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A B S T R A C T

Active grids operated with random protocols are a standard way to generate large Reynolds number turbulence in wind and water tunnels. But anomalies in the decay 
and third-order scaling of active-grid turbulence have been reported. We combine Laser Doppler Velocimetry and hot-wire anemometry measurements in a wind 
tunnel, with machine learning techniques and numerical simulations, to gain further understanding on the reasons behind these anomalies. Numerical simulations 
that incorporate the statistical anomalies observed in the experimental velocity field near the active grid can reproduce the experimental anomalies observed later 
in the decay. The results indicate that anomalies in experiments near the active grid introduce correlations in the flow that can persist for long times.
1. Introduction

Since the first active grid was proposed in the early 1990s [1], active 
grids have become a standard instrument for generating bespoke turbu-
lent flows in wind and water tunnels [2]. These devices are composed of 
rotating blades that can be operated independently and, therefore, can 
be used to tune the large scales of the flow, allowing for the tailoring 
of inhomogeneous velocity profiles [3,4] and even unsteady conditions, 
such as gusts and velocity steps [5,6]. These properties also make them 
of interest for studying turbulent wakes under different inflow condi-
tions, allowing for the simulation of field conditions for scaled wind 
turbine rotors [7–9].

One of the most widespread uses of active grids is to generate 
moderate-to-high Reynolds numbers in a wind tunnel with large val-
ues of turbulent intensity. By operating the blades in various random 
protocols, the lack of a characteristic time scale at the turbulence gen-
eration results in integral time and length scales that are on the order 
of the wind tunnel’s lateral size instead of the mesh size, as is the case 
with static grids [1]. This strategy allows to increase the separation of 
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scales, reaching Reynolds numbers based on the Taylor microscale as 
large as 𝑅𝜆 ∼ 1500 in standard wind tunnel facilities [10]. Moreover, 
for variable density facilities, values as large as 𝑅𝜆 ∼ 5000 have been 
reported [11,12]. Furthermore, random protocols still generate turbu-
lent flows that are close to homogeneous and isotropic turbulence (HIT) 
conditions [13,14] (meaning that the flow is as close to HIT as for reg-
ular static grids). Consequently, active grids have been used to study 
fundamental turbulence [15–17] and even two-phase flows [18–21].

While active grids operated with random protocols have been exten-
sively used in several studies, many open questions remain concerning 
the properties of the turbulent flow they generate. For instance, kinetic 
energy has been found, in some cases, to decay in space and time follow-
ing a power law with exponents different from those reported in static-
grid-generated turbulence [22]. Also, anomalous behaviour has been 
reported for the compensated longitudinal averaged structure function 
𝑆3(𝓁)∕ (𝜀𝓁), where 𝜀 is the averaged turbulent kinetic energy dissipa-
tion rate, 𝓁 the spatial increment, and 𝑆3(𝓁) is defined as

𝑆3(𝓁) = ⟨[𝑢′(𝑥+ 𝓁) − 𝑢′(𝑥)]3⟩, (1)
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with 𝑢′(𝑥, 𝑡) the fluctuating streamwise velocity. While for homogeneous 
isotropic turbulence, within the Kolmogorov phenomenology, the value 
of 𝑆3(𝓁)∕ (𝜀𝓁) should be equal or lower than 0.8 [23], experiments in 
active grids have reported results above this number [24] for stream-
wise distances 𝑥 as large as 𝑥∕𝑀 = 30 (with 𝑀 the mesh size of the 
active grid). For larger streamwise distances (𝑥∕𝑀 > 80), this anomaly 
is no longer observed [13]. Moreover, it has been reported that at 
𝑥∕𝑀 = 75 the far field already presents two-point statistics indepen-
dent of 𝑅𝜆 [14,25]. Note that for passive grids, turbulence is expected 
to be fully developed in the range 20 < 𝑥∕𝑀 < 50 [26,27], whilst for 
active grids such distance is expected to be much shorter [28,10]. As a 
result, statistical anomalies in active-grid-generated flows seem to last 
for longer streamwise distances than for their static counterparts, before 
reaching a universal behaviour close to the one predicted within the 
Richardson-Kolmogorov phenomenology. While some of the reported 
anomalies are probably related to the persistence of inhomogeneities 
and/or anisotropy, no clear explanation has been provided to assess the 
anomaly in 𝑆3(𝓁) in the near field of the wake.

Another issue that arises when comparing active-grid turbulence 
generated with random protocols to other turbulent flows is the diffi-
culty in defining time and length scales that would allow to compare 
different statistics among them. For instance, the autocorrelation func-
tion of velocity also presents anomalies, as in some cases it never crosses 
zero, making it difficult to define an integral length scale [29,30]. This 
issue arises when purely random protocols are used, implying that the 
forcing imposed by the grid is statistically unsteady. The lack of clearly 
defined length scales also complicates the delineation of the production 
range in the near field of the turbulent flow. Moreover, the very high val-
ues of turbulence intensity near the grid (which can reach 50% or even 
more) make it challenging for some standard collection techniques, such 
as hot-wire anemometry, to properly quantify the flow. Indeed, the use 
of Taylor’s hypothesis in these flows presents certain limitations [31]. 
Furthermore, the large scale separation in these flows makes them also 
extremely difficult to be characterised via standard optical techniques.

The present work aims at gaining further understanding about 
the decay of active-grid-generated turbulence using random protocols. 
Given the significant problems related to characterising this flow exper-
imentally, we turn as well to numerical simulations. In practice, Laser 
Doppler Velocimetry (LDV) is initially used to characterise the turbulent 
flow at 𝑥∕𝑀 = 3. This technique results in a resolved two-dimensional 
(2D) map of velocity (including the average value and higher moments) 
in the plane perpendicular to the freestream velocity. Direct numerical 
simulations (DNSs) are then used to understand in more detail the flow 
physics, as they provide access to the full velocity field, with all dy-
namical scales properly resolved, and hence they allow computation of 
gradients and correlations. Note that turbulence in wind tunnels is often 
compared with simulations of homogeneous and isotropic turbulence. 
In particular, the flow at different distances from the grid is compara-
ble to the numerical evolution of a flow in the absence of forcing (i.e., 
freely decaying), where the initial condition is usually consistent with a 
fully developed turbulent state. In our case, in order to generate proper 
initial conditions for 3D DNSs that can resemble the near-active-grid 
flow in a statistical sense, we use a protocol which combines Physics-
Informed Neural Networks (PINNs) [32] with a data assimilation tech-
nique known as nudging [33,34]. The combination of the two has been 
shown to be successful at generating turbulence-compatible velocity 
fields with fixed given statistical moments [35]. This approach allows 
us to create a 3D box that is evolved in time using the DNS code, fully 
capturing and characterising the decay of turbulence. For the sake of 
comparison, we also tested synthetic initial conditions that correspond 
to HIT. Hot-wire anemometry (HWA), performed at 𝑥∕𝑀 = 30, finally 
allows us to test small-scale information (such as 𝑆3(𝓁)) in the wind tun-
nel experiment, aiming at verifying the anomalies previously reported in 
active-grid-generated turbulence, and matching the timescales between 
DNSs and experiments. In summary, the methodology used in this study 
2

is the following: (1) We use LDV measurements to characterize the flow 
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near the active grid. (2) We used PINNs and nudging to assimilate the 
statistical information of these measurements in DNSs. (3) We compare 
the DNSs time evolution with HWA wind tunnel measurements down-
stream.

2. Experimental set up and measurements

We carried out experiments in the Lespinard wind tunnel at LEGI, 
Grenoble, France. This closed-loop wind tunnel has a test section of 4 m 
long and a cross section of 0.75 × 0.75 m2. Turbulence was generated 
by means of an active grid (denoted herein as AG), comprised of 16 
rotating axes, eight horizontal and eight vertical, each mounted with 
coplanar square blades. Both the grid mesh size and the blades have a 
size equal to 𝑀 = 10 cm. We used the grid in ‘triple-random mode’, i.e., 
the rotation rates and directions were varied randomly in time to ran-
dom values. As stated in the previous section, this protocol is expected 
to generate a near-HIT flow (see more details in [18,15]). In this way, 
we generate a turbulent flow with a mean flow velocity 𝑈∞ = 4.6 m/s 
in the streamwise direction (𝑥̂), measured in the region where turbu-
lence is developed. Panel (a) of Fig. 1 shows a schematic representation 
of the setup, depicting the coordinate system, the wind direction, and 
the active grid.

2.1. The flow near the active grid: Laser Doppler Velocimetry measurements

We performed measurements at 𝑥𝐿𝐷𝑉 = 0.3 m (3𝑀) downstream 
of the grid with an LDV system. This position corresponds to the region 
closest to the AG which is optically accessible. In particular, we used the 
closed measurement system LaserExplorer (Dantec Dynamics), which 
provides access to two components of the velocity field 𝐮 = 𝑢𝐱̂+𝑣𝐲̂+𝑤𝐳̂. 
We measured the velocity components in the streamwise direction 𝑢
and in the vertical direction 𝑤, in a 2D plane parallel to the grid, and 
centred about the geometrical centre of the tunnel section, covering a 
total area of 10 × 10 cm2 (i.e., one entire mesh size in each direction), 
with a separation of 1 cm in each direction. For the measurements that 
we performed, the velocity resolution was of 1 × 10−3 m/s.

Fig. 1(b) shows a heat map of the turbulence intensity, computed 
from the r.m.s. value 𝜎𝑥 of streamwise component of the velocity fluctu-
ations 𝑢′, normalised by the mean velocity ⟨𝑈𝑥⟩ in the region spanned 
by our measurements. The fluctuations are computed by averaging in 
time the signal at each of the measurement points, while the value of ⟨𝑈𝑥⟩ corresponds to the ensemble average of the mean velocity of each 
measurement point. We observe a high level of turbulence intensity, 
which ranges from around 48% up to more than 60% in some points, 
with no clear structure or identifiable pattern. Note that there is no tem-
poral correlation between the measurements in each of the grid points, 
as the whole LDV system has to be repositioned each time the observed 
point was changed. However, we verified that the observed behaviour 
is systematic and repeatable (in a statistical sense). In consequence, it is 
probably related to small differences in the shafts and motor responses 
due to small design irregularities and the ageing of the system. The high 
level of fluctuations can also be observed in panel (c) of Fig. 1, which 
shows the time signal 𝑢(𝑡) in a given measurement point. Interestingly, 
the fluctuations are high enough to observe flow reversal (i.e., negative 
velocities). We observe a similar behaviour for the spanwise velocity 
𝑤, whose time evolution is shown in Fig. 1(e), where a high level of 
fluctuations is also present (albeit with a mean value close to zero, as 
expected). Panels (d) and (f), also in Fig. 1, show the probability den-
sity functions (PDFs) corresponding to the temporal velocity signals 𝑢
and 𝑤, respectively. Normal distributions with the same mean and stan-
dard deviation as the data are shown as references. We observe that the
PDFs are non Gaussian, and that they present an asymmetry, and we 
observe a similar trend in the other points. We quantify this asymmetry 
by estimating the centralised third-order moment, 𝑠, of the streamwise 

velocity component 𝑢 at a point 𝑖 on the measurement grid,
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Fig. 1. (a) Schematic of the wind tunnel in LEGI where experiments were carried out (representation not to scale), showing the position where the laser Doppler 
velocimetry (LDV) and hot-wire anemometry (HWA) measurements were taken. (b) Turbulence intensity heatmap from LDV measurements. Panels (c) and (e) show 
raw LDV velocity measurements of the streamwise, 𝑢, and spanwise, 𝑤, velocity components respectively, while (d) and (f) show the probability density functions 
(PDFs) of each signal.
𝑠𝑖 =
[⟨(

𝑢𝑖 − ⟨𝑢𝑖⟩)3⟩]1∕3, (2)

where ⟨⋅⟩ indicates a time average. Note we take the cubic root (as com-
pared to the standard definition of the moment of a distribution) as this 
presents some numerical benefits in the setup of the simulations, as we 
will discuss later. Then, the overall “skewness” 1 𝑠𝐿𝐷𝑉 over the entire 
measurement region is computed by averaging 𝑠𝑖 over all of the sam-
pling points, which yields

𝑠𝐿𝐷𝑉⟨𝜎𝑥⟩ = 0.51 ± 0.15, (3)

where ⟨𝜎𝑥⟩ represents the average streamwise velocity fluctuations over 
the domain. Across the entire region 𝑠𝑖 presents variations compatible 
with those observed for the velocity fluctuations (see panel (b) in Fig. 1), 
and is consistently different from zero, i.e., the deviation from Gaussian-
ity that we observe near the grid is systematic. We highlight that other 
measurement techniques, such as hot-wire anemometry (see next sec-

1 We use here the term skewness in a loose way as a synonym of third-order 
3

centralised moment.
tion), are not capable of capturing the flow reversal events, so the use 
of the LDV technique is key to characterise the flow in the region near 
the AG.

2.2. Fully developed turbulence region: hot-wire measurements

Under the same flow conditions used for the LDV measurements, 
we performed measurements with a hot wire (HW) probe, positioned at 
𝑥𝐻𝑊 = 3.0 m (30𝑀) downstream of the active grid, and at the centre 
of the tunnel. We used a Dantec Dynamics 55P01 probe, with a con-
stant temperature anemometer Dantec StreamLine. We collected data 
for 180 s with a sampling frequency of 50 kHz. As discussed in the pre-
vious section, the position of the HW corresponds to the typical location 
where turbulence is expected to be fully developed, at a distance roughly 
equal to 30𝑀 but some anomalous behaviour, particularly in terms of 
the third-order longitudinal structure function, may be expected. Since 
at this position the turbulence intensity is approximately 17.6%, we 
make use of Taylor’s frozen-turbulence hypothesis to reinterpret the 
measured time signal 𝑢(𝑡) as a space-dependent signal 𝑢(𝑥). Conversely, 
we can interpret the fixed position of the hot-wire probe as a fixed time 

in the evolution of the free decay of the turbulence generated at the 
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Fig. 2. Hot-wire (HW) measurements taken downstream of the wind-tunnel at 𝑥𝐻𝑊 ∕𝑀 = 30, for 𝑅𝜆 = 470. (a) One dimensional kinetic energy spectrum 𝐸(𝑘), 
computed from the streamwise velocity 𝑢, non-dimensionalised by a large scale velocity 𝑈0 and a large-scale length scale 𝐿0. (b) Third order velocity structure 
function, also computed from 𝑢, and normalised by 𝜀𝓁. The black dashed horizontal line indicates 4∕5. In panel (b) we also show the structure function corresponding 
to two other Reynolds numbers.
grid. That is to say, if we follow a turbulent patch generated at the in-
let of the tunnel as it is advected by the mean wind with velocity 𝑈∞ , 
its time of flight from the grid to the hot-wire will be 𝑡 = 𝑥𝐻𝑊 ∕𝑈∞.

In Fig. 2(a) we show the kinetic energy spectrum 𝐸(𝑘), made non-
dimensional by normalising it by 𝐿0𝑈

2
0 , as a function of the wave-

number 𝑘. Here, 𝑈0 is estimated from the measurements done with the 
LDV system as 𝑈0 ≡ ⟨𝜎𝑥⟩. The integral length-scale is computed from 
the zero-crossings of the longitudinal velocity fluctuations 𝑢′ [30], as 
the scale for which a low-pass filter will result in zero crossings that 
are decorrelated in time (or space, given that the Taylor hypothesis is 
used). The spectrum displays the typical behaviour expected for a tur-
bulent flow, namely nearly two decades with a power-law-compatible 
range, with an exponent close to the predicted −5∕3, followed by a dis-
sipative range at the smallest scales (largest wavenumbers). To compute 
the energy spectrum we take only the fluctuating part of the signal, and 
we use Welch’s method with an overlap of 25% and a Hanning window. 
The use of Welch’s method helps in reducing the noise, especially at the 
highest frequencies; we have verified that it yields similar results for 
our dataset as computing 𝐸(𝑘) using other methods, such as the Fourier 
transform of the velocity auto-correlation function. From this spectrum 
we can estimate the energy dissipation rate, 𝜀, by means of the rela-
tion 𝜀 = ∫ 15𝜈𝑘2𝐸(𝑘) 𝑑𝑘, where 𝜈 is the fluid kinematic viscosity. At 
this distance from the grid the Taylor-scale Reynolds number then re-
sults 𝑅𝜆 = 𝜎𝑥𝜆∕𝜈 ≈ 470, where the Taylor-microscale 𝜆 is defined as 
𝜆 =

√
15𝜈𝜎2

𝑥
∕𝜀 (note in this case the amplitude of the velocity fluctua-

tions 𝜎𝑥 correspond to those computed from the hot wire data).
Fig. 2(b) shows the third-order longitudinal structure function (see 

Eq. (1)) normalised by the predicted Kolmogorov scaling 𝑆3(𝓁)∕(𝜀𝓁)
[23]. We also took hot-wire measurements at the same position for dif-
ferent mean flow freestream velocities, or equivalently, for 𝑅𝜆 = 382
and 𝑅𝜆 = 507. Their corresponding third-order structure functions are 
also shown in panel (b) of Fig. 2 for comparison. The amplitude of the 
normalised structure function seems to be highly sensitive to the value 
of the Reynolds number; at the largest 𝑅𝜆 considered here its ampli-
tude is above the prediction given by 𝑆3 = −4∕5 𝜀𝓁 (note the dashed 
horizontal line in Fig. 2(b) at 0.8). This behaviour is consistent with pre-
vious studies discussed in the Introduction (see also [24]), that report 
anomalous structure functions at 𝑥∕𝑀 = 30 and a normal behaviour at 
𝑥∕𝑀 = 80. Our results also show that this effect is strongly dependent 
on the value of 𝑅𝜆.

As for the case of static grids, anomalous behaviour seen in 𝑆3(𝓁) has 
been linked to not fully developed turbulent flows [24]. Given the non-
Gaussian nature of the velocity PDFs seen here near the AG, we wonder 
if the origin of the anomaly in the scaling of the structure function in AG-
generated turbulence could potentially be linked to the non-zero third-
4

order moment observed for the velocity near the AG.
3. Decay of prepared states

Turbulence generated in a wind tunnel can be studied numerically 
by means of DNSs. On the one hand, the flow at a fixed distance from the 
grid is (with certain limitations) comparable to simulations in a statisti-
cally steady state, in which energy is constantly supplied to the system 
by means of a forcing. On the other hand, one can compare the flow in 
the wind tunnel at different distances from the grid with simulations of a 
freely decaying flow (i.e., one in which no energy is input in the system 
as it evolves in time). In order to numerically explore if initial conditions 
which present deviations from Gaussianity, as we observe in our exper-
iments, result in an anomaly in the third-order structure function once 
turbulence has fully developed and has reached a self-similar decaying 
regime, we need to create specific initial conditions. This task would be 
“trivial” if we had access to the full 3D velocity field in the production 
zone (i.e., in the vicinity of the AG). However, we only have access to 
statistical information of the velocity field, as e.g., its centralised third-
order moment.

3.1. PINN and nudging protocol for initial conditions

As discussed above, a combination of PINNs and the nudging data-
assimilation technique will be used to prepare initial conditions for the 
DNSs compatible with the observations near the AG. We briefly recall 
the main points of the used method, which was introduced and validated 
using synthetic data in [35]. A PINN is a neural network in which the loss 
term in the training is combined with physical information of a given 
system. For instance, a prediction may be penalised so that it satisfies 
a given physical law, or so that it is the solution to a given differential 
equation (such as the Navier-Stokes equation). In the implementation 
used in this work the PINN generates predictions which are compatible 
with an evolution given by the incompressible Navier-Stokes equations, 
and whose centralised third-order moment is compatible with the ob-
served PDF asymmetry in the wind tunnel at 𝑥 = 3𝑀 . To do this we use 
a loss function

𝐿 =𝐿𝑑 + 𝜆𝑝𝐿𝑝 + 𝜆𝑠𝐿𝑠, (4)

where

𝐿𝑑 =
1
𝑁𝑏

∑
{𝑖}

(𝐮𝑖 − 𝐮0
𝑖
)2, (5)

is the usual data term, and where 𝐮0
𝑖

is an initial seed. Here the subindex 
𝑖 labels the point and time at which the fields are evaluated, i.e., 
𝐮𝑖 = 𝐮(𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑡𝑖), and the summation is performed over 𝑁𝑏 different 
mini-batches {𝑖}. The parameters 𝜆𝑝 and 𝜆𝑠 are hyper-parameters that 

balance the importance of each term in the total loss function 𝐿. Also,
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𝐿𝑝 =
1
𝑁𝑏

∑
{𝑖}

[(
𝜕𝐮𝑖
𝜕𝑡

+ 𝐮𝑖 ⋅∇𝐮𝑖 +∇𝑝𝑖 − 𝜈∇2𝐮𝑖
)2

+
(
∇ ⋅ 𝐮𝑖

)2]
, (6)

is the physics term, which forces 𝐮 to be compatible with the Navier-
Stokes equations and divergence-free, and where 𝑝 is the pressure per 
unit mass density. Finally, the term

𝐿𝑠 =

(
1
𝑁𝑏

∑
{𝑖}

𝑢𝑖

)2

(7)

+
⎡⎢⎢⎢⎣
√√√√√ 1

𝑁𝑏

∑
{𝑖}

𝑢2
𝑖
−

(
1
𝑁𝑏

∑
{𝑖}

𝑢𝑖

)2

− 𝜎0

⎤⎥⎥⎥⎦
2

+
⎡⎢⎢⎣ 1
𝑁𝑏

∑
{𝑖}

(
𝑢𝑖 −

1
𝑁𝑏

∑
{𝑖}

𝑢𝑖

)3

− 𝑠30

⎤⎥⎥⎦
2

,

is the loss function that takes care of imposing moments of the 𝑥-
component of the field: the first term keeps the mean value at zero, 
and the second term fixes the standard deviation 𝜎0 (which is equiva-
lent to setting the one-dimensional r.m.s. velocity). The last term im-
poses the centralised third-order moment to be 𝑠0 (note that it has 
dimensions of velocity). We would like for 𝑠0 and 𝜎0 to be such that 
𝑠0∕𝜎0 = 𝑠𝐿𝐷𝑉 ∕𝜎𝑥,𝐿𝐷𝑉 . In order to keep the velocity of order one we 
choose 𝜎0 = 0.5𝑈0, and then 𝑠0 = 𝜎0 𝑠𝐿𝐷𝑉 ∕𝜎𝑥,𝐿𝐷𝑉 ≈ 0.25𝑈0. Note that 
while the loss terms 𝐿𝑑 and 𝐿𝑝 are applied to the three components of 
the velocity field, 𝐿𝑠 involves only the 𝑥 component of 𝐮, 𝑢, so that we 
can interpret this direction as the streamwise direction in the force-free 
decay of the prepared turbulent states. Details on the PINN architecture, 
choice of hyper-parameters, and training of the neural network can be 
found in [35].

Velocity fields using the PINN are generated as follows. An initial 
seed 𝐮0 for Eq. (5) is obtained from a low resolution DNS of “HIT” (us-
ing 323 grid points). The gradient of Eq. (4) is then evaluated iteratively, 
successively updating the weights of the neural network until the sta-
tistical moments of the output match the target experimental values 
(within fluctuations). We remark that, once the training is complete, 
the generated velocity field 𝐮(𝐱, 𝑡) has only 323 grid points. This field 
is a divergence-free solution of the Navier-Stokes equation (within the 
errors of the PINN) with the imposed moments in the 𝑢 velocity field 
component.

We then sample the 323 output of the PINN in the desired working 
grid resolution, which is 5123 grid points in our case. However, the PINN 
states do not contain information compatible with the Navier-Stokes 
equations at small scales. In order to obtain higher Reynolds number 
states, closer to those achievable in the experiment, we use the nudg-
ing technique. Briefly, this method evolves the equations of motion of 
the system with an additional relaxation term that penalises the field 
𝐮 when it strays away from a given reference field 𝐮ref. In our case, 
𝐮ref corresponds to the velocity field sampled from the final state of the 
PINN. Hence, the equations solved in the nudging stage using a DNS 
code are

𝜕𝑡𝐮+ (𝐮 ⋅∇)𝐮 = −∇𝑝+ 𝜈∇2𝐮− 𝛼I(𝐮− 𝐮ref), (8)

where the last term on the right hand side corresponds to the nudging 
term, which penalizes the distance between the reference data 𝐮ref and 
𝐮. The amplitude of this term is controlled by 𝛼, and I is a filter that 
acts only where the data is available. This filter can be applied in real 
or in Fourier space. In particular, we use a low-pass filter in Fourier 
space, which projects the spatial part of 𝐮 on the Fourier modes with 
normalised wave number 𝑘 ∈ [𝑘0 = 0, 𝑘1 = 9], the modes in which 𝐮ref
contains the most relevant spectral information. Thus, the effect of the 
filter is expressed as

I𝐮(𝐱, 𝑡) =
∑

𝐮̂(𝐤, 𝑡) exp(𝑖𝐤 ⋅ 𝐱). (9)
5

𝑘0≤|𝐤|≤𝑘1
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Evolution of Eq. (8) results in a new velocity field 𝐮 that has a broad 
inertial range (i.e., it is turbulent) and is compatible at large scales 
with the observed anomalies in the moments of 𝑢 (i.e., it is close to 
𝐮ref at large scales). For the evolution, Eq. (8) is written in dimen-
sionless units based on a unit length 𝐿DNS and a unit velocity 𝑈DNS, 
and solved using the parallel pseudospectral code GHOST [36–38]. The 
solving domain corresponds to a three-dimensional box of side 2𝜋𝐿DNS

with periodic boundary conditions, with the initial condition given by 
𝐮(𝑡 = 0) = 𝐮ref(𝑡 = 0). Time integration is done for the time interval for 
which reference data is available, i.e., the temporal window in which the 
neural network was trained. As previously mentioned, after the nudging 
protocol is applied, the obtained fields have information at small scales 
that is compatible with a turbulent flow, while retaining statistical mo-
ments imposed by the neural network.

3.2. Free decay of prepared states

Having the tools to generate high resolution velocity fields with sta-
tistical moments that resemble those observed in the flow in the vicinity 
of the active grid, we study how these fields evolve in time without any 
energy input. The goal is to see if the statistical anomalies observed near 
the active grid in the experiments can cause the anomalies that are later 
observed in the decay in the experiment. We consider 10 different real-
isations of the “PINN+nudging” protocol, changing the initial seed that 
feeds the neural network in each case to obtain different states. From 
each realisation we take the velocity field at a given time, and we use 
it as the initial condition of a 5123 DNS, in which the evolution is given 
by the force-free incompressible Navier-Stokes equations (i.e., Eq. (8)
without the nudging term). By doing this we can study the free decay of 
the states, and compare it with the flow generated throughout the test 
section in the wind tunnel; we will label these flows and datasets with 
the superscript “PINN.” As a reference, we also consider the free decay 
of initial conditions corresponding to HIT. In order to prepare them, we 
first evolve the equations of motion with a random forcing to sustain 
the turbulence, using a resolution of 5123 grid points. The forcing in-
jects energy in the Fourier shell 𝑘𝐿DNS ∈ [1, 3] with fixed amplitude, 
and slowly-varying phases with a correlation time of 0.05 𝐿DNS∕𝑈𝐷𝑁𝑆 . 
The system is evolved until a steady state is reached, and afterwards the 
forcing is turned off and the flow is left to decay freely. An ensemble of 
10 realisations is also used for the HIT states.

For both the free decay of PINN and HIT states, the simulations are 
performed using the GHOST code, under similar conditions as the ones 
corresponding to the nudging simulations. We use kinematic viscosities 
𝜈PINN = 5 × 10−4𝐿DNS𝑈DNS and 𝜈HIT = 5.5 × 10−4𝐿DNS𝑈DNS. All simula-
tions are such that 𝑘max∕𝑘𝜂 > 1, where 𝑘max =𝑁∕3 corresponds to the 
largest wave number resolved by the simulations, and 𝑘𝜂 = (𝜀∕𝜈3)1∕4 is 
the Kolmogorov wave number.

Fig. 3(a) shows the kinetic energy evolution for the PINN-prepared 
and the HIT states, normalised by the energy at 𝑡 = 0. The ensemble aver-
ages over the 10 realisations are shown in solid and dashed lines, for the 
PINN-generated and the HIT states, respectively. The shaded areas indi-
cate ±1 standard deviation between the realisations. Time is normalised 
by 𝑇0 =𝐿0∕𝑈0, the integral time scale estimated from inlet conditions. 
Here,

𝐿0 =
𝜋

4
∫ 𝐸(𝑘)∕𝑘 𝑑𝑘

∫ 𝐸(𝑘) 𝑑𝑘
(10)

is the Eulerian integral scale computed from the 1D energy spectrum 
corresponding to the streamwise component of the velocity field at 𝑡 = 0. 
𝑈0 is the r.m.s. value of 𝑢, also at the start of the evolution. From 𝑡∕𝑇0 ≈ 4
both flows display a self-similar decay. Disregarding a time offset, it 
seems that the decay exponent for the PINN-states is larger than for the 
HIT-states. However, when considering a dependence of the type
𝐸 =𝐸0 (𝑡− 𝑡0)𝛼, (11)
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Fig. 3. (a) Time decay of the kinetic energy for the PINN-generated states and for HIT simulations. (b) Time evolution of the Kolmogorov wavenumber, normalised by 
the largest wavenumber resolved by the simulations. The vertical dotted line indicates the time where 𝑘𝜂 peaks for the PINN-generated states, which is also indicated 
in panel (a). (c) Initial kinetic energy spectrum 𝐸(𝑘) of the PINN-generated states and of the HIT simulations. (d) Kinetic energy spectrum of the PINN-states at three 
successive times. In all panels the thick solid and dotted lines, and the circular and triangular markers, correspond to the mean value over the 10 realisations, while 
the shaded bands represent typical variations between the different realisations.
imposing 𝛼HIT = 𝛼PINN ≡ 𝛼, results in non-zero values of 𝑡HIT
0 ∕𝑇 HIT

0 =
−0.53 and 𝑡PINN

0 ∕𝑇 PINN
0 = 0.19, and yields a value of 𝛼 = −1.40 compati-

ble with the literature (that also reports slightly smaller values, between 
−1.1 and −1.3 [39,16], specially for experiments [40]).

Fig. 3(b) shows the Kolmogorov wave number throughout the evo-
lution. While for the HIT simulations 𝑘𝜂 remains constant until the be-
ginning of the self-similar decay, interestingly we observe an increase of 
𝑘𝜂 for the PINN-prepared states at around the time when the self-similar 
decay starts, which systematically occurs in all of the realisations. The 
vertical dashed lines in panels (a) and (b) of Fig. 3 indicate the time 
when the maximum value of 𝑘𝜂 is realised. This increase in 𝑘𝜂 implies 
that the range of scales involved in the energy cascade is increasing, 
meaning that the production of turbulence in the PINN-generated states 
differs from the production in the HIT case, although we do not ob-
serve that this has an impact on the exponent of the self-similar decay 
that takes place afterwards. Note that this increase in 𝑘𝜂 takes place 
even after preparing the initial PINN flows with the nudging technique 
that results in a broad inertial range, suggesting that the anomaly in 
the third-order moment at large-scales in these states results in further 
turbulence production even after turning off the forcing.

We can gain further insight in this respect by comparing the kinetic 
energy spectrum 𝐸(𝑘) of the PINN-generated states and of the HIT sim-
ulations. The average spectra over all realisations at 𝑡 = 0 for both flow 
types are shown in Fig. 3(c). Both flows display more than one decade of 
power-law like behaviour with an exponent close to −5∕3, compatible 
with fully-developed turbulent conditions. The PINN spectrum displays 
a slight dip close to 𝑘𝜆 ≈ 1.5, which stems from the upper bound of 
the Fourier band-pass filter used in the nudging stage (Eq. (8)). This 
dip quickly disappears as the flow freely decays, as it can be seen in 
panel (d) in Fig. 3, where we show three successive 𝐸(𝑘) curves. At 
𝑡∕𝑇0 = 0.68 the amplitude of the dip has already decreased significantly, 
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and at 𝑡∕𝑇0 = 1.36 the PINN spectrum is almost indistinguishable from 
that of HIT. Note that this time corresponds to the early stages of the 
decay, before the peak of 𝑘𝜂 occurs (indicated in panel (b) in Fig. 3). 
Hence, throughout the most part of the evolution, the PINN and HIT 
states are similar from a spectral viewpoint.

The evolution of the Taylor-based Reynolds number 𝑅𝜆 is shown 
in Fig. 4(a). Even when initially 𝑅𝜆 is larger for the PINN-states than 
for HIT, at around 𝑡∕𝑇0 ≈ 7 the values of 𝑅𝜆 of the two types of flows 
converge. In Fig. 4(b) we plot the integral length scale 𝐿0(𝑡), computed 
as in Eq. (10) with the corresponding spectrum 𝐸(𝑘, 𝑡). As with active-
grids, which are characterised by a larger integral length scale than the 
regular, passive grids (as the former are in the order of the tunnel lateral 
size and the latter of the mesh size 𝑀), the PINN-generated states also 
present a higher value of 𝐿0 when compared with the HIT states. After 
𝑘𝜂 has reached its peak, the integral length scale has a dip and then the 
values overlap with the those of HIT.

We now move on to analyse what the third-order longitudinal struc-
ture function looks like in the simulations, at a time when the turbulence 
is already developed. In analogy with the hot-wire experiments, we 
compute 𝑆3(𝓁) for the 𝑥-component of the velocity field. For the HIT 
fields all three components are statistically equivalent, but in the PINN-
generated states this is the component whose third-order moment was 
imposed. Fig. 5(a) shows 𝑆3(𝓁) normalised by 𝜀𝓁, at 𝑡∕𝑇0 ≈ 5. As before, 
the solid and dashed lines correspond to the average over the 10 realisa-
tions of each flow, and the shaded bands represent the typical variation. 
We observe that the initial conditions generated with the PINN system-
atically display larger amplitudes than the HIT states. Even though this 
amplitude is not as high as the one observed in the wind tunnel (note 
that the DNSs have a smaller 𝑅𝜆 than the experiments), it represents a 
clear deviation from the HIT cases.

Fig. 5(b) shows the evolution of the centralised third-order moment 
of 𝑢, normalised by the target value of the neural network 𝑠0 , for the 

PINN and HIT states. The solid and dotted vertical lines indicate the 
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Fig. 4. (a) Evolution of the Taylor-scale Reynolds number. (b) Integral length scale 𝐿0 as a function of time. In both panels the thick solid and dotted lines correspond 
to the mean value over the 10 realisations, while the shaded bands represent typical variations between the different realisations; labels for panel (b) are the same 
as panel (a).

Fig. 5. (a) Third-order longitudinal structure function, compensated by 𝜀𝓁, for the HIT runs and for the PINN-generated states, at time 𝑡∕𝑇0 ≈ 5. The thick solid 
and dotted lines correspond to the mean value over the 10 realisations, while the shaded bands represent typical variations between the different realisations. 
(b) Evolution of the third-order moment of the streamwise component of the velocity, normalised by the value imposed during the PINN protocol. Thick and shaded 
regions are as in panel (a). The thin dotted lines correspond to the time evolution in each one of the single HIT simulations. The black solid and red dotted vertical 
lines indicate the time at which the structure functions in panel (a) are computed. The dashed vertical line indicated the time where 𝑥𝑘𝜂 peaks for the PINN-generated 
states (see Fig. 3). (c) Peak value of the normalised third-order structure function along the decay. The dash-dotted vertical line indicates the equivalent time at which 
the hot-wire measurements in the wind tunnel are performed. (d) Ratio of r.m.s. values of the fluctuating velocity components, shown in black and red markers for 
PINN-generated and HIT states, respectively.
times when the structure functions shown in Fig. 5(a) were computed. 
We also plot the individual evolution of each HIT realisation, with a 
finer line width.

As the centralised third-order moment of 𝑢 is imposed at 𝑡 = 0 in the 
PINN-states, ⟨𝑢′ 3⟩∕𝑠30 displays less dispersion in those runs than in the 
HIT runs (confirmed by the shaded grey area being narrower than the 
red shaded region). In spite of this large dispersion in the HIT runs, with 
some runs with large values of ⟨𝑢′ 3⟩∕𝑠30, the HIT ensemble averages to ⟨𝑢′ 3⟩∕𝑠30 ≈ 0, while the PINN-states have ⟨𝑢′ 3⟩∕𝑠30 > 0 and systematically 
display an anomaly in this quantity for long times. This suggests that 
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the observed anomalies near the active grid, which are imposed by the 
PINN in the DNSs, introduce correlations in the flow that result in it 
being statistically different from an idealised HIT flow, at least in the 
initial part of the free decay.

This is further supported by considering the time evolution of the 
maximum value of 𝑆3∕(𝜀𝓁), shown in Fig. 5(c). We also indicate with 
a vertical line the time 𝑡∕𝑇0 that corresponds to the hot-wire measure-
ments performed in the wind tunnel (shown in Fig. 2). While for the 
HIT simulations the peak value quickly drops below 4∕5, the peak for 
the PINN runs is, on average, larger than the expected value for longer 
periods of time. Even though the experimental structure function re-

mains anomalous for larger times than in the simulations (i.e., the peak 
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value of 𝑆3∕𝜀𝓁 is larger than 4∕5 for longer times), imposing the ini-
tial centralised third-order moment in turbulent states has an effect on 
the evolution of the structure function that qualitatively shifts the HIT 
behaviour towards something closer to the experiment. We note how-
ever that 𝑅𝜆 in simulations is smaller than in experiments. As we have 
shown for the experiments in Fig. 2(b), the anomalous behaviour in the 
amplitude of 𝑆3 depends on the value of 𝑅𝜆, so it would be interesting 
to evaluate how an increase in the Reynolds number affects the numeri-
cal results (a detailed study of Reynolds effects is out of the scope of this 
work, see also [41]). However, it should be kept in mind that the differ-
ences in the simulations with respect to the experiment is not just in the 
value of 𝑅𝜆, but also in the fact that we only impose the centralised third 
order moment of 𝑢′. In the experiments, higher order moments of 𝑢′ , as 
well as cross-correlations between the different velocity components, 
may also be partially responsible for the anomalous behaviour observed 
downstream. Finally, when looking at the ratio of r.m.s. component-
wise velocities, shown in Fig. 5(d), the PINN-generated states present 
acceptable levels of isotropy which are comparable with experimental 
observations in the same wind tunnel [15].

4. Conclusions

Wind tunnels are an essential tool in the study of environmental 
flows, providing a controlled setup to replicate in the laboratory the 
complex interactions between wind and various structures. In the design 
of aircraft, wind turbines, and wind farms, wind tunnels allow engineers 
to optimise wing and blade shapes and configurations by testing dif-
ferent models under varying wind conditions which include turbulent 
scenarios. Additionally, wind tunnels are invaluable for studying ide-
alised (i.e., homogeneous and isotropic) turbulence, specially in recent 
years with the introduction of active grids that allowed generation of 
flows with very large Reynolds numbers [2]. When combined with nu-
merical simulations, they provide data that is crucial for understanding 
and predicting turbulent phenomena [40].

However, anomalies observed in the near field of the grid in wind 
tunnel experiments [24], and difficulties in reproducing these flows in 
simulations when only partial statistical information is available from 
observations [35], have raised questions on the properties of the tur-
bulent flow generated by active grids when using certain protocols. 
We have presented a case study on how to combine data from real 
experiments with machine learning, data assimilation, and numerical 
simulations, to shed light on some of these questions.

Laboratory measurements of the flow near the active grid using Laser 
Doppler Velocimetry indicate the existence of anomalies in the fluid 
velocity, including flow reversals, and in particular, the existence of 
systematic asymmetries in the statistics of the streamwise fluctuating 
velocity component. This anomaly was quantified in our study using 
the centralised third-order moment of the velocity. Generation of com-
patible third-order moment anomalies in initial conditions for numerical 
simulations, using PINNS and a nudging data assimilation method, in-
dicate that these anomalies persist for long times, and can give rise 
downstream to larger values of the longitudinal third-order structure 
function than those expected for homogeneous and isotropic turbulence.

Several studies report that far from the grid (for this flow, 70 meshes 
downstream or more), two-point statistics, isotropy and homogeneity 
reach universal behaviour [14,13,42]. Considering this distance, anoma-
lies detected in the active grid thus persist significantly farther down-
stream when compared to those present in static grid flows. Our re-
sults confirm that, depending on the flow Reynolds number, anomalies 
are still present as far as 40 grid meshes downstream. This is a range 
relevant for several wind tunnel studies, and future studies and applica-
tions should have particular care when analysing these flows. Moreover, 
the methodology presented here can also be used to characterize these 
flows, and to find ways to ameliorate or control these effects, as active 
grids have a central role when trying to reach large Reynolds numbers 
8

in experiments.
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The protocol presented here for data assimilation can be further ex-
tended for other applications in mechanical and aerospace engineering, 
in which only incomplete or statistical information of the flow is avail-
able to prepare initial conditions for numerical simulations.
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