
HAL Id: hal-04909912
https://hal.science/hal-04909912v1

Submitted on 24 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Effective requesting method to detect fusion transcripts
in chronic myelomonocytic leukemia RNA-seq

Florence Rufflé, Jérôme Reboul, Anthony Boureux, Benoit Guibert, Chloé
Bessière, Raissa Silva, Eric Jourdan, Jean-Baptiste Gaillard, Anne Boland,

Jean-François Deleuze, et al.

To cite this version:
Florence Rufflé, Jérôme Reboul, Anthony Boureux, Benoit Guibert, Chloé Bessière, et al.. Effective
requesting method to detect fusion transcripts in chronic myelomonocytic leukemia RNA-seq. NAR
Genomics and Bioinformatics, 2024, 6 (3), �10.1093/nargab/lqae117�. �hal-04909912�

https://hal.science/hal-04909912v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


NAR Genomics and Bioinformatics , 2024, 6 , lqae117 
https://doi.org/10.1093/nargab/lqae117 
Advance access publication date: 24 September 2024 
Standard Article 

Effective requesting method to detect fusion transcripts in 

c hronic my elomonocytic leukemia RNA-seq 

Florence Ruf flé1 , Jér ôme Reboul 1 , Anthony Boureux 

1 , Benoit Guibert 1 , Chloé Bessière 

1 , 2 , 

Raissa Silv a 

1 , Er ic J ourdan 

3 , J ean-Baptiste Gaillard 

4 , Anne Boland 

5 , Jean-F r ançois Deleuz e 

5 , 

Catherine Sénamaud-Beauf or t 6 , Dorothée Selimoglu-Buet 7 , Eric Solary 

7 , Nicolas Gilbert 1 , * 

,† 

and Thérèse Commes 

1 , * 

,† 

1 IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, 34295 Montpellier, France 
2 CRCT, Inserm, CNRS, University Toulouse III-Paul Sabatier, 31100 Toulouse, France 
3 Department of Hematology, Nîmes University Hospital, 30900 Nîmes, France 
4 Department of Molecular Genetics and Cytogenomics, Montpellier university hospital, 34295 Montpellier, France 
5 Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057 Evry, France 
6 GenomiqueENS, Institut de Biologie de l’ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 
75005 Paris, France 
7 Department of Hematology, Gustave Roussy Cancer Center, Université Paris-Saclay, 94805 Villejuif, France 
* To whom correspondence should be addressed. Tel: +33 4 67 33 94 88; Fax: +33 4 67 330 113; Email: nicolas.gilbert@inserm.fr 
Correspondence may also be addressed to Thérèse Commes. Email: Therese.Commes@inserm.fr 
† The last two authors should be considered as Joint Last Authors. 

Abstract 

RNA sequencing technology combining short read and long read analysis can be used to detect chimeric RNAs in malignant cells. Here, we pro- 
pose an integrated approach that uses k-mers to analyze indexed datasets. This approach is used to identify chimeric RNA in chronic m y elomono- 
cytic leukemia (CMML) cells, a myeloid malignancy that associates features of m y elody splastic and m y eloproliferativ e neoplasms. In virtually 
e v ery CMML patient, new generation sequencing identifies one or several somatic driver mutations, typically affecting epigenetic, splicing and 
signaling genes. In contrast, cytogenetic aberrations are currently detected in only one third of the cases. Ne v ertheless, chromosomal abnormal- 
ities contribute to patient stratification, some of them being associated with higher risk of poor outcome, e.g. through transformation into acute 
m y eloid leuk emia (AML). Our approach selects f our chimeric RNAs that ha v e been detected and v alidated in CMML cells. We further f ocus on 
NRIP1-MIR99AHG , as this fusion has also recently been detected in AML cells. We show that this fusion encodes three isoforms, including 
a no v el one. Further studies will decipher the biological significance of such a fusion and its potential to impro v e disease stratification. Tak en 
together, this report demonstrates the ability of a large-scale approach to detect chimeric RNAs in cancer cells. 
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Introduction 

New sequencing technologies offer opportunities to refine the
detection of fusion transcripts that cannot be detected with
classical cytogenetic approaches ( 1–3 ). Difficulties in identify-
ing new chimeric RNAs (chRNAs) are mostly due to false pos-
itive predictions as a consequence of technical and algorith-
mic artifacts. Such chRNAs are transcripts generated by either
two distinct chromosomes or a single chromosome through
complex biogenesis processes induced by either intra or in-
ter chromosomal rearrangement, transcript read-through, ex-
onization, trans-splicing or other mechanisms ( 4–6 ). There-
fore, given this complexity, it is always challenging to char-
acterize chimeric transcripts and the identification process re-
quires multiple steps to extract ‘raw’ predictions and then fil-
ter the one that would be of specific interest. 

The detection of chRNAs can be of great interest in chronic
myelomonocytic leukemia (CMML), a myeloid malignancy
that occurs most frequently in the elderly, with a mean age
at diagnosis of about 72 years, and more frequently in males.
The hallmark of the disease is an increased number of pe-
ripheral blood monocytes, resulting in both absolute (mono-
cyte count ≥ 0.5 10 

9 / L) and relative (monocyte count ≥ 10%
of white blood cell count) monocytosis. The recently revised
World Health Organization (WHO) classification ( 7 ), distin-
guishes between dysplastic and proliferative CMML subtypes,
with a white blood cell count cut-off value at 13 10 

9 / L. This
classification also separates CMML1 from CMML2, based on
bone marrow and peripheral blood blast cell counts. Mono-
cytes that accumulate in the peripheral blood are mostly classi-
cal monocytes that express CD14 but not CD16 ( 8–10 ). Bone
marrow cytological examination typically identifies dysplas-
tic features that affects one or more lineages. The diagnostic
workup of CMML must exclude other myeloid malignancies,
including chronic myeloid leukemia (by demonstrating the ab-
sence of the BCR::ABL1 fusion gene in leukemic cells), other
classical myeloproliferative neoplasms, myeloid or lymphoid
neoplasms with a fusion gene involving a tyrosine kinase gene
(such as FIP1L1::PDGFRA ), and an acute myeloid leukemia
(AML) ( 7 ). Targeted gene sequencing identifies one or more
somatically acquired gene mutations that typically affect genes
involved in epigenetic regulation (such as TET2 and ASXL1),
pre-mRNA splicing (such as SRSF2, SF3B1 and UAF1) and in-
tracellular signaling (mostly in the RAS pathway, sometimes
in JAK2) ( 11 ). The ASXL1 mutation, present in about 40% of
patients, is typically associated with a poor outcome and an
increased risk of AML transformation ( 12–14 ). 

CMML can be a severe disease, with median survival rang-
ing from 2 to 3 years depending on the series, with a large het-
erogeneity between patients. Multiple scores have been gen-
erated to stratify patients at diagnosis. Conventional cytoge-
netics and Fluorescence in situ Hybridization (FISH) analy-
ses identify chromosomal abnormalities in approximately one
third of the patients, and the nature of these aberrations also
correlates with disease outcome and has therefore been incor-
porated into prognostic scores ( 14 ). However, FISH detection
of a gene fusion requires prior knowledge of chromosomal
positions affected by the rearrangement. In addition, this ap-
proach fails to identify short insertions, deletions and small
tandem repeat variations. These later events can be detected
by polymerization chain reaction (PCR) only when involved
genes are well-identified targets for rearrangements in hema-
tological malignancies. These limitations can be circumvented
with NGS methods, especially with RNA-sequencing (RNA-
seq). Indeed, a recent study compared the potential of RNA- 
seq for detecting clinically relevant fusion genes with standard 

routine diagnostic methods (karyotyping and molecular diag- 
nostics) and demonstrated that RNA-seq identifies known fu- 
sions missed by routine methods ( 15 ). They also demonstrated 

that RNA-seq can yield additional candidates. 
Therefore, to continue in this direction and in an attempt to 

mitigate the above technical limitations, we have developed a 
multi-step pipeline to detect new fusion transcripts in RNA- 
seq data and applied this approach to CMML samples. We 
detected some chRNAs that have been validated as disease 
biomarkers. Such a chimera detection method, coupled with 

an efficient and versatile large-scale validation process, might 
be applicable to any cancer sample. 

Materials and methods 

CMML samples 

Two sets of 10 samples from patients with CMML were used 

in this study. The first set (CMML1 to CMML10), provided 

by ES (Gustave Roussy Institute) consisted of 10 samples 
from bone marrow or peripheral blood separated on Fycoll- 
Hypaque. CD14+ monocytes were then sorted from PBMCs 
using magnetic beads and the AutoMacs system as previously 
described by Merlevede et al. ( 11 ). The second set (CMML11 

to CMML20) includes 10 blood samples provided by EJ (Bio- 
logical Resource Center CHU-Nimes, France). These 10 sam- 
ples correspond to 8 different patients, two of whom were 
sampled on different dates. Peripheral blood mononuclear 
cells were separated by Ficoll-Hypaque density gradient and 

stored in RNA Later. Patients gave written informed consent 
to be included in the study, which was approved by the Ile de 
France Ethics Committee and the Nîmes CHU Ethics Board.
Sample collection was approved by the Ile de France Ethics 
Committee (DC-2014-2091) and data collection and storage 
was approved by the CNIL (N 

◦DR-2016-256). 

RNA-seq 

RNA-seq experiments were performed on the twenty samples 
described above. The procedure for RNA extraction and qual- 
ity assessment was performed as previously described in Rufflé
et al. ( 16 ). 5 μg of total RNA was sent to France genomique 
for sequencing. Total stranded RNA-seq was performed at 
the Centre National de Recherche en Génomique Humaine 
(CNRGH, CEA). After full RNA quality control on each sam- 
ple (quantification in duplicate on a NanoDrop™ 8000 spec- 
trophotometer and RNA6000 Nano LabChip analysis on an 

Agilent Bioanalyzer), libraries were prepared using Illumina’s 
‘TruSeq Stranded Total RNA Gold’ Kit. An input of 1 μg to- 
tal RNA was used for all samples, and libraries were prepared 

on an automated platform according to the manufacturer’s in- 
structions. Library quality was verified using LabGx (Perkin 

Elmer) analysis for profile analysis and quantification, and 

sample libraries were pooled prior to sequencing to achieve 
the expected sequencing depth (typically 4 samples per lane).
Sequencing was performed on an Illumina HiSeq2000 as 100 

bp paired-end reads, using Illumina sequencing reagents. Se- 
quence quality parameters were assessed throughout the se- 
quencing run, and standard bioinformatic analysis of the se- 
quencing data was based on the Illumina pipeline to gen- 
erate a FASTQ file for each sample. FASTQ files generated 

after RNA-seq sequencing were processed using in-house 
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NRGH tools to assess the quality of raw and genomic-
ligned nucleotides. 

hole genome sequencing 

hole genome sequencing was performed on the CMML10
ample by the Centre National de Recherche en Génomique
umaine (CNRGH, CEA). After a complete quality control

quantification in duplicate using Quant-IT kits, quality con-
rol by migration on agarose gel), genomic DNA (1 μg) was
sed to prepare a library for whole genome sequencing, using
he Illumina TruSeq DNA PCR-Free Library Preparation Kit,
ccording to the manufacturer’s instructions. After normal-
zation and quality control, qualified libraries were sequenced
s 100 bp paired-end reads on an Illumina HiSeq2000 plat-
orm (Illumina Inc., C A, US A). A minimum of 3 lanes of
he HiSeq2000 flow cell were generated for each sample to
chieve an average sequencing depth of 30 × for each sam-
le. Sequence quality parameters were assessed throughout
he sequencing run, and standard bioinformatic analysis of
equencing data was based on the Illumina pipeline to gener-
te a FASTQ file for each sample. FASTQ files generated after
hole genome sequencing were processed using in-house CN-
GH tools in order to assess the quality of raw and genomic
ligned nucleotides. 

NA-seq from public datasets 

he Beat-AML dataset ( 17 ) consisting of acute myeloid
eukemia bone marrow or peripheral blood mononuclear cells
 n = 474), healthy CD34 cells ( n = 14) and healthy bone
arrow mononuclear cells BMMNCs ( n = 19) was used in

his study. Five additional datasets retrieved from the fol-
owing projects were downloaded and added to the healthy
roup of the Beat-AML project to build a collection of 132
ealthy hematopoietic cells : (i) 41 samples from LEUCE-
ENE (GSE48846 and GSE51984), (ii) 22 samples from
SE117970 ( 18 ), (iii) 28 samples from GSE135902 ( 19 ) and
 pooled samples from different lineages (CRCT Toulouse, see
ample details in Supplementary Tables S1 –S3 ). RNA-seq data
rom the GTEx project ( n = 1023) were used as healthy tissue
ontrols ( 20 ). 

NA-seq analysis 

uality 

he Quality of the Hiseq2000 sorting reads for the twenty
MML samples was assessed using fastQC and multiQC
nd is reported in Supplementary Table S4 . An additional
uality step was performed with KmerExploR ( https://github.
om/ Transipedia/ kmerexplor ), an application of the Kmer-
tor Suite ( 21 ), to assess the level of contamination with
ther species in the sequencing fastq results ( Supplementary 
igure S1 ). 

apping 

eads were aligned to the reference genome (human GRCh38)
sing the CRAC software (VN:2.5.0) with the following
ommand line {crac –no-ambiguity –stranded –detailed-sam
i / data / indexes / crac / GRCh38 -k 22 –bam –nb-tags-infos-
tored 10000 –nb-threads 15 -r fastq / *.fastq.gz} ( 22 ). The
RAC analysis software is based on k-mer decomposition of

eads prior to alignment. Reads are then affected depending
n their location on the human reference genome. The statis-
tics from the CRAC summary show the number of reads and
their repartition for each sample. The majority is represented
by single location reads (around 85%), as is common for this
type of dataset and consistent with our subsequent questions
( Supplementary Figure S2 and Supplementary Table S5 ). 

ChRNAs annotation, classification 

Annotations, classifications and metrics used in the filtering
process were provided by CracTools-chimCT ( https://github.
com/ Bio2M/ cractools-chimct ). The CRAC software generates
BAM files with read information to detect mutations, splice
or chimeric junctions ( 22 ). The BAM files are then submit-
ted to the CracTools core (V 1.251), which allows the sep-
aration of biological events and the collection of annotation
information through a multi-step snakemake process. Within
CracTools, a ChimCT module supported by a GFF file (En-
sembl genome browser) is used to classify and annotate the
detected chimeric RNAs. Another alignment tool, GSNAP, is
used by ChimCT to identify splicing events that should be dis-
tinguished from chRNAs. For each sample, ChimCT (V0.14)
returns a tsv file with chimeric description information. The
file lists all predicted chRNAs organized into four classes, and
each chRNA is associated with a ChimValue, which corre-
sponds to a confidence value that takes into account map-
ping information from CRAC and other analyzers such as
annotation, GSNAP alignment tool, fusion distance, and oth-
ers ( https:// github.com/ Bio2M/ cractools-chimct/ blob/ master/
bin/chimCT ). The ChimValue (columns i in Supplementary 
Tables S7 –S10 ), depends on methodological parameters in-
cluding the mapping score quality and the number of reads
from the predicted chRNA, also considering the support of
Spanning Reads (SR), i.e. the read containing the chimeric
junction, the warning flags given by the annotation (pseudo-
genes, anchored reads, superfamily genes…) and the spanning
paired-end information (SPE). The classification of chRNAs
and features provided by ChimCT have been previously de-
scribed by Ruffle et al. and Bouge et al. ( 16 ,23 ). The tsv files
are aggregated into one large file to merge all the chRNAs
found in the 20 samples. This file is then divided into the four
classes of chRNAs ( Supplementary Figure S3 ). 

Filtering process 

The best (highest) ChimValue is 100, which meets all the se-
lection criteria described above. From this value, penalties are
applied if some criteria are not fulfilled (see documentation
provided at https:// github.com/ Bio2M/ cractools-chimct/ blob/
master/ bin/ chimCT for details). The ChimCT value, as well
as the information provided by CracTools-chimCT, was used
to perform the first filter to select chRNAs (Standard Filters
Figure 1 ). The parameters were chosen to minimize false pos-
itive selection as previously described in Bouge et al. ( 23 ).
Each chRNA class has its specific parameters listed below and
chRNAs were retained if: 

- Class 1 : ChimValue > 60; SR ≥ 3; without annotations
of pseudogene or strange paired end (PE) support *. 

* means that there are fewer reads on both sides of the junc-
tion than reads covering the junction. 

- Class 2: ChimValue = 100; SR ≥ 4 and (spanning paired
end SPE ≥ 4); no NA—NA and HLA in chRNAs gene names.
(NA; Not Annotated) 

- Class 3: ChimValue ≥ 70; no NA—NA and HLA in
chRNAs gene names. These class 3 chRNAs are then divided

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://github.com/Transipedia/kmerexplor
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://github.com/Bio2M/cractools-chimct
https://github.com/Bio2M/cractools-chimct/blob/master/bin/chimCT
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://github.com/Bio2M/cractools-chimct/blob/master/bin/chimCT
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Figure 1. Description of the different steps leading to chRNAs selection. 
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nto 3 subgroups, group with chRNAs without specific anno-
ations SR ≥ 3, group with fusionDistance = Overlap* SR ≥ 6,
roup with short fusionDistance SR ≥ 3; without comment
nchored or low support. 

* means that a 5 

′ segment of the read alignment overlaps a
 

′ segment, see example below. 
Example read TRIM28—TRIM28 

Read_seq = TTGTT ATCTCT AGAA GCTA GAAGAAA
GGATGTGTTTCTCA GCTATGTTG ∗AGAA GCTA GAA 

AAAGGGATGTGTTTCTCA GCTATGTTGGGGCA GA G 

ATT 

START END QSIZE IDENTITY CHROM STRAND
TART END 

1 50 50 100.0% chr19 + 58547136 58547185 

1 51 51 100.0% chr19 + 58547147 58547197 

- Class 4: ChimValue ≥ 70; SR ≥ 2 and SPE ≥ 2; no HLA
n chRNAs gene names; no annotation strange PE support. 

Finally, a chRNA that does not meet the selection crite-
ia can be recovered if a similar chRNA with the same gene
ames in another sample as reach the filtering step. The lists
f all selected chimeric RNAs can be found in Supplementary 
ables S7 –S10 . 

xperimental validations and long read sequencing 

everse transcription and real-time PCR validation were per-
ormed as previously described in Ruffle et al. ( 16 ) . Primers
re listed in Supplementary Table S6 . CMML7 and CMML13
NA samples were selected for long read sequencing experi-
ents based on the high quality of the RNAs (RIN > 7). The

equired sequencing depth was set at 6 Gbp to provide appro-
riate conditions for comparing the fusion RNA detection ca-
abilities with short-read RNA-seq. Library preparation and
anopore sequencing were performed at the core facility of the
cole Normale Supérieure Genomique ENS (Paris, France).
0 ng of total RNA was amplified and converted to cDNA
sing the SMART-Seq v4 Ultra Low Input RNA kit (Clon-
ech). An average of 9 fmol of amplified cDNA was then used
or library preparation using the SQK-PBK004 kit (PCR Bar-
oding kit; ONT). After ligation of the PCR adapter, a 0,6X
gencourt Ampure XP beads clean-up was performed and
 fmol of purified product was added to the PCR and bar-
ode for an additional amplification of 18 cycle with 17 min
longation time. Sequencing was performed using the SQK-
BK004 72-hour sequencing protocol run on the MinION
kIC for each sample, using the MinKNOW software (ver-

ion 20.06.15) and the FLO-MIN106 flowcell. 2.3 million
eads passing the ONT quality filter were obtained for each
f the two samples. Base-calling of read event data was per-
ormed using Guppy (v4.0.11). All barcoded fastq files from
uppy output that passed the implemented filters were con-
atenated in one fastq file. 

ndexes construction and request 

ataset indexes were built using REINDEER ( https://github.
om/ kamimrcht/ REINDEER ) (version 1.02) and loaded onto
he server to be queried via the transipedia web interface
 https:// transipedia.fr/ ). K-mers whith an abundance of < 2
ere excluded from the index construction. The queried

hRNA-kmers were then submitted to Transipedia, which re-
urns a count for each of them in all the samples making up
he index, and displays a heatmap. 
Results 

Global chRNAs analyses in CMMLs 

We analyzed RNA-seq data from 20 CMML samples
( Supplementary Table S5 ) to identify chRNAs through a
workflow that is summarized on Figure 1 . ChRNA events
were predicted using CRAC and annotated by the CracTools-
chimCT module. Each chRNA was assigned to one of the
four classes described previously, depending on the chromo-
somal and exonic organization of the chimeric read (see Ma-
terial and Methods: RNA-sequencing analysis section and
Supplementary Figure S3 ). It was observed that the number
of chRNAs obtained per sample depended on the sequenc-
ing depth, as expressed by the read count (Figure 2 A). Their
distribution according to structure showed that class 2 and 3
chRNAs were the main categories, accounting for nearly 80%
of the predicted chRNAs (Figure 2 A). To improve chRNA
prediction and reduce the effect of background noise due to
ambiguous read alignments, we implemented standard filters
based on chimeric read count and ChimValue, which take
into account quality score, mapping profile and read cover-
age. These filters were applied to each detected chRNA ID
(see Materials and methods : chimeric RNA filtering pro-
cess). Thus, from the 26 569 chimeric RNAs found in the
first steps, we selected a total number of 1787 chRNAs (Fig-
ures 1 , 2 B). Of these, 91 are chimeras involving genes on dif-
ferent chromosomes (Class 1, Supplementary Table S7 ). 806
belong to class 2 chimeras, involving genes on the same chro-
mosome strand. They correspond to splicing events of read-
through transcripts that join two adjacent genes in a sin-
gle RNA molecule ( Supplementary Table S8 ). 821 chRNAs
belong to class 3 chimeras and involve either a single gene
for which we observe an inversion in the order of sequence
segments, or an exon inversion of two adjacent genes or an
unannotated region ( Supplementary Table S9 ). Finally, class
4 chRNAs correspond to splicing junctions between exons of
genes located on opposite strands of the same chromosome
( Supplementary Table S10 ). 

qPCR validations 

In order to assess the accuracy of CRAC reinforced by the
implemented filters to appropriately detect chRNAs, we per-
formed complementary molecular biology methods to vali-
date the biological existence of these fusion transcripts. Val-
idations were performed by qPCR followed by qPCR prod-
uct sequencing on a subset of 28 chRNAs (Figure 3 and
Supplementary Table S10 bis). The selection of this subset
was based on the high ChimValue of the chimeras, and was
distributed as follows: 1 from class 1, 10 from class 2, 11
from class 3 and 6 from class 4. 24 of these 28 chRNAs
were identified by RNA-seq in at least three samples, two
( A CIN1::A CIN1 and PLIN3::ARRDC5 ) in two samples and
two ( ZEB2::BCL2L11 and NRIP1::MIR99AHG ) in a single
sample. qPCR and Sanger sequencing validation was observed
for 3 

4 of the chRNAs (21 / 28, Figure 3 ). Within the classes 1,
2 and 4, only one chRNA was not validated by Sanger se-
quencing ( CIITA::RP11-876N24.3 ). However, it has recently
been annotated as an alternative transcript of CIITA-217
(ENST00000644232.1). Finally, 6 out of 11 class 3 chRNAs
couldn’t be validated by Sanger sequencing of the qPCR prod-
uct. This poor efficiency, is most likely related to the struc-
ture of such chimeras. They consist of short fragment rep-
etitions and, as primers recognize both the normal and the

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://github.com/kamimrcht/REINDEER
https://transipedia.fr/
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
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Figure 2. ChRNAs distribution among the 20 CMML samples. ( A ) Repartition of chRNAs classes and read count per sample. ( B ) Repartition of chRNAs 
classes per sample after applying standard filters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

chimeric transcript, the amplification may favor shorter and
more abundant targets. Consequently, such chimeras need to
be considered with caution and further validated. We there-
fore decided to perform long-read sequencing to better char-
acterize them (see below). Nevertheless, we validated the bio-
logical presence in samples of most of selected chimeras and,
by extension, the biological presence of the 1787 fusion tran-
scripts initially filtered, without presuming tissue or tumor
specificity. Indeed, many fusion transcripts are known to be
present in normal cells ( 24 ), and the next challenge is to iden-
tify those that are tumor specific. 

Long read sequencing 

To further confirm the presence of the predicted chRNAs, we
sequenced two samples (CMML7 and CMML13, in which 16
of the 28 chRNAs subset were detected by short read RNA-
seq) using Oxford Nanopore long read sequencing technol-
ogy (ONT). Both samples have, among others, class 3 chRNAs
that were identified by short read sequencing but not validated
by qPCR (2 and 5 respectively). To detect rare chRNA events,
a coverage comparable to that originally obtained with the Il-
lumina technology was used ( Supplementary Table S5 ). As the
Minion technology generates sequencing errors, we built 20nt 
specific sequences (k-mers with k = 20) covering chimeric 
junctions and searched each fastq file for an exact match. This 
length was optimized to maintain specificity and overcome the 
higher sequencing error compared to short reads ( 25 ). The re- 
verse complement of each k-mer was also searched as sorted 

sequencing reads were not stranded. Matching sequences were 
retrieved and verified by sequence homology search against 
the reference genome in order to assess the origin of the two 

separate segments. 
A summary of the results is presented in Figure 3 

and Table 1 , and the validated long read sequences are 
listed in Supplementary Table S11 . Class 3 CD74::CD74 ,
SPI1::SPI1 and A CIN1::A CIN1 chRNAs, which were found 

in at least one of the two patients by short read RNA-seq but 
not validated by sequencing of the qPCR product, were also 

not validated by long read sequencing either. The lack of detec- 
tion of long reads for FAM175A::HELQ and TTYH3::MAFK ,
which had been validated by qPCR and product sequencing 
( Supplementary Table S12 ), could be explained by either the 
low expression of the chimeric transcript or the high error rate 
of long read sequencing, which would confound the search for 
perfect matches with the k-mer. In contrast, 11 / 16 chRNAs 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
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Figure 3. Ov ervie w of chRNAs biological v alidations. A subset of 28 chRNAs (column 2), from different classes (column 1) f ound b y RNA-seq short reads 
in CMML samples (column 3) were subjected to qPCR followed by Sanger sequencing for biological validation (column 4). RNA-seq long read 
sequencing (column 5) was performed on 2 samples (CMML 7 and 13) to validate 16 chRNAs (highlighted by color) identified by short read sequencing 
in the corresponding samples. v; detected. Green; detected by both short and long reads. Yellow; detected by short reads in one sample and confirmed 
by long reads in the other sample. Orange; validated by qPCR and Sanger sequencing but not by long read. Red; not validated by qPCR and Sanger or 
long read. No color with v; not detected by short reads but detected by long reads. 
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Table 1. State of chRNA detection in CMML7 and CMML13 (chRNA 

classes are indicated in brackets) 

Found in short and long reads F ound onl y in short reads 

C15orf57—CBX3 (1) FAM175—HELQ (2) 
GMIP—LPAR2 (2) CD74—CD74 (3) 
IL2RG—CXorf65 (2) SPI1—SPI1 (3) 
MFSD7—ATP5I (2) A CIN1—A CIN1 (3) 
PTPN22—RSBN1 (2) TTYH3—MAFK (3) 
CNPY3—RP3-475N16.1 (2) 
CIITA—RP11-876N24.3 (2) 
V AMP8—V AMP5 (2) 
SIRPB2—NSFL1C (2) 
TRIM28—TRIM28 (3) 
PIM3—SCO2 (4) 
NOL10—NOL10 (4) 
PPP6R2—SCO2 (4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

were found in both short and long reads, validating their bi-
ological expression in CMML patient samples. Interestingly,
the class 3 chimera TRIM28::TRIM28 which was neither val-
idated by qPCR product sequencing nor found by ONT in
CMML13, was detected in CMML7 with ONT without be-
ing detected with CRAC and CracTools-chimCT in RNA-
seq short reads. In addition, long read sequencing is sensitive
enough to reveal the presence of numerous chimeras that were
not detected by short-read sequencing, for example 5 out of
10 and 2 out of 6 chimeras detected by long read sequencing
were not detected by short read sequencing in CMML7 and
13 samples, respectively ( Supplementary Table S10 bis). Over-
all, the fusion transcripts identified by our selection process
can be used for validation as potential RNA biomarkers. 

Large scale exploration of chRNA expression with 

k-mers 

In order to determine the recurrence as well as the tumor speci-
ficity of all chRNAs detected in the first instance, we used
a counting procedure with specific k-mers representing the
chRNAs, called ‘chRNA-kmers’. The 1787 chRNAs from the
20 samples correspond to 1046 different chRNAs and there-
fore to 1046 chRNA-kmers. In this strategy, the chRNA-kmer
design consisted of extracting a sequence of length k = 31nt
centered on the chimeric junction of the reads given by the
CRAC mapper. Then, for the exploration procedure, in a first
step, we indexed all the k-mers from raw fastq files of selected
RNA-seq datasets and determined their abundances using the
reindeer data-structure ( 26 ). In a second step, chRNA-kmers
were queried in these indexes to obtain their counts per sample
using the transipedia web interface ( https:// transipedia.org/ ). 

To begin with, we investigated the indexes built with
132 samples of normal hematopoietic cells (CD34, PBMCs,
CD14 and normal hematopoietic progenitors). Of the 1046
chRNAs-kmers, we retained only those that were found at
most once in the corresponding samples and excluded all the
others. 44 chRNA-kmers were selected by this filtering and
used for the following step (Figure 1 ). 

We next examined the indexes constructed with our 20
CMML samples and selected from the 44 chRNA-kmer only
those with a count of at least 9 in a CMML sample, as
well as those that were weakly expressed but observed with
ONT in CMML7 and 13 samples ( Supplementary Table 
S13 ). Eighteen chRNA-kmers met these criteria. To be even
more stringent in our selection, we also analyzed a subset
of 1023 normal samples from 24 different tissue types from 

the Genotype-Tissue Expression (GTEX) project to deter- 
mine whether these 18 chRNA-kmers were also present in 

healthy non-haematopoietic tissues and therefore also needed 

to be removed. We obtained a final list of 12 chRNA-kmers 
(Figure 1 and 4 A). 

We next found interesting to query these 12 chRNA- 
kmers against the indexes of the Biomarker-Based-Treatment 
of Acute Myeloid Leukemia (Beat AML) cohort, a closely 
related myeloid malignant haemopathy, as they may share 
common markers. Among them, 2 were not found and 6 

had chRNA-kmer counts < 10 per sample (Figure 4 B). De- 
spite these low counts, the chRNA-kmers GSE1-KLHL36_38,
GSE1-KLHL36_40 and YWHAZ-AZIN1 were found present 
in 54, 63 and 29 out of 474 samples, respectively. The 
ANXA6-TNIP1 chRNA-kmer was detected in 57 / 474 sam- 
ples with a low count. In contrast, NRIP1-MIR99AHG 3 ,
which identify a class 4 chRNA NRIP1::MIR99AHG , was 
present in only 5 / 474 samples but with an expression com- 
parable to the well-known CBFB::MYH11 chimera (mean 

expression value of 21.5 for NRIP1::MIR99AHG and 13.5 

for CBFB::MYH11 Supplementary Figure S4 ). Notably, these 
5 AML samples are associated with myelodysplasia related 

changes ( Supplementary Figure S5 and Supplementary Table 
S15 ), which is consistent with its detection in the CMML 

sample. 

Characterization of selected chRNAs and cross 

validation with long read sequencing 

Based on the 12 chRNA-kmers selected above, we retrieved 

the corresponding long reads, if present, in the fastq files 
of CMML7 and CMML13. Three identified long reads 
were submitted to Local Basic Aligmnent Tool (BLAT from 

UCSC, ( 27 )) for full length RNA characterization. As ex- 
pected, GSE1::KLHL36 and YWHAZ::AZIN1 were detected 

in CMML7 and CMML13 samples. We noticed that chRNA- 
kmers GSE1-KLHL36_38 and GSE1-KLHL36_40 recognized 

the same full length chimeric sequence and correspond to the 
same chimeric junction (the two chRNA-kmer sequences have 
an offset of 8 nucleotides). 

In YWHAZ::AZIN1 , the full length RNA starts with 

the YWHAZ gene, then links the splicing acceptor site 
of YWHAZ exon 1 ( YWHAZ -201 ENST00000353245.7) 
to the splicing donor site of AZIN1 exon 2 ( AZIN1 -201 

ENST00000337198.10) and continues until the end of the 
AZIN1 gene transcript ( Supplementary Table S13 and Figure 
5 A). Similarly, the GSE1::KLHL36 chimeric transcript links 
the splicing acceptor site of exon 1 (pos 85556363) of the 
GSE1 gene (ENST00000635906.1) to the splicing donor site 
of KLHL36 exon 2 (pos 84650850, ENST00000564996.6) 
(Figure 5 B). 

We also identified a long read for ANXA6::TNIP1 class 2 

chRNA in both samples, although its presence was not de- 
tected with short read sequencing in the corresponding sam- 
ples. This chRNA can be described as a readthrough transcript 
that links the penultimate exon (exon 25, pos 151103570) of 
the ANXA6 gene (ENST00000354546.10) with exon 3 (pos 
151063747) of the TNIP1 gene (ENST00000521591.6) (Fig- 
ure 5 C). 

Finally, although no NRIP1::MIR99AHG chRNA was 
found in CMML7 and CMML13 samples using either short 
read or long read sequencing technology, we decided to 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://transipedia.org/
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
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A

B

Figure 4. Expression of the 12 selected chRNA-kmers. A- chRNA-kmers count in the 20 CMML cohort. B- chRNA-kmers count in the BEAT-AML cohort. 
X axis correspond to 474 samples in the beatAML cohort, IDs were removed because of lack of readability (corresponding table a v ailable in 
Supplementary Table S14 ). 
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ocus on this chRNA again. One of the main reasons is that
his fusion transcript showed a similar level of expression in
MML 10 as the CBFB::MYH11 fusion transcript, a class 4

himera detected and used as a biomarker in acute myeloid
eukemia. In addition, the NRIP1::MIR99AHG chRNA was
ecently identified in AML samples by Kerbs et al. and cor-
elated with genomic rearrangements ( 15 ). By analyzing the
hort RNA-seq data, we pointed out three different junctions
n the CMML10 sample. Two of them associate exon 3 of
RIP1 gene (ENST00000318948.7) with either exon 7 or 8
f MIR99AHG LncRNA (ENST00000619222.5). The third
ssociates exon 2 of NRIP1 with exon 8 of MIR99AHG
Figure 6 A). Consistent with these observations, short-read
enomic sequencing covering the NRIP1::MIR99AHG re-
ion detected a chromosomal inversion in this region in
ample CMML10 (Figure 6 B and C). The breakpoints
oining intron 6–7 of MIR99AHG with intron 3–4 of
RIP1 could generate transcripts whose alternative splic-

ng would be consistent with the three fusion transcripts
bserved. 

iscussion 

he present report uses in-depth analysis of RNA-seq data to
nalyze transcript diversity and detect transcripts that are not
ully accounted for, even by the best reference databases ( 28 ) .
his approach was applied to the detection of novel fusion
NAs or chRNAs in CMML, a disease in which personal-

zed prediction of overall survival and AML transformation
emains challenging despite recent improvements in CMML
lassification ( 7 ,29 ). The identification of novel somatically
cquired molecular abnormalities that may contribute to driv-
ng disease progression from chronic to acute phase would re-
ne these predictions. 
Our strategy can identify transcripts whose appearance in
alignant cells is associated with both genomic and / or tran-

criptional abnormalities. CRAC and CracTools-chimCT en-
ble the detection of 4 classes of chimeric RNAs revealing po-
ential translocations, readthrough, deletions, repeats and in-
ersions, making it an original tool suite ( 16 ,23 ). Nevertheless,
t is worth noting that difficulties in chRNAs prediction due
to technical or algorithmic false positives make it difficult to
consider them as cancer biomarkers from a biological point of
view. Therefore, we used common strategies to filter false pos-
itives with annotations (pseudogenes, superfamily genes, re-
peats) and metrics associated with mapping information (av-
erage mapping quality, read coverage, split-reads counts sup-
porting spanning junction, supporting paired-end read count
or spanning paired-reads) ( 24 ,30 ). This step, based on the in-
formation provided by CracTools-chimCT, helps to exclude
some false positives. Still, this approach was not sufficient to
classify fusion transcripts as cancer biomarkers. 

There are several procedures based on negative filters, to-
gether with blacklists based on chromosomal positions to se-
lect only the most specific cancer-specific fusion transcript can-
didates. However, such procedures, which carry a risk of in-
formation loss ( 30 ), require additional positive filters to rescue
targets eliminated by stringent filters. We propose an alterna-
tive method, based on the k-mer approach to select potential
biomarker chimeras. 

In a previous study, we demonstrated the performance of
specific k-mers for chRNAs discovery and tumor specificity se-
lection ( 16 ). Rehn et al. recently published RaScALL, a similar
approach based on the jellyfish structure ( 31 ). Here we pro-
vide a significant improvement of the k-mer process based on
a fast query to Reindeer indexes constructed from raw fastq
files ( 26 ), and the potential to query large RNA-seq datasets
(up to 1000) via the transipedia web interface. 

Our procedure does not require stringency in the initial fil-
ters and therefore includes a larger number of candidates with-
out a priori. We preferred to base the stringency of the selec-
tion on the tissue specificity of expression. Indeed, by com-
paring the presence or absence of chimeric k-mers in multiple
RNA-seq datasets of interest, we are able to select tumor spe-
cific fusion transcripts. Querying for specific chRNA k-mers
provides a k-mer count that can be compared across indexed
datasets of interest in a quantitative manner as previously de-
scribed ( 21 ,32 ). 

Applying the suite of CRAC tools with basic filters to the
CMML dataset enables the identification of 1787 chRNAs in
4 classes. Before proceeding further, we had to validate the
biological existence of the chRNAs. Therefore, we selected a

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae117#supplementary-data
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A

B

C

Figure 5. Molecular str uct ure of chRNAs. Representation of the chRNA str uct ure of class 3 YWHAZ :: AZIN1 ( A ) and GSE1::KLHL36 ( B ), class 2 
ANXA6::TNIP1 ( C ). A graphical representation of the genomic origin of the chimeras is shown at the top of each panel. The short-read sequencing 
results are shown below (blue and green colors indicate the different gene origins). The long read sequencing results are displa y ed and compared to the 
expected transcript of the implicated genes. 
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Figure 6. Visualization of NRIP1-MIR99AHG genomic DNA rearrangement. ( A ) Representation of the class 4 NRIP1::MIR99AHG chRNA str uct ure. A 

graphical representation of the genomic origin of the chimeras is shown with the results of the short-read sequencing (blue and green colors indicate 
the different gene origins). The three observed junctions are shown as well as the qPCR sequencing result for one of them. ( B ) Visualization of the 
CMML10 NRIP1 :: MIR99AHG DNA region with DNAg short read sequencing. Reads are displayed using the Integrative Genomics Viewer (IGV) interface. 
( C ) Schematic view of DNA breakpoint based on illumina DNAg sequencing and alignment. Exons are indicated by vertical bars. 
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subset of 28 chRNAs and tested their presence in CMML
RNA samples by qPCR and Sanger sequencing. To further val-
idate the biological presence of chRNAs in CMML, we used
Oxford Nanopore long-read sequencing data from two pa-
tients with a high coverage. The complementary long read in-
formation provides not only additional biological validation
compared to qPCR for low expressed chRNA, but also full
length sequences of the new candidates. The biological vali-
dation of 23 / 28 chRNAs thus reflected the relevance of our
standard filters for the 1787 chRNAs extracted in the first
instance. 

From the 1787 chRNAs, we generated 1046 chRNA-kmers
covering the fusion junctions. They were directly searched in
indexed RNA-seq datasets relevant to the biological question.
Indeed, to answer the question of the clinical relevance of a
new fusion transcript we must first verify the tumor speci-
ficity of the biomarker. Here, our filtering strategy allowed
us to search for them in normal samples of the haematopoi-
etic lineage with defined criteria to retain only those present
in CMML patients (found less than twice in the group of
132 healthy samples and present with a chRNA-kmer count
greater than or equal to 9 in at least one sample of the CMML
cohort). Another advantage of this k-mer based filtering step
is to overcome technological biases that should be equally
present in tumor and normal samples. We even added an ad-
ditional filter by searching in the indexed RNA-seq of the
GTEX cohort and excluding chRNAs that would be found
( Supplementary Table S13 ). We ended up with 12 chRNA-
kmers corresponding to 11 chRNA candidates . 

We did not identify any class 1 chRNA corresponding to
translocation, which is not surprising since these clonal cy-
togenetic events most often characterize AML, CML or lym-
phoid neoplasms. We detected two class 2 chRNAs corre-
sponding to readthrough: RP11-3304::1-RP11-3304.2 (now
reclassified as alternative transcript of the NHEJ1 gene)
found in one CMML and ANXA6::TNIP1 seen in 6 / 20
CMMLs. We found 5 class 3 chRNAs, 4 of them are
found in one or two CMML samples ( GFM2::GFM2 ; YW-
HAZ::AZIN1 ; PPP1R37::GEMIN7, PLIN3::ARRDC5) , the
fifth, GSE1 :: KLHL36 , is present in 50% of the CMML co-
hort. Finally, we identified 3 class 4 chRNAs representing 3
different isoforms (see below). 

Interestingly, the class 4 chRNA NRIP1::MIR99AHG cor-
responding to an inversion in the chr21 , already identi-
fied in AML ( 15 ), is also detected in one CMML pa-
tient (CMML10). We detected three different isoforms for
NRIP1::MIR99AHG in this patient and constructed the cor-
responding specific chRNA-kmers to search them in the Beat-
AML cohort and found 5 positive cases. The predominant
isoform in CMML10 , also described in the Rjun database,
contains the exon 3 of NRIP1 joined with the exon 8 of
MIR99AHG and was also found with the chRNA-kmer in
1 / 5 of the Beat-AML samples. The fusion RNA reported by
Kerbs et al. ( 15 ) in AML patients combines the exon 3 of
NRIP1 and the exon 7 of MIR99AHG . This is the only iso-
form observed in 4 / 5 AML patients while it’s the less ex-
pressed in the CMML sample. In addition to these two iso-
forms, we highlighted a third novel chimeric isoform joining
the exon 2 of NRIP1 and the exon 7 of MIR99AHG , which
is absent in all AML patients and expressed with an inter-
mediate level in CMML10. Whole genome sequencing anal-
ysis of the CMML10 patient reveals two breakpoints posi-
tions on chromosome 21, the first in NRIP1 gene at position 

15002065 and the second in the MIR99AHG gene at posi- 
tion 16585738. The breakpoint localizations are consistent 
with the 3 NRIP1::MIR99AHG chRNA isoforms and con- 
firm the inversion. In addition, among the most important 
common patient characteristics, all AML patients carrying 
the NRIP1::MIR99AHG chRNA are diagnosed with AML 

with myelodysplasia related changes in the beat AML cohort,
indicating a potential clinical history of MDS, MDS / MPN,
such as CMML, and consistent with transformation towards 
AML. 

Altogether, we demonstrate that k-mers can be used to de- 
tect any type of fusion transcript in large datasets. This flex- 
ible approach can be applied to any tumor type with RNA- 
seq data. Here, we detect 11 fusion transcripts in a cohort 
of 20 CMMLs, 4 of which are validated by long read or 
whole genome sequencing. Further prospective studies will 
determine whether YWHAZ :: AZIN1 , GSE1 :: KLHL36 and 

ANXA6 :: TNIP1 are passenger or recurrent genetic events di- 
rectly involved in this disease. This question is regularly raised 

for chRNAs as well as their clinical relevance with regard to 

their low expression levels ( 33 ,34 ). Nevertheless, given their 
tissue specificity, such transcripts are promising biomarkers 
that could be used for diagnostic, prognostic or minimal resid- 
ual disease follow-up where tumor markers are needed, espe- 
cially for patient with a normal karyotype. 

Finally, the NRIP1::MIR99AHG chRNA deserves special 
attention in this disease because this fusion transcript detected 

in a CMML patient has previously been described in AML 

with dysplastic features, suggesting that this specific fusion 

could potentially play a role in disease evolution and thus con- 
tribute to refining disease stratification. 

Data availability 

Sequencing data are available on the European Bioinfor- 
matics Institute (EBI) website in the arrayexpress repository 
under project E-MTAB-13763. Transipedia web interface is 
available at https://transipedia.org . KmerExploR, Crac and 

CracTools-ChimCT can be downloaded at https://github.com/ 
Transipedia/ kmerexplor; https:// www.bio2m/ crac and https: 
// github.com/ Bio2M/ cractools-chimct 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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