
HAL Id: hal-04910677
https://hal.science/hal-04910677v1

Preprint submitted on 24 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CREMSA: Compressed indexing of (ultra) large
alignments

Mikaël Salson, Thomas Baudeau, Arthur Boddaert, Awa Bousso Gueye,
Laurent Bulteau, Yohan Hernandez–Courbevoie, Camille Marchet, Nan Pan,

Sebastian Will, Yann Ponty

To cite this version:
Mikaël Salson, Thomas Baudeau, Arthur Boddaert, Awa Bousso Gueye, Laurent Bulteau, et al..
CREMSA: Compressed indexing of (ultra) large alignments. 2025. �hal-04910677�

https://hal.science/hal-04910677v1
https://hal.archives-ouvertes.fr

Journal Title Here, 2024, 1–9

doi: DOI HERE

Advance Access Publication Date: Day Month Year

Paper

CREMSA: Compressed indexing of (ultra) large
alignments
Mikaël Salson ,1,∗ Thomas Baudeau,1 Arthur Boddaert,2 Awa Bousso Gueye,2

Laurent Bulteau ,3 Yohan Hernandez--Courbevoie,2 Camille Marchet ,1

Nan Pan,4 Sebastian Will 4 and Yann Ponty 4,∗

1Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France, 2Département d’Informatique,

Lille University, France, 3CNRS UMR 8049 LIGM, Gustave Eiffel University, Street, Postcode, State, France

and 4CNRS UMR 7161 LIX, Ecole Polytechnique, Institut Polytechnique de Paris, Street, Postcode, State,

France

∗Corresponding authors. mikael.salson@univ-lille.fr; yann.ponty@lix.polytechnique.fr

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

Recent viral outbreaks motivate the systematic collection of pathogenic genomesin order to accelerate their

study and monitor the apparition/spread of variants. Due to their limited length and temporal proximity

of their sequencing, viral genomes are usually organized, and analyzed as oversized Multiple Sequence

Alignments (MSAs). Such MSAs are largely ungapped, and mostly homogeneous on a column-wise level

but not at a sequential level due to local variations, hindering the performances of sequential compression

algorithms.

In order to enable an efficient handling of MSAs, including subsequent statistical analyses, we introduce

CREMSA (Column-wise Run-length Encoding for Multiple Sequence Alignments), a new index that builds on

sparse bitvector representations to compress an existing or streamed MSA, all the while allowing for an

expressive set of accelerated requests to query the alignment without prior decompression.

Using CREMSA, a 65GB MSA consisting of 1.9M SARS-CoV 2 genomes could be compressed into 22MB

using less than half a gigabyte of main memory, while executing access requests in the order of 100ns. Such

a speed up enables a comprehensive analysis of covariation over this very large MSA. We further assess

the impact of the sequence ordering on the compressibility of MSAs and propose a resorting strategy that,

despite the proven NP-hardness of an optimal sort, induces greatly increased compression ratios at a marginal

computational cost.

Key words: Indexing, Multiple sequence alignment, Compression

Introduction

The analysis of MSAs enables an evaluation of key metrics

to understand molecular evolution, including conservation,

coevolution, evolutionary distances, and other higher-order

statistics. For instance, in viruses whose genetic material consists

of single-stranded nucleic acids (ssRNA viruses), evolutionary

constraints at the structural level can be revealed by covariation

analysis. Such analyses motivate the analysis of the joint content

of columns pairs, to assess the propensity of genomic positions

to form a base pair mediated by hydrogen bonds. Ultimately,

they enable a reconstruction of RNA architecture(s), potentially

revealing targets for future drugs [Triebel et al., 2024].

Gene or genome-based alignments may feature extreme level

of conservation at the column level, reflecting compact genomes

undergoing pervasive evolutionary pressure. Such is the case of

the genomic material of pathogens, collected upon an outbreak to

monitor their evolution. This results in the presence of multiple

near-identical sequences within alignments, featuring highly-

homogeneous column contents. Compressing such alignments,

especially at a column-wise level, can lead to spectacular

compression ratios [Deorowicz et al., 2018]. However, such prior

representations are mainly static: they require the MSA to be

fully loaded in memory prior to their creation; they cannot be

conveniently updated upon insertion of a new sequence; and most

analyses will require a full uncompression of the alignment.

© The Author 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

https://orcid.org/0000-0003-1166-1720
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
email:mikael.salson@univ-lille.fr
email:yann.ponty@lix.polytechnique.fr

2 Salson et al.

In this work, we introduce a new compressed index, called

CREMSA (Column-wise Run-length Encoding for Multiple Sequence

Alignments) which greatly reduces the storage required to store

column-wise redundant MSAs. Contrasting with earlier efforts,

solely focusing on the file-level compression of an MSA [Deorowicz

et al., 2018], our index enabling direct and efficient access to

column-wise statistics (no full decompression needed).

Our main contributions are the following:

• We introduce CREMSA, a novel compressed index for MSAs

which supports optimized row and column-wise analyses;

• We investigate the impact of the genome order on the

compressibility of MSAs. We formalize the problem and

demonstrate its computational intractability

• We propose and benchmark several heuristic strategies for

reordering MSAs. In particular, a lexicographic sort, based on

a subset of lower-sequence identity columns, is seen to greatly

optimize the compressibility of MSAs, even outperforming

phylogenetic-based reordering. Moreover, this result does not

depend on the compression algorithm being used;

• Beyond the reduced storage, CREMSA enables sigificantly faster

access to column-wise statistics, enabling a covariation analysis

of MSAs representing the evolution of large viral RNAs.

Materials and methods

Datasets

Hunt et al. [2024] have re-processed millions of SARS-CoV-

2 sequencing runs in order to provide accurate and reliable

assemblies. They made 4.5 million SARS-CoV-2 assemblies

available. From those sequences, we selected the most precise ones

by removing all the sequences with at least 100 indeterminate

nucleotides (any IUPAC nucleotide different from the canonical

ones). Sequences which had at least 2 consecutive Ns, except

at their ends, were also removed. This filtering was achieved

to prevent too many gaps to be introduced by the multiple

sequence alignment. In the end, we obtained 1,870,492 SARS-

CoV-2 sequences that were aligned using Halign3 [Tang et al.,

2022], the only multiple sequence aligner to run on a cluster node

under 1.5TB RAM. The final alignment consists of 34,830 columns,

totaling 65GB of data.

The CREMSA index

The central data-structure in our work is the bit vector : a {0, 1}-
array with fast rank and select queries. For a length-n bit vector

B, rank1(B, i) if the number of 1s in the length-i prefix of B and

select1(B, i) is the position of the i-th one in B, or n+1 whenever

i is greater than the number of ones in B.

Index definition

Our compressed self-index, termed CREMSA, exploits the

succession of identical letters (called runs) in the columns of the

MSA. CREMSA indexes each column of the MSA independently to

provide efficient column-wise queries. Each column Cj of length

s of a multiple sequence alignment is stored using an approach

close to run-length encoding by decomposing the column in two

components: 1) a (compressed) bit vector Bj that identifies the

start of each run in the column Cj and 2) a string that stores the

repeated nucleotide of each run.

C G C A C A A A C C

C C C A C A C A C C

C C C A C A A A C C

C - C A C A A A C C

C - C A C A C A C C

C C C A G A C A C C

C1 C2 C3 C4 C5 C6 C7 C8 C9C10

1 1 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 1 0 0 1 0 0 0 0 0

1 1

1

1

1

1 1

B1 B2 B3 B4 B5 B6 B7 B8 B9B10

N1 N2 N3 N4 N5 N6 N7 N8 N9N10

C G

C

-

C

C A C

G

A A

C

A

C

A C C

Fig. 1: Left: a multiple sequence alignment of s = 6 sequences

of length n = 10. Right: the representation of this MSA with

the CREMSA index. The number of runs in each column Cj can be

identified by the number of 1s in Bj . For instance, in column 2, the

number of runs r2 = 4. The strings Nj are represented vertically,

eg. N7 = ACAC. The last nucleotide in N7 is a C because the last 1

in B7 corresponds to the position in C7 where a C is stored.

More formally, we define Bj of length n, as follows: Bj [i] = 1

iff i = 1 or Cj [i] ̸= Cj [i − 1], for 1 ≤ i ≤ s. The string Nj has

a length of rj , the number of runs in Cj , and is defined with:

Nj [i] = Cj [select1(Bj , i)], for 1 ≤ i ≤ rj . An example is given in

Figure 1.

Supported queries

Using rank and select queries on the bit vectors, the index supports

the following basic queries:

• access(i, j) which returns the j-th nucleotide from the i-th

sequence or, otherwise stated, the i-th nucleotide from Cj ;

• count-consecutive(i, j) which counts the number of consecutive

occurrences of Cj [i] in Cj , ie. the length of the run of Cj [i] in

Cj at position i.

The access(i, j) query is solved using Nj [rank1(Bj , i)]. The

count-consecutive(i, j) query first identifies the first and final

positions of the run, respectively b and e. The first position

of the run is obtained with b = select1(Bj , rank1(Bj , i)) and

the final position with e = select1(Bj , rank1(Bj , i) + 1) − 1,

therefore, count-consecutive(i, j) = select1(Bj , rank1(Bj , i)+1)−
select1(Bj , rank1(Bj , i)).

Using those queries, one can devise more sophisticated queries

in order to recover a complete sequence, or to compute the counts

of each nucleotide in a column, the empirical entropy of a column,

the empirical entropy of a pair of columns, the mutual information

of a pair of columns, the G-test as promoted by R-scape [Rivas

et al., 2017], the conservation score of RNAalifold [Bernhart et al.,

2008], etc.

Counting nucleotides. The counts of each nucleotide in a column j

are obtained by iterating on each 1 in Bj (using select1) and by

computing count-consecutive for the position of each 1 as shown in

Algorithm 1. Once the counts have been obtained, computing the

empirical entropy and other site-level metrics is straightforward.

Those queries can easily be generalized to more than one

column in order to study the covariations between columns. For

instance, count-consecutive(i, j1, j2) would return the length of the

Compressed indexing of (ultra) large alignments 3

Algorithm 1 Counting occurrences of all nucleotides/gaps in

column j

function count(j)

occurrences = {}
s← |Bj |
i← 1

b← 1

while i ≤ s do

m←count-consecutive(i, j)

Increment occurrences[access(i, j)] by m

i← select1(Bj , b+ 1)

b← b+ 1

end while

return occurrences

end function

run of Cj1
[i] · Cj2

[i] in the pair of columns Cj1
, Cj2

at position i.

This can be achieved by identifying the start position b of the

run at position i in Bj1
and Bj2

, and by keeping the highest

one. Conversely, for the end position e, we keep the lowest one

among the ones in Bj1
and in Bj2

. We can compute this with

b = max(select1(Bj1
, rank1(Bj1

, i)), select1(Bj2
, rank1(Bj2

, i)))

and e = min(select1(Bj1
, rank1(Bj1

, i)), select1(Bj2
, rank1(Bj2

, i))).

Then, count-consecutive(i, j1, j2) = e − b + 1. We can generalize

the approach for count-consecutive(i, j1, j2, . . . , jk). Using those

counts, one can then compute the empirical entropy for a pair of

columns, or for k columns.

Index construction

To construct CREMSA, from a multiple sequence alignment with

s rows and n columns, a naive solution consists in initializing n

length-s bit vectors. Then by comparing each sequence in the MSA

to the next one, it is straightforward to identify the start of the

runs in each bit vector.

Offline construction. However, from a practical point of view, this

requires to store n × s bits in memory during the construction,

before the bit vectors are actually compressed, which would be

several orders of magnitude larger than the final index. One

solution would be to use dynamic bit vectors [Prezza, 2017]. They

would always be compressed, preventing the issue of storing n× s

plain bits, while allowing one to update them to set bits at 1

during the construction. This advantage however comes with a

logarithmic penalty at query time. Another solution is to build

columns by chunks instead of building them altogether. Let c be

the size of the chunk, thus when reading the multiple sequence

alignment for the first time, only the c first columns of CREMSA are

built. With this solution, the multiple sequence alignment has to

be read ⌈n
c
⌉ times, which prevents an online construction.

Online construction. To overcome this limitation, we also propose

an algorithm for processing large multiple sequence alignment in a

streaming manner. The goal is to split the MSA into manageable

bundles of genomes (entire rows), compress and store the data

efficiently, and later reconstruct the complete MSA. The process

can therefore construct an MSA in different parts, and can also be

used to handle large-scale datasets in a partitioned way to optimize

memory and disk usage.

The input MSA is read line-by-line (genome-by-genome), and

the general structure remains: each column is stored in a bitmap

and a character vector. We expect to read a certain amount of

lines, that we call bundle, each bundle is then written to disk

when it reaches a limit size, to ensure memory efficiency.

From the disk, bundles are merged column by column. The

very first chunk serves for the initialisation of the MSA, then

the next bundle is merged to it to become the current MSA.

The current MSA representation remains the similar than the

main construction algorithm, where compressed bit vectors are

associated to strings for columns representation. Each bundles are

merged to the current MSA until there are no more bundles.

During merge, the last character in each column of the

current MSA (or of the initial MSA at the first iteration) is

compared to the first character of the corresponding column in

the next chunk to be merged. If the two characters are equal, the

first value of the bundle to be merged can be skipped when editing

the current MSA’s bit vector and strings.

Complexities

When constructing CREMSA offline with chunks of c columns

(1 ≤ c ≤ n), the construction needs to keep in memory c columns,

hence Θ(sc) space, and the input of size sn has to be read

⌈n
c
⌉ times, hence Θ

(
sn2

c

)
time. This strategy offers a trade-off

between time and space at construction. However, in that case

an online construction of the structure comes at the cost of a

prohibitive space consumption.

As the rank and select operations can be computed in constant

time on compressed bit vectors [Navarro and Mäkinen, 2007], the

access and count-consecutive queries are performed in constant

time. Any genome of length n can thus be retrieved in Θ(n)

time, making CREMSA a self-index as it can recover the input

data. Counting the occurrences of each nucleotide or computing

the empirical entropy of a column j is obtained in Θ(rj) as the

while loop in Algorithm 1 iterates on each 1 in Bj . Counting pair

of nucleotides in pair of columns j1, j2 follows the same principle,

hence the time complexity in Θ(max(rj1
, rj2

)).

Since our genomes are highly redundant, the bit vectors Bj

are expected to be very sparse. In such cases, the compressed bit

vectors only consist in storing the relative positions of the 1s in

each bit vector, which leads to a Θ(rj) space complexity. When

Bj is dense, the space complexity is O(H0(Bj)), where H0 is the

zero-th order empirical entropy of Bj .

Both our time and space complexities depend on rj the number

of runs in column j, meaning that decreasing this value makes the

index more time and space efficient.

Improving compressibility through sequence reordering

The number of runs in a column of the MSA critically and directly

depends on how the genomes are ordered in the MSA. Ideally, we

would like to find an ordering which maximizes the average lengths

of runs across columns, i.e. minimizes the total numbers of runs.

Unfortunately, finding an ordering of the sequences minimizing

the total number of runs is NP-complete, as can be seen with the

following simple reduction from Hamiltonian Path. Given a graph

G = (V,E) where all vertices have degree 3, build |V | length-
|E| sequences over alphabet {A, U}, such that the jth character of

sequence i is U iff edge j is incident to vertex i. Then each column

has 5 runs in the worst case: two length-1 runs of U separating

three runs of A. The number of runs decreases by 1 or 2 if the

column starts and/or ends with U; independently of the order of

the rows, this amounts to exactly 6 missing runs in total since

4 Salson et al.

each vertex has degree 3. Also, the number of runs in column j

decreases by 2 if both occurrences of U are consecutive, in which

case we say that edge j is realized. The overall number of runs is

thus 5|E|−6−2×number of realized edges. Each pair of consecutive

rows can realize at most one edge (if the corresponding vertices are

adjacent inG), so the number of runs is at least 5|E|−6−2(|V |−1),
and this bound is attained if and only if the ordering of the vertices

chosen for each row forms an hamiltonian path in G.

Even though finding an optimal order is computationally

intractable, simple heuristics may still help find better orders

than a random one. Břinda et al. [2024] addressed a similar

problem: they used phylogenetic information in order to improve

compression ratios of microbial genomic sequences. In particular,

they reordered 590,779 SARS-CoV-2 genomes using GISAID

phylogeny. They achieved a 1,647 compression ratio sorting

sequences by their phylogenetic order and compressing them with

xz. The same order can also benefit CREMSA: clustering the most

similar sequences together should produce longer runs.

We also introduce a new ordering, specific to multiple sequence

alignments that does not depend on an external (or heavy to

compute) information, such as the phylogeny of the sequences.

Let G1, . . . , Gs the s genomes in the MSA. Let occj be an array

of the number of occurrences of each character in column Cj ,

then the percentage of identity idj in Cj is idj =
max(occj)

s
.

Using the count function on CREMSA, one can quickly compute

the percentage of identity in Cj . Thus, we will extract the d

positions p1, . . . , pd of the columns having the lowest percentage

of identity, with idp1
< idp2

< · · · < idpd
. Then, for each

genome Gi, we extract a word wi of d characters, such that

wi = Gi[p1] ·Gi[p2] · · ·Gi[pd], this is a shuffled subword of Gi. We

call those d-length shuffled subwords d-discriminative subwords.

The genomes G1, . . . , Gs are eventually sorted according to the

lexicographic order of the d-discriminative subwords. Once the

positions p1, . . . , pd are identified, the d-discriminative subwords

can be sorted in linear time Θ(sd) and space Θ(s) using a bucket

sort.

Entropy and covariation metrics for RNA comparative analysis

Columnwise entropy is a common metric of the local diversity of

MSA. It is defined for a column i as

Hi =
∑
x

pix log(pix)

where pix denotes the frequency of character x in the i-th column.

Various covariation measures have been discussed in the

literature; among them several variations of the general theme of

mutual information [Gutell et al., 1994]. In this work, we provide

data for two of these scores. First, we study the G-test [Woolf,

1957], which was found to have best performance in R-scape [Rivas

et al., 2017]. in their comparison of eight different covariation

scores. The G-test score GT(i, j) for two alignment columns i and

j is defined as

GT (i, j) = 2
∑
x,y

Nijp
i,j
x,y log

pi,jx,y

pixp
j
y

,

where for nucleotides x and y, as well as columns i and j, Ni,j ,

pi,jx,y, pix, pjy respectively denote the number of base pairs; the

probability of the nucleotide pair x,y; the probability of x in i and

the probability of y in j. In this score we consider only determined

nucleotides A, C, T/U, or G and their pairings, but consider all

kinds of canonical pairings, i.e. AU, GC, or GU, and non-canonical

pairings.

Second, we consider the RNAAlifold score as introduced

by Bernhart et al. [2008] to predict canonical RNA secondary

structures based on MSAs. This score distinguishes between

canonical pairing and non-canonical pairing, which is penalized as

incompatibility. The score is defined as sum of two components, a

covariation score gcov(i, j) and an incompatibility score ginc(i, j).

The covariation score is a sum-of-pairs score over the Hamming

distance of canonical base pairs occurring in columns i and j in all

pairs of alignment rows. The incompatibility score penalizes gap

symbols in columns i and j as well as non-canonical base pairs.

Results

CREMSA is implemented in C++ using the sdsl-lite v3 library1 and

is available at https://gitlab.univ-lille.fr/cremsa/cremsa,

or as a Docker image at https://hub.docker.com/repository/

docker/mikaels/cremsa/ under a GNU GPL v3 license. The

online algorithm’s implementation is availablee at https://

gitlab.cristal.univ-lille.fr/bonsai/msa_streaming. CREMSA

uses two types of bit vectors in sdsl-lite depending on the number

of runs in the bit vector: either SD bit vector or RRR bit vector.

A SD bit vector is intended to support sparse bit vectors, thus

we use them in CREMSA for any bit vector Bj with rj/s < .1. In

the other cases, a RRR bit vector is used because it is less space

consuming with denser bit vectors. In practice, the rank operation

is in O(log(s
rj

)) in the SD vector and O(1) for the RRR vector.

The select operation is in O(1) for SD vectors and O(log s) for

RRR vector. The offline construction of the index is currently

implemented in CREMSA. As of now, the online construction is

a proof-of-concept in a standalone implementation. Sorting the

sequences by their d-disciminative subwords is not included in

CREMSA yet either, but it is managed by an external Python script

which sorts the sequences on disk.

We built our CREMSA index on the 1,870,492 SARS-CoV-2

genomes. When storing the CREMSA index on disk, the compressed

bit vectors as well as the nucleotides stored in each Nj string

are compressed using gzip. When performing the queries, the

whole index is loaded in memory and both the bit vectors and

the Nj strings are un-gzipped. Note that the bit vectors are

still compressed by the scheme used in the SDSL library. As far

as we know, there exists no other index structure for multiple

alignments. However we compare our compression results to other

compressors.

All experiments were performed on the single thread of a

computer with a 12-core Intel i7-12700, 64GB of memory and a

1TB hard drive.

Compression ratios

CREMSA stores a multiple sequence alignment in a compressed

representation that also allows efficient queries. However CREMSA

does not store the identifiers of the sequences it represents. For

the sake of comparison, the compressors were assessed on the

basis of the sequences only, the sequence identifiers were not

taken into account. In Table 1 we present the compression ratios

of CREMSA, of two generic compressors (gzip and xz) and one

1 https://github.com/xxsds/sdsl-lite

https://gitlab.univ-lille.fr/cremsa/cremsa
https://hub.docker.com/repository/docker/mikaels/cremsa/
https://hub.docker.com/repository/docker/mikaels/cremsa/
https://gitlab.cristal.univ-lille.fr/bonsai/msa_streaming
https://gitlab.cristal.univ-lille.fr/bonsai/msa_streaming
https://github.com/xxsds/sdsl-lite

Compressed indexing of (ultra) large alignments 5

Compression ratio Runtime (s) Memory (MB)

gzip 3 9,742 2

xz 2,087 7,974 97

CoMSA 5,285 5,196 64,400

CREMSA 2,922 1,365 326
Table 1. Compression ratios of various compressors on the reordered

multiple sequence alignment of 1,870,492 SARS-CoV-2 genomes (65GB

uncompressed). The higher the compression ratio, the better the

compression. gzip and xz were launched with the default option and with

the best compression level (-9). The results with the latter were similar or

even worse, thus only the default option is shown.

specialized compressor dedicated to multiple sequence alignments

(CoMSA [Deorowicz et al., 2018]) on the 1.9M genomes reordered

according to our heuristic based on 5,000-discriminative subwords.

Note that CoMSA was launched on another computer (with

128GB RAM) as its memory usage exceeded the memory available

on the computer used for our experiments.

Unsurprisingly, CoMSA is the best compressor, however, this

comes at the cost of prohibitive memory usage. CREMSA is very

competitive in terms of compression ratio compared to xz. In

the reordered version, CREMSA even compresses better than xz

while being almost 9 times faster. gzip performances are poor

because of its look-back buffer whose size is only 32,768 characters

long, slightly too small to contain more than a single genome (the

aligned genomes are 34,830 characters long).

As introduced previously, the order of the sequences matters

for CREMSA in order to minimize the number of runs in each

column. Reordering the sequences also benefits dictionary-based

compressors since similar sequences are closer. We assessed the

impact of the following orders on the compression:

1. by increasing length of the genomes;

2. by phylogenetic order (ie. the lexicographical order of their

pango lineage);

3. by phylogenetic order and length of the genomes;

4. by the 5,000-discriminative subwords

5. by 5,000-random subwords (same idea as before but the 5000

columns are chosen randomly instead of using the percentage

of identity)

In Table 2 we show how the order influences the size of the

compressed representation of the sequences in the MSA. For

the d-discriminative subwords (and the random ones), the 1.9M

genomes were reordered on disk in 10 minutes on a SSD drive. As

mentioned previously this could be implemented more efficiently

with a bucket sort.

The phylogenetic order improves compression in all the cases,

confirming the result by Břinda et al. [2024]. Adding information

about the length of the sequences improves the compression for

CREMSA but decreases it for xz. This is probably due to the

nature of the compression methods. While CREMSA compresses

column-wise, where it is an advantage to have gaps at the ends

clustered together, xz compresses sequence-wise, where there is no

such advantage. Finally, the discriminative order allows the best

compression ratios for all the methods (except gzip that cannot

benefit from the redundancy for reasons explained previously).

Under that order, adding phylogenetic information does not bring

any improvement.

The performance of the discriminative subwords increases with

longer subwords and then plateau at 5,000 (data not shown).

Order gzip xz CoMSA CREMSA

Initial 3 1,211 4,628 965

Length 3 1,265 4,770 1,135

Phylogenetic 3 1,537 4,891 1,316

Phylo+length 3 957 4,962 1,741

Random sample 3 1,006±5 5,035±12 1,204±103
Discriminative 3 2,087 5,285 2,922

Discriminative+phylo 3 2,087 5,285 2,925
Table 2. Compression ratios on the multiple sequence alignment of

1,870,492 SARS-CoV-2 genomes (65GB uncompressed) reordered in

various ways. The higher the compression ratio, the better the compression.

The order are the following ones. Length: by genome length, phylogenetic:

by pango lineage, phylo+length: by pango lineage and genome length,

random sample: by 5,000 random subwords (the process was repeated 50

times, the average and standard deviation are shown), discriminative: by

the 5,000-discriminative subwords, discriminative+phylo: by the latter and

by the pango lineage.

1 2 4 8 16
Number of Chunks

40

60

80

100

120

Ti
m

e
(s

)

1

2

3

4

5

6

7

8

RA
M

 (G
)

Time (s)
RAM (G)

Fig. 2: Time and RAM, observed for different chunk sizes, for the

online index construction of on 100,000 SARS-CoV-2 genomes.

Surprisingly the performances of the discriminative order is not

impacted when shuffling the disciminative subwords used.

Under the best order, in CREMSA 1,473 bit vectors are stored

using a RRR bit vector, this number increases to 4,214 for the

initial order.

Runtime analysis

Construction time. The construction of the CREMSA index offers a

space-time trade-off. By default, CREMSA loads 1,000 columns in

memory, builds the bit vectors and the Nj strings and compresses

the bit vectors. Once all the columns have been processed, the bit

vectors and the Nj strings are gzipped and the index is written on

disk. The time and memory consumption of CREMSA construction

on 1.9M genomes is shown in Table 1. Obviously, loading more

columns reduces the construction time and increases the memory

consumption. When the construction is performed by loading

10,000 columns in memory, the time consumption is reduced

5 fold and the space consumption increased 7 fold (resp. 271s

and 2,369MB). In comparison to 10,000 columns, loading all the

alignment in memory only marginally improves times consumption

but increases space consumption 4 fold (resp. 168s and 9,378MB).

We benchmarked the online construction algorithm for

construction time and RAM. The online construction never reaches

6 Salson et al.

104 105 106

0

50

100

Number of sequences in the index

T
im

e
(n
s)

Fig. 3: Average time per nucleotide to perform the access query

on an index of 10,000 to 1.9M SARS-CoV-2 genomes.

the entire size of the original MSA in RAM thanks to the use

of buffers in the implementation. The offline method, based on

chunks of columns, processes 1.9M genomes in 1,365 seconds (1,392

genomes per second), whereas this second approach processes

100,000 genomes in just 30 to 135 seconds (740 to 3,333 genomes

per second), depending on the sequence chunk size (Figure 2).

Note that the bit vectors used in the protoype for the latter

approach is less time-efficient that the one used in the offline

method implemented in CREMSA.

Access to a random nucleotide. We recall that the purpose of

CREMSA is not only to compress a multiple sequence alignment

but also to provide efficient queries on it. For instance, CREMSA

provides random access to any nucleotide in the multiple sequence

alignment, something that competing compressors cannot achieve

without first decompressing the whole content of a column (or

alignment).

We assessed the access query by retrieving 10,000 sequences

randomly chosen from CREMSA indices containing from 10,000 to

1.9M sequences. The experiments were repeated 10 times. The

mean time for the access query is shown for each experiment in

Fig. 3.

Our experiments show that the access query is not performed in

constant time. This is due to the implementation of the sparse bit

vector we chose, which doesn’t have a constant time complexity for

rank queries, as explained previously. However, when the number

of sequences increases ∼190 fold, the access time increases less

than 4 fold, showing that the access query scales very well, at

about 100ns for an index of 1.9M genomes.

Impact of the number of runs per column. The time complexities

directly depend on the number of runs in each column of the MSA.

As expected, from the compression ratios, the number of runs is

lower in the discriminative order compared to the initial order.

More precisely, there are more than .1% of runs (ie. more than

1,870) in less than 5% of the columns in the discriminative order,

and in 12% of the columns in the initial order (see Figure 4). The

median number of runs is 95 (0.005%) with the discriminative

order and 141 (0.008%) in the initial order.

Counting nucleotides in a column. The runtime of queries on the

columns depend on their number of runs. We compared the

runtime for the count function in columns with varying number of

runs, from 1 to almost 10,000. For each i ∈ {1, . . . , 4}, 500 columns

were randomly chosen with a number of runs between .5 · 10i and

100 101 102 103 104 105

0

0.2

0.4

0.6

0.8

1

Cutoff on #runs per column

P
ro
p
or
ti
o
n
o
f
co

lu
m
n
s
b
el
ow

#
ru
n
s
cu

to
ff

Discriminative order

Initial order

Fig. 4: Detailed impact of reordering. Cumulative distribution

of the number of runs in each column, as induced by the

initial and optimized row ordering. Our optimized discriminative

order greatly increases the proportion of columns with #runs

in the [102, 103] range, while greatly depleting columns with

#runs greater than 5.103, resulting in an MSA with improved

compressibility.

2 · 10i. For each selected columns, the count function is run 10

times. The results are shown in Figure 5.

We remind that the time complexity of the count query

is linear in the number of runs (Θ(rj)). In practice, other

considerations come into play such as cache efficiency making

count more efficient on columns with few runs than those with

many runs. For instance, the time consumption increases by a

factor less than 2 between rj = 1 and rj = 9, while it increases 7

fold between rj = 993 and rj = 8917.

Queries on multiple columns. It could be argued that an index is not

required to compute counts on each column, since such statistics

could be precomputed in a single run, and subsequently queried

directly. However, this is not the case anymore when one wants

100 101 102 103 104

100

101

102

Average number of runs per column

T
im

e
(m

s)

Fig. 5: Average time to count occurrences of nucleotides in a single

column of 1.9M genomes, depending on its number of runs.

Compressed indexing of (ultra) large alignments 7

A Number of positions having columnwise entropy > 0.1 in each region of the MSA

0 5000 10000 15000 20000 25000 30000 35000
Alignment column

0

10

20

30

#P
os

iti
ve

 e
nt

ro
py

 p
os

.

B Number of coevolving pairs of positions found in each pair of regions

[1
,1

00
0[

[1
00

1,
20

00
[

[2
00

1,
30

00
[

[3
00

1,
40

00
[

[4
00

1,
50

00
[

[5
00

1,
60

00
[

[6
00

1,
70

00
[

[7
00

1,
80

00
[

[8
00

1,
90

00
[

[9
00

1,
10

00
0[

[1
00

01
,1

10
00

[

[1
10

01
,1

20
00

[

[1
20

01
,1

30
00

[

[1
30

01
,1

40
00

[

[1
40

01
,1

50
00

[

[1
50

01
,1

60
00

[

[1
60

01
,1

70
00

[

[1
70

01
,1

80
00

[

[1
80

01
,1

90
00

[

[1
90

01
,2

00
00

[

[2
00

01
,2

10
00

[

[2
10

01
,2

20
00

[

[2
20

01
,2

30
00

[

[2
30

01
,2

40
00

[

[2
40

01
,2

50
00

[

[2
50

01
,2

60
00

[

[2
60

01
,2

70
00

[

[2
70

01
,2

80
00

[

[2
80

01
,2

90
00

[

[2
90

01
,3

00
00

[

[3
00

01
,3

10
00

[

[3
10

01
,3

20
00

[

[3
20

01
,3

30
00

[

[3
30

01
,3

40
00

[

[3
40

01
,3

50
00

[

R
N

AA
lif

ol
d

sc
or

e

 G
Te

st
 s

co
re

Main coevolving regions according to GTest (top) vs RNAAlifold conservation score (bottom)

GTest score

RNAalifold score

Fig. 6: Main coevolving regions and entropic positions derived from an ultra-large MSA consisting of 1,870,492 SARS-CoV 2 genomes. The

top panel (A) represents as a barplot the number of positions, in each region (1k nts slice) of the genome, associated with a columnwise

entropy greater than 0.1. The bottom panel (B) shows main coevolving regions, each dot representing 1,000 consecutive nucleotides, with

respect to two classic metrics (top–GTest, bottom–RNAalifold conservation score). For a given metrics and pair of region, the strength

of the interaction (line thickness) indicates the number of column pairs which exceeding a predefined cutoff.

to query counts on multiple columns. For instance, for pair count

queries, each column is queried on average O(s) times.

Optimizing genome order is all the more important for pair

count queries since the time complexity depends on the largest

number of runs among the two columns. In practice, the optimized

order is 4 times quicker to compute pair count queries than the

initial order on the 1.9M genomes: the counts for the 607M pair of

columns are computed in 5h and 81MB of RAM under the 5000-

discordant subword order and in 22h and 197MB of RAM under

the initial order.

Covariation analysis of SARS CoV-2 genomes

In order to demonstrate the usability of our index in the context

of very large viral alignments, we analyzed a 65GB large MSA

consisting of 1,870,492 SARS-CoV2 genomes, further described in

the Datasets subsection. More specifically, we strived to identify

sites and regions undergoing evolutionary pressure.

More specifically, we analyzed the columnwise entropy as a

measure of the diversity of nucleotides observed within a given

column. Pair statistics were also considered to capture a notion of

coevolution, and we considered the GTest statistics used at the core

of the popular RScape method [Rivas et al., 2017]. This score is

closely related to Mutual Information, and does not specifically

focus on the propensity of sites to form a base pair, rather

rewarding an observed bias of evolution away from the uniform

distribution. Towards structural analysis, it is sometimes beneficial

to complement such metrics with scores that explicitly reward

compatible nucleotide pairs, more likely to indicate compensatory

mutations. We thus turn to a conservation score introduced by

RNAalifold [Bernhart et al., 2008] as a pseudoenergy term to

complement the classic Turner energy model with evolutionary

information.

We compute the site-level entropy, for each of the columns

in the alignment, and the two-sites GTest and RNAalifold scores

for each pair of columns. As mentioned in the Runtime analysis

Section, an optimized ordering of genomes allows performing

the whole computation in little over 22h on a single CPU,

an impressive feat given the large number of column pairs

(606,547,035), each requiring an iteration over 1,870,492 rows in

an uncompressed setting.

For the sake of readability, and given the length of the

alignment, we present in Figure 6 a coarse-grained visualization

of the results. Namely, the alignment is broken up into 1,000nts

non-overlapping regions, and we report the number of sites and

pairs having value greater than a metrics-specific cutoff (entropy

> 0.1, GTest > 250k, RNAAlifold > 0.75).

On a single-site level, our analysis shows that only a marginal

fraction (1-30‰) of the positions feature some level of entropy

(above 0.1). Such a perceived conservation likely reflects strong

evolutionary constraints, coupled with a close temporal proximity

of collection for the majority of genomes, in the initial stages of

the COVID 19 outbreak. Interestingly, the largest values observed

for the columnwise entropy are found in the 22k-26k region of

the alignment, encoding the spike glycoprotein. Since this protein

has been targeted by vaccines, higher mutation rates in this

genomic region are expected and consistent with documented

escape strategies (along with the position of variants of concern).

Probably more surprising is the presence of a steady, relatively

high, level of mutations in the terminal 25k-35k region, despite

8 Salson et al.

the presence in this region of multiple, sometimes overlapping,

open reading frames.

Our two chosen metrics are in general agreement in the

region-level coevolutionary analyses, but also feature notable

discrepancies. On a broad level, our analyses reveal the existence

of a hub in the 24k-25k region of the MSA, associated with

the ORF encoding the spike protein. According to both metrics,

this region seemingly coevolves with 10 out of 23 regions in 5’,

and with all of the terminal regions (25k-35k). Both metrics

also support a strong and pervasive coevolution with the 25k-35k

region, both on an information-theoretic and structural level. As

expected, the RNAalifold score appears more selective than the

GTest, leaving some regions entirely devoid of coevolving partners,

while highlighting a potential of the 4k-5k region to region with

downstream regions which are not visible from the GTest. This

is likely due to the transitive nature of scores akin to a Mutual

Information (if both pairs (a, b) and (a, c) have large MI, then

(b, c) typically has large MI). Conversely, the large number of

interactions having good RNAalifold score between the 21k-22k

and 24k-25k regions, not present in the GTest data, suggests

the presence of compensatory mutations, possibly indicating

evolutionarily-conserved structural elements.

While those promising preliminary results would certainly

warrant further refinements (e.g. phylogenetic subsampling,

comparison against available probing data [Manfredonia et al.,

2020]), we must stress that the mere production of the metrics

would not have been realistically feasible if not for the availability

and efficiency of CREMSA, thus demonstrating its value and

relevance.

Discussion

We have introduced a new compressed index for highly redundant

multiple sequence alignments, as well as a new ordering of mutiple

sequence alignment that benefits other compressors. This new

order significantly improves compression. It is yet to be determined

whether other simple orders could go beyond the compression

ratios we achieved. It is surprising that an order as simple as the d-

discriminative subword works so well. It is also surprising that the

order of the letters within the subword has no significant impact on

the compression ratios. This suggests that some information used

for the ordering is redundant and that a more careful selection of

the columns to be selected to determine the order could achieve

similar results.

The wealth of data used for this kind of analysis also comes

with its own limitations. Among millions of genomes, it is to

be expected that some of them are of poorer qualities, despite

the filters we have applied. Those genomes will tend to fragment

the MSA by introducing gaps within it. Spurious gaps could

prevent the identification of compensatory mutations, when those

mutations end up being spread on different columns because of

gaps. Among millions of genomes, it is usually difficult to identify

the tiny fraction of them which is problematic. Using CREMSA one

could easily identify the genomes which often introduce gaps in the

alignment. Thus, CREMSA could help improve the public datasets

of millions of genomes and it could eventually help to identify

meaningful covariations.

CREMSA could easily be turned into a fully dynamic structure,

allowing the insertion of new sequences to an existing index

on the fly. However in such a case, the computation of the

multiple sequence alignment would remain the bottleneck, as

the MSA would require complete recomputation. As mentioned

previously the computation of the MSA on 1.9M SARS-CoV-2

genomes required 1.2TB of RAM with Halign3. This makes such

computation not readily accessible. Thus the availability of CREMSA

motivates the development of more frugal approaches to multiple

sequence alignment, tailored for highly similar sequences.

Conclusion

CREMSA is a frugal compressed index for highly redundant multiple

sequence alignments achieving compression ratios close to the

state-of-the-art specific compressors, but taking a fraction of the

time they needed. Additionally, CREMSA provides random access

to any nucleotide and greatly eases the computation of multi-

columns/sites statistics in the MSA, in order to determine valuable

covariation statistics.

We also introduced a new ordering on multiple sequence

alignments that also benefits other compressors. Such an optimized

ordering is purely beneficial for CREMSA (as well as other

compressors), as they both reduce space and time consumption of

our structure, and enable faster queries. Namely, in our running

example focusing on SARS-CoV 2, our new order reduces the index

size by a factor of three and the computation time for pair count

queries by a factor of four.

We also compute an index on 1,870,492 SARS-CoV-2 genomes

aligned with Halign3 (65GB of data) in an index compressed to

22MB on disk and taking 81MB of RAM. Then, in a few hours

CREMSA could compute pair counts for any pair of columns, that

could then be used to derive conservation scores.

Data availability and Reproducibility

The multiple sequence alignment of 1,870,492 SARS-CoV-2

genomes is available on Zenodo at https://zenodo.org/records/

14698859. A Snakefile is available to reproduce the benchmarks

on CREMSA and the other compressors at https://gitlab.

univ-lille.fr/cremsa/bench.

Acknowledgment

This work was funded by the French Agence Nationale de la

Recherche (ANR) through the INSSANE project (ANR21-CE45-

0034). Additional computing resources where provided by the

Institut Français de Bioinformatique (IFB) and the IFB Core

cluster, under the ANR-funded Programme d’Investissements

d’Avenir (RENABI-IFB; ANR-11-INBS-0013 and MUDIS4LS

ANR-21-ESRE-0048).

We are also grateful to Karel Břinda for pointing us to the Hunt

et al. dataset.

References

S. H. Bernhart, I. L. Hofacker, S. Will, A. R. Gruber, and P. F.

Stadler. RNAalifold: improved consensus structure prediction

for RNA alignments. BMC Bioinformatics, 9(1), Nov. 2008.

ISSN 1471-2105. doi: 10.1186/1471-2105-9-474.

K. Břinda, L. Lima, S. Pignotti, N. Quinones-Olvera, K. Salikhov,

R. Chikhi, G. Kucherov, Z. Iqbal, and M. Baym. Efficient

and robust search of microbial genomes via phylogenetic

compression. bioRxiv, 2024. doi: 10.1101/2023.04.15.

https://zenodo.org/records/14698859
https://zenodo.org/records/14698859
https://gitlab.univ-lille.fr/cremsa/bench
https://gitlab.univ-lille.fr/cremsa/bench

Compressed indexing of (ultra) large alignments 9

536996. URL https://www.biorxiv.org/content/early/2024/

05/11/2023.04.15.536996.

S. Deorowicz, J. Walczyszyn, and A. Debudaj-Grabysz. CoMSA:

compression of protein multiple sequence alignment files.

Bioinformatics, 35(2):227–234, 07 2018. ISSN 1367-4803.

doi: 10.1093/bioinformatics/bty619. URL https://doi.org/

10.1093/bioinformatics/bty619.

R. R. Gutell, N. Larsen, and C. R. Woese. Lessons from

an evolving rRNA: 16S and 23S rRNA structures from a

comparative perspective. Microbiol. Rev., Mar. 1994. doi:

10.1128/mr.58.1.10-26.1994.

M. Hunt, A. S. Hinrichs, D. Anderson, L. Karim, B. L.

Dearlove, J. Knaggs, B. Constantinides, P. W. Fowler,

G. Rodger, T. Street, S. Lumley, H. Webster, T. Sanderson,

C. Ruis, B. Kotzen, N. de Maio, L. N. Amenga-Etego,

D. S. Y. Amuzu, M. Avaro, G. A. Awandare, R. Ayivor-

Djanie, T. Barkham, M. Bashton, E. M. Batty, Y. Bediako,

D. D. Belder, E. Benedetti, A. Bergthaler, S. A. Boers,

J. Campos, R. A. A. Carr, Y. Y. C. Chen, F. Cuba, M. E.

Dattero, W. Dejnirattisai, A. Dilthey, K. O. Duedu, L. Endler,

I. Engelmann, N. M. Francisco, J. Fuchs, E. Z. Gnimpieba,

S. Groc, J. Gyamfi, D. Heemskerk, T. Houwaart, N.-y. Hsiao,

M. Huska, M. Hölzer, A. Iranzadeh, H. Jarva, C. Jeewandara,

B. Jolly, R. Joseph, R. Kant, K. K. K. Ki, S. Kurkela,

M. Lappalainen, M. Lataretu, J. Lemieux, C. Liu, G. N.

Malavige, T. Mashe, J. Mongkolsapaya, B. Montes, J. A. M.

Mora, C. M. Morang’a, B. Mvula, N. Nagarajan, A. Nelson,

J. M. Ngoi, J. P. da Paixão, M. Panning, T. Poklepovich,

P. K. Quashie, D. Ranasinghe, M. Russo, J. E. San, N. D.

Sanderson, V. Scaria, G. Screaton, O. M. Sessions, T. Sironen,

A. Sisay, D. Smith, T. Smura, P. Supasa, C. Suphavilai,

J. Swann, H. Tegally, B. Tegomoh, O. Vapalahti, A. Walker,

R. J. Wilkinson, C. Williamson, X. Zair, I. L. N. Consortium,

T. de Oliveira, T. E. Peto, D. Crook, R. Corbett-Detig, and

Z. Iqbal. Addressing pandemic-wide systematic errors in the

sars-cov-2 phylogeny. bioRxiv, 2024. doi: 10.1101/2024.04.29.

591666.

I. Manfredonia, C. Nithin, A. Ponce-Salvatierra, P. Ghosh,

T. K. Wirecki, T. Marinus, N. S. Ogando, E. Snijder, M. J.

van Hemert, J. M. Bujnicki, and D. Incarnato. Genome-wide

mapping of sars-cov-2 rna structures identifies therapeutically-

relevant elements. Nucleic Acids Research, 48(22):12436–12452,

11 2020. ISSN 0305-1048. doi: 10.1093/nar/gkaa1053. URL

https://doi.org/10.1093/nar/gkaa1053.

G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM

Computing Surveys (CSUR), 39(1):2–es, 2007.

N. Prezza. A framework of dynamic data structures for string

processing. arXiv, 2017. doi: 10.48550/arXiv.1701.07238. URL

https://arxiv.org/abs/1701.07238.

E. Rivas, J. Clements, and S. R. Eddy. A statistical test for

conserved RNA structure shows lack of evidence for structure

in lncRNAs. Nat. Methods, 14(1):45–48, Jan. 2017. ISSN 1548-

7105. doi: 10.1038/nmeth.4066.

F. Tang, J. Chao, Y. Wei, F. Yang, Y. Zhai, L. Xu, and Q. Zou.

Halign 3: fast multiple alignment of ultra-large numbers of

similar dna/rna sequences. Molecular Biology and Evolution,

39(8):msac166, 2022.

S. Triebel, K. Lamkiewicz, N. Ontiveros, B. Sweeney, P. F. Stadler,

A. I. Petrov, M. Niepmann, and M. Marz. Comprehensive

survey of conserved rna secondary structures in full-genome

alignment of hepatitis c virus. Scientific Reports, 14(1), July

2024. ISSN 2045-2322. doi: 10.1038/s41598-024-62897-0.

B. Woolf. THE LOG LIKELIHOOD RATIO TEST (THE G-

TEST). Ann. Hum. Genet., 21(4):397–409, May 1957. ISSN

0003-4800. doi: 10.1111/j.1469-1809.1972.tb00293.x.

https://www.biorxiv.org/content/early/2024/05/11/2023.04.15.536996
https://www.biorxiv.org/content/early/2024/05/11/2023.04.15.536996
https://doi.org/10.1093/bioinformatics/bty619
https://doi.org/10.1093/bioinformatics/bty619
https://doi.org/10.1093/nar/gkaa1053
https://arxiv.org/abs/1701.07238

	Introduction
	Materials and methods
	Datasets
	The CREMSA index
	Index definition
	Supported queries
	Index construction
	Complexities

	Improving compressibility through sequence reordering
	Entropy and covariation metrics for RNA comparative analysis

	Results
	Compression ratios
	Runtime analysis
	Covariation analysis of SARS CoV-2 genomes

	Discussion
	Conclusion

