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Résumé.

L’augmentation des capacités de stockage et des données collectées a entrâıné un ac-
croissement des jeux de données disponibles. Par conséquent, l’utilisation des réseaux pour
modéliser les relations entre différents objets, appelés des nœuds s’est accrue. Ces réseaux
pouvant compter un très grand nombre de nœuds, l’information qu’ils contiennent doit-être
résumée, le plus souvent à l’aide de méthodes de clustering de nœuds. Afin de rendre les
résultats interprétables, une visualisation pertinente du réseau est également requise. Pour ce
faire, nous proposons une nouvelle méthodologie appelée Deep-LPBM, permettant d’obtenir
simultanément un clustering des noeuds basé sur une approche par bloc, plus générale que
la détection de communautés, ainsi qu’une représentation continue des nœuds dans un es-
pace latent. Deep-LPBM utilise une stratégie d’auto encodeur variationnel, s’appuyant sur
un réseau de convolution de graphe, avec un décodeur adapté. L’inférence repose sur la
vraisemblance marginale du modèle, et l’optimisation alterne entre des équations analytiques
ainsi qu’une descente de gradient stochastique. Ce travail étant en cours, des expériences sur
données simulées ainsi que sur données réelles seront fournies si le papier est accepté pour
une présentation orale.

Mots-clés. Clustering de nœuds, auto-encodeur de graphe variationnel, modélisation
par blocs, visualisation de graphe

Abstract. The increase in the quantity of data has led to a soaring use of networks
to model relationships between different objects, called nodes. Since the number of nodes
can be very large, the network information must be summarised, mostly with node clustering
methods. In order to make the results interpretable, a relevant visualization of the network is
also required. To tackle those two issues, we propose a new method called Deep-LPBM which
provides simultaneously a network visualization based on block modelling, allowing a more
general clustering than community detections, as well as a continuous representation of nodes
in a latent space. Our methodology is based on a variational autoencoder strategy, relying on
a graph convolutional network, with a specifically designed decoder. The inference is based
on the marginal likelihood of the model, and the optimisation combines analytical equations
with stochastic gradient descent. As this work is ongoing, experiments on simulated data as
well as on real data will be provided if the paper is accepted for an oral presentation.

Keywords. Node clustering, variational graph auto-encoder, block modelling, network
visualisation
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1 Introduction and contribution

Networks are encountered in a variety of fields, ranging from social sciences to biology. Their
capacity to represent any type of object and relationship makes it a core object to model
interactions. However, they present difficulties to apprehend since non-observed features,
such as node cluster memberships, may impact the observed network topology and engen-
der specific connectivity patterns. This requires the development of specifically fashioned
methods, models and inference strategies to capture information. To give an example, one
of the most studied type of groups is called a community and corresponds to nodes highly
connected to nodes of the same group but poorly connected to nodes from other groups.
The community-detection methods are numerous but do not necessarily generalise to other
types of structure such as a star pattern (a cluster of nodes poorly connected together but
highly connected to nodes from the other clusters). Therefore, being able to capture the
structure underlying the data is essential to model any type of relationship, even without
prior knowledge of the network topology. This flexibility was provided by the stochastic block
model (SBM, Snijders and Nowicki, 1997; Daudin, Picard, et al., 2008), enabling to model
any type of connectivity patterns among the network. However, this flexibility comes at the
cost of representation. Indeed, those methodologies do not provide a direct representation
of the network, but only a high-level depiction of the underlying patterns, where clusters are
represented as nodes, cluster sizes as node sizes, and the number of connections between clus-
ters as edge widths. This meta representation may hide some node-specific properties. For
instance, a node in a cluster may be more connected to another group than the other nodes
in its cluster. Hence, this feature should appear in the network representation, since this
node might play a crucial role in the network, precisely because it connects two clusters. To
represent a network, positional approaches have been proposed by performing link prediction
based on the similarity between estimated continuous node representations (Hoff et al., 2002;
Handcock et al., 2007). Unfortunately, such methods only estimate communities. While some
previous work has focused on combining the two (Hoff, 2007; Daudin, Pierre, et al., 2010),
the methodology we propose is the first to incorporate the graph neural network ability to
create informative node embeddings. To this end, a marginalised block model is introduced,
where a logistic-Gaussian distribution models the node cluster membership probabilities and
is used for visualisation purposes. This is an ongoing work that will come with a Python
package as well as an extensive benchmark and a real world use-case.

Notations In this paper, matrices and collections of vectors are denoted in bold cases X,
the space of n ×m matrices with coefficient in E is denoted Mn×m(E), and should not be
confused with the multinomial distribution denotedMn(m, p) where n is the dimension of the
vector, m is the number of draws and p = (p1, . . . , pn) ∈ ∆n is the probability vector. The
n-dimensional simplex is denoted ∆n = {p ∈ Rn : ∀i, pi ≥ 0 and

∑n
i=1 pi = 1}. Moreover,

the network is denoted G = (V , E) where V = {1, . . . , N} denotes the set of vertices and E
the set of edges, and the binary adjacency matrix A ∈ MN×N({0, 1}) such that Aij = 1 if
and only if (i, j) ∈ E . In this work, the graph is assumed to be directed, meaning that A
does not need to be symmetric.
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2 Assumptions regarding the network generation

In this section, we present the assumptions concerning the graph generation. Assuming that
the number of clusters Q is fixed beforehand, each node i ∈ V is assumed to belong to a
cluster, represented by the cluster membership vector Ci. The variables (Ci)i are assumed
to be independent and identically distributed (i.i.d) according to a multinomial distribution
such that:

Ci
i.i.d∼ MQ(1, γ),

with γ ∈ ∆Q the vector of cluster proportions. The vectors Ci ∈ {0, 1}Q are one-hot encoded,
with Ciq = 1 if node i belongs to cluster q and Ciq = 0 otherwise. The probability of the
cluster membership matrix C = (C1, . . . , CN)

T ∈ MN×Q({0, 1}) is given by:

p(C | γ) =
N∏
i=1

Q∏
q=1

γCiq
q . (1)

Given the cluster membership matrix C, the nodes are assumed to be independent, and
represented by a Gaussian vector Zi in a Q− 1 dimensional latent space:

Zi | Ciq = 1
i.i.d∼ NQ−1

(
µq, σ

2
qIQ−1

)
. (2)

The set of node embeddings is denoted Z = (Zi)i in the rest of the paper, and the set of
means and variances are denoted µ = (µq)q and σ2 = (σ2

q )q respectively. To link the latent
representations of the nodes Zi, with the block modelling, we rely on the bijective softmax
transformation, as presented in Xu et al. (2014), h : Zi ∈ RQ−1 7→ ηi ∈ ∆Q where:

ηiq =

 eZiq/
(
1 +

∑Q−1
r=1 eZir

)
if q ∈ {1, . . . , Q− 1}

1/
(
1 +

∑Q−1
r=1 eZir

)
if q = Q

, (3)

and we denote η = (η1, . . . , ηN)
⊤ ∈ MN×Q

(
(0, 1)

)
. The mapping h aims at encoding the (Zi)i

into cluster membership probabilities. Eventually, the probability of connection between two
nodes follows a Bernoulli distribution with parameters depending on η such that:

p(A | Z,Π) =
∏
i ̸=j

p(Aij | Zi, Zj,Π) =
∏
i ̸=j

(
η⊤i Πηj

)Aij
(
1− η⊤i Πηj

)1−Aij
, (4)

where Π = (πqr)1≤q,r≤Q ∈ MQ×Q

(
(0, 1)

)
is the matrix of probability of connection between

clusters. Consequently, the joint distribution of (A,Z,C) can be factorised as:

p(A,Z,C | Π,µ,σ,γ) = p(A | Z,Π)p(Z | C,µ,σ)p(C | γ). (5)

3 Inference

The next section presents the inference as well as the optimisation.
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3.1 Likelihood

To estimate the parameters, we rely on the marginal likelihood of the network, with latent
variables C and Z, and the set of parameters Θ = {Π,µ,σ,γ}. From Equations (1), (2)
and (4), we can deduce that the marginal log-likelihood is given by:

L(Θ;A) = log p(A | Θ) = log

(∑
C

∫
Z

p(A,C,Z | Θ)dZ

)
. (6)

Unfortunately, this quantity is not tractable since the sum over C requires to compute QN

terms. Therefore, we choose to rely on a variational inference strategy for approximation
purposes.

Decomposition of the marginal log-likelihood For any distribution R(C,Z), the fol-
lowing decomposition holds:

L(Θ;A) = L (R(·); Θ) + KL (R(·)||p(C,Z | A)) , (7)

where the expected lower bound (ELBO) is given by:

L (R(·); Θ) = ER

[
log

p(A,C,Z | Θ)

R(C,Z)

]
. (8)

Since the Kullback-Leibler divergence is always positive in Equation (7), the ELBO is a lower
bound of the marginal log-likelihood. Since the marginal log-likelihood does not depend on
R(·), maximizing the ELBO with respect to R(·) is equivalent to minimizing the Kullback-
Leibler divergence between R(·) and the posterior distribution. Hence, we restrict the family
of variational distributions by considering a mean-field assumption as well as the following
hypotheses to make the ELBO tractable:

R(C,Z | A) = R(C)R(Z | A), (9)

R(C) =
N∏
i=1

Rτi(Ci) =
N∏
i=1

MQ(Ci; 1, τi), (10)

R(Z | A) =
N∏
i=1

Rϕ(Zi | A) =
N∏
i=1

NQ−1(Zi;µϕ(A)i, σ
2
ϕ(A)iIQ−1), (11)

where τ = (τi)
N
i=1 with ∀i ∈ {1, . . . , N}, τi ∈ ∆Q. Moreover, in Equation (11), the mapping

µϕ : MN×N(R) 7→ MN×(Q−1)(R) (σ2
ϕ : MN×N(R) 7→ (R+)N respectively) is the mapping

normalising the adjacency matrix (with 1 on its diagonal for numeric stability) by its degree,
Ã = D−1/2(A + IN)D

−1/2, and encoding the normalised adjacency matrix into the approx-
imated posterior means (standard deviations) of the node latent positions. The diagonal
matrix D is filled with Dii =

∑N
j=1(A+ IN)ij. The two mappings µϕ and σ2

ϕ rely on a GCN
parametrised by ϕ. Regarding the encoder of the adjacency matrix, we based our neural
network architecture on Kipf and Welling (2016). Thus, the ELBO can be decomposed as
follows:
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L (R(·); Θ) =ER [log p(A | Z,Π)] + ER [log p(Z | C,µ,σ)]− ER [logR(Z | A)]

+ ER [log p(C | γ)]− ER [logR(C)] .

=ER [log p(A | Z,Π)]︸ ︷︷ ︸
Reconstruction loss

−KL(R(Z | A)||p(Z | C,µ,σ))−KL(R(C)||p(C | γ))︸ ︷︷ ︸
Regularising term

=
N∑

i,j=1

(
AijER

[
log η⊤i Πηj

]
+ (1− Aij)ER

[
log
(
1− η⊤i Πηj

)])

−
N∑
i=1

Q∑
q=1

τiq KLiq (µϕ(A)i, σϕ(A)i, µq, σq)−
N∑
i=1

Q∑
q=1

τiq log
τiq
γq

,

(12)

where

KLiq (µϕ(A)i, σϕ(A)i, µq, σq) = log
σ
(Q−1)
q

σϕ(A)
(Q−1)
i

− Q− 1

2
+

(Q− 1)σ2
ϕ(A)i + ∥µϕ(A)i − µq∥22

2σ2
q

.

3.2 Optimisation

To optimise the ELBO, we propose to alternate between closed-form updates and stochastic
gradient descent steps thanks to the results presented in the next section.

Analytical updates with respect to the model parameters τ , γ, µ and σ The
first-order conditions applied to the ELBO with respect to τ and the model parameters give
closed-form updates as stated in the following proposition.

Proposition 1. Let L (R(·); Θ) denote the ELBO described in Equation (12). The first-order
conditions with respect to τ , γ, (µq)q and (σq)q give the following updates:

τiq =
γqe

−KLiq∑Q
r=1 γre

−KLir

, (13)

γq =
1

N

N∑
i=1

τiq, (14)

µq =

(
N∑
i=1

τiq

)−1 N∑
i=1

τiqµϕ(A)i, (15)

σ2
q =

(
(Q− 1)

N∑
i=1

τiq

)−1 N∑
i=1

τiq
(
(Q− 1)σ2

ϕ(A)i + ∥µϕ(A)i − µq∥22
)
. (16)

One way to interpret the update of τ is to note that the optimal probability of node
cluster membership with respect to cluster q decreases exponentially fast with the Kullback-
Leibler divergence between the variational distribution of Zi and the distribution of the
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representation of cluster q. The update of γ corresponds to the approximated posterior
expectation of the cluster proportions in the network. On the one hand, the optimal µq is
given by the posterior means of (Zi)i weighted by each node contribution to the corresponding
cluster. On the other hand, the optimal variance σ2

q is given by the sum of two terms. The
first one corresponds to the weighted mean of the posterior variances of the nodes. The second
one corresponds to the weighted mean of the squared Euclidean distances between the node
posterior means and µq. In other words, the variances incorporate both the uncertainty about
the posterior variance, illustrated by the σ2

ϕ(A)i terms, as well as the uncertainty regarding
the µϕ, corresponding to the ∥µϕ(A)i − µq∥22 terms.

Stochastic gradient descent One of the core difficulties in this model is the estima-
tion of the parameters Π and the variational parameters ϕ due to the intractable term

ER [log p(A | Z,Π)], and in particular ER

[
log(

∑
q,r ηi,qηj,rπqr)

]
. To overcome this issue, we

rely on a stochastic gradient descent algorithm using the reparametrisation trick (Kingma
and Welling, 2014; Rezende et al., 2014) enabling easy computations of the gradient estimates
with low variances.

4 Evaluation on synthetic datasets

In real-life datasets, quantifying the relevance of a network representation as well as node
partitions is a challenging task since no partition of the node exists. Therefore, to assess
Deep-LPBM ability to cluster the data, it is necessary to compare its clustering results
with a ground truth on synthetic data. First, we present the network structures used in
this section to evaluate our methodology. Second, we illustrate the information provided
by Deep-LPBM results on the challenging disassortative structures. Third, a comparison of
Deep-LPBM representational capacity with the variational graph auto-encoder (VGAE, Kipf
and Welling, 2016) and the deep latent position model (Liang et al., 2022:Deep-LPM, ) on
the three proposed connectivity structures is exposed. To end this section, we give a quanti-
tative assessment of the clustering results on the community, the hub and the disassortative
structures and compare our results with Deep-LPM clustering and the K-means algorithm
applied on VGAE embeddings.

4.1 Presentation of network structures and Deep-LPBM results

To assess Deep-LPBM capacity to represent different network topologies, we evaluate our
methodology on three different structures, all composed of 100 nodes and 5 clusters. The
community structure, where nodes in the same cluster have a high probability of connec-
tion set to 0.5, while nodes in different clusters have a low probability of connection set to
0.01. The disassortative structure where nodes in different cluster have a high probability
of connection set to 0.5, while nodes in the same cluster have a low probability of connection
set to 0.01. Finally, we also use a hub structure which is a combination of both with one
cluster following the disassortative pattern and the four others being communities.
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Figure 1: Evolution of the node embeddings during the estimation of Deep-LPBM on a
disassortative network. The networks at the top (at the bottom respectively) correspond,
from left to right, to the embeddings at the start of the GCN initialisation, the end of the
GCN initialisation, iteration 100 and iteration 200 of Deep-LPBM (iteration 500, 1000, 1500,
2000 respectively). The embeddings were projected in R2 using the t-sne algorithm.

4.1.1 Learning node representations

These two sections highlight the flexibility of Deep-LPBM by analysing both the block mod-
elling estimates as well as the network representation. We start with the latter, with the
evolution of the representation during the optimisation presented in Figure 1.

The results provided in this section are obtained by fitting Deep-LPBM on a disassortative
network and projecting the estimated embeddings in R2 with a t-sne algorithm (Van der
Maaten and Hinton, 2008). First, we observe an efficient separation of the clusters which
cannot be obtained with a similarity-based decoder since the probability of connection would
increase with the correlation of the node embeddings. Therefore, the latent space would
not be able to show any structure, as depicted in Figure 3. On the contrary, the model we
propose is capable of imposing a structure on the variational distribution such as to obtain
a node latent space matching with the connectivity patterns of the network.

4.1.2 Block modelling information

Although positional models offer a visualisation of the entire network, meta-representation
of a network, such as Figure 2 can only be obtained by a block modelling strategy. The
connectivity structure of the graph, captured by the matrix Π, is displayed in Figure 2 as well
as the associated meta-graph. A meta-graph is a network composed of nodes representing the
estimated clusters with a size proportional to the estimated cluster proportions γ. The edge
widths of the meta-graph are proportional toΠ. In large networks, this type of representation
presents the advantage of being easily interpretable as well as focusing on the generative
understanding of the network. Here, it is clear that the clusters are highly connected one to
another but nodes from the same cluster are poorly connected together.
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1 2 3 4 5

1

2

3

4

5

0.01 0.5 0.51 0.52 0.49

0.5 0.0 0.48 0.54 0.52

0.51 0.48 0.0 0.49 0.52

0.52 0.54 0.49 0.0 0.5

0.49 0.52 0.52 0.5 0.02

Figure 2: Meta-network based on Deep-LPBM results with an underlying disassortative
structure. On the left-hand side, we provide the estimation of the connection probability
matrix Π. On the right-hand side, the meta-network is composed of nodes representing the
clusters, their size is proportional to the corresponding estimated cluster proportion γ and the
edge widths are proportional to Π. A threshold has been set such that edges corresponding
to a probability of connection lesser or equal to 0.02 are not displayed.

4.2 Representational power on three network structures

In Figure 3, both VGAE and Deep-LPBM efficiently render a latent space capturing the
community structure as well as the hub structure. Eventually, the disassortative structure
is more difficult to represent. Let us recall that the VGAE decoder models the probability
of connection between two nodes with a sigmoid function applied to the cosine similarity
between their respective latent positions. Therefore, it necessarily fails to capture the dis-
assortative structure of the network. Hence, two nodes in the same cluster, that have a low
probability of connection cannot be represented similarly, and thus cannot be close in the
latent space. Conversely, Deep-LPBM is able to translate the connectivity pattern into the
position of the nodes, such that nodes of the same cluster, poorly connected together, are
close in the latent space.

4.3 Clustering evaluation on synthetic data

In this section, we aim to assess the clustering performance of our methodology. We compare
it with Deep-LPM that relies on node embedding similarity as a decoder as well as VGAE used
to estimate the node embeddings followed by K-means algorithm fitted on these embeddings.
The benchmark is performed on networks with 100 nodes and Q = 5 clusters. The results
are displayed in Table 1. First, we note the efficiency of Deep-LPBM on communities and
hubs, reaching an ARI of 1 in both cases. It does not degrade the good performance of its
competitors on these architectures, with ARIs of 1 and 0.97 for the VGAE and K-means,
and an ARI of 1 on both structures for Deep-LPM. However, these competitors are not able
to represent any connectivity structure in the disassortative case. In particular, as shown in
Figure 3 for the VGAE, they cannot find relevant node clusters in this setting and end up
with an ARI of 0.02 and 0. On the contrary, our methodology reaches an ARI of 0.8, much
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Deep-LPBM VGAE with KMeans
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Figure 3: Example of three networks with a latent structure composed of (top to bottom)
five communities, a disassortative network with five clusters and four communities with a
hub. On the left-hand side (right-hand side respectively), the networks represent the results
obtained fitting Deep-LPBM (VGAE) and using a t-sne projection (left) as well as a PCA
(right). Each node colour corresponds to its true cluster membership.

higher than its competitors.

5 Conclusions

This paper introduced a new methodology combining a block model with a deep latent
position model. By modifying the edge distribution and marginalising over a bijective trans-
formation of the node latent representations, we managed to use the node embeddings as
cluster probability memberships. We obtained richer results, providing a high-level meta-
network, as well as a full network representation, to incorporate details at the node-level.
Deep-LPBM is based on the encoder of a graph variational autoencoder combined with a
novel block model decoder. Experiments showed that on communities, hubs and disassor-
tative networks, our methodology rightfully translated the network salient information into
the latent space. In addition, the clustering results are competitive with the state-of-the-art
Deep-LPM. This is an on going work and a more extensive benchmark will be provided if
the paper were to be accepted.
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Communities disassortative Hub

VGAE + Kmeans 1.00± 0.01 0.02± 0.02 0.97± 0.06
Deep-LPM 1.00± 0.00 0.00± 0.00 1.00± 0.00
Deep LPBM 1.00± 0.00 0.80± 0.08 1.00± 0.00

Table 1: ARI obtained by a K-means algorithm applied on VGAE node embeddings, Deep-
LPM and Deep-LPBM partitions. We keep the best initialisation ELBO wise over 10 initial-
isations and repeat it over 10 network to obtain the means and standard deviations.
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