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ABSTRACT: Several studies have reported an increasing occurrence of poly- and
perfluorinated alkyl substances (PFASs) in Arctic wildlife tissues, raising concerns
due to their resistance to degradation. While some research has explored PFAS’s
physiological effects on birds, their impact on reproductive functions, particularly
sperm quality, remains underexplored. This study aims to assess (1) potential
association between PFAS concentrations in blood and sperm quality in black-
legged kittiwakes (Rissa tridactyla), focusing on the percentage of abnormal
spermatozoa, sperm velocity, percentage of sperm motility, and morphology; and
(2) examine the association of plasma levels of testosterone, corticosterone, and
luteinizing hormone with both PFAS concentrations and sperm quality parameters
to assess possible endocrine disrupting pathways. Our findings reveal a positive
correlation between the concentration of longer-chain perfluoroalkyl carboxylates
(PFCA; C11−C14) in blood and the percentage of abnormal sperm in kittiwakes.
Additionally, we observed that two other PFAS (i.e., PFOSlin and PFNA), distinct from those associated with sperm abnormalities,
were positively correlated with the stress hormone corticosterone. These findings emphasize the potentially harmful substance-
specific effects of long-chain PFCAs on seabirds and the need for further research into the impact of pollutants on sperm quality as a
potential additional detrimental effect on birds.
KEYWORDS: black-legged kittiwake, per- and polyfluoroalkyl substances, sperm morphology, sperm velocity, testosterone,
luteinizing hormone, corticosterone, svalbard

1. INTRODUCTION
Per- and polyfluoroalkyl substances (PFASs) constitute a large
family of synthetic chemicals, massively used for their unique
surfactant properties, and characterized by their strong
carbon−fluorine bonds that confer resistance to environmental
and biological degradation.1 This resilience contributes to the
pervasive presence of PFASs in ecosystems globally, with
occurrence in water, soil, atmosphere and living organisms,
raising concerns about their potential for bioaccumulation and
the associated environmental and health risks.2−4 Over the last
few decades, there has been a significant increase in research
documenting the accumulation and effects of PFASs in wildlife.
Seabirds, for instance, have been shown to bioaccumulate
PFASs, as indicated by the measurement of relatively high
concentrations of several perfluoroalkyl carboxylates (PFCAs)
and perfluoroalkanesulfonates (PFSAs) as well as emerging or
alternative PFAS in blood, eggs, and internal organs.5−9 Some
PFASs are shown to be endocrine and metabolic disruptors,
with the potential to alter key physiological functions, and
consequently influence male reproductive capabilities through
alteration of the hormonal balance.4,7 For instance, testoster-
one and luteinizing hormone (LH)�the primary hormone

that stimulates testosterone production�are both major
hormones involved in physiological and behavioral processes
that enhance fecundity in vertebrates,4,10,11 Notably, studies on
domestic geese have shown that LH and testosterone are
linked to sperm quality, including sperm count, motility, and
morphology. A decline in these hormones is associated with
the progressive regression of efficiency of spermatogenesis.12 In
contrast, increases in LH and testosterone have been
associated with enhanced sperm motility and a higher
percentage of normal sperm morphology in zebra finches
and Northern pintails.13,14 Corticosterone is known for its
wide-ranging effects on metabolism and behavior but has also
been linked to reproductive function.15 Notably, research
indicates that elevated level may negatively affect testis
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development and sperm motility in roosters.16−18 Therefore,
disruptions in the equilibrium between these hormones could
potentially lead to compromised spermatogenesis and overall
reproductive capacity.

In black-legged kittiwakes (Rissa tridactyla), sentinels of
Arctic environmental pollutants, PFAS exposure is linked to
several physiological disruptions. These include alterations in
carotenoid-based colorations, hinting at carotenoid metabolism
interference,19 elevated thyroid hormones leading to increased
energy expenditure20,21 and changes in oxidative stress markers
alongside reduced corticosterone levels, suggesting stress
response and metabolic impacts.7,22 Previous research on the
reproductive effects of PFAS has been limited and yields
contradictory findings. While some studies have identified an
impact of PFAS on hatching success, others have not observed
any significant reproductive effect.23 In addition, research
across various bird species has highlighted how pollutants, such
as pesticides and heavy metals, can detrimentally affect sperm
quality and reproductive functions.24−26 However, to the best
of our knowledge, the specific impact of PFASs on sperm
quality in wild birds remains unexplored.

In a Svalbard-nesting population of black-legged kittiwakes
(Rissa tridactyla) that are highly exposed to PFAS,7 we recently
established a noninvasive method to collect viable sperm
samples based on a simple massage technique applied to male
kittiwakes, which exhibited a high proportion of abnormal
sperm cells.27 This opens new research opportunities to accrue
evidence of PFAS toxicity and document any possible
consequences on reproductive function in seabirds. In this
context, this study aims to (1) examine the relationships
between plasma PFAS concentrations in black-legged
kittiwakes and sperm quality parameters, including the
proportion of abnormal spermatozoa, sperm velocity, percent-
age of motile spermatozoa and intraindividual variation in
sperm size; and (2) examine the association of plasma levels of
hormones involved in spermatogenesis (testosterone, cortico-
sterone, and luteinizing hormone,10,28 with both PFAS
concentrations and sperm quality parameters to assess possible
endocrine disrupting pathways. The choice of these sperm
quality parameters relies on several variables that, individually
or in combination, have been demonstrated to effectively
predict the fertilizing potential of sperm across various
species.29,30 Compared to other species, male kittiwakes
exhibit a substantial extent of intramale, within-ejaculate
variation in sperm morphology.27 Several nonmutually
exclusive explanations as to why sperm morphology varies
within ejaculates despite stabilizing selection in favor of an
optimal sperm design have been put forward.31−33 In
kittiwakes, a species with low levels of sperm competition if
any, the most likely explanation for intramale, within-ejaculate
variation in sperm morphology is the production of large
sperm numbers associated with errors in sperm production due
to inevitable developmental errors. Therefore, we hypothesized
that exposure to PFASs may disturb sperm quality control
processes and lead to higher levels of within-ejaculate variation
in sperm morphology.

We hypothesized that PFAS concentrations will negatively
correlate with sperm velocity (VCL) and the percentage of
motile sperm, while we expected positive correlations with the
percentage of abnormal spermatozoa and within-ejaculate
variance in morphology, suggesting an alteration of the sperm
quality control at higher PFAS exposures. We anticipated that
PFAS levels would be associated with lower testosterone and

LH levels, while corticosterone levels may rise with PFAS
exposure, suggesting potential hormonal disruption and stress-
related endocrine effects. We predict that lower testosterone
and LH levels would correlate with reduced sperm motility
along with increased abnormalities and variance in sperm
morphology, reflecting their role in sperm quality control.
Conversely, elevated corticosterone levels could be associated
with reduced sperm motility and increased abnormalities and
within-ejaculate variance.

2. MATERIAL AND METHODS
2.1. Field Study Design. Fieldwork was conducted from

May 25th to June sixth, 2016, and from May 25th to June
third, 2017, in a black-legged kittiwake colony at Kongsfjord
(Krykkjefjellet, 78°54′N, 12°13′E), Svalbard (European
Arctic). We investigated a total of 76 males (n = 50 in 2016
and n = 26 in 2017), capturing them at their nests with a nylon
noose attached to a telescopic pole during the prelaying phase,
which includes both courtship and copulation. However, we
only analyzed a subset of males to match the sample size of
hormones and/or sperm quality parameters samples (n = 25 in
2016 and n = 26 in 2017; Table S1). Males previously
identified through molecular sexing techniques34 were
recognized by white PVC bands, marked with a three-letter
code, and attached to their tarsus. We monitored the nests of
sampled birds every 2 days with a mirror on a telescopic pole
to determine the laying date.

2.2. Blood and Sperm Collection. After capture, we
collected a blood sample (approximately 0.5 mL) from the
brachial vein within 3 min using a heparinized syringe and a
25-gauge needle. We considered blood samples taken within
this 3 min to reflect baseline corticosterone levels because
there was no statistical evidence of a relationship between
handling time and corticosterone levels (p = 0.16).35 Another
blood sample (approximately 2 mL) was collected to measure
the PFAS concentrations. These samples were immediately
chilled on ice in the field and, upon return to the lab, separated
into plasma and red blood cells (RBCs) by centrifugation and
then stored at −80 °C for hormones or at −20 °C for PFASs
analyses.

Sperm samples were successfully collected from a subset of
43 males (n = 17 in 2016 and n = 26 in 2017) by gently
massaging the lower back and base of the tail, following the
protocol described by Humann-Guilleminot and colleagues.27

Approximately 5 μL of sperm was mixed with 5 μL of DMEM
(Dulbecco’s modified Eagle medium, 4500 mg glucose/L, 110
mg/L sodium pyruvate, and L-glutamine) heated at 40 °C
(average body temperature of kittiwakes; Barrett 1978; Brent
et al. 1983) and 3 μL of the mix sperm−DMEM were
transferred into a 20 μm deep chamber slide (Leja Products
B.V., The Netherlands) for video recording under the
microscope (Olympus BX43 microscope − Olympus Co.,
Japan�with a 10× objective under negative phase contrast).
We maintained the mix sperm−DMEM at 40 °C using a
heating glass plate fitted to the microscope stage (MATS-
U55S, Olympus Co., Japan). A small droplet from the ejaculate
was also immediately smeared with 10% formalin (1:9 v:v; i.e.,
4% formaldehyde) on a glass slide.

2.3. Sperm Quality Parameters. We assessed sperm
quality following protocol described in Humann-Guilleminot
et al., 2018.27 In brief, we recorded 5-s videos on four to five
different fields to maximize the number of tracked
spermatozoa. From each video, we used the computer-assisted
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sperm analysis (CASA) plugin36 for ImageJ37 to estimate
curvilinear velocity (VCL: total point-to-point distance
traveled by the sperm over the time period analyzed averaged
to a per second value, μm/s) in samples collected in 2016 and
2017. The CASA also estimated the percentage of motile
sperm.

In 2016 only, from each slide with the mix sperm-formalin,
we took photos of ten intact sperm cells using the Nikon ACT-
1 v2.70 software (Nikon Corporation, Japan) with a Nikon
DFC7000T camera (Nikon Corporation, Japan) mounted on a
Leica DMR microscope (Leica Microsystems GmbH,
Germany) at 400× magnification and phase contrast 2.
About 7 to 16 sperm cells (mean ± SE: 10.1 ± 0.5) per
ejaculate were measured for head, midpiece, flagellum, and
total length. Additionally, each cell was independently
measured twice to assess the amount of variance due to
measurement error using random models.38 The percentage of
measurement error was 4.7% for head length, 12.5% for
midpiece length, 1.3% for flagellum length, and 0.2% for total
length. The average coefficient of variation [(SD/mean) ×
100] for the two measures of the same sperm was 2.5% for
head length, 5.2% for midpiece length, 1.1% for flagellum
length, and 0.6% for total length. For further analyses,
intramale variation in sperm length was assessed by calculating
the standard deviation of the mean total sperm length.

In 2016 and 2017, sperm smears were also used to assess the
percentage of abnormal sperm based on 50 spermatozoa per
slide randomly selected. Spermatozoa were classified as
morphologically normal, with abnormal head (no head, S-
shaped head, bended head, no acrosome, burst head), with
abnormal midpiece (no midpiece, broken midpiece) or with
abnormal flagellum (no flagellum, broken flagellum, folded
flagellum, flagellum with 90° angle, coiled flagellum, double
flagellum, split flagellum) as described in Humann-Guilleminot
et al., 2018.27

2.4. Hormones. Testosterone, corticosterone, and luteiniz-
ing hormone analyses were performed using radioimmuno-
assay at the Centre d’Etudes Biologiques de Chize ́ (CEBC),
France and following the protocols and methods detailed in
Goutte et al., 2010.39 We measured baseline levels of
corticosterone, testosterone, and luteinizing hormone (LH)
in plasma samples collected in 2016 only. Nine concentrations
of testosterone were below the limit of detection (i.e., 0.45 ng/
mL). Therefore, we substituted the values that were below the
LOD following the robust regression on order statistics (ROS)
method.40

2.5. PFASs. PFASs concentrations were determined from
plasma of 76 male kittiwakes (n = 50 in 2016; n = 26 in 2017)
at the Norwegian Institute for Air Research (NILU) in
Tromsø, Norway. We searched for 20 compounds: perfluor-
ooctanesulfonamide (PFOSA), perfluorobutanesulfonate
(PFBS), perfluoropropanesulfonate (PFPS), perfluorohexane-
sulfonate (PFHxS), perfluoroheptanesulfonate (PFHpS), line-
ar and branched perfluorooctanesulfonate (PFOS), perfluor-
ononanesulfonate (PFNS), pefluorodecanesulfonate (PFDcS),
perfluorohexanoate (PFHxA), perfluoroheptanoate (PFHpA),
perfluorooctanoate (PFOA), perfluorononanoate (PFNA),
perfluorodecanoate (PFDcA), perfluoroundecanoate
(PFUnA), perfluorododecanoate (PFDoA), perfluorotrideca-
noate (PFTrA), and perfluorotetradecanoate (PFTeA), and
two precursors, the fluorotelomer sulfonates (6:2 and 8:2
FTS). Only individual compounds detected in at least 70% of
the samples were kept for further analyses (i.e., 1 PFSA:

PFOSlin, and 6 PFCAs: PFNA, PFDcA, PFUnA, PFDoA,
PFTrA and PFTeA). In addition, we also assessed the total
plasma concentration of all detected PFASs subgroup PFCAs
(PFNA, PFDcA, PFUnA, PFDoA, PFTrA and PFTeA;
hereafter termed ∑PFCAs) and the total plasma concentration
of all detected PFASs (PFCAs and PFOSlin; hereafter referred
as ∑PFASs). Only PFTeA contained values below the LOD
and we substituted these values following the robust regression
on order statistics (ROS) method.40 The detailed method-
ology of PFASs analysis and quality assurance in 2016 are
given and described in Costantini et al., 2019.22 PFASs
concentrations were expressed in nanograms per gram of wet
weight (ww).

2.6. Statistical Analyses. All statistical analyses were
performed using R version 4.2.2.41 For testosterone and
PFTeA values below the LOD, we used the NADA package42

to substitute the censored values using the ROS method.40

Sperm characteristics may vary according to when sperm is
produced relative to when there are used by the females, i.e.,
the laying of the eggs.43,44 Additionally, the sperm velocity and
percentage of motile sperm are expected to decrease with the
time elapsed from sperm collection to the recording of sperm
movement. Due to our relatively small sample size, we chose
not to include the duration between sperm collection and the
laying of the first egg (days) as well as the time elapsed from
sperm collection to sperm video recording (seconds) as
covariables in multivariable models. Instead, we first explored
whether and how these two variables were correlated with
parameters of sperm quality and then decided about their
inclusion or not in further models. The laying date was
unknown for three males in 2016 and nine males in 2017 and
was imputed with the median laying date in each year.

First, we examined the relationship between each PFAS and
our four parameters of sperm quality. To this aim, we first
examined whether and how the concentrations of PFOSlin,
PFNA, PFDcA, PFUnA, PFDoA, PFTrA, PFTeA, ∑PFCAs,
and ∑PFASs were correlated within individuals and whether
and how sperm parameters were correlated within individuals.
Second, we examined potential associations between PFAS
concentrations and each of the sperm quality parameters.
Third, as an attempt to identify potential underlying
physiological pathways, and only for the sperm parameters
showing a relationship with one or several PFAS concen-
trations, we examined (1) the relationships between the sperm
quality parameter(s) of interest and blood levels of cortico-
sterone, testosterone, and LH, and (2) the relationships
between these hormone levels that showed correlation with
sperm parameters and the PFASs that were correlated with the
sperm parameter(s) of interest.

We used linear models for all of the analyses. We
standardized (centered and scaled to 1 SD) PFASs and
hormone concentrations by year to allow meaningful
interpretation of their potential relationships with each other
and with sperm parameters. The percentage of abnormal
sperm and the percentage of motile sperm were assessed in
both 2016 and 2017, and a visual inspection of the data
suggested that their relationships with PFAS concentration
may differ between years. Therefore, relevant models also
included year as an explanatory factor together with its
interaction with the PFAS concentration. Diagnostic plots were
assessed to test whether the data met the modeling
assumptions of linearity and homoscedasticity and normality
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of the residuals. No variable required transformation to meet
modeling assumptions.

Following recommendations of the American Statistical
Association,45 we do not use an arbitrary threshold (e.g., 0.05)
to interpret our results, but instead we use p values to assess
the strength of the statistical evidence to reject the null
hypothesis together with effect sizes and 95% confidence
intervals that measure the uncertainty around the point
estimates.

3. RESULTS
Summary statistics (sample size, mean ± sd, median,
minimum, and maximum values) for all PFASs, sperm quality
parameters, and hormones in 2016 and 2017 are presented in
Tables S1 and S2.

3.1. Correlations within PFASs Levels, Sperm Quality
Parameters, and Hormones Levels. We observed moderate
to strong evidence of positive correlations among the plasma
concentrations of shorter-chain PFASs: PFOSlin (C8), PFNA
(C9), PFDcA (C10), PFUnA (C11), and PFDoA (C12).
However, the longer-chain PFASs, PFTrA (C13), and PFTeA
(C14), showed little-to-no correlation with other compounds
(Figure S1).

We found no evidence for correlations among sperm quality
parameters, including the percentage of abnormal sperm, the
percentage of motile sperm, VCL, and intramale variation in
sperm length (Table S3). Similarly, no correlations were

observed among the blood concentrations of corticosterone,
testosterone, and LH (Table S4).

3.2. Correlations Between PFASs Concentrations and
Sperm Quality Parameters. First, we tested whether each
sperm quality parameter was associated with the timing of the
first egg laid (in days) and found that only the percentage of
motile spermatozoa depended on the date of the first egg laid,
being higher when sperm collection occurred well before egg-
laying and decreasing as the time of egg-laying approached
(Table S5). Consequently, we included the timing of the first
egg laid as a covariable only in the model that had the
percentage of motile spermatozoa as the response variable. We
also tested whether the percentages of motile spermatozoa and
VCL were related to the time (in seconds) from sperm
collection to video recording and did not find any correlations.
Therefore, we did not include this parameter as a covariable in
the models.

We found weak to strong statistical evidence that the
percentage of abnormal spermatozoa was positively correlated
with blood levels of PFUnA, PFDoA, and PFTeA in all years,
and with blood level of PFTrA in 2016 only (Table 1, Figures
1 and 2). There was also weak to moderate evidence that
higher ∑PFCAs and ∑PFASs were associated with increased
percentages of abnormal sperm (Table 1, Figures 1 and 2). No
correlations were found between other sperm quality
parameters (i.e., percentage of motile spermatozoa, VCL, and

Table 1. Summary of the Linear Models Examining the Relationship Between the Percentage of Abnormal Spermatozoa and
Each PFASs Compound, ∑PFCAs, and ∑PFASs in Black-Legged Kittiwakes (Rissa tridactyla)ab

Percentage of abnormal spermatozoa

Predictors Estimate ± SE 95% CI p

Intercept (year 2016) 70.49 ± 3.20 [64.01−76.97] <0.001
PFOSlin concentration
standardized

3.95 ± 3.00 [−2.12−
10.02]

0.20

Year 2017 -5.61 ± 4.17 [−14.06−
2.84]

0.19

Standardized PFOSlin ×
Year

-1.27 ± 3.99 [−9.36−6.81] 0.75

Intercept (year 2016) 70.43 ± 3.46 [63.42−77.44] <0.001
PFNA concentration
standardized

1.33 ± 3.24 [−5.23−7.89] 0.68

Year 2017 -5.56 ± 4.40 [−14.48−
3.36]

0.21

Standardized PFNA × Year 1.74 ± 4.21 [−6.78−
10.27]

0.68

Intercept (year 2016) 69.62 ± 3.31 [62.91−76.32] <0.001
PFDcA concentration
standardized

4.00 ± 2.88 [−1.83−9.82] 0.17

Year 2017 -4.76 ± 4.25 [−13.37−
3.86]

0.27

Standardized PFDcA × Year -1.30 ± 3.90 [−9.21−6.61] 0.74
Intercept (year 2016) 70.06 ± 3.09 [63.81−76.31] <0.001
PFUnA concentration
standardized

5.65 ± 2.71 [0.17−11.13] 0.04

Year 2017 -5.21 ± 4.02 [−13.35−
2.93]

0.20

Standardized PFUnA × Year -2.43 ± 3.71 [−9.95−5.09] 0.52
Intercept (year 2016) 70.48 ± 2.99 [64.41−76.55] <0.001
PFDoA concentration
standardized

7.35 ± 3.34 [0.59−14.11] 0.03

Year 2017 -5.59 ± 3.91 [−13.51−
2.33]

0.16

Standardized PFDoA × Year -2.95 ± 4.15 [−11.36−
5.46]

0.48

Percentage of abnormal spermatozoa

Predictors Estimate ± SE 95% CI p

Intercept (year 2016) 71.16 ± 2.88 [65.33−76.99] <0.001
PFTriA concentration
standardized

12.31 ± 3.68 [4.85−19.78] 0.002

Year 2017 -6.22 ± 3.76 [−13.84−
1.40]

0.11

Standardized PFTrA × Year -10.88 ± 4.39 [−19.77 −
−2.00]

0.02

Intercept (year 2016) 70.31 ± 3.00 [64.23−76.39] <0.001
PFTeA concentration
standardized

8.35 ± 3.35 [1.57−15.13] 0.02

Year 2017 -5.21 ± 3.92 [−13.15−
2.73]

0.19

Standardized PFTeA × Year -5.11 ± 4.17 [−13.57−
3.35]

0.23

Intercept (year 2016) 70.06 ± 3.09 [63.79−76.33] <0.001
∑PFCAs concentration
standardized

6.06 ± 2.92 [0.15−11.98] 0.02

Year 2017 -5.20 ± 4.03 [−13.36−
2.97]

0.21

Standardized ∑PFCAs ×
Year

-2.97 ± 3.87 [−10.81−
4.87]

0.34

Intercept (year 2016) 69.85 ± 3.02 [63.73−75.97] <0.001
∑PFASs concentration
standardized

7.35 ± 2.98 [1.32−13.39] 0.04

Year 2017 -4.99 ± 3.93 [−12.95−
2.98]

0.21

Standardized ∑PFASs ×
Year

-3.95 ± 3.87 [−11.80−
3.90]

0.31

aYear is included as covariable. bThe table shows model estimates ±
standard error (Est. ± SE) and associated 95% confidence intervals
(CI).
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intraejaculate variation in total sperm length) and any of the
PFAS concentrations (Tables S6−S8).

3.3. Correlations Between PFASs and Hormones
Concentrations. We observed weak to moderate statistical
evidence in favor of positive relationships between PFOSlin,
PFNA concentrations, and corticosterone levels in 2016
(Figure 3, Table 2), with PFUnA and PFDoA also showing
weak trends (Table 2). Evidence of a positive correlation

between corticosterone concentration and the ∑PFASs was
weak (Figure 3, Table 2). No evidence was found of
correlations between testosterone or LH levels and any
PFAS concentrations (Tables S9 and S10).

3.4. Correlation Between Corticosterone and Per-
centage of Abnormal Spermatozoa. Lastly, we inves-
tigated the relationship between the concentration of cortico-
sterone and the percentage of abnormal spermatozoa because

Figure 1. Percentage of abnormal spermatozoa in relation to the plasma concentrations of each PFAS compounds, ∑PFCAs and ∑PFASs
(standardized) in 2016 and 2017 for which there is statistical evidence of a correlation in Black-legged kittiwakes (Rissa tridactyla).

Figure 2. Effect sizes (r) along with their 95% confidence intervals (CI) of the relationship between the concentration of each PFAS compound,
∑PFCAs, and ∑PFASs with the percentage of abnormal spermatozoa in Black-legged kittiwakes (Rissa tridactyla). The “Year” column indicates
whether the effect size r and associated CI are related to a single or both years. The PFAS compounds are organized in ascending order based on
their carbon chain length (C8 to C14).
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they both appeared to be correlated with one or several PFAS
concentrations. However, we found no evidence of a
relationship between corticosterone and percentage of

abnormal spermatozoa (Est ± SE = 0.31 ± 0.58, 95% CI =
[−0.93−1.55], p = 0.60).

4. DISCUSSION
To the best of our knowledge, this is the first study
investigating the potential association between PFAS exposure
and sperm quality in wild birds. Our results indicate positive
correlations between plasma PFAS levels and the percentage of
abnormal sperm in black-legged kittiwakes from the
Norwegian Arctic. The percentage of abnormal sperm is
commonly used as a measure of sperm quality and plays a
crucial role in determining fertility among numerous
species.46−48 Our results suggest that among pollutants
prevalent in the Arctic, PFAS exposure could be associated
with an increase in the amount of abnormal sperm with
potential adverse impacts on reproductive outcomes. However,
other pollutants, not assessed in our study but known to be
present in Arctic seabirds, could also be contributing to the
impact on sperm quality, either independently or in synergy
with PFAS (e.g.,49−55). For instance, although they tend to
decrease in Arctic,56 polychlorinated biphenyls (PCBs) have
been found to adversely affect the reproductive capabilities of
adult roosters and American Kestrels, primarily by inhibiting
spermatogenesis.57,58 Furthermore, mercury and organochlor-
ines, also detected in the Arctic wildlife (e.g.53,59) have been
correlated to a decrease in sperm quality, including sperm
motility and morphology, in both rodents and humans.60,61

Given the absence of any observed associations with
hormone levels, it is possible that the synthesis of
polyunsaturated fatty acids�which are vital for maintaining
the stability and fluidity of sperm membranes62�may be
affected. Interestingly, our study also suggests that the
association between PFASs and the percentage of abnormal
sperm may be more pronounced with longer-chain PFCAs
(e.g., PFUnA, PFDoA, PFTeA), although the relationship of
PFTrA with abnormal sperm percentages was observed in
2016 only. In the same kittiwake population, the strength of
the correlation between oxidative status markers and PFASs
concentrations also increased with the chain length of
PFASs.22 These observations are in line with the experimental
work reporting higher toxicity of PFAS on rat brain cells with
increasing carbon chain length.63

While research on the reproductive effects of PFAS remains
limited in wildlife,7,23 there is a growing body of evidence
about the adverse effects of some PFAS compounds on

Figure 3. Corticosterone concentration in relation to the plasma concentrations of PFOSlin, PFNA, and ∑PFASs (standardized) in 2016 for which
there is statistical evidence of a correlation in Black-legged kittiwakes (Rissa tridactyla). Effect sizes (r) are added to the corresponding graphs.

Table 2. Summary of the Linear Models Examining the
Relationships Between Corticosterone Levels and Each
PFASs Compounds, ∑PFCAs, and ∑PFASs in Black-
Legged Kittiwakes (Rissa tridactyla)a

Corticosterone (ng/mL)

Predictors
Estimate ±

SE 95% CI p

Intercept 9.15 ± 1.18 [6.72−
11.58]

<0.001

PFOSlin concentration
standardized

2.79 ± 1.13 [0.45−5.13] 0.02

Intercept 8.66 ± 1.27 [6.04−
11.28]

<0.001

PFNA concentration
standardized

2.26 ± 1.16 [−0.14−
4.65]

0.06

Intercept 8.83 ± 1.26 [6.23−
11.44]

<0.001

PFDcA concentration
standardized

1.95 ± 1.06 [−0.25−
4.15]

0.08

Intercept 9.16 ± 1.29 [6.49−
11.84]

<0.001

PFUnA concentration
standardized

1.27 ± 1.14 [−1.09−
3.63]

0.28

Intercept 9.16 ± 1.24 [6.59−
11.73]

<0.001

PFDoA concentration
standardized

2.14 ± 1.22 [−0.38−
4.66]

0.09

Intercept 9.39 ± 1.27 [6.77−
12.02]

<0.001

PFTrA concentration
standardized

2.08 ± 1.47 [−0.97−
5.13]

0.17

Intercept 9.14 ± 1.32 [6.42−
11.86]

<0.001

PFTeA concentration
standardized

1.16 ± 1.35 [−1.64−
3.96]

0.40

Intercept 9.11 ± 1.27 [6.49−
11.73]

<0.001

∑PFCAs concentration
standardized

1.76 ± 1.16 [−0.65−
4.17]

0.14

Intercept 9.10 ± 1.23 [6.56−
11.64]

<0.001

∑PFASs concentration
standardized

2.20 ± 1.11 [−0.11−
4.50]

0.06

aThe table shows model estimates ± standard error (Est. ± SE) and
associated 95% confidence intervals (CI)
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spermatic quality in various laboratory mammals and humans.
Specifically, the perfluorotetradecanoic acid (PFTeA) has been
identified as a disruptor of spermatogenesis in Sprague−
Dawley rats.64 This disruption was attributed to a decrease in
testosterone levels, leading to a marked reduction in the sperm
count within the epididymis. Additional research documented
the effects of shorter-chain PFAS compounds, including
perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid
(PFOA), and perfluorononanoic acid (PFNA), on rodent
spermatogenesis, indicating a substantial decline in sperm
count. These studies mentioned Sertoli cells, seminiferous
tubules, and the epididymis as primary targets of PFAS-
induced damage, through direct functional lesions in the testis
and inhibition of testosterone synthesis.65−70 Further inves-
tigations showed that ingestion of PFOS in mice is causing
sperm malformation.71 In contrast, studies focusing on humans
did not observe significant decreases in semen volume or
sperm count associated with increases in PFOS, PFOA, and
PFNA contamination. Instead, these studies emphasize the
influence of PFAS at earlier stages of sperm cell and primary
spermatocyte development.72 This suggests, at least in humans,
that PFAS interfere with the normal developmental and
functional processes of these cells rather than causing direct
damage to spermatozoa.72 This interpretation is corroborated
by Ortiz-Sańchez et al., 2022,73 who found that PFOS and
PFOA can alter the viability and functionality of boar (Sus
scrofa) spermatozoa during capacitation, potentially due to
changes in the plasma membrane that disrupt calcium
transport and decrease electrochemical potential, thus
impeding spermatozoa response. The above-mentioned
discrepancies suggest that the modes of actions of PFASs on
spermatic quality may be species-dependent. This stresses the
importance to carry more research in birds to unravel how
PFAS and other pollutant contamination affects their
reproductive health. In addition, most research indicates
detrimental effects of PFOS, PFOA, and PFNA on fertility,
and we encourage further toxicological studies to focus on the
overlooked longer-chain PFCAs (C11−C14). Lastly, PFOS
showed the highest concentrations of all of the examined
compounds in both 2016 and 2017. However, contrary to what
one might expect given its effect on other species, we did not
observe any correlation of this compound with sperm quality.

To explore the potential endocrine mechanisms behind the
relationship between PFASs and the proportion of abnormal
spermatozoa, we investigated the relationships between
corticosterone, testosterone, and LH and PFAS concentrations.
These hormones are known to influence sperm quality, with
corticosterone involved in stress management and reproductive
function, testosterone critical for the development of male
reproductive tissues and spermatogenesis, and luteinizing
hormone essential to trigger testosterone production.10,28

Only PFOSlin and PFNA were positively related to cortico-
sterone levels. However, none of the hormones measured in
our study were related to the percentage of abnormal quality.
Further, no correlation between PFAS and testosterone or LH
were found. This suggests two possibilities: (1) in this
particular case, any possible detrimental effect of PFAS on
spermatic quality may not be triggered by endocrine disruption
of these sexual hormones or (2) sperm quality might be
compromised by pollutants other than PFASs. The lack of a
relation between corticosterone levels and the rate of abnormal
spermatozoa further suggests that hormonal pathways may not

play major roles in the potential impact of PFAS on sperm
quality in this species.

To conclude, our study suggests a positive correlation
between PFAS and a higher number of abnormal sperm in
Arctic kittiwakes. Yet, we were not able to shed light on
potential underlying endocrine disrupting mechanisms.
Despite the consistency in the results both in 2016 and
2017, the present correlative approach precludes any firm
conclusions about possible causal effects. Furthermore, we
cannot preclude the potential influence of other pollutants in
the Arctic as contributing factors to the results of this study.
We encourage further studies to address similar questions in
more free-living species exposed to a wide range of
environmental pollutants.
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