization. To build ♭Zx(0)
n , ♭Dx(0)

n , ♭Sx(0)
n , ♭Zp(0)n , ♭Dp(0)n , ♭Sp(0)n , we set for r ∈ {1, . . . , R}

Zx(0)
n+r = Zx(0)n+r−1 +∆tDx(0)

n+r−1 +
∆t2

2
Sx(0)n+r−1,

Zp(0)
n+r = Zp(0)n+r−1 +∆tDp(0)

n+r−1 +
∆t2

2
Sp(0)n+r−1,

Dx(0)
n+r = ∂pH

(
Zx(0)n+r, Zp(0)n+r

)
,

Dp(0)n+r = −∂xH
(
Zx(0)n+r, Zp(0)

n+r

)
,

Sx(0)n+r = ∂xpH
(
Zx(0)n+r, Zp(0)n+r

)
Dx(0)n+r + ∂ppH

(
Zx(0)n+r, Zp(0)n+r

)
Dp(0)n+r,

Sp(0)n+r = −∂xxH
(
Zx(0)

n+r, Zp(0)n+r

)
Dx(0)

n+r − ∂xpH
(
Zx(0)n+r, Zp(0)n+r

)
Dp(0)

n+r.

with Zx(0)n = Zxn, Dx(0)n = Dxn, Sx(0)n = Sxn and Zp(0)n = Zpn, Dp(0)n = Dpn, Sp(0)n = Spn.
• Iteration. We first compute a new approximation for the solution using the structural equations

♭Zx(k+1)
n = −

(
Zxn bz +Dxn bd + Sxn bs +Bd ♭Dx(k)n +Bs ♭Sx(k)n

)
♭Zp(k+1)

n = −
(
Zpn bz +Dpn bd + Spn bs +Bd ♭Dp(k)n +Bs ♭Sp(k)n

)
and then update the first and second derivative with the physical equations deriving from the Hamiltonian

Dx(k+1)
n+r = ∂pH

(
Zx(k+1)

n+r , Zp(k+1)
n+r

)
,

Dp(k+1)
n+r = −∂xH

(
Zx(k+1)

n+r , Zp(k+1)
n+r

)
,

Sx(k+1)
n+r = ∂xpH

(
Zx(k+1)

n+r , Zp(k+1)
n+r

)
Dx(k+1)

n+r + ∂ppH
(
Zx(k+1)

n+r , Zp(k+1)
n+r

)
Dp(k+1)

n+r ,

Sp(k+1)
n+r = −∂xxH

(
Zx(k+1)

n+r , Zp(k+1)
n+r

)
Dx(k+1)

n+r − ∂xpH
(
Zx(k+1)

n+r , Zp(k+1)
n+r

)
Dp(k+1)

n+r .

• Stopping criterion. We end the fixed-point algorithm when two successive solutions are close enough,
according to the tolerance parameter tol, that is ∥♭Zx(k+1) − ♭Zx(k)∥ ≤ tol.

8
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Remark: The coupling between the primal x and dual variables p takes place in the physical equations, hence the compu-

tation of ♭Zx(k+1)
n and ♭Zp(k+1)

n are independent and can be carried out in parallel.

Remark: We have just considered a very basic fixed-point method for the sake of simplicity, but any accelerating techniques
could be exploited. In practice, the predictor is good enough and very few iterations (3 to 12 in practice, depending on
the tolerance and order of the method) are required to provide the accurate approximation. Of course, for stiff problems,
a more sophisticated fixed-point procedure may be implemented.

4 Structural method for Hamiltonian problems: systems of equations

We now generalize the method to the situation where the Hamiltonian system involves K vector-valued bodies. Such
problems arise when modelling planetary systems, charged particles in electromagnetic fields, multiple coupled mass-
damped-spring systems, among many other cases. The main issue of this extension lies in handling the technical
difficulties arising when discretizing such complex systems. Overcoming these difficulties requires new notation and
specific operators, which we introduce in Section 4.1. The structural algorithm is then recast using this notation, in
Section 4.2.

4.1 Notation

The Hamiltonian system involves K distinct bodies characterized by their positions xk ∈ RI and momenta pk ∈ RI .
We gather the x and p in the “body space” B = RI×K , and we introduce the matrix notation

X =


x1
1 x2

1 · · · xK
1

x1
2 x2

2 · · · xK
2

...
...

x1
I x2

I xK
I

 and P =


p11 p21 · · · pK1
p12 p22 · · · pK2
...

...
p1I p2I pKI

 .

Let X,P ∈ B and H (X,P ) ∈ R be the Hamiltonian. We adopt the following notation.

• The gradients ∇XH (X,P ) ∈ B and ∇PH (X,P ) ∈ B are given by

∇XH (X,P ) =
[
∂xk

i
H (X,P )

]
k∈{1,...,K},i∈{1,...,I}

.

Note that the gradient does not output a vector but is reshaped to provide an element in B.
• The second derivatives ∇XXH (X,P ), ∇PPH (X,P ), ∇XPH (X,P ) = ∇X (∇PH (X,P )), and
∇PXH (X,P ) = ∇P (∇XH (X,P )) belong to B2. Note that the order ∇XP and ∇PX are, in general,
different. We introduce the following computation rules, using Einstein summation:

∇PXH (X,P ) · ṗ =
[
∂pm

j
∂xk

i
H (X,P ) ṗmj

]
k∈{1,...,K},i∈{1,...,I}

,

∇XPH (X,P ) · ẋ =
[
∂xm

j
∂pk

i
H (X,P ) ẋm

j

]
k∈{1,...,K},i∈{1,...,I}

.

We also define the tensors that gather all the data we shall handle in the structural method.

• We denote by Zxn ≈ x(tn) ∈ B an approximation of the positions of the K bodies at the time tn. Similar
notation is used for the first and second derivatives, Dxn ≈ ẋ(tn) ∈ B and Sxn ≈ ẍ(tn) ∈ B. We adopt the
same notations Zpn, Dpn and Spn for the momentum p. Moreover, for anybody k, the row vector Zxn[k]
represents its space coordinates in RI .

• Given a block of size R, we introduce the B-valued vector ♭Zxn ∈ BR that gathers the coordinates of all
the K bodies from time tn+1 until time tn+R with the convention ♭Zxn[r] = Zxn+r ∈ B and ♭Zxn[r][k] =
Zxn+r[k] ∈ RI .

• We introduce similar notation for ♭Zpn and the derivatives, namely ♭Dxn, ♭Dpn, ♭Sxn, ♭Spn, elements of BR.
The main difference compared to the previous section is that Zxn+r now belongs to the body space B instead
of being real values.

A last point concerns the linear algebra with elements of B. To this end, we introduce the following notation

• Let Zx ∈ B and α ∈ R. Then αZx ∈ B is the usual product of a matrix with a real number.

9
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• Let Zx ∈ B and a = (ar)r ∈ RR, then a⊗Zx is the vector in BR given by

a⊗Zx =


a1Zx
a2Zx

...
aRZx

 .

• Let ♭Zx ∈ BR and A = (ar,m)r,m a square matrix of dimension R, then A× ♭Zx is the vector in BR given by

A× ♭Zx =


y1
y2
...
yr

 , with yr =

R∑
m=1

ar,m♭Zx[m] ∈ B for all r ∈ {1, . . . , R}.

The ZD structural equations (14)–(15) adapted to vectors of BR read

0 = ♭Zxn +Bd × ♭Dxn + bz ⊗Zxn + bd ⊗Dxn, (18)
0 = ♭Zpn +Bd × ♭Dpn + bz ⊗Zpn + bd ⊗Dpn, (19)

while the ZDS structural equations (16)–(17) read

0 = ♭Zxn +Bd × ♭Dxn +Bs × ♭Sxn + bz ⊗Zxn + bd ⊗Dxn + bs ⊗ Sxn, (20)
0 = ♭Zpn +Bd × ♭Dpn +Bs × ♭Spn + bz ⊗Zpn + bd ⊗Dpn + bs ⊗ Spn. (21)

Remark: We highlight again that we use the same notation for matrices Bd and vectors bz , bd for the sake of simplicity,
but they are different for the ZD or the ZDS methods. Additionally, the computation of the products is largely parallelizable,
which may be taken advantage of in an HPC context.

4.2 Algorithm

We rephrase the fixed-point method with the notation introduced in Section 4.1. Once again, we need an initialization
and an iteration routine. We just present the ZDS version. Indeed, the simpler ZD version only consists in extracting
from the ZDS version the two first physical equations (29)–(30) and structural equations (14)–(15).

Given the initial state (Zxn,Dxn,Sxn) and (Zpn,Dpn,Spn), we define two sequences (♭Zx(k)n , ♭Dx(k)n , ♭Sx(k)
n )

and (♭Zp(k)
n , ♭Dp(k)

n , ♭Sp(k)
n ) of elements of BR that converge to the R-block solution. We recall the convention

♭Zx(k)n [r] = Zxn+r ∈ B for all r ∈ {1, . . . , R}.

• Initialization. To initialize the R-size blocks ♭Zx(0)n , ♭Dx(0)n , ♭Sx(0)n , ♭Zp(0)
n , ♭Dp(0)

n , ♭Sp(0)
n for all r ∈

{1, . . . , R}, we use the second order Taylor expansion in space B:

Zx(0)
n+r = Zx(0)

n+r−1 +∆tDx(0)n+r−1 +
∆t2

2
Sx(0)n+r−1,

Zp(0)
n+r = Zp(0)

n+r−1 +∆tDp(0)
n+r−1 +

∆t2

2
Sp(0)

n+r−1,

where we compute the first and second derivatives through the physical equations

Dx(0)n+r = ∇PH
(
Zx(0)n+r,Zp(0)

n+r

)
,

Dp(0)
n+r = −∇XH

(
Zx(0)

n+r,Zp(0)
n+r

)
,

Sx(0)n+r = ∇XPH
(
Zx(0)n+r,Zp(0)

n+r

)
Dx(0)n+r +∇PPH

(
Zx(0)n+r,Zp(0)

n+r

)
Dp(0)

n+r,

Sp(0)
n+r = −∇XXH

(
Zx(0)n+r,Zp(0)

n+r

)
Dx(0)n+r −∇PXH

(
Zx(0)n+r,Zp(0)

n+r

)
Dp(0)

n+r

with Zx(0)
n = Zxn, Dx(0)n = Dxn, Sx(0)n = Sxn and Zp(0)

n = Zpn, Dp(0)
n = Dpn, Sp(0)

n = Spn.

10
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• Iteration. We first compute new R-size blocks ♭Zx(k+1)
n and ♭Zp(k+1)

n , approximating the positions and
momenta, using the system of structural equations:

♭Zx(k+1)
n = −

(
bz ⊗Zxn + bd ⊗Dxn + bs ⊗ Sxn +Bd × ♭Dx(k)n +Bs × ♭Sx(k)n

)
,

♭Zp(k+1)
n = −

(
bz ⊗Zpn + bd ⊗Dpn + bs ⊗ Spn +Bd × ♭Dp(k)

n +Bs × ♭Sp(k)
n

)
.

Then, for each r ∈ {1, . . . , R}, we update the first and second derivatives at each time step tn+r by setting

Dx(k+1)
n+r = ∇PH

(
Zx(k+1)

n+r ,Zp(k+1)
n+r

)
,

Dp(k+1)
n+r = −∇XH

(
Zx(k+1)

n+r ,Zp(k+1)
n+r

)
,

Sx(k+1)
n+r = ∇XPH

(
Zx(k+1)

n+r ,Zp(k+1)
n+r

)
Dx(k+1)

n+r +∇PPH
(
Zx(k+1)

n+r ,Zp(k+1)
n+r

)
Dp(k+1)

n+r ,

Sp(k+1)
n+r = −∇XXH

(
Zx(k+1)

n+r ,Zp(k+1)
n+r

)
Dx(k+1)

n+r −∇PXH
(
Zx(k+1)

n+r ,Zp(k+1)
n+r

)
Dp(k+1)

n+r .

• Stopping criterion. We end the fixed-point scheme once two successive solutions are close enough, according
to the tolerance parameter tol, that is ∥Zx(k+1)

n+R −Zx(k)n+R∥ ≤ tol.
Remark: Once again, we highlight that the procedure is highly parallelizable since the update of the derivative for each
time steps are independent.

5 Benchmarks

We propose and analyze a series of benchmarks to assess the properties of the scheme. Namely, we check the accuracy
when an analytical solution is available, as well as the numerical preservation of several invariants, like the Hamiltonian,
for long-time simulations. In some cases, we also check the preservation of other invariant quantities of interest. The
method has been implemented in C++ in IEEE 754 quadruple and octuple precision using the library qd developed
by Hida et al. [2000]. The new structural method will be compared to standard symplectic schemes already implemented
in julia 1.11, see Bezanson et al. [2017]. These schemes are provided by the DifferentialEquations.jl
library, see Rackauckas and Nie [2017], and we use the second-order accurate McAte2 scheme from McLachlan and
Atela [1992], the fourth-order accurate CalvoSanz4 scheme from Sanz-Serna and Calvo [1993], and the sixth- and
eighth-order accurate KahanLi6 and KahanLi8 schemes from Kahan and Li [1997].

The benchmarks and their settings are summarized in Table 1. Moreover, Section 5.8 contains a study of the complexity
of the ZD and ZDS methods, compared to the classical ones, in separable and non-separable settings, as well as a study
of the computational cost of the fixed-point method.

Table 1: Summary of the benchmarks.
Benchmark Exact Solution Additional Invariants Separable Section
One-dimensional mass-spring problem Yes No Yes 5.1
Two springs, two masses system Yes No Yes 5.2
One-dimensional pendulum problem Yes No Yes 5.3
Two-dimensional Kepler problem No Yes Yes 5.4
Two-dimensional three-body problem No Yes Yes 5.5
Outer Solar system No Yes Yes 5.6
Particle in a 3D electromagnetic field No No No 5.7

In each benchmark, the time interval [0, T ] is uniformly divided into N steps of constant size ∆t, and set tn = n∆T , for
all n ∈ {0, . . . , N} to represent the subdivision of this interval. Denoting by q̄(tn) the exact quantity at time tn (position,
momentum, or invariant) and qn its approximation, we evaluate the error by computing eqn(∆t) = |qn − x̄(tn)|, and
we define the maximum error, together with the order, by

eq(∆t) = max
n

eqn(∆t), ordq(∆t1,∆t2) =
log
(
eq(∆t1)

/
eq(∆t2)

)
log(∆t1

/
∆t2)

.

For instance, ex will represent the position error and eH the deviation of the Hamiltonian. All simulations have been
carried out with quadruple precision since the double precision is not enough to correctly compute the tiny errors
obtained when using very high order accurate methods (methods of eighth or tenth order, for instance).
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5.1 Linear case: one-dimensional mass-spring problem

As a very first sanity check experiment, we consider the linear one-dimensional mass-spring problem with no damping
term. The Hamiltonian is

H(x, p) =
p2

2m
+

1

2
κx2,

with m the mass and κ the spring constant.

5.1.1 The physical equations

We derive the first set of physical equations from Hamilton’s principle:

mẋ = p, ṗ = −κx. (22)

Differentiating system (22) in time, we get the second set of physical equations

mẍ = ṗ, p̈ = −κẋ. (23)

Form relation (22), we deduce the first group of physical equations PE[1], given by

mDx = Zp, Dp = −κZx,

while (23) provides the second group of physical equations PE[2], which reads

mSx = Dp, Sp = −κDx.

The ZD solver computes the R-sized block of unknowns ♭Zxn, ♭Dxn and ♭Zpn, ♭Dpn, by coupling the physical equations
PEn+r[1] and the first R structural equations SE[r] given by (4), with r ∈ {1, . . . , R}.

The ZDS solver computes the R-sized block of unknowns ♭Zxn, ♭Dxn, ♭Sxn and ♭Zpn, ♭Dpn, ♭Spn, by coupling the
physical equations PEn+r[1], PEn+r[2] and the first R structural equations SE[r] given by (6), with r ∈ {1, . . . , R}.

5.1.2 Numerical tests

Numerical simulations have been carried out for a final time T = 100 with κ = 1 and m = 1, which corresponds to a
2π-periodic motion. Initial conditions are x(0) = 1 and p(0) = 0. We report1 in Table 2a the position error and order
of accuracy, obtained by using the ZD scheme with different values of R. We proceed similarly with the ZDS scheme2 in
Table 2b, while Table 2c gives the errors for the classical symplectic schemes.

We remark that the accuracy and order of convergence are the optimal ones, given by the theoretical analysis. The
structural ZDS method provides the same error magnitude as the classical symplectic schemes, while the ZDS method,
for an equivalent order of accuracy, provides an error up to three orders of magnitude smaller. The ZDS scheme is
clearly more compact with respect to the ZD case and also provides accurate approximations for the second derivative.

To assess the symplectic property of the schemes, we run the simulations for a very long time T = 100 000s and use
two subdivisions: a coarse grid with N = 6T points and a finer grid with N = 24T points. We report in Table 3 the
position error and the Hamiltonian error for the ZD, ZDS and classical schemes respectively. The time evolution of
the Hamiltonian error is constant after a few steps (not printed in the document) for all the schemes. The ZD and ZDS
methods provide a better preservation of the Hamiltonian, quite similar whatever the number of physical equations and
independent of the method order.

The long-time simulation also confirms the excellent accuracy of the structural schemes, with a special mention for the
ZDS case where the R = 4 case provides an error of the order of 10−15 with a discretization corresponding to 24 points
per revolution. We also highlight that we recover all the convergence orders by computing the ratio of ex for N = 6T
and N = 24T . On the contrary, no convergence order is available for the Hamiltonian error since the deviations are
almost the same for both time discretization.

5.2 Two springs, two masses system

We consider a system composed of two bodies linked by two springs, following Figure 1. The system is described by
the Hamiltonian functional, whose inputs are two vectors x = (x1, x2) and p = (p1, p2) in R2, and whose expression is

H(x, p) =
p21
2m1

+
p22
2m2

+
1

2
k1x

2
1 +

1

2
k2(x2 − x1)

2. (24)
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Table 2: Mass-spring test case from Section 5.1: errors on the position at T = 100s.

(a) Errors obtained with the ZD method.

R=2 R=4 R=6 R=8

N ex ordx ex ordx ex ordx ex ordx

120 7.22e-01 — 2.26e-01 — 4.53e-02 — 2.92e-03∗ —

240 5.43e-02 3.7 5.04e-03 5.5 5.07e-04 6.5 5.17e-05 9.0

480 3.57e-03 3.9 8.67e-05 5.9 2.45e-06 7.7 7.48e-08 9.4

960 2.25e-04 4.0 1.39e-06 6.0 1.01e-08 7.9 7.97e-11 9.9

(b) Errors obtained with the ZDS method.

R=1 R=2 R=3 R=4

N ex ordx ex ordx ex ordx ex ordx

120 5.43e-02 — 2.59e-03 — 1.20e-04 — 5.67e-07† —

240 3.57e-03 3.9 4.58e-05 5.8 6.73e-07 7.5 1.10e-08 9.2

480 2.25e-04 4.0 7.38e-07 6.0 2.85e-09 7.9 1.28e-11 9.7

960 1.41e-05 4.0 1.16e-08 6.0 1.14e-11 8.0 1.30e-14 9.9

(c) Errors obtained with the classical method.

MA2 CS4 KL6 KL8

N ex ordx ex ordx ex ordx ex ordx

120 1.34e+01 — 3.48e-02 — 1.35e-01 — 2.97e-04 —

240 3.52e+00 1.9 2.16e-03 4.0 2.08e-03 6.0 1.11e-06 8.1

480 8.73e-01 2.0 1.37e-04 4.0 3.30e-05 6.0 4.37e-09 8.0

960 2.18e-01 2.0 8.58e-06 4.0 5.15e-07 6.0 1.70e-11 8.0

Table 3: Mass-spring test case from Section 5.1: error on the position and the Hamiltonian at T = 100 000s. For ex and
eH, both rows correspond to N = T × 6 and N = T × 24 respectively.

(a) Errors obtained with the ZD scheme.

R=2 R=4 R=6 R=8

ex(×6) 1.49e+00 2.54e-02 4.83e-04 9.39e-06

ex(×24) 6.55e-03 6.58e-06 7.74e-09 9.89e-12

eH(×6) 1.11e-25 3.89e-27 5.16e-28 5.30e-27

eH(×24) 4.18e-25 7.47e-26 1.06e-25 2.25e-26

(b) Errors obtained with the ZDS scheme.

R=1 R=2 R=3 R=4

ex(×6) 1.06e-01 2.25e-04 5.60e-07 1.62e-09

ex(×24) 4.18e-04 5.53e-08 8.68e-12 1.60e-15

eH(×6) 8.30e-26 1.48e-25 3.10e-27 1.79e-25

eH(×24) 3.09e-25 5.32e-25 1.01e-25 4.61e-26

(c) Errors obtained with the classical schemes.

MA2 CS4 KL6 KL8

ex(×6) 2.00e+01 5.69e-03 8.74e-04 7.40e-08

ex(×24) 3.49e+00 2.22e-05 2.13e-07 1.13e-12

eH(×6) 9.97e-05 5.22e-07 1.02e-08 7.48e-13

eH(×24) 1.55e-06 2.03e-09 2.47e-12 1.15e-17

1case ∗ is evaluated with N = 156.
2case † is evaluated with N = 156.

13



Structural schemes for Hamiltonian system ARTICLE

m1

k1

m2

k2

Figure 1: Schematic representation of the two masses-spring system.

The analytical solution (x, p) is given by

x1(t) = A cos (ω1t+ α1) +B cos (ω2t+ α2),

x2(t) =
A
(
k1 + k2 −m1ω

2
1

)
k2

cos (ω1t+ α1) +
Bk2

k2 −m2ω2
2

cos (ω2t+ α2),

p1(t) = −m1 (Aω1 sin (tω1 + α1) +Bω2 sin (tω2 + α2)) ,

p2(t) = −m2

(
Aω1

(
k1 + k2 −m1ω

2
1

)
k2

sin (ω1t+ α1) +
Bω2k2

k2 −m2ω2
2

sin (ω2t+ α2)

)
,

where ω1 and ω2 are positive solutions to

m1m2ω
4 − (m1k2 +m2k1 +m2k2)ω

2 + k1k2 = 0.

5.2.1 Physical equations

Hamilton’s equation ẋ = ∇pH(x, p) and ṗ = −∇xH(x, p), applied to the Hamiltonian (24), yields the following
dynamical system:

ẋ =

(
p1/m1

p2/m2

)
, ṗ = −

(
k1x1 + k2(x1 − x2)
k2(x2 − x1)

)
.

Differentiating with respect to time leads to the system

ẍ =

(
ṗ1/m1

ṗ2/m2

)
, p̈ = −

(
k1ẋ1 + k2(ẋ1 − ẋ2)
k2(ẋ2 − ẋ1)

)
.

We deduce the first group of structural equation PE[1], given by

Dx =

[
1/m1 0
0 1/m2

]
Zp, Dp = −

[
k1 + k2 −k2
−k2 k2

]
Zx,

while the second group of physical equation PE[2] reads

Sx =

[
1/m1 0
0 1/m2

]
Dp, Sp = −

[
k1 + k2 −k2
−k2 k2

]
Dx.

5.2.2 Numerical tests

The analytical solution is computed for the physical parameters k1 = 1, k2 = 5, m1 = 2, m2 = 1 that provides the two
frequencies

ω1 =

√
8− 3

√
6

2
≈ 0.57 and ω2 =

√
8 + 3

√
6

2
≈ 2.77.

Moreover, the initial condition is made of the analytical solution taken at time t = 0, with A = 1, B = 2, α1 = π/2
and α2 = −π/4. Numerical simulations have been carried out with the ZD, ZDS and classical schemes. The error on
the position and the conservation of the Hamiltonian are the two main indicators we use to assess the quality of the
simulation.

Accuracy and order of convergence. The final time is set to T = 100s, and we take N = 480, 960, 1920 and 3840.
We recall that the smallest period is T2 = 2.27, corresponding to ω2. Thus, the coarse grid N = 480 corresponds to
about 11 points to cover a full period.

Table 4 report the maximal error and order of convergence for the ZD, ZDS and classical schemes, respectively. The
optimal order is clearly achieved in each situation. The errors’ magnitude is almost the same for the ZDS scheme and the
classical schemes for a given order, whereas the ZD scheme presents an error larger by about three orders of magnitude.
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Table 4: Two springs, two masses test case from Section 5.2: error on the position at T = 100s.

(a) Errors obtained with the ZD method.

R=2 R=4 R=6 R=8

N ex ordx ex ordx ex ordx ex ordx

480 2.29e+00 — 3.70e-01 — 5.91e-02 — 8.94e-03 —

960 1.53e-01 3.9 6.97e-03 5.7 3.55e-04 7.4 2.03e-05 8.8

1920 9.83e-03 4.0 1.14e-04 5.9 1.57e-06 7.8 2.37e-08 9.7

3840 6.19e-04 4.0 1.83e-06 6.0 6.42e-09 7.9 2.41e-11 9.9

(b) Errors obtained with the ZDS method.

R=1 R=2 R=3 R=4

N ex ordx ex ordx ex ordx ex ordx

480 1.53e-01 — 3.66e-03 — 9.38e-05 — 2.65e-06 —

960 9.83e-03 4.0 6.06e-05 5.9 4.40e-07 7.7 3.71e-09 9.5

1920 6.19e-04 4.0 9.75e-07 6.0 1.83e-09 7.9 3.92e-12 9.9

3840 3.88e-05 4.0 1.53e-08 6.0 7.20e-12 8.0 3.96e-15 9.9

(c) Errors obtained with the classical methods.

MA2 CS4 KL6 KL8

N ex ordx ex ordx ex ordx ex ordx

480 6.11e+00 — 8.27e-03 — 1.54e-02 — 1.59e-05 —

960 1.72e+00 1.8 5.20e-04 4.0 2.42e-04 6.0 6.16e-08 8.0

1920 4.35e-01 2.0 3.27e-05 4.0 3.79e-06 6.0 2.40e-10 8.0

3840 1.09e-01 2.0 2.04e-06 4.0 5.93e-08 6.0 1.03e-12 7.9

Preservation of the Hamiltonian. To address the Hamiltonian preservation issue, we take T = 10 000 and assess the
position error together with the Hamiltonian deviation, checking the evolution of the maximum error over time. A first
note concerns the accuracy of the position: the errors increase with time, but the ZD and ZDS schemes provide lower
deviations than the classical schemes. Indeed, for the same order, we observe a gain of two orders of magnitude when
using the ZDS scheme rather than the classical schemes, while the difference between the ZD scheme and the standard
schemes was reduced to a factor 10. In conclusion, the ZD and ZDS schemes offer a better accuracy when dealing with
long-time simulations (i.e., numerous time steps).

Concerning the Hamilton conservation, the ZD and ZDS schemes provide almost the same very low error of around
10−25, but the standard schemes do not reach such a target. Moreover, the deviation from the initial Hamiltonian
depends on the grid size for the classical schemes, while errors with the ZD and ZDS schemes are almost independent
of ∆t.

5.3 One-dimensional pendulum problem

We turn to a nonlinear scalar problem, and consider the one-dimensional pendulum system governed by the Hamiltonian

H(x, p) =
p2

2mℓ2
+mgℓ(1− cos(x)) (25)

where m is the mass, ℓ the length of the pendulum and g the gravity.

5.3.1 Physical equations

The differential system deriving from Hamilton’s equations reads

ẋ =
p

m
, ṗ = −mgℓ sin(x) (26)
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Table 5: Two springs, two masses test case from Section 5.2: error on the position and the Hamiltonian at T = 10 000s.
For ex and eH, both rows correspond to N = T × 24 and N = T × 96 respectively.

(a) Errors obtained with the ZD scheme.

R=2 R=4 R=6 R=8

ex(×24) 4.07e-01 3.08e-03 2.74e-05 2.60e-07

ex(×96) 1.60e-03 7.59e-07 4.26e-10 2.62e-13

eH(×24) 3.70e-26 9.13e-27 8.00e-27 2.57e-28

eH(×96) 2.54e-25 6.04e-26 2.19e-26 1.99e-26

(b) Errors obtained with the ZDS scheme.

R=1 R=2 R=3 R=4

ex(×24) 2.55e-02 2.58e-05 3.10e-08 4.35e-11

ex(×96) 9.97e-05 6.33e-09 4.76e-13 4.22e-17

eH(×24) 1.01e-25 4.26e-26 7.99e-26 3.28e-26

eH(×96) 6.61e-25 2.17e-25 4.49e-25 1.84e-26

(c) Errors obtained with the classical schemes.

MA2 CS4 KL6 KL8

ex(×24) 7.51e+00 1.36e-03 9.98e-05 4.06e-09

ex(×96) 1.73e+00 5.29e-06 2.44e-08 1.06e-11

eH(×24) 6.57e-05 6.06e-08 5.56e-10 1.98e-14

eH(×96) 1.02e-06 2.33e-10 1.35e-13 3.03e-19

The solution is a periodic solution Beléndez et al. [2007] with a period given by the elliptic integral

Tp = 4

√
ℓ

mg

∫ π
2

0

du√
1− ω2 sin2(u)

,

with ω = sin(π/8). Then, differentiating the first physical equation (26) with respect to time provides relations
involving the second-order derivative, namely

ẍ =
ṗ

m
, p̈ = −mgℓ cos(x)ẋ.

We then deduce the first set of physical equations PE[1], given by

Dx = Zp/m, Dp = −mgℓ sin(Zx),

whereas the second set of physical equations PE[2] reads

Sx = Dp/m, Sp = −mgℓ cos(Zx)Dx.

5.3.2 Numerical tests

The numerical applications have been carried out with m = 1, g = 1, ℓ = 1, and the initial conditions x(0) = π/4 and
p(0) = 0. A numerical approximation of the period is Tp = 6.53. In Beléndez et al. [2007], an analytical solution is
derived, whose expression, not reported here, involves a Jacobi elliptic function. The exact position and momentum at
final time T = 100 are given by

x(t = 100) = −0.2633498226088722 and p(t = 100) = −0.7189111241830892

in double precision (since the Jacobi functions are not implemented with arbitrary precision). Hence, schemes with
very high accuracy will reach machine error with a comparatively low number of points.

Position errors, together with the deviation of the Hamiltonian are reported3 in Tables 6 and 7 for T = 100s. The
deviation of H strongly depends on the order of the method, as well as on the time step. The ZD scheme produces larger
errors, about two orders of magnitudes larger, than the ZDS scheme for the same rate of convergence. The KL6 and ZDS
schemes with R = 2 present the same amount of error, whereas the KL8 scheme provides the best accuracy compared
to its competitor ZDS with R = 3. We recover the same accuracy by using the ZDS scheme with R = 4. This is one
of the main advantages of the ZDS scheme: the order is easily increased, simply by increasing the block size. In the
present case, we have a substantial gain of three orders of magnitude between R = 3 and R = 4.

3The symbol *** indicates that machine precision has been reached.
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Table 6: Pendulum system from Section 5.3: error on the position at T = 100s.

(a) Errors obtained with the ZD scheme.

R=2 R=4 R=6 R=8

N ex ordx ex ordx ex ordx ex ordx

120 8.27e-01 — 3.32e-01 — 3.25e-02 — — —

240 3.36e-02 4.6 1.11e-02 4.9 2.24e-04 7.2 1.32e-02 —

480 2.45e-03 3.8 5.56e-05 7.6 4.85e-06 5.5 6.89e-06 10.9

960 1.58e-04 4.0 8.81e-07 6.0 1.05e-08 8.8 4.92e-09 10.5

1920 9.80e-06 4.0 1.43e-08 5.9 4.27e-11 7.9 7.98e-13 12.6

(b) Errors obtained with the ZDS scheme.

R=1 R=2 R=3 R=4

N ex ordx ex ordx ex ordx ex ordx

120 3.93e-02 — 1.26e-02 — 2.00e-03 — — —

240 2.63e-03 3.9 2.16e-05 9.2 6.24e-06 8.3 1.58e-05 —

480 1.66e-04 4.0 4.35e-07 5.6 1.94e-09 11.7 3.32e-09 12.2

960 1.04e-05 4.0 6.93e-09 6.0 6.25e-12 8.3 1.21e-13 14.7

1920 6.52e-07 4.0 1.09e-10 6.0 4.02e-14 7.3 *** ***

(c) Errors obtained with the classical schemes.

MA2 CS4 KL6 KL8

N ex ordx ex ordx ex ordx ex ordx

120 8.60e-01 — 3.26e-04 — 3.51e-03 — 6.71e-06 —

240 2.20e-01 2.0 3.89e-05 3.1 6.16e-05 5.8 1.98e-08 8.4

480 5.47e-02 2.0 4.84e-06 3.0 9.75e-07 6.0 7.62e-11 8.0

960 1.36e-02 2.0 6.05e-07 3.0 1.53e-08 6.0 3.02e-13 8.0

1920 3.41e-03 2.0 7.59e-08 3.0 2.40e-10 6.0 *** ***

We carried out the simulation to T = 100 000 seconds to check the invariance of the Hamiltonian for a very long-time
simulation. We use both a coarse grid with N = 3T (an intermediate between N = 2.4T and N = 4.8T we used for
the case T = 100), which corresponds to about 20 point for a full revolution Tp ≈ 6.53, and a finer grid with N = 12T
points, which makes it possible to compare the deviation of H with respect to the time step. We report in Table 8 the
errors for the ZD, ZDS and classical schemes, respectively. The errors are in line with the case T = 100 and the orders
are optimal ones.

We confirm in Figure 2 the strict invariance in time of the errors. We also plot, in the bottom right panel, several
examples of non-symplectic schemes (classical Runge-Kutta methods, see e.g. Hairer et al. [2006]) to highlight their
major drawback, namely a linear increase in the error over time.

5.4 Two-dimensional Kepler problem

The two-dimensional Kepler system consists in a particle moving around a fixed point. It is characterized by the
Hamiltonian

H(x,p) =
∥p∥2

2
− 1

∥x∥
, (27)

corresponding to the total mechanical energy. The particle position x(t) ∈ R2 and the momentum p(t) ∈ R2 describe
a quadratic curve (elliptic, parabolic or hyperbolic) depending on the initial total energy.
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Table 7: Pendulum system from Section 5.3: error on the Hamiltonian at T=100s.

(a) Errors obtained with the ZD scheme.

R=2 R=4 R=6 R=8

N eH ordH eH ordH eH ordH eH ordH

120 1.66e-01 — 2.00e-01 — 5.30e-02 — — —

240 2.10e-02 3.0 6.23e-03 5.0 6.12e-04 6.4 8.57e-03 —

480 1.49e-03 3.8 6.71e-06 6.5 3.78e-06 7.3 2.60e-06 11.

960 9.56e-05 4.0 9.98e-08 6.0 6.52e-09 9.2 3.30e-09 9.6

1920 6.00e-06 4.0 1.51e-09 6.0 2.34e-11 8.1 3.91e-13 9.7

(b) Errors obtained with the ZDS scheme.

R=1 R=2 R=3 R=4

N eH ordH eH ordH eH ordH eH ordH

120 1.87e-03 — 9.90e-03 — 9.41e-04 — — —

240 1.15e-04 4.0 1.57e-05 9.3 3.96e-06 7.9 1.20e-05 —

480 7.21e-06 4.0 2.17e-07 6.1 9.55e-09 8.7 2.24e-09 12.

960 4.51e-07 4.0 3.33e-09 6.0 3.25e-11 8.2 5.14e-13 12.

1920 2.82e-08 4.0 5.18e-11 6.0 1.24e-13 8.0 4.60e-16 10.

(c) Errors obtained with the classical schemes.

MA2 CS4 KL6 KL8

N ex ordx ex ordx ex ordx ex ordx

120 1.40e-02 — 4.61e-04 — 4.76e-05 — 1.36e-06 —

240 1.71e-03 3.0 4.24e-05 3.4 5.59e-07 6.4 4.26e-09 8.3

480 2.45e-04 2.8 4.63e-06 3.2 8.15e-09 6.1 1.61e-11 8.0

960 4.20e-05 2.5 5.41e-07 3.1 1.25e-10 6.0 6.26e-14 8.0

1920 8.74e-06 2.3 6.54e-08 3.0 1.95e-12 6.0 2.44e-16 8.0

Table 8: Pendulum system from Section 5.3: error on the position and the Hamiltonian at T = 100 000s. Both rows
correspond to N = T × 3 and N = T × 12 respectively.

(a) Errors obtained with the ZD scheme.

R=2 R=4 R=6 R=8

eH(×3) 9.19e-03 2.51e-04 1.62e-04 9.60e-05

eH(×12) 3.92e-05 2.58e-08 1.04e-09 7.97e-11

(b) Errors obtained with the ZDS scheme.

R=1 R=2 R=3 R=4

eH(×3) 4.72e-05 3.78e-06 8.72e-07 1.89e-07

eH(×12) 1.85e-07 8.70e-10 5.39e-12 5.28e-14

(c) Errors obtained with the classical schemes.

MA2 CS4 KL6 KL8

eH(×3) 9.01e-04 2.05e-05 1.42e-07 7.04e-10

eH(×12) 2.48e-05 2.73e-07 3.27e-11 1.05e-14

5.4.1 Physical equations and invariants

We first derive the dynamical system associated to the Hamiltonian (27)

ẋ = p, ṗ = − x

∥x∥3
,

and, differentiating with respect to time, we obtain the relations with the second derivatives:

ẍ = ṗ, p̈ = − p

∥x∥3
+ 3x

p · x
∥x∥5

.
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Figure 2: Pendulum problem from Section 5.3: error on the Hamiltonian over time. Top panels: ZD (left) and ZDS (right)
methods; bottom panels: classical symplectic (left) and non-symplectic (right) schemes.

We deduce the first group of physical equations PE[1], given by

Dx = Zp, Dp = − Zx
∥Zx∥3

,

while the second group of physical equation PE[2] reads

Sx = Dp, Sp = − Zp
∥Zx∥3

+ 3Zx
Zx · Zp
∥Zx∥5

.

In addition to the Hamiltonian, there are two other invariant quantities for the Kepler system, namely:

1. the angular momentum
L(x,p) = x× p = p2x1 − p1x2;

2. the Laplace-Runge-Lenz (LRL) vector

A(x,p) = p× L(x,p)− x̂, with x̂ =
x

∥x∥
,

from which we extract a one-dimensional invariant by summing the two components of A(x,p), yielding

R(x,p) = (p2x1 − p1x2)(p2 − p1)−
x1 + x2

∥x∥
.
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5.4.2 Simulations

Simulations are carried out until a final time T = 100 seconds with the initial conditions x(0) = (0.4, 0) and
p(0) = (0, 2). Coarse and fine meshes, with N = 24T and N = 96T respectively, are used to check the preservation
of the invariants. We denote by eA and eL stands the errors on the angular momentum and LRL vector.

Table 9: Kepler system from Section 5.4: errors on the Hamiltonian, Angular momentum and Laplace-Runge-Lenz vector
at T = 100s. For eH, eL and eA, both rows correspond to N = T × 24 and N = T × 96 respectively.

(a) Errors obtained with the ZD scheme.

R=2 R=4 R=6 R=8

eH(×24) 4.15e-05 2.01e-05 1.52e-05 2.52e-05

eH(×96) 1.81e-07 3.83e-09 1.06e-10 4.58e-12

eL(×24) 3.25e-05 6.40e-06 1.41e-05 1.14e-05

eL(×96) 1.28e-07 1.36e-09 3.89e-11 2.45e-12

eA(×24) 4.54e-03 3.83e-04 8.63e-05 4.08e-05

eA(×96) 1.82e-05 1.06e-07 1.29e-09 2.80e-11

(b) Errors obtained with the ZDS scheme.

R=1 R=2 R=3 R=4

eH(×24) 4.83e-05 1.97e-06 3.08e-07 5.96e-08

eH(×96) 1.88e-07 4.47e-10 2.47e-12 2.73e-14

eL(×24) 1.27e-05 4.62e-07 6.02e-08 1.04e-08

eL(×96) 4.93e-08 1.06e-10 5.62e-13 6.02e-15

eA(×24) 3.26e-04 5.07e-06 3.33e-07 5.65e-08

eA(×96) 1.28e-06 1.25e-09 3.52e-12 2.67e-14

(c) Errors obtained with the classical schemes.

MC2 CS4 KL6 KL8

eH(×24) 3.56e-03 7.37e-05 7.27e-09 3.67e-12

eH(×96) 2.22e-04 1.07e-06 1.73e-12 5.69e-17

eL(×24) 7.95e-76 3.11e-76 7.00e-76 1.91e-75

eL(×96) 7.17e-76 5.96e-76 1.00e-75 1.11e-75

eA(×24) 5.23e-02 1.87e-04 5.13e-07 1.49e-10

eA(×96) 3.16e-03 1.80e-06 1.26e-10 2.29e-15

We report in Table 9 the deviations of the three invariants using the ZD, ZDS and classical methods, respectively. First,
we note that the H errors are now mesh-dependent, and decrease when the time step decreases. Second, the ZDS
schemes have smaller error than their equivalent-order ZD versions (about 2 orders of magnitude). Comparisons with
the classical symplectic schemes show that both the structural methods provide lower errors than the CS4 scheme. On
the contrary, the KL6 (6th-order) and KL8 (8th-order) schemes clearly provide the lowest H errors in comparison with
the ZDR = 6 scheme (6th-order) and the ZDSR = 3 scheme (8th-order). We report a similar behavior for the LRL R
invariant with a particular mention for the KL8 method with a noticeable gain of three orders of magnitude regarding the
equivalent ZDSR = 3 structural scheme. Another comment concerns the conservation of the angular momentum L.
The structural schemes provide errors with the same magnitude as the Hamiltonian invariant, but the classical schemes
definitively deliver a perfect invariance where the errors are only the consequence of the machine errors due to the
quadruple precision.

We print out in Figure 3 the Hamiltonian invariant (first row), the angular momentum invariant (second row) and the
LRL invariant (third row) along time, up to T = 100. The columns correspond to the ZD scheme (first column), the ZDS
scheme (second column) and the classical schemes (third column). We display both the errors for the coarse and fine
grid. Two main comments arise: after a short transition stage, the Hamiltonian and Angular momentum errors remain
constant along the time in all cases; the LRL invariant linearly increases with time, whatever the choice of scheme.
Note that the ZDS scheme provides the smallest slope, and hence it is a good choice for long simulation time.

5.4.3 Projection on the third invariant manifold

Since the last invariant is not fully preserved, we revisit the scheme by adding a projection onto the third invariant
manifold characterized by the equation

R(x,p) = R(x0,p0) = R0.

In short, we provide new vectors Z̃xn and Z̃pn close to Zxn and Zpn such that R(Z̃xn, Z̃pn) = R0.
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Figure 3: Kepler problem from Section 5.4: errors on the invariants (Hamiltonian, angular momentum and Laplace-Runge-
Lenz vector) over time. From left to right: ZD, ZDS and classical methods; top panels: errors on the Hamiltonian; middle
panels: errors on the angular momentum; bottom panels: errors on the Laplace-Runge-Lenz vector. In this figure, the
results of the uncorrected ZDand ZDSschemes from Section 5.4.2 are presented.

To this end, given x and p assumed to be close to the manifold, we consider the optimization problem: find x̃ and p̃
that minimize

J =
1

2

∥∥∥[x̃, p̃]t − [x,p]t
∥∥∥2, under the constraint R(x̃, p̃) = R0.

We obtain an update x̃, p̃ given by

x̃1

x̃2

p̃1
p̃2

 =

x1

x2

p1
p2

− λ∇x,pR(x̃, p̃), with R(x̃, p̃) = R0,
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where

∇x,pR(x,p) =



+p2(p2 − p1)−
(x2)

2

||x||3

−p1(p2 − p1)−
(x1)

2

||x||3

2x2p1 − x1p2 − x2p2

2x1p2 − x1p1 − x2p1


.

We then use the following approximation

0 = R
(
x− λ∇xR(x̃, p̃) , p− λ∇pR(x̃, p̃)

)
−R0 ≈ R(x,p)−R0 − λ

〈
∇x,pR(x̃, p̃),∇x,pR(x,p)

〉
.

Substituting ∇x,pR(x̃, p̃) with ∇x,pR(x,p) in the inner product, and we get the approximation

λ =
R(x,p)−R0

∥∇x,pR(x,p)∥2
.

Thus, the approximation of the projection onto the third manifold is given by[
x̃
p̃

]
=

[
x
p

]
− R(x,p)−R0

∥∇x,pR(x,p)∥2

[∇xR(x,p)

∇pR(x,p)

]
.

We report in Table 10 the deviation of the invariants at the final time T = 100 using the projection. We obtain very
similar errors to the non-projection case given in Tables 9a and 9b. The correction does not bring significant change in
the error magnitude for the ZDS method. We just observe a slight reduction of the LRL error and larger errors for the
two other invariants for the ZD method.

Table 10: Kepler system from Section 5.4, with projection on the invariant LRL manifold: errors on the Hamiltonian, Angular
momentum and Laplace-Runge-Lenz vector at T = 100s. For eH, eL and eA, both rows correspond to N = T × 24 and
N = T × 96 respectively.

(a) Errors obtained with the ZD scheme.

R=2 R=4 R=6 R=8

eH(×24) 3.75e-03 3.88e-04 1.19e-04 2.16e-05

eH(×96) 8.78e-05 1.89e-07 4.21e-09 1.13e-10

eL(×24) 1.40e-03 5.68e-05 3.38e-05 1.48e-05

eL(×96) 5.16e-05 8.48e-08 1.41e-09 4.19e-11

eA(×24) 1.39e-04 3.70e-05 2.15e-05 2.66e-05

eA(×96) 2.97e-06 9.69e-09 3.95e-11 3.70e-12

(b) Errors obtained with the ZDS scheme.

R=1 R=2 R=3 R=4

eH(×24) 3.17e-03 1.66e-05 2.07e-07 9.13e-08

eH(×96) 1.25e-03 5.01e-08 1.57e-10 6.59e-13

eL(×24) 1.28e-03 2.70e-06 2.27e-07 2.25e-08

eL(×96) 7.22e-04 2.78e-08 7.71e-11 2.88e-13

eA(×24) 9.87e-05 6.85e-07 9.61e-08 4.61e-08

eA(×96) 2.45e-05 1.37e-09 4.71e-12 1.93e-14

Figure 4 shows the evolution of the three invariants with respect to time, up to T = 100. We observe two significant
changes: the error of the third invariant is constant in time after a fast transition, whereas the other two invariants are
now increasing. Therefore, we manage to bound the LRL invariant error along with time thanks to the projection, but
the price is a degradation of the other two invariants (roughly, a linear growth of the error over time). Such behavior
was also observed in e.g. Andrews and Farrell [2024].

5.5 Two-dimensional three-Body problem: the figure-eight solution

The K-body system is characterized by the position X[k] = xk ∈ R2 and the momentum P [k] = pk = mkv
k ∈ R2

of each body, where matrices X,P ∈ B are given by Xi,k = xk
i and Pi,k = pk

i , for all k ∈ {1, . . . ,K} and
i ∈ {1, . . . , I}. The Hamiltonian corresponds to the time-invariant total mechanical energy

H(X,P ) =

K∑
k=1

1

2mk
∥pk∥2 −

∑
k ̸=ℓ

Gmkmℓ

2∥xk − xℓ∥
. (28)
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Figure 4: Kepler problem from Section 5.4: errors on the invariants (Hamiltonian, angular momentum and Laplace-Runge-
Lenz vector) over time. From left to right: ZDand ZDS methods; top panels: errors on the Hamiltonian; middle panels:
errors on the angular momentum; bottom panels: errors on the Laplace-Runge-Lenz vector. In this figure, the results of
the projected ZD and ZDS schemes from Section 5.4.3 are presented.

5.5.1 Physical equations and invariants

Hamilton’s equations Ẋ = ∇PH(X,P ) and Ṗ = −∇XH(X,P ) give the first set of physical equations:

for all k ∈ {1, . . . ,K}, ẋk =
pk

mk
, ṗk = −

∑
ℓ ̸=k

Gmkmℓ
xk − xℓ

∥xk − xℓ∥3
.

Hence, the first set of physical equations PE[1] given by relations (29) – (30) derives from Hamilton’s principle:

Dx[k] =
Zp[k]
mk

, (29)

Dp[k] = −
∑
ℓ ̸=k

Gmkmℓ
Zx[ℓ]−Zx[k]∥∥Zx[ℓ]−Zx[k]

∥∥3 . (30)
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Differentiating the dynamical system once more provides the second set of physical equations PE[2], given by relations
(31) – (32):

Sp[k] =
Dp[k]
mk

, (31)

Sp[k] = −
∑
ℓ ̸=k

Gmkmℓ

(
Dx[ℓ]−Dx[k]∥∥Zx[ℓ]−Zx[k]

∥∥3 − 3
〈
Zx[k]−Zx[ℓ],Dx[k]−Dx[ℓ]

〉 Zx[k]−Zx[ℓ]∥∥Zx[k]−Zx[ℓ]
∥∥5
)
, (32)

with ⟨·, ·⟩ the usual inner product, while Zx[k], Dx[k] and Sx[k] represent the position, the velocity and the acceleration
of body k. A second invariant of the K-body system is the angular momentum L(X,P ), given by

L(X,P ) =

K∑
k=1

Lk(X[k], P [k]) =

K∑
k=1

xk × pk.

5.5.2 Numerical tests

We choose the figure-eight orbit 4,5,6 for the three-body problem (K = 3) given by Moore [1993]. To simplify the
problem, we assume that all masses are equal to 1 and take the gravity constant G = 1. The initial positions are

x1 =

(
0.97000436
−0.24308753

)
, x2

(
−0.97000436
0.24308753

)
, x3 =

(
0
0

)
,

while the initial momenta are(
0.466203685
0.43236573

)
,

(
0.466203685
0.43236573

)
,

(
−0.93240737
−0.86473146

)
,

leading to a periodic motion, with period Tp = 6.32591401228.

We report in Table 11 the deviation of both invariants at two different final times using the ZD, ZDS and classical schemes,
respectively. The conclusions are very similar to the Kepler case, namely the ZDS method shows an improvement of three
orders of magnitude regarding its equivalent (in order) ZD method. The angular momentum reaches machine epsilon
when using the classical schemes. Nevertheless, for this more complex case, we observe that, at equal convergence
order, the ZDS scheme with R = 2 (sixth-order accurate) is much more accurate than its classical equivalent KL6, and
the ZDS with R = 3 (eight-order accurate) reaches an improvement of three orders of magnitude with respect to its
equivalent KL8. Finally, we highlight that the schemes orders are the optimal ones.

Furthermore, we display in Figure 5 the errors on the Hamiltonian (first row) and on the angular momentum (second
row) for the three schemes (ZD on the left, ZDS in the middle, classical schemes on the right). Once again, the
deviations of the invariants are bounded in time after a short transition stage. The classical symplectic schemes provide
a prefect preservation of the angular momentum (up to the quadruple accuracy), whereas the structural schemes
provide an error in line with the method order.

5.6 The outer Solar system

We revisit the K-body Hamiltonian (28) for three-dimensional trajectories (I = 3). The 6-body system we consider
corresponds to the so-called outer solar system: the Sun and Jupiter, Saturn, Uranus, Neptune and Pluto Hairer et al.
[2006]. The masses and initial conditions are given 7,8 in Table 12. The initial positions are given in Astronomical
Units (1 au=149 597 870 km) and the initial velocities are given in au per earth day. The gravity constant is set to
G = 2.95912208286 · 10−4. Together with the Hamiltonian, we analyze the angular momentum, another quantity that
is time-invariant, given by the vector

a = L(X,P ) =

K∑
k=1

Lk(X[k], P [k]) =

K∑
k=1

xk × pk.

4https://www.ams.org/notices/200105/fea-montgomery.pdf
5https://www.math.uni-bielefeld.de/~rehmann/ECM/cdrom/3ecm/pdfs/pant3/simo.pdf
6https://perso.imcce.fr/alain-chenciner/huit.pdf
7https://dspace.mit.edu/bitstream/handle/1721.1/6442/AIM-877.pdf
8https://rebound.readthedocs.io/en/latest/c_examples/outer_solar_system/
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Table 11: 2D 3-body system from Section 5.5: errors on the Hamiltonian and angular momentum at T = 10s (left
subtables) and T = 1000s (right subtables). For eH and eL, both rows correspond to N = T × 12 and N = T × 48
respectively.

(a) ZD scheme, T = 10s.

R=2 R=4 R=6 R=8

eH(×12) 5.05e-05 6.88e-05 4.20e-05 9.16e-05

eH(×48) 1.60e-07 9.82e-09 4.10e-10 3.52e-11

eL(×12) 7.10e-05 2.30e-05 1.75e-05 4.85e-05

eL(×48) 2.79e-07 4.90e-09 1.84e-10 1.53e-11

(b) ZD scheme, T = 1000s.

R=2 R=4 R=6 R=8

eH(×12) 5.14e-05 6.93e-05 2.50e-04 9.26e-05

eH(×48) 1.60e-07 9.82e-09 4.10e-10 3.52e-11

eL(×12) 7.16e-05 2.46e-05 2.03e-05 9.26e-05

eL(×48) 2.79e-07 4.90e-09 1.84e-10 1.59e-11

(c) ZDS scheme, T = 10s.

R=1 R=2 R=3 R=4

eH(×12) 7.67e-05 3.62e-06 1.10e-06 8.74e-07

eH(×48) 2.98e-07 8.14e-10 5.41e-12 8.55e-14

eL(×12) 2.86e-05 1.25e-06 1.68e-07 8.17e-08

eL(×48) 1.11e-07 2.83e-10 1.98e-12 2.92e-14

(d) ZDS scheme, T = 1000s.

R=1 R=2 R=3 R=4

eH(×12) 7.68e-05 3.69e-06 1.78e-06 8.75e-07

eH(×48) 2.98e-07 8.14e-10 5.42e-12 8.55e-14

eL(×12) 2.86e-05 1.27e-06 1.68e-07 8.71e-08

eL(×48) 1.11e-07 2.83e-10 1.98e-12 2.92e-14

(e) Classical schemes, T = 10s.

MA2 CS4 KL6 KL8

eH(×12) 1.41e-01 1.37e-02 5.06e-04 1.79e-05

eH(×48) 5.71e-03 2.01e-04 1.06e-07 2.62e-10

eL(×12) 2.07e-76 4.84e-76 5.35e-76 4.32e-76

eL(×48) 3.63e-76 1.11e-75 7.60e-76 1.07e-75

(f) Classical schemes, T = 1000s.

MA2 CS4 KL6 KL8

eH(×12) 3.97e-01 6.97e-02 1.16e-03 3.61e-05

eH(×48) 5.71e-03 2.01e-04 1.06e-07 2.62e-10

eL(×12) 1.19e-73 1.12e-73 1.89e-73 1.98e-73

eL(×48) 1.38e-73 1.84e-73 5.36e-73 7.53e-73

We provide in Table 13 the maximum errors for the Hamiltonian and Angular momentum using the ZD, ZDS and
classical schemes, with coarse and fine grids, and T = 100 000 years. In each situation, we obtain the optimal order
for the ZD, ZDS and classical methods, noting that we reach the quadruple precision for the angular momentum with
the symplectic scheme. We also observe the same gain of two or three orders of magnitude between the ZD and ZDS
schemes. The KL6 scheme (6th-order accurate) provides very similar deviations compared to its equivalent ZDS with
R = 2, while the KL8 scheme (8th-order accurate) is comparable to the ZDS with R = 3. The main advantage of the
structural scheme is its ability to choose or adapt the order without modifying its implementation, only by changing the
value of the block size R.

We plot in Figure 6 the variations of the two invariants (Hamiltonian in the first row, angular momentum in the second
one) with respect to time, and with the ZD (left column), ZDS (middle column) and classical schemes (right column).
Clearly, the Hamiltonian invariant is bounded in time, and, after a short transition, the error is constant. We observe
the same behavior for the angular momentum for the ZD and ZDS methods, while the classical methods reach the
quadruple precision.

5.7 Motion of a particle in a 3D electromagnetic field

We consider a charged particle subjected to electromagnetic forces, characterized by the electric potential φ = φ(x) ∈ R
and the magnetic potential A = A(x) ∈ R3. This situation is governed by the following Hamiltonian:

H(x,p) =
1

2m
∥p− eA(x)∥2 + eφ(x),

with m and e the mass and electric charge of the particle. We denote by A(x) = [A1, A2, A3]
t the components of the

magnetic potential.

This is an example of a non-separable Hamiltonian, i.e. a problem where ∇pH depends on both x and p. The classical
schemes already used in the previous section and implemented in julia failed to solve such a problem. Hence, we
have implemented the second-order symplectic Strömer-Verlet schemes Hairer et al. [2003]. The composition method
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Figure 5: Two-dimensional three-body problem from Section 5.5: errors on the invariants (Hamiltonian and angular
momentum) over time. From left to right: ZD, ZDS and classical methods; top panels: errors on the Hamiltonian; bottom
panels: errors on the angular momentum.

Hairer et al. [2006] make it possible to reach the fourth, sixth and eighth orders of accuracy, to provide comparisons
with the structural method.

5.7.1 Physical equations

From the Hamiltonian, we derive the equations of motion given by

ẋ = ∂pH(x,p) =
1

m
(p− eA), (33)

ṗ = −∂xH(x,p) =
e

m

[
∂xA

]t
(p− eA)− e∂xφ

= e

([
∂xA

]t dx

dt
− ∂xφ

)
, (34)

with the matrix ∂xA(x) =
[
∂jAi(x)

]
i,j

∈ R3×3 and the vector ∂xφ(x) = [∂1φ(x), ∂2φ(x), ∂3φ(x)]
t ∈ R3.

From relations (33) – (34), we deduce the first group of physical equations (PE[1]) connecting the first-order derivatives

mDx = Zp − eA(Zx),

Dp = e
([

∂xA(Zx)
]t
Dx − ∂xφ(Zx)

)
,
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Table 12: Data and initial conditions for the outer solar system problem. Masses are normalized regarding the solar mass,
and the initial positions and velocities are given, respectively, in au and au per earth day.

Celestial body Mass Initial Position Initial Velocity period

Sun 1.00000597682e+00
0
0
0

0
0
0

0

Jupiter 9.547861040430e-04
-3.5023653
-3.8169847
-1.5507963

0.00565429
-0.00412490
-0.00190589

4333

Saturn 2.855837331510e-04
9.0755314
-3.0458353
-1.6483708

0.00168318
0.00483525
0.00192462

10759

Uranus 4.37273164546e-05
8.3101420

-16.2901086
-7.2521278

0.00354178
0.00137102
0.00055029

30687

Neptune 5.17759138449e-05
11.4707666
-25.7294829
-10.8169456

0.00288930
0.00114527
0.00039677

60190

Pluto (10/13) e-08
-15.5387357
-25.2225594
-3.1902382

0.00276725
-0.00170702
-0.00136504

90560

Table 13: Three-dimensional n-body problem (i.e., the outer Solar system) from Section 5.6: errors on the Hamiltonian
and angular momentum at T = 100 000 years. For eH and eL, both rows correspond to N = 480 and N = 1920
respectively.

(a) Errors obtained with the ZD scheme.

R=2 R=4 R=6 R=8

eH(480) 3.06e-04 1.07e-04 4.02e-05 3.79e-05

eH(1920) 1.26e-06 2.72e-08 5.11e-10 2.29e-11

eL(480) 9.12e-09 2.42e-09 9.37e-10 8.87e-10

eL(1920) 3.70e-11 6.15e-13 1.08e-14 5.46e-16

(b) Errors obtained with the ZDS scheme.

R=1 R=2 R=3 R=4

eH(480) 7.92e-05 2.33e-06 9.99e-08 3.48e-08

eH(1920) 3.10e-07 5.69e-10 1.52e-12 1.03e-14

eL(480) 1.76e-09 5.03e-11 2.63e-12 6.56e-13

eL(1920) 6.88e-12 1.23e-14 3.12e-17 2.36e-19

(c) Errors obtained with the classical schemes.

MA2 CS4 KL6 KL8

eH(480) 1.24e-01 6.26e-03 2.27e-05 3.29e-07

eH(1920) 7.43e-03 1.22e-04 3.55e-09 2.71e-12

eL(480) 7.91e-81 1.90e-80 2.06e-80 2.11e-80

eL(1920) 3.37e-80 2.21e-80 4.53e-80 1.17e-79

Differentiating relations (33) – (34) with respect to time, we get the second group of physical equations

mẍ = ṗ− e∂xAẋ− e∂tA

= e
([

∂xA
]t
ẋ− ∂xφ− ∂xAẋ− ∂tA

)
,

p̈ = e
d

dt

([
∂xA

]t
ẋ
)
− e∂2

xφ ẋ

= e
([

∂xA
]t
ẍ+ w − ∂2

xφ ẋ
)
,
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Figure 6: Three-dimensional n-body problem (i.e., the outer Solar system) from Section 5.6: errors on the invariants
(Hamiltonian and angular momentum) over time. From left to right: ZD, ZDS and classical methods; top panels: errors
on the Hamiltonian; bottom panels: errors on the angular momentum.

with

∂2
xφ =

[
∂i∂jφ

]
i,j

and, for all ℓ ∈ {1, 2, 3}, wℓ =

3∑
i=1

3∑
j=1

∂ℓ∂i

(
Aj

)
ẋiẋj .

The second group of physical equations (PE[2]) then reads
m

e
Sx =

([
∂xA(Zx)

]t − [∂xA(Zx)
])

Dx − ∂tA(Zx)− ∂xϕ(Zx),

Sp = e
([

∂xA(Zx)
]
Sx + w −

[
∂2
xφ(Zx)

]
Dx
)
.

5.7.2 A Sanity Check Benchmark (SCB)

The SCB consists in considering a pseudo-2D problem with very smooth magnetic and electric potentials. We take

φ(x) = − 1

0.1 + ∥x∥
, A(x) =

(
0

1000x1

0

)
.

The initial conditions are x(0) = (1, 0, 0)t and p(0) = (0, 1 + 100, 0)t, while the physical parameters are m = 1 and
q = 1, with final time T = 100.

We have carried out the simulation up to the time T = 100 using a coarse grid (N = 12T ) and finer one (N = 48T ) to
check the order of accuracy and the preservation of the Hamiltonian. We report in Table 14 the Hamiltonian deviation for
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the ZD, ZDS and Strömer-Verlet (SV) methods. Clearly, the structural schemes provide a better accuracy in comparison
to the SV version. Namely, the ZD methods provide a gain of two orders of magnitude compared to the classical SV
methods, while we obtain a gain of four to five orders of magnitude with the ZDS approach. We highlight the quality of
the compact second-derivative method, able to reach such very low errors.

Table 14: Particle in an electromagnetic field, Sanity Check Benchmark from Section 5.7.2: error on the Hamiltonian at
T = 100s. Both rows correspond to N = 1200 and N = 4800, respectively.

(a) Errors obtained with the ZD scheme.

R=2 R=4 R=6 R=8

eH(×12) 8.69e-07 2.27e-08 9.53e-10 8.56e-11

eH(×48) 3.41e-09 5.57e-12 1.43e-14 6.96e-17

(b) Errors obtained with the ZDS scheme.

R=1 R=2 R=3 R=4

eH(×12) 2.89e-07 9.42e-10 7.37e-12 1.18e-13

eH(×48) 1.13e-09 2.29e-13 8.42e-17 1.04e-19

(c) Errors obtained with the classical schemes.

SV2 SV4 SV6 SV8

eH(×12) 6.10e-04 4.66e-06 1.98e-08 2.07e-09

eH(×48) 3.80e-05 1.82e-08 4.43e-12 3.23e-14

Figure 7 displays the growth of the Hamiltonian error in time for the ZD (left panel), ZDS (middle panel) and SV (right
panel) schemes. In each case, the Hamiltonian error becomes constant after a very short growth.
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Figure 7: Particle in an electromagnetic field, Sanity Check Benchmark from Section 5.7.2: error on the Hamiltonian over
time. From left to right: ZD, ZDS and SV methods.

5.7.3 Non-separable case: particle motion for challenging potentials

We propose a more challenging benchmark, where the magnetic potential presents a singularity at x1 = 0, leading
to additional numerical difficulties to preserve the Hamiltonian. The electrostatic potential is given by φ(x) =
2 cos(x1)

2 + sin(x1)
2(sin(x2) cos(x2) + sin(x3) cos(x3)), while the magnetic potential reads

A(x) =

 r2

r2 x2

x1

−2 log(1 + r2)

 ,

with r2 = x2
1 + x2

2 + x2
3. The mass and charge are set to unity, i.e., m = 1 and q = 1, and the final simulation time

is 20 000 s. At last, we use the initial conditions x(0) = (0.5,−0.25,−0.25)t and p(0) = (0, 0,−1)t. Not that this
potential leads to a truly non-separable problem.

We run the ZD and ZDS simulation for N = 12T and N = 48T whereas, for stability reason, the SV method required
much finer grids with N = 128T and N = 256T . The results are reported in Tables 15a to 15c. Once again, we observe
the superior advantage of the structural scheme to achieve very high accuracy, even with coarser grids. As usual, we get
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a gain of about two orders of magnitude between the ZD and ZDS scheme for a given order of convergence. Moreover,
we display in Figure 8 the evolution of the deviation of the theoretically invariant Hamiltonian. On the one hand, the SV
method presents a linear growth of the error as a linear function of the time, independently of the method order (almost
the same slope in log scale). We observe a similar behaviour for the fourth- and sixth-order structural methods. At
last, we notice a dramatic cut of the error growth when dealing with very high orders of accuracy, in particular the ZDS
scheme with R = 4 shows a horizontal line that indicates the boundedness of the Hamiltonian deviation.

Table 15: Particle in an electromagnetic field, non-separable case from Section 5.7.3: error on the Hamiltonian at T =
20 000 s. For the ZD and ZDS schemes, both rows correspond to N = 12 × T and N = 48 × T , respectively; for the
classical scheme, they correspond to N = 128× T and N = 256× T .

(a) Errors obtained with the ZD scheme.

R=2 R=4 R=6 R=8

eH(×12) 2.28e-01 1.31e-02 6.00e-04 3.19e-04

eH(×48) 8.45e-04 3.51e-06 1.11e-08 6.18e-11

(b) Errors obtained with the ZDS scheme.

R=1 R=2 R=3 R=4

eH(×12) 1.34e-02 1.15e-04 7.59e-07 6.44e-07

eH(×48) 5.29e-05 2.95e-08 1.24e-11 2.64e-14

(c) Errors obtained with the classical schemes.

SV2 SV4 SV6 SV8

eH(×128) 8.97e-02 3.82e-04 5.01e-06 4.90e-08

eH(×256) 4.52e-02 2.41e-05 7.88e-08 1.76e-10
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Figure 8: Particle in an electromagnetic field, non-separable case from Section 5.7.3: error on the Hamiltonian over time.
From left to right: ZD, ZDS and classical methods.

5.8 Complexity and function calls

In this section, we analyse the complexity and function calls of the structural methods (ZD and ZDS) compared to
classical symplectic schemes. We first provide a detailed complexity analysis for both separable and non-separable
cases in Section 5.8.1. We then present, in Section 5.8.2, the average number of iterations and function calls required by
the fixed-point method used in the structural schemes. This complexity and function call analysis helps to understand
the computational efficiency and performance of the proposed methods.

5.8.1 Complexity analysis for a single time step

We start with comparing the methods introduced in this article to classical ones, in terms of algorithmic complexity.
We assume that the Hamiltonian system governs the behaviour of K bodies in dimension I: therefore, the system has
neq := 2IK equations. Moreover, in the structural method (as well as the classical ones in the non-separable case),
non-linear equations have to be solved. We denote by nit the number of iterations of the non-linear solver (a fixed-point
method in the structural method, and Newton’s method for the classical schemes). This number of iterations depends on
the method, and we denote by nSV

it , nZD
it and nZDS

it the number of iterations for the SV, ZD and ZDS methods, respectively.
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To compute the complexity, we split the problem into two main configurations: the separable and non-separable cases.
We assume that evaluating H (X,P ) and its derivatives has complexity O(1). The complexity of a single time step of
each algorithm is reported in Table 16.

Table 16: Complexity of the different schemes used and introduced in this paper.

(a) separable case

Method order sub-steps complexity

MA2 2 3 O(3neq)

CS4 4 7 O(7neq)

KL6 6 7 × 3 O(21neq)

KL8 8 15 × 3 O(45neq)

ZD R+2 N/A O
(
2Rneq

(
1+nZD

it

))
ZDS 2(R+1) N/A O

(
4Rneq

(
1+nZDS

it

))

(b) non-separable case

Method order sub-steps complexity

SV2 2 2 O
(
2neq
(
1+nSV

it

))
SV4 4 3 × 2 O

(
6neq
(
1+nSV

it

))
SV6 6 9 × 2 O

(
18neq

(
1+nSV

it

))
SV8 8 27 × 2 O

(
54neq

(
1+nSV

it

))
ZD R+2 N/A O

(
2Rneq

(
1+nZD

it

))
ZDS 2(R+1) N/A O

(
6Rneq

(
1+nZDS

it

))
In the separable case, the complexity of the classical methods only depends on the order of accuracy and system
size. On the contrary, for the structural method, the complexity also depends on the number of iterations nit in the
fixed-point method, with one additional iteration corresponding to the initialization stage. The ZDS method has twice
the complexity of the ZD method, as it requires evaluating the second derivatives of the Hamtilonian in addition to its
first derivatives. Therefore, in terms of complexity, the structural methods are slightly less favorable for low orders,
but become comparable or even slightly better for very high orders, depending on the number of iterations. These
conclusions are summarized in Table 17, where we report the ratio of the complexity of the structural methods with
respect to the classical ones.

In the non-separable case, the complexity of the structural and classical methods depend on the order, the system size,
and the number of iterations. Indeed, in the SV2 method, one has to solve two nonlinear equations and two linear ones
per unknown in the system, leading to a complexity in 2neq(1 + nit). This complexity is then multiplied by a constant
depending on the number of compositions, itself depending on the order of the method. For the structural methods, it
turns out that the complexity is almost the same as in the separable case. The only difference is that the cross derivatives
are now needed in the ZDS method, leading to an extra two evaluations of the Hamiltonian and its derivatives compared
to the separable case. Table 17 once again reports the ratio between the complexity of the structural methods and the
classical ones.

Table 17: Ratio of the complexity of the ZD and ZDS schemes with the classical ones.

Order
Separable Non-separable

ZD ZDS ZD ZDS

4
(
1+nZD

it

)
× 4/7

(
1+nZDS

it

)
× 4/7

(
1+nZD

it

)
/
(
1+nSV

it

)
× 2/3

(
1+nZDS

it

)
/
(
1+nSV

it

)
× 1

6
(
1+nZD

it

)
× 8/21

(
1+nZDS

it

)
× 8/21

(
1+nZD

it

)
/
(
1+nSV

it

)
× 4/9

(
1+nZDS

it

)
/
(
1+nSV

it

)
× 2/3

8
(
1+nZD

it

)
× 4/15

(
1+nZDS

it

)
× 4/15

(
1+nZD

it

)
/
(
1+nSV

it

)
× 2/9

(
1+nZDS

it

)
/
(
1+nSV

it

)
× 1/3

In summary, in all cases, the gain in complexity by using the structural method depends on the number of iterations of
the nonlinear solver. In addition, the number of sub-steps increases linearly with the order of accuracy for the structural
method, while this increase is superlinear, or even quadratic, for the classical methods. Therefore, to conclude on
the potential gains in computation time secured by our schemes, one has to compare the number of iterations in the
nonlinear solver, as well as the total number of time steps. This is easily done through the number of function calls,
whose analysis is presented in the next section.
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5.8.2 Function calls

On the one hand, the ZD and ZDS schemes solve the system using blocks of size R, while the total number of steps is
denoted by N . We simply call nb_iter_avg the ratio between the total number of iterations, including the fixed-point
solves, and the total number of steps N . Conversely, since one iteration over the block corresponds to R evaluations of
the Physical Equations (PE), the average number of “PE function calls” nb_call_avg is given by the ratio between
the total number of calls to PE and the number of steps N , that is nb_call_avg = R × nb_iter_avg. The classical
schemes, on the other hand, compose several semi-implicit steps, with one linear and potentially one nonlinear solve
for every semi-implicit step. The steps alternate between solving for ∇XH (X,P ) and ∇PH (X,P ). In the separable
case, we have two linear solves; in the non-separable one, a linear and a nonlinear solve are carried out. Note that, in
the specific case of the separable particle problem from Section 5.7.3, ∇PH (X,P ) is linear in P , and the nonlinear
solve for ∇PH (X,P ) is not needed, which reduces the total number of nonlinear solves.

Table 18: Number of iterations of the fixed point method for the outer solar system case, ZD scheme.

(a) N = 3000, tol = 10-30.

R=2 R=4 R=6 R=8

total iter 15000 8250 5500 4500

nb_iter_avg 5 2.75 1.83 1.5

nb_call_avg 10 11 11 12

(b) N = 12000, tol = 10-30.

R=2 R=4 R=6 R=8

total iter 54000 30000 20000 15000

nb_iter_avg 4.5 2.5 1.66 1.25

nb_call_avg 9.0 10.0 10.0 10.0

(c) N = 12000, tol = 10-15.

R=2 R=4 R=6 R=8

total iter 36000 18000 12000 9000

nb_iter_avg 12.0 6.0 4.0 3.0

nb_call_avg 24.0 24.0 24.0 24.0

Table 19: Number of iterations of the fixed point method for the outer solar system case, ZDS scheme.

(a) N = 3000, tol = 10-30.

R=1 R=2 R=3 R=4

total iter 84000 42000 30420 24000

nb_iter_avg 28.0 14.0 10.14 8

nb_call_avg 28.0 28 30.4 32.0

(b) N = 12000, tol = 10-30.

R=1 R=2 R=3 R=4

total iter 36000 18000 13575 12000

nb_iter_avg 3.0 1.5 1.13 1.0

nb_call_avg 3.0 3.0 3.4 4.0

(c) N = 12000, tol = 10-15.

R=1 R=2 R=3 R=4

total iter 24000 12404 9000 6750

nb_iter_avg 2.0 1.03 0.75 0.5625

nb_call_avg 2.0 2.06 2.25 2.25

We report in Tables 18 and 19, the total number of iterations of the fixed point method (including the initialization),
the average number of iterations and call to PE for the outer solar system (a separable example from Section 5.6) and
in Tables Tables 20 and 21, for the particle in an electromagnetic field (a non-separable example from Section 5.7),
respectively. The number of iterations decreases as we increase the value of R, since we handle larger blocks. We then
observe that the nb_iter_avg is also decreasing in both simulations. Moreover, the ratio also decreases for larger N
since we get a better predictor for the fixed point method; hence we reduce the number of iterations to reach the
tolerance value. If one releases the constraint on the tolerance to 10-15 in the last case, we almost divide the number
of iterations by two. We run faster but less accurate; therefore the user has to determine the best trade-off between
computational effort and solution quality.

Additional remarks concern the outer solar system when we take N = 12000 instead of N = 3000. We observe that
we have a substantial gain since the iteration ratio strongly diminishes with a larger number of steps. This comes from a
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Table 20: Number of iterations of the fixed point method for the particle in electromagnetic field case, ZD scheme.

(a) N = 12000, tol = 10-30.

R=2 R=4 R=6 R=8

total iter 188656 107441 77665 62836

nb_iter_avg 15.7 8.9 6.5 5.2

nb_call_avg 31.4 35.9 39.0 42.0

(b) N = 48000, tol = 10-30.

R=2 R=4 R=6 R=8

total iter 473032 256917 182448 142823

nb_iter_avg 9.6 5.4 3.8 3.0

nb_call_avg 19.7 21.4 22.8 23.8

(c) N = 48000, tol = 10-15.

R=2 R=4 R=6 R=8

total iter 98541 57103 41795 34031

nb_iter_avg 2.1 1.2 0.87 0.71

nb_call_avg 4.1 4.8 5.2 5.7

Table 21: Number of iterations of the fixed point method for the particle in electromagnetic field case, ZDS scheme.

(a) N = 12000, tol = 10-30.

R=1 R=2 R=3 R=4

total iter 340494 202183 161918 152791

nb_iter_avg 28.4 16.8 13.5 12.7

nb_call_avg 28.4 33.7 40.5 51.0

(b) N = 48000, tol = 10-30.

R=1 R=2 R=3 R=4

total iter 856330 474821 349537 292265

nb_iter_avg 17.8 9.9 7.3 6.1

nb_call_avg 17.8 19.8 21.8 24.4

(c) N = 48000, tol = 10-15.

R=1 R=2 R=3 R=4

total iter 422185 238998 172695 143948

nb_iter_avg 8.8 5.0 3.4 3.0

nb_call_avg 8.8 10 10.8 12.0

better initialization of the fixed point method, making a smaller number of iterations with a more efficient predictor. We
highlight that the proposed initialization based on a simple Taylor expansion could be strongly improved by taking
advantage of the former values of the function and derivative computing in the previous R block.

Table 22: Number of time steps, function calls and Newton iterations for the classical schemes applied to the particle in
electromagnetic field case. On average, 3 Newton iterations are used at every time step, leading to 6 calls to the gradient
of the Hamiltonian and 3 calls to its second derivatives per time step.

(a) N = 2560 000, tol = 10-15

SV2 SV4 SV6 SV8

# time steps 2 560 000 2 560 000 2 560 000 2 560 000

# function calls 23 039 068 69 119 694 207 359 500 622 079 462

# Newton iterations 7 679 534 23 039 847 69 119 750 207 359 731

(b) N = 5120 000, tol = 10-15

SV2 SV4 SV6 SV8

# time steps 5 120 000 5 120 000 5 120 000 5 120 000

# function calls 46 034 006 138 218 150 414 695 588 1 244 123 488

# Newton iterations 15 337 003 46 069 075 138 227 794 414 701 744
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To compare the structural method to the classical ones, we provide in Table 22 the number of time steps, function
calls and Newton iterations for the classical schemes, in the case of the particle in an electromagnetic field, and with
double-precision accuracy (i.e., tol = 10-15). For the second-order SV2 schemes, in this case, three explicit sub-steps
and one implicit sub-step are carried out for each time step. With, on average, three Newton iterations per implicit
sub-step, we obtain, on average, nine function calls per time step: 3 for the explicit steps, 3 for the gradient in the
Newton iterations, and 3 for the Hessian in the Newton iteration, assuming that computing the Hessian is as expensive
as computing the gradient, which is a very conservative assumption. This number of function calls per time step is on
par with the ZD and ZDS schemes for tol = 10-15. However, since the classical schemes require much more time steps
in order to ensure stability, it turns out that the total number of function calls is much higher for the classical schemes
than for the structural ones.

Based on the preceding analysis, we can summarize the key conclusions as follows:

• One of the key benefits of the structural method is its unconditional stability. Indeed, one can take very large
time steps, which leads to a significant reduction in the number of function calls without loss in accuracy.

• In the separable case, both approaches allow for large time steps. For high orders of accuracy and large
number N of time steps, the structural schemes are faster because nZD

it and nZDS
it remain small. At lower orders

and small values of N , the structural method is slower, but its precision remains superior. As a result, we
maintain a better speed-to-accuracy ratio overall.

• In the non-separable case, regardless of N , our method has a smaller complexity if a similar amount of
iterations in the nonlinear solver is required. Even when the number of iterations is larger, the structural
method still has a significant advantage, namely its unconditional stability. In the particle case (where the
number of iterations was comparable), the classical method required time steps about 20 times smaller than
the structural method to ensure stability.

In conclusion, the structural method is, in general, slightly faster than classical methods in the separable case, and
significantly faster in the non-separable case.

6 Conclusions

In this paper, evidence was brought forward of the ability of the structural method to provide stable and accurate
solutions in the specific context of Hamiltonian systems. We have detailed the design of the method, and provided
numerical experiments with different classical Hamiltonian systems, systematically comparing the results to well-known
symplectic solvers. These experiments showed that our method is quite efficient and fast, and, in the ZDS case, provides
a solution of excellent quality. We also tackled a non-separable system to prove the superiority of the structural method
with respecto to other schemes. In short, we have provided a general framework for the numerical approximation of
Hamiltonian systems, that can easily be adapted to large classes of problems.

We would like to highlight that our method is quite versatile (e.g. by adapting the block size to fix the convergence
rate), very easy to implement, and with a low memory consumption. Unconditional stability is also a desirable property,
since it makes it possible to reduce the computational effort involved in dealing with long-time simulations by taking
large time steps. Additionally, we also mention the simplicity of the fixed point method to solve non-linear problems
where all the matrices and inverse matrices associated to the structural equations are computed once in a pre-processing
stage, that dramatically reduces runtime. At last, we achieve very high accuracy that requires quad-precision (even
octa-precision) when we use the ZDS scheme with R > 2.

A final remark is the ability to produce more physical equations by differentiating the physical equations twice (or
more), and by and including the third-order (or higher-order) derivatives in the structural equations. That way, extreme
accuracy (more than one hundred correct digits) would be obtained, which could be useful for applications requiring
very long simulation times and very accurate approximations (planet or satellite positioning, for instance).
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