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Abstract
This study introduces a chalcogenide-based thin-film solar cell structure optimized for rear
illumination, featuring a thinner, wide-bandgap Cu(In,Ga)S2 chalcopyrite absorber. Matching the
performance of traditional front-illuminated designs, this configuration paves the way for further
photoelectrochemical advances thanks to its metallic top layer, which can serve as a versatile
grafting platform that is resistant to their operating conditions.

1. Introduction

Chalcopyrite Cu(In,Ga)(S,Se)2 (CIGSSe) thin-film solar cells, with their adjustable bandgap and high
absorption coefficient, are one of the leading technologies in solar energy photovoltaic (PV) conversion, with
efficiency reaching 23.6% [1]. Latest developments also make it one of the most promising choices for
photoelectrochemistry applications such as CO2 reduction, since recent efforts showcased promising Faradic
efficiencies at low bias potentials [2–4].

However, the prevalent device configuration relies on an opaque back contact of molybdenum (Mo) and
a ZnO:Al (AZO) window layer.

This device architecture, primarily designed for front side illumination, is neither compatible with
bifacial or tandem PV applications nor for integrated photorechargeable energy storage systems (PESS) [5].
Furthermore, this standard structure encounters significant drawbacks when used in photoelectrochemical
cell (PEC) systems. In fact, firstly, the front side illumination restricts the choice of compatible catalysts and
grafting surfaces to non-absorbing materials; secondly, the AZO upper layer experiences limited resilience to
solvents used for some catalysts or catalysts hosts deposition, and PEC operating conditions (i.e. reaction
with the electrolyte, pH,etc) [6].

Addressing these challenges, significant efforts have explored selenide Cu(In,Ga)Se2 (CIGSe) based solar
cells on a transparent back contact. However, the formation of secondary phases, such as gallium oxide
(GaOx) and InxSey, during CIGSe film growth, compromises the indium tin oxide (ITO)/CIGSe interface
[7], leading to substantial photocurrent loss. Strategies including Ga-back grading, Ag alloying or lowered
synthesis temperature have failed to solve the problem. To date, the highest efficiency under rear illumination
has been reported at 10.9%, only half of the performance that the same device achieves under front
illumination (19.8%) [8].

In the present report, we show that one can get rid of the previously mentioned limitations, inherent to
the standard device architecture. In fact, the integration of an ultrathin, wide-bandgap pure sulfide
(Cu(In,Ga)S2, CIGS) absorber within a new cell structure (see figure 1) yields PV efficiencies comparable to
traditional front-illuminated designs while establishing a robust foundation for future PEC advancements. In
addition, the wider bandgap of CIGS compared to its selenide counterpart makes it a promising candidate
for unbiased water splitting and CO2 reduction, with a theoretical open-circuit voltage (VOC) limit of 1.5 V
and experimental achievements already nearing 1 V [9].

Here, we present a 0.5 cm2 CIGS based solar cell with an efficiency of 11.1% under rear illumination
(figure 2(b)) which consists of the following structure (figure 1): MgF2 (110 nm)/SLG (1 mm)/ITO
(110 nm)/CIGS (515 nm)/CdS (42 nm)/ZnO (175 nm)/Ni (30 nm)/Al (2.5 µm)/Ni (30 nm). The glass/ITO
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Figure 1. (a) Top view picture of devices; (b) Cross-sectional scanning electron microscopy image of the ITO to ZnO part (before
metal deposition); (c) Diagram of the device configuration.

Figure 2. (a) Incident photon to collected current analysis: external quantum efficiency spectra (‘collected current’) and
representation of optical losses: ITO absorption, cell reflection & light transmitted through the device prior to Metal deposition
(labeled ‘Transmitted’), electronic recombination (difference between light absorbed within the CIGS without the top metal layer
and EQE, here labeled ‘Not collected Current’).(b) Current–Voltage (J–V) characteristics of the solar cell in the dark and under
illumination—with statistics on 8 devices as an inset.

substrate has a sheet resistance of 30 Ω/□. The 515 nm-thick CIGS is grown by a three-stage co-evaporation
process as described in our previous work [10], including NaF DDT and PDT (i.e. during deposition
treatment and post-deposition treatment) with a substrate temperature of 565 ◦C and a [Ga]/([In]+[Ga])
ratio (GGI) of≈ 0.1, resulting in a 1.57 eV bandgap absorber (according to External Quantum Efficiency
(EQE) derivative, see SI-1). The highest efficiencies are achieved for a [Cu]/([In]+[Ga]) (CGI) ratio close to
1. Compared to the conventional configuration, note that a significantly thicker i-ZnO (175 nm) is used but
no ZnO:Al is deposited as lateral carrier transport is ensured by the metal layer. To prevent ITO degradation,
mechanical scribing of cells was avoided. Instead, we employ shadow masks with 0.5 cm2 openings during
ZnO and metal depositions. Note that no photocurrent is collected from areas outside the metallic pads, and
the total and active areas are thus 0.5 cm2. For applications beyond PV, a wide variety of conductive metals
and alloys can be used as the top layer to ensure chemical compatibility with additional processing steps
(such as host and catalyst deposition) and operating conditions without impacting the performance.
Complete details on the deposition methods for the device fabrication are given in supporting information.

Figure 2(b) presents the J-V characteristics of the best solar cell, together with a statistical representation
of all eight devices from the same substrate. The cell with the highest efficiency exhibited an open-circuit
voltage of 0.82 V, i.e. a VOC-deficit relative to Schockley Queisser (S-Q) theoretical limit of 0.48 V [11, 12]. It
is on par with state-of-the-art CIGS using the same buffer under front illumination (supplementary
material—table 1) [10, 13, 14], so no additional interface recombination is suspected. The 67% fill factor is a
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bit lower than the values reported in these references, mostly due to increased series resistance. Two factors
are likely to contribute to it. Firstly, the ITO layer is a less conductive back contact than molybdenum.
Secondly, the solar cell reported here has a larger area (0.5 vs 0.16 & 0.2 cm2, supplementary material—
table 1).

The absence of an AZO layer between the i-ZnO and the metal is not expected to be responsible for this
FF loss. Indeed, here the lateral charge transport is ensured by the metal layer, and we use a thicker i-ZnO to
keep the CdS protected.

Attempts to reintroduce an AZO layer were nonetheless performed and resulted in solar cells with slightly
reduced VOC and FF, but within the process statistical variations. It is not surprising as AZO experiences a
low sheet resistance, so its contribution to the series resistance is expected to be very small. Recombination at
r-ZnO/AZO or AZO/Ni interfaces are also not commonly reported in CIGSSe solar devices.

Optical reflection and transmission measurements at different steps of cell stack preparation, combined
with the EQE measurements allow us to finely analyze the origins of the current losses (figure 2(a)). Given
the 1.57 eV bandgap of our absorber, S–Q theoretical Jsc is 26.6 mA cm−2. SLG/ITO absorption and
complete solar cell reflection account for current losses of 0.7 and 2.0 mA cm−2, respectively. An additional
1.0 mA cm−2 loss arises from CIGS transmission, due to its unusual thinness. Part of the transmitted light is
in the final device reflected by the metal layer, which is then absorbed via a second pass. In the case of the
investigated architecture, this latter phenomenon does not significantly affect the current delivered by the
cells, but opens up the possibility of significantly thinning out the absorber twice more, provided a highly
reflective metal is used. Unlike conventional structures, there is no photon loss due to light absorption by the
layers topping the CIGS; which can represent about 1.5 mA cm−2. Also, the absence of metallic grids, which
can shade up to 10% of the cell area, avoids significant losses. Altogether, 86% of the incident light resource
(photons of energy greater than the absorber’s bandgap) is effectively absorbed by the CIGS layer before
reflection by the metal layer. The 14% transmitted would have been a net loss with the prevalent CIGS solar
cell architecture, but a significant fraction is exploitable here thanks to the high reflection of the top metal
layer.

Comparing CIGS absorption and the external quantum yield shows that 2.6 mA cm−2 of the
photocurrent is not collected. The collected per-generated electron ratio (supplementary material, figure S4)
varies linearly from≈ 0.8 at shorter wavelengths to≈ 1 near the CIGS absorption edge (i.e. when generated
close/further to the ITO back contact). This is the typical behavior of an absorber with a limited carrier
diffusion length [15] and demonstrates the advantage of using a thin CIGS absorber.

According to the literature, chemical reactions occurring at the transparent conductive oxide
(TCO)/CIGSe interface result in a ‘dead zone’ that prevents reaching rear-illumination currents and
efficiencies above half of the front-illumination ones. Interestingly here, no indication of such a reaction or
dead zone is found as (i) TCO transmission is not degraded by CIGS deposition (supplementary material,
figure S4), (ii) neither additional VOC deficit (i.e. no additional interface recombination suspected) and (iii)
or reduced current are found.

We performed TEM-EDS mapping that reveals the presence of GaOx at the ITO/CIGS interface. This
GaOx is very thin (<5 nm) and does not form a continuous layer (see supporting information).

In addition, one of the major keys to cutting CIGS manufacturing costs is to increase the absorber
deposition throughput [16, 17]. The thinness of the absorbers used here (500 nm vs 2–3 µm in standard
configuration) is an important step towards this goal.

To conclude, we report a revised architecture for CIGS solar cells that combines a transparent
back-contact with a thinned wide-bandgap absorber that achieves rear-illumination performance on par
with front-contact cell. Being topped by a metallic layer, it consists of a versatile platform for PEC or PESS
applications.

Associated content

The supplementary material includes details on materials and devices fabrication as well as
characterizations. It also provides additional experimental data: Bandgap extraction from EQE, additional
optical measurements and a table of properties with comparison to the literature
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All data that support the findings of this study are included within the article (and any supplementary files).
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