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Résumé. De nombreuses interactions numériques amènent les utilisateurs à partager du
contenu publié par d’autres. Ce type de données est naturellement représenté par un réseau
ayant pour nœuds les comptes des utilisateurs et pour arêtes, les documents partagés. Pour
comprendre ces structures complexes et hétérogènes, il est crucial de pouvoir classifier les
nœuds en groupes homogènes et d’obtenir une visualisation du réseau interprétable. Pour
répondre à ces deux problématiques, nous présentons Deep-LPTM, un modèle de classifica-
tion de nœuds reposant sur un auto-encodeur de graph variationnel ainsi que sur un modèle
probabiliste profond pour la représentation simultanées des documents et des nœuds dans
deux espaces latents. Les paramètres sont estimés à l’aide d’un algorithme d’inférence vari-
ationnelle. Le modèle est évalué sur des données synthétiques et est comparé avec l’état de
l’art, à savoir ETSBM et STBM.

Mots-clés. Réseaux de neurones convolutif pour les graphes, Modèle de thèmes plongés,
Modèle à positions latentes profonds, Apprentissage non-supervisé

Abstract. Numerical interactions leading to users sharing content published by others
are naturally represented by a network where the individuals are associated with the nodes
and the exchanged texts with the edges. To understand those heterogeneous and complex
data structures, clustering nodes into homogeneous groups is crucial as well as rendering an
comprehensible visualisation of the data. To address both issues, we introduce Deep-LPTM,
a model-based clustering strategy relying on a variational graph autoencoder approach as
well as a probabilistic model to characterise the topics of discussion. Deep-LPTM allows to
build a joint representation of the nodes and of the edges in two embeddings spaces. The
parameters are inferred using a variational inference algorithm. An extensive benchmark
study on synthetic data is provided. In particular, we find that Deep-LPTM better recovers
the partitions of the nodes than the state-of-the art ETSBM and STBM.

Keywords. graph convolutional network, embedded topic model, deep latent position
model, unsupervised learning
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1 Introduction and notations

Numerical interactions between individuals often imply the creation of texts. For instance,
on social media such as Twitter, it is possible to publish some content, a tweet or a post, that
will in turn be republished, or re-twitted, by other accounts. Also, it is possible to mention
another account directly in the publication. In the same way, the exchange of mails between
collaborators can be seen as connections between accounts exchanging documents. Both ex-
amples can be represented by a network with the nodes corresponding to the accounts, and
the edges to the exchanged texts. This complex data structure is difficult for the human to
apprehend, due to the heterogeneity of the data, and in particular when considering mas-
sive data. One solution is to cluster homogeneous nodes into groups to obtain intelligible
and useful information. However, very few methods performing node clustering are able to
simultaneously exploit both the texts present on the edges and the connections. Moreover,
they do not provide direct means to represent the network as illustrated in Figure 1. Conse-
quently, we introduce Deep-LPTM whose generative assumptions are presented in Section 2.
Section 3 focuses on the inference and Section 4 provides the evaluation of the model against
state-of-the-art methods. In section 5, we briefly discuss extension of this work that will be
presented if the paper is accepted.

In this paper, we are interested in data represented by a graph G := {V , E} where V =
{1, . . . , N} denotes the set of vertices. The set E denotes the edges between the nodes with
M = |E| the number of edges. We focus on binary a adjacency matrix A ∈ MN×N({0, 1})
such that Aij equals 1 if (i, j) ∈ E , and 0 otherwise. The graph is assumed to be directed
and without any self loop. Therefore Aii = 0 for all i ∈ V . Finally, Q denotes the number of
clusters of nodes.

Each edge in the graph represents a textual document sent from one node to another.
An edge from node i to node j exists or equivalently (i, j) ∈ E , if and only if node i
sent a textual document to node j, denoted Wij. We use a bag-of-word representation of
the texts where Wij =

(
W 1

ij, . . . , W V
ij

)
∈ NV denotes the vector of word occurrences in the

document between nodes i and j such that W v
ij is the number of times word v appears in the

document, Mij = ∑V
v=1 W v

ij is the total number of words in document Wij and V the size of
the vocabulary. The set of documents will be denoted W := (Wij)(i,j)∈E and the number of
topics is denoted by K. Eventually, the simplex of dimension d will be denoted ∆d−1.

2 Model

In the following, the assumptions about the graph generation as well as the hypothesis
concerning the documents construction are presented.

Graph generation Assuming that the number of clusters Q is fixed before hand, each
node i is assumed to belong to a cluster, represented by the cluster membership variable Ci.
The variables Ci, for any i ∈ V , are assumed to be independent and identically distributed
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True network SBM & LDA ETSBM Deep−LPTM

Figure 1: Illustration of Deep-LPTM contributions. The node (edge respectively) colours
denote the corresponding clusters (topics). The true partitions of the network are represented
on the left hand side. The second figure relies on the node clusters and the topics rendered
by the stochastic block model (SBM) and the latent Dirichlet allocation (LDA) respectively.
The third network is based on the state-of-the-art embedded topics for the stochastic block
model (ETSBM). Finally, the last network renders Deep-LPTM node clustering and latent
node positions. The former methods do not provide node positions.

(i.i.d) according to a multinomial distribution such that for any node i ∈ {1, . . . , N}:

Ci ∼ MQ(1, π), (1)

with π ∈ ∆Q−1 and Ci ∈ {0, 1}Q being one hot encoded so that Ciq = 1 if node i belongs
to cluster q and Ciq = 0 otherwise. Thus, denoting C = (C1, . . . , CN)T ∈ MN×Q({0, 1}) the
cluster membership matrix, we have:

p(C) =
N∏

i=1

Q∏
q=1

πCiq
q . (2)

Moreover, given its cluster membership, the node i is assumed to be represented by a Gaussian
vector Zi in a p dimensional latent space such that:

Zi | Ciq = 1 ∼ N
(
µq, σ2

qIp

)
. (3)

Eventually, the connection between two nodes is assumed to depend on the closeness of the
node representations in the latent space. Therefore, denoting ηij := κ − ∥Zi − Zj∥, the
probability for node i to be connected to node j is:

P (Aij = 1 | Zi, Zj) = 1
1 + e−ηij

, (4)

where a logistic function is used as a link function. For the sake of brevity, we will denote
pij = (1 + e−ηij )−1.

It is worth noticing that the model described in Equations (1), (3) and (4) corresponds
to the latent position cluster model Handcock et al. (2007). The fundamental difference with
our approach for this part of the model will arise in the inference, as discussed in Section 3.
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Generation of the texts on the edges At the core of our approach is the motivation
to use textual data to obtain more homogeneous and meaningful clusters. To begin with,
we make the assumption that each edge can be represented in a latent space by a Gaussian
vector, depending only on the node cluster memberships. Thus, given (Ci)i∈V , the latent
variables Yij are assumed to be i.i.d such that:

Yij | AijCiqCjr = 1 ∼ N (mqr, diag(s2
qr)), ∀(i, j) ∈ E , (5)

where mqr ∈ RK , sqr ∈ RK . Moreover, we assume that the topic proportions of the document
Wij, denoted θij, can be deduced from the latent variables such that: θij = softmax(Yij)
where softmax(x) =

(∑K
k=1 ex

k

)−1 (ex1 , . . . , exK )⊤. Hence, assuming that the documents are
i.i.d given their corresponding topic proportions, we have for any edge (i, j) ∈ E :

Wij | Aij = 1, θij ∼ MV

(
Mij, β⊤θij

)
, (6)

where βk = softmax(ρ⊤αk) ∈ RV , β = (β1 . . . βK)⊤ ∈ MK×V (R), ρ ∈ ML×V (R), αk ∈ RL

and α = (α1 . . . αK) ∈ ML×K(R). Interestingly enough, discarding the network data and
considering only the documents, the generative assumptions correspond to the embedded
topic model (Dieng et al., 2020).

3 Inference

In the next section, the inference of the model is presented as well as the model selection
criterion.

3.1 Variational inference and optimisation

In this work, we consider the marginal likelihood of the network and the texts for parameter
estimation. The latent variables are denoted by C = (Ci)N

i=1, Z = (Zi)N
i=1 and Y = (Yij)(i,j)∈E .

Moreover, the set of parameters Θ := {π, µ, σ, κ, m, s, α, ρ} is such that m = (mqr)qr, s =
(sqr)qr, µ = (µq)q and σ = (σq)q.Thus, the marginal log-likelihood is given by:

L(Θ; A, W ) = log p(A, W | Θ) = log
Ç∑

C

∫
Z

∫
Y

p(A, W, C, Z, Y | Θ)dZdY

å
. (7)

Unfortunately, this quantity is not tractable since the sum over C requires to compute QN

terms. Besides, it involves integrals that cannot be computed analytically. Therefore, we
choose to rely on a variational inference approach for approximation purposes.

Decomposition of the marginal log-likelihood For any distribution R(C, Z, Y ), the
following decomposition holds:

L(Θ; A, W ) = L (R(·); Θ) + KL(R(·)||p(C, Z, Y | A, W )), (8)
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where

L (R(·); Θ) = ER

ï
log p(A, W, C, Z, Y | Θ)

R(C, Z, Y )

ò
. (9)

Since the Kullback-Leibler divergence is always positive in Equation (8), the ELBO L (R(·); Θ)
is a lower bound of the marginal log-likelihood. Moreover, since the marginal log-likelihood
does not depend on R(·), the higher the ELBO is, the closer to the marginal log-likelihood
it is. To make the ELBO tractable, we restrict the family of variational distributions by
considering a mean field assumption as well as the following hypothesis:

R(C, Z, Y ) = R(C)R(Z)R(Y ), (10)

Rτ (C) =
N∏

i=1
Rτi

(Ci) =
N∏

i=1
MQ(Ci; 1, τi), (11)

RϕZ
(Z | A) =

N∏
i=1

RϕZ
(Zi | A) =

N∏
i=1

N (Zi; µϕZ
(A)i, σ2

ϕZ
(A)iIp), (12)

RϕY
(Y | A, W ) =

∏
i ̸=j

RϕY
(Yij | Wij)Aij =

∏
i ̸=j

N
(
Yij; µϕY

(Wij), diag
(
σ2

ϕY
(Wij)

))Aij , (13)

where τ = (τi)N
i=1 with ∀i ∈ {1, . . . , N}, τi ∈ ∆Q−1. The notations µϕZ

, σ2
ϕZ

(µϕY
and

σ2
ϕY

respectively) denote the encoder of the nodes (the edges) and correspond to a mapping of
the normalised adjacency matrix A := D−1/2AD−1/2 (the document term matrix W ) to the
mean and standard deviation of the node (documents) representations into the latent space.
The parameters of these encoders are denoted by ϕZ and ϕY .

Optimisation To optimise the ELBO, we propose to alternate between closed form up-
dates, based on first order conditions, and stochastic gradient descent steps using the Adam
optimiser and the reparametrisation trick (Kingma, Welling, 2014; Rezende et al., 2014) that
will be described in the talk, if the paper is accepted.

4 Numerical experiments

This section is dedicated to the assessment of the proposed methodology in this paper.

4.1 Simulation settings

To begin with, we introduce the three scenarios used to evaluate the model on different
aspects, detailed hereinafter.

Scenarios
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Scenario A Scenario B Scenario C

Figure 2: Representation of three networks simulated according to Scenario A, B and C.

• Scenario A is constituted of three communities, each defining a cluster, and four topics.
By definition, a community is a group of nodes more densely connected together than
with the rest of the network. For each cluster, a specific topic is employed to sample
the documents associated with the intra-cluster connections. Besides, an extra topic is
employed to model documents sent between nodes from different clusters. Hence, by
construction, the clustering structure can be retrieved either using the network or the
texts only.

• Scenario B is made of a single community and three topics. Consequently, all nodes
connect with the same probability. Then, the nodes are spread into two clusters using
distinct topics. An extra topic is used to model documents exchanged between the two
clusters. Accordingly, the network itself is not sufficient to find the two clusters but
the documents are.

• Scenario C comprises three communities and three topics. Two of the communities are
associated with their respective topics, say t1 and t2. Furthermore, following Scenario
B, the third community is split in two clusters, one being associated with topic t1 and
the other with t2. Thus, considering both texts and topology, each network is actually
made up of four node clusters. Consequently, both textual data and the network
are necessary to uncover the clusters. This scenario will be of major interest in this
experiment section since it ensures that the two sources of information are correctly
used to uncover the partitions.

For all scenarios, the edges holding the documents are constructed by sampling words from
four BBC articles, focusing each on a given topic. The first topic deals with the UK monarchy,
the second with cancer treatments, the third with the political landscape in the UK and the
last topic deals with astronomy. In the general setting, for all scenarios, the average text
length for the documents is set to 150 words. The parameters used to sample data from
the three scenarios illustrated in Figure 2, and given in Table 1. To summarise, the three
proposed scenarios inspect different facets of the model. Scenario A insures that the model
rightfully uses the network structure, Scenario B focuses on the usage of the topics to recover
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the nodes partitions. Finally, Scenario C combines the two scenarios to guarantee that both
sources of information are correctly utilised simultaneously.

Scenario A Scenario B Scenario C
Q (clusters) 3 2 4
K (topics) 4 3 3

Communities 3 1 3

πqr (connection probabilities)
η = 0.25, ϵ = 0.01

Ñ
η ϵ ϵ
ϵ η ϵ
ϵ ϵ η

é Å
η η
η η

ã Ü
η ϵ ϵ ϵ
ϵ η ϵ ϵ
ϵ ϵ η η
ϵ ϵ η η

ê
Topics matrix T between pairs of

clusters (q, r)

Ñ
t1 t4 t4
t4 t2 t4
t4 t4 t3

é Å
t1 t3
t3 t2

ã Ü
t1 t3 t3 t3
t3 t2 t3 t3
t3 t3 t1 t3
t3 t3 t3 t2

ê
Table 1: Detail of the three simulation scenarios used to evaluate our model.

Clustering performance evaluation The adjusted rand index (ARI) is used as a measure
of the closeness between two partitions. In this paper, ARI compares the true nodes labels
with the nodes partition provided by the models. In particular, obtaining an ARI of 0 suggests
that the clustering is as close to the true nodes labels as a random cluster assignment of the
nodes. On the contrary, the closer the ARI is to 1, the better the results are. Ultimately,
perfectly recovering the true partition (up to a label permutation) would lead to an ARI of
1.

Level of difficulty In order to generate more situations from the three scenarios, we
introduce the Hard difficulty to test the model robustness against two aspects. First, we
want to test the model against documents using several topics. Thus, in the Hard difficulty,
the documents are formed of multiple topics such that, for any edge (i, j) with node i in
cluster q and node j in cluster r, the topics proportions are computed as a ratio between
the pure topic proportions θ⋆

qr ∈ {0, 1}K , with zeros everywhere except at the coordinate
corresponding to the true topic and between the uniform distribution over the topics. This
combination is controlled by a parameter ζ such that ζ = 0 corresponds to a pure topic case
while ζ = 1 leads to a uniform distribution over the topics. This translates into:

θqr = (1 − ζ)θ⋆
qr + ζ ∗

Å 1
K

, . . . ,
1
K

ã⊤
, (14)

with ζ = 0.7 in the Hard setting. The second aspect tested by the Hard setting is the
robustness in the presence of less connected communities. Consequently, the intra-cluster
connection probability is decreased from η = 0.25 in the classical setting to η = 0.1 in the
Hard one.
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ScenarioA ScenarioB ScenarioC

Easy

SBM 1.00 ± 0.00 -0.00 ± 0.01 0.73 ± 0.05
STBM 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.01
ETSBM 0.99 ± 0.03 1.00 ± 0.00 0.96 ± 0.04
ETSBM - PT 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.05
Deep-LPTM 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Deep-LPTM - PT 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Hard

SBM 0.97 ± 0.03 0.00 ± 0.00 0.62 ± 0.1
STBM 0.63 ± 0.23 1.00 ± 0.00 0.66 ± 0.19
ETSBM 0.96 ± 0.10 0.90 ± 0.30 0.72 ± 0.25
ETSBM - PT 0.99 ± 0.01 1.00 ± 0.00 0.74 ± 0.21
Deep-LPTM 0.99 ± 0.02 1.00 ± 0.00 0.89 ± 0.15
Deep-LPTM - PT 1.00 ± 0.01 1.00 ± 0.00 0.85 ± 0.18

Table 2: ARI of the nodes clustering averaged over 10 graphs in all three scenarios for the two
levels of difficulty Easy and Hard. Deep-LPTM, as well as ETSBM, are presented with and
without pre-trained embeddings (denoted PT). Moreover, STBM and SBM are also provided
as baselines.

4.2 Benchmark

In this section, we present a benchmark study in Table 2 comparing Deep-LPTM with state-
of-the-art ETSBM and STBM. We also provide SBM as a baseline even though it cannot
take into account the text edges. The table presents the average of the ARI over 10 graphs.
Each graph result is obtained by running each method with five different initialisations and
by taking the one resulting in the highest ELBO. The table is presented for four different
models, namely SBM, STBM, ETSBM and Deep-LPTM. The last two models are evaluated
with and without pre-trained embedding. In all cases, Deep-LPTM is either as good as
or better than other models. In particular, in Scenario C with difficulty Hard, the ARI of
Deep-LPTM node clustering is higher than all other methods, by at least 0.15. Likewise, in
Scenario A with difficulty Hard, Deep-LPTM always recover the true partition while STBM
only reaches an ARI of 0.66 ± 0.18.

Discussion In addition to the above, we derived a model selection criterion and analysed
the Enron emails dataset. These aspects will also be discussed during the talk if the paper
is accepted to the conference.
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