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ABSTRACT

Binary and sparse ternary weights in neural networks enable faster computations
and lighter representations, facilitating their use on edge devices with limited
computational power. Meanwhile, vanilla RNNs are highly sensitive to changes in
their recurrent weights, making the binarization and ternarization of these weights
inherently challenging. To date, no method has successfully achieved binarization
or ternarization of vanilla RNN weights. We present a new approach leveraging
the properties of Hadamard matrices to parameterize a subset of binary and sparse
ternary orthogonal matrices. This method enables the training of orthogonal RNNs
(ORNNs) with binary and sparse ternary recurrent weights, effectively creating a
specific class of binary and sparse ternary vanilla RNNs. The resulting ORNNs,
called HadamRNN and Block-HadamRNN, are evaluated on benchmarks such as
the copy task, permuted and sequential MNIST tasks, and IMDB dataset. Despite
binarization or sparse ternarization, these RNNs maintain performance levels
comparable to state-of-the-art full-precision models, highlighting the effectiveness
of our approach. Notably, our approach is the first solution with binary recurrent
weights capable of tackling the copy task over 1000 timesteps.

1 INTRODUCTION

A Recurrent Neural Network (RNN) is a neural network architecture relying on a recurrent computa-
tion mechanism at its core. These networks are well-suited for the processing of time series, thanks to
their ability to model temporal dependence within data sequences. Traditional Recurrent architectures
such as vanilla RNNs, LSTM (Hochreiter and Schmidhuber, 1997), GRU (Cho et al., 2014) or
Unitary/Orthogonal RNN (Arjovsky et al., 2016; Helfrich et al., 2018) have achieved remarkable
performances across various sequential tasks including neural machine translation (Devlin et al.,
2014; Sutskever et al., 2014) or speech recognition (Amodei et al., 2016; Chan et al., 2016).

Modern RNN architectures typically rely on millions, or even billions, of parameters to perform
optimally. This necessitates substantial storage spaces and costly matrix-vector products at inference-
time, that may result in computational delays. These features can be prohibitive when applications
must operate in real-time or on edge devices with limited computational resources.

A compelling strategy to alleviate this problem is to replace the full-precision weights within the
network with weights having a low-bit representation. This strategy known as neural network
quantization (Courbariaux et al., 2015; Lin et al., 2015; Courbariaux et al., 2016; Hubara et al., 2017;
Zhou et al., 2016) has been extensively studied over the recent years. For optimal computational
efficiency and memory savings, weights should be binarized, that is, represented over only 1 bit. For
the case of recurrent networks, it was shown (Ott et al., 2016; He et al., 2016; Hou et al., 2017; Alom
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et al., 2018; Ardakani et al., 2019) that LSTMs and GRUs with binarized weights could achieve near
state-of-the-art results on natural languages datasets such as Penn TreeBank (Marcus et al., 1993),
Leo Tolstoy’s War and Peace (Hou et al., 2017) or IMDB (Maas et al., 2011).

However, vanilla RNNs, LSTMs and GRUs usually struggle at learning tasks involving very long-term
dependencies, due notably to the exploding gradient problem (Pascanu et al., 2013). In Arjovsky
et al. (2016); Wisdom et al. (2016); Lezcano-Casado et al. (2019) for instance, it can be observed
that LSTMs fail to solve the copy task with long sequences. In the recent years, alternative models
including transformers (Vaswani et al., 2017), ODE-inspired RNNs (Erichson et al., 2021; Rusch
and Mishra, 2021) including SSMs (Gu et al., 2022) were designed to accurately model long-term
dependencies. Among these, recent studies have tackled the challenge of quantizing transformers, but
have only achieved model sizes in the tens of megabytes (see Section 2 and Appendix F.1). The only
known attempt to quantize SSMs reports a significant loss of accuracy when reducing precision below
8-bit (Abreu et al., 2024). Hence the need for efficient lightweight binary recurrent architectures
capable of handling longer dependencies than LSTMs and GRUs.

Contribution: In this paper, we binarize the recurrent weights of Orthogonal Recurrent Neural
Networks (ORNNs), which is a special case of vanilla RNN. The binary orthogonal matrices are
constructed using Hadamard matrix theory. We call the networks Hadamard RNNs (HadamRNN).
To the best of our knowledge, this is the first successful attempt to binarize the weights of vanilla
and orthogonal RNNs. To reduce the complexity further, we also build sparse ternary ORNNs called
Block-Hadamard RNNs (Block-HadamRNN). The resulting HadamRNNs and Block-HadamRNNs
are fully-quantized, lightweight, highly efficient, and model long-term dependencies more accurately
than LSTMs and GRUs. This claim is supported by results on a variety of benchmarks including the
copy task for 1000 timesteps, permuted MNIST and pixel-by-pixel MNIST, and IMDB. Despite the
drastic reduction in computational complexity and memory footprint, the performance degradation
remains moderate compared to full-precision ORNNs. Ablation studies show the effectiveness of the
choices made in the article.

Organization of the paper In Section 2, we review previous work on binarizing and ternarizing
the weights of neural networks for sequential data modeling. The bibliography is supplemented by
Appendix A, which focuses on ORNNs. In Section 3, we describe the method for parameterizing
a subset of binary and sparse ternary orthogonal matrices. We also outline all the components of
HadamRNNs and Block-HadamRNNs. Experiments are detailed in Section 4, and conclusions are
provided in Section 5.

Additional bibliographic references are in Appendix A, and proofs are provided in Appendix B.
Appendix C illustrates the model description. Details for reproducing the experiments, along with
additional experimental results, are in Appendix D, Appendix E, and Appendix F. Theoretical
complements and an ablation study on the (linear) ORNN architecture are in Appendix G, while
those on the proposed parameterization of orthogonal matrices are in Appendix H. The fixed-point
arithmetic implementation is detailed in Appendix I.

The code implementing the experiments is available at hadamRNN

2 RELATED WORKS

This section provides an overview of prior research efforts aimed at quantizing the weights of neural
networks designed for handling sequential data, encompassing both recurrent and non-recurrent
architectures. We first highlight the works that report performance with binary and ternary recurrent
weights. Further bibliographical details on ORNNs can be found in Appendix A.

In the seminal paper Ott et al. (2016), the authors apply binarization and ternarization methods on
vanilla RNN, LSTM and GRU architectures. Remarkably, they acknowledge the difficulty of training
binary RNNs; they write at the beginning of Section 3.1.1: ‘We have observed among all the three
RNN architectures that BinaryConnect on the recurrent weights never worked.’In Hou et al. (2017),
the authors apply a loss-aware binarization scheme to an LSTM and achieve better performances
than the conventional BinaryConnect algorithm (Courbariaux et al., 2015) on a language modeling
task. Using a learning process incorporating stochasticity and batch-normalization, Ardakani et al.
(2019) show that an LSTM and a GRU with binary weights can achieve results comparable to their
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full-precision counterparts on language modeling tasks and the sequential MNIST task. Finally, He
et al. (2016); Liu et al. (2018); Wang et al. (2018); Alom et al. (2018) take a step further toward a
fully quantized recurrent network. He et al. (2016) proposes to quantize the activations of a GRU and
an LSTM in addition to binary weights. Liu et al. (2018) suggests to binarize the word embeddings
as inputs for an LSTM with binary weights. Alom et al. (2018) propose another quantization scheme
and implement quantized convolutional LSTM which are tested on the moving MNIST dataset.

Among the articles cited above, Ott et al. (2016); Hou et al. (2017); Ardakani et al. (2019); He et al.
(2016) consider character-level language models. The works by Ardakani et al. (2019); Wang et al.
(2018); Liu et al. (2018) report performance results for word-level language models. He et al. (2016);
Alom et al. (2018) address sentiment analysis on the IMDB dataset (Maas et al., 2011). Ardakani
et al. (2019) is the only article reporting results for a long-term dependency problem, that LSTMs are
known to solve efficiently: the sequential MNIST problem. None of the articles attempt to solve the
permuted MNIST problem or the copy task for 1000 timesteps, both of which are known to be better
addressed by ORNNs.

Quantization methods for LSTMs and GRUs using larger bit-widths have been described in Hubara
et al. (2017); Kusupati et al. (2018); Nia et al. (2023); Xu et al. (2018); Zhou et al. (2017).

To the best of our knowledge, the only article describing a method for quantizing ORNNs is Foucault
et al. (2024). In this article, the authors succeed in learning tasks involving long-term dependency
with a 4-bits ORNN.

We classify existing efforts to quantize transformers like BERT (Devlin, 2018) based on the level of
quantization applied. Some approaches focus on quantizing the weights to 8 bits (Zafrir et al., 2019;
Sun et al., 2020; Stock et al., 2021) or even 4 bits (Shen et al., 2020; Zadeh et al., 2020). Others
explore more aggressive quantization, employing ternary weights (Zhang et al., 2020) or binary
weights (Bai et al., 2021). Fully binarized versions of BERT, including binarized activations, are
presented in (Qin et al., 2022; Liu et al., 2022b).

As shown in Appendix F.1, Table 6, all these networks require at least tens of megabytes of storage.
This contrasts sharply with the models described in this article, which require much smaller sizes.

Finally, Yao et al. (2022); Frantar et al. (2023); Xiao et al. (2023); Liu et al. (2023) extend quantization
techniques to large language models with billions of parameters.

3 HADAMARD AND BLOCK-HADAMARD RNNS

We describe the details of the considered ORNNs in Section 3.1. A brief review of the key properties
of Hadamard matrices is provided in Section 3.2. We explain, in Section 3.3, how Hadamard matrices
are used to build ORNNs with binary recurrent weights that we call HadamRNN. We extend the
construction to sparse ternary recurrent weight matrices, called Block-HadamRNN, in Section 3.4.
We describe how input and output weight matrices are quantized in Section 3.5 and compare the
complexities of the proposed models in Section 3.6.

3.1 ORNNS

Orthogonal recurrent networks are a class of recurrent networks, that rely on the same recurrent
operation as the one of a vanilla recurrent network, but add an orthogonality constraint on the recurrent
weight matrix. Given a sequence of inputs 𝑥1,… , 𝑥𝑇 ∈ ℝ𝑑𝑖𝑛 , the model computes a sequence of
hidden states ℎ1,… , ℎ𝑇 ∈ ℝ𝑑ℎ according to

ℎ𝑡 = 𝑊 ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏𝑖, (1)

where ℎ0 = 0, a matrix 𝑈 ∈ ℝ𝑑ℎ×𝑑𝑖𝑛 , 𝑏𝑖 ∈ ℝ𝑑ℎ , and the recurrent weight matrix 𝑊 ∈ ℝ𝑑ℎ×𝑑ℎ is
constrained to be orthogonal (i.e. 𝑊 ′𝑊 = 𝑊𝑊 ′ = 𝐼𝑑ℎ , where 𝑊 ′ is the transpose of 𝑊 , and
𝐼𝑑ℎ is the identity matrix of size 𝑑ℎ × 𝑑ℎ). Depending on the task, the output is either the vector
𝑉 𝜎(ℎ𝑇 ) + 𝑏𝑜 ∈ ℝ𝑑𝑜𝑢𝑡 or the time series 𝑉 𝜎(ℎ1) + 𝑏𝑜, . . . , 𝑉 𝜎(ℎ𝑇 ) + 𝑏𝑜. The matrix 𝑉 ∈ ℝ𝑑𝑜𝑢𝑡×𝑑ℎ is
the output matrix, and 𝜎 is the activation function.

The orthogonality of the recurrent weight matrix enhances memorization and prevents gradient
vanishing. These networks have been shown to solve complex tasks with long-term dependencies,

3



such as the copy task with 1000 timesteps or more Lezcano-Casado et al. (2019); Helfrich et al.
(2018); Vorontsov et al. (2017); Mhammedi et al. (2017). They also lead to simple RNNs, whose
inference complexity scales linearly with sequence length.

The most common choice in ORNNs is to apply the ReLU activation function, 𝜎, to each hidden state
update. The formula then becomes ℎ𝑡 = 𝜎(𝑊 ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏𝑖), and the output is simply 𝑉 ℎ𝑇 + 𝑏𝑜.
In (1), we consider ORNNs with linear recurrent units. The use of the linear recurrent unit improves
memorization (see Appendix G) and is also motivated by studies on SSMs (Gu et al., 2022; Orvieto
et al., 2023). We provide an ablation study to support this choice in Appendix G.1.

3.2 INTRODUCTION TO HADAMARD MATRICES THEORY

Before describing how we construct binary or sparse ternary recurrent weight matrices in Sections
3.3 and 3.4, we first recall known properties of Hadamard matrices (Hedayat and Wallis, 1978), and
explain how, under simple conditions, we can parameterize a subset of all Hadamard matrices.

Definition 3.1. Hadamard matrices (Hadamard, 1893) are square matrices with binary values in
{−1, 1}, whose rows are pairwise orthogonal. For any 𝑛 ∈ ℕ∗, we denote by 𝑛 the (possibly empty)
set of all Hadamard matrices of size 𝑛 × 𝑛.

Notice that for any 𝑛 > 1 and any Hadamard matrix 𝑊 of size 𝑛 × 𝑛, we have

𝑊𝑊 ′ = 𝑛𝐼𝑛. (2)

It is well known that for 𝑛 > 2, Hadamard matrices of size 𝑛 × 𝑛 do not exist unless 𝑛 is a multiple
of 4 (Hedayat and Wallis, 1978). The existence of Hadamard matrices of size 4𝑛 × 4𝑛 for all 𝑛 > 1
remains a conjecture. It is called the Hadamard conjecture (De Launey and Gordon, 2001). It is
therefore hopeless to attempt learning an optimal matrix in 𝑛 for an arbitrary 𝑛.

The following proposition outlines a straightforward method, introduced in Sylvester (1867), to
construct a Hadamard matrix of size 2𝑘 × 2𝑘 for any 𝑘 ≥ 1.

Proposition 3.2. Let 𝑘 ≥ 1. The 2𝑘 × 2𝑘 matrix, denoted 𝐒2𝑘 , defined recursively by

𝐒2 =
(

1 1
1 −1

)

(i.e. if 𝑘 = 1), and 𝐒2𝑘 =

(𝐒2𝑘−1 𝐒2𝑘−1

𝐒2𝑘−1 −𝐒2𝑘−1

)

, if 𝑘 > 1,

is a Hadamard matrix. It is called the Sylvester matrix1 of size 2𝑘 (Horadam, 2007).

The proof is provided for completeness in Appendix B.2.

For any 𝑛 > 1, if a Hadamard matrix of size 𝑛 × 𝑛 is known, the following proposition provides
a simple method for generating 2𝑛 distinct Hadamard matrices. In the proposition, the notation
diag(𝑢) ∈ ℝ𝑛×𝑛 refers to a diagonal matrix with 𝑢 ∈ ℝ𝑛 on its diagonal.

Proposition 3.3. For 𝑛 > 1 and any 𝐻 ∈ 𝑛, the mapping

𝜙𝐻 ∶ {−1, 1}𝑛 ⟶ {−1, 1}𝑛×𝑛

𝑢 ⟼ diag(𝑢)𝐻,

is injective. Moreover, for all 𝑢 ∈ {−1, 1}𝑛, 𝜙𝐻 (𝑢) is a Hadamard matrix.

The proof is provided for completeness in Appendix B.3. This proposition guarantees that switching
the signs of any set of rows of a Hadamarad matrix preserves its Hadamard property. Considering
the matrices 𝜙𝐒2𝑘

(𝑢), for 𝑢 ∈ {−1, 1}𝑑ℎ , Proposition 3.2 and Proposition 3.3 provide a method for

manipulating 22𝑘 Hadamard matrices of size 2𝑘 × 2𝑘, for 𝑘 ≥ 1. For instance, when 𝑑ℎ = 28 = 256,
it allows the generation of more than 1077 different matrices. The experiments will confirm that this
class of matrices possesses sufficient expressiveness.

Note that even if, in the following, we only use Proposition 3.3 with Sylvester matrices whose size is
a power of 2, Proposition 3.3 applies to any given Hadamard matrix 𝐻 . Many such matrices exist.

1These matrices are also called Walsh matrices in some contexts.
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In particular, Hadamard matrices can be constructed for almost all sizes 4𝑛 × 4𝑛, when 4𝑛 ≤ 2000
(Ðoković et al., 2014). This would allow parameter 𝑑ℎ to be set more finely than we have done.

A key point is that, due to the independence of 𝑢’s components, empirical results show that 𝑢
can be optimized using standard methods like the straight-through estimator (STE) (Hinton, 2012;
Courbariaux et al., 2016), as described in Appendix C.

Finally, similarly to what has been done in Proposition 3.3, it can also be shown that it is possible to
switch the signs of any set of columns of a Hadamard matrix and preserve the Hadamard property.
We argue in Appendix H.1 that, because we also optimize the input matrix 𝑈 and the bias 𝑏, it does
not lead to more expressive networks. Additionally, the ablation study in Appendix H.2 shows that it
does not allow for any improvement in practice.

3.3 BINARY ORTHOGONAL RECURRENT WEIGHT MATRICES

To parameterize the binary orthogonal recurrent weights used in the network called Hadamard RNN
(HadamRNN), we consider 𝑑ℎ = 2𝑘, for 𝑘 ≥ 1, and the weights

𝑊 (𝑢) = 1
√

𝑑ℎ
diag(𝑢)𝐒2𝑘 ∈ ℝ𝑑ℎ×𝑑ℎ , (3)

for a trainable binary vector 𝑢 ∈ {−1, 1}𝑑ℎ . Indeed, using that diag(𝑢)𝐒2𝑘 is a Hadamard matrix
satisfying (2), we obtain that 𝑊 (𝑢) is orthogonal: 𝑊 (𝑢)′𝑊 (𝑢) = 𝑊 (𝑢)𝑊 (𝑢)′ = 𝐼𝑑ℎ . The proof is
provided in Appendix B.4. We also detail an example in Appendix C. It is worth noting that if 𝑘
is even, 𝑑ℎ = 22𝑘′ , for 𝑘′ ≥ 1, then the normalization becomes a division by

√

𝑑ℎ = 2𝑘′ , which is
well-suited for efficient implementation on edge devices.

3.4 SPARSE TERNARY ORTHOGONAL RECURRENT WEIGHT MATRICES

To construct the sparse ternary orthogonal recurrent weights used by Block-Hadamard RNN (Block-
HadamRNN), we consider 𝑑ℎ = 𝑞2𝑘, where 𝑘 ≥ 1 and 𝑞 ≥ 1, and the weights are

𝑊 (𝑢) = 1
√

2𝑘
diag(𝑢)

(

𝐼𝑞 ⊗ 𝐒2𝑘
)

∈ ℝ𝑑ℎ×𝑑ℎ , (4)

for a trainable binary vector 𝑢 ∈ {−1, 1}𝑑ℎ and the Kronecker product ⊗ (see Appendix B.1). The
matrix 𝑊 (𝑢) is ternary since its components are in {− 1

√

2𝑘
, 0, 1

√

2𝑘
}. It is orthogonal for the same

reasons as those discussed in the previous section. The proof is detailed in Appendix B.4.

The proportion of non-zero elements in 𝑊 (𝑢) is 𝑞(2𝑘)2
(𝑞2𝑘)2 = 1

𝑞 . When 𝑞 is large, the matrix 𝑊 (𝑢)
is very sparse. On the contrary, when 𝑞 = 1, none of the components of 𝑊 (𝑢) are zero, and the
Block-Hadamard RNN effectively becomes a Hadamard RNN as described in the previous section.
In this sense, Block-Hadamard RNNs are a natural sparse ternary extension of Hadamard RNNs.

3.5 MATRICES 𝑈 AND 𝑉 QUANTIZATION

Because input and output sizes are often much smaller than the size of the hidden space (i.e. 𝑑𝑖𝑛 ≪ 𝑑ℎ
and 𝑑𝑜𝑢𝑡 ≪ 𝑑ℎ), we permit the quantization of the input and output weight matrices, 𝑈 and 𝑉 , using
𝑝 bits, where 𝑝 ≥ 2. We use the uniform quantization with a scaling parameter (Gholami et al., 2022).

The quantization approximates every component of 𝑈 (resp. 𝑉 ) by its nearest element in the set

𝛼
2𝑝−1

r
−2𝑝−1, 2𝑝−1 − 1

z
.

where 𝛼 = max𝑖,𝑗 |𝑈𝑖𝑗| (resp. 𝛼 = max𝑖,𝑗 |𝑉𝑖𝑗|) and the set J𝑎, 𝑏K contains all the integers between 𝑎
and 𝑏. The above set contains 2𝑝 elements.

To obtain ternary 𝑈 and 𝑉 , leading to matrix-vector multiplications involving additions only, we also
provide the results for the quantization approximating each component of 𝑈 (resp 𝑉 ) in 𝛼{−1, 0, 1},
for the same values of 𝛼.
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Moreover, when the input is one-hot encoded, only one column of 𝑈 is used at a time. The product
𝑈𝑥𝑡 can take only 𝑑𝑖𝑛 values and, from a computational perspective, can be encoded as the input bias
𝑏𝑖 and the activation.

3.6 MODEL SIZE AND COMPUTATIONAL COMPLEXITY

We compare the different models in terms of parameter storage requirements and the number of
operations during inference.

The model size is determined by the total number of learnable parameters, multiplied by the number
of bits used to encode each parameter. In both HadamRNNs and Block-HadamRNNs, the recurrent
layer size is 𝑑ℎ bits, the input size is 𝑑𝑖𝑛𝑑ℎ𝑝 bits, and the output size is 𝑑ℎ𝑑𝑜𝑝 bits. Therefore, the total
model size is given by 𝑑ℎ(1+(𝑑𝑖𝑛+𝑑𝑜)𝑝)

8×1024 kBytes2. It is important to note that using Sylvester matrices
𝐒2𝑘 eliminates the need to store their weights, as these can be easily retrieved using Proposition 3.2.

The number of operations of the inference using HadamRNN and Block-HadamRNN is detailed
in Table 1. We assume in Table 1 that the hidden and input variables, ℎ𝑡 and 𝑥𝑡, are encoded
using 𝑝𝑎 bits. A detailed description of the fully quantized RNN operations is given in Appendix I.
HadamRNNs and Block-HadamRNNs use binary (or ternary) recurrent matrices, which eliminates
the need for multiplications. Similarly, for ternary 𝑈 and 𝑉 , we set fpp𝑝,𝑝′ = 0 since the matrix-vector
multiplications only involve additions. When 𝑝 = 2, the matrix-vector multiplications involving
matrices 𝑈 and 𝑉 in {−2,−1, 0, 1} only involve additions and bit-shifts. For the same 𝑑ℎ value
(𝑑ℎ = 2𝑘 = 𝑞.2𝑘′ with 𝑘′ < 𝑘), the computational complexity of the recurrent layer of Block-
HadamRNN is 𝑞 times lower than that of HadamRNN.

For comparison, we also provide the complexity for the inference with full-precision ORNN (Arjovsky
et al., 2016) and the only quantized ORNN that we are aware of: QORNN (Foucault et al., 2024).
The complexities of HadamRNN and Block-HadamRNN are much smaller, in particular, because, as
will be reported in Section 4, they permit to achieve satisfactory results for 𝑝 = 2 when, as reported
in Foucault et al. (2024), QORNNs require at least 𝑝 = 4 bits encoding.

Note that when the inputs 𝑥𝑡 are one-hot encoded, computing 𝑈𝑥𝑡 requires no multiplications and
only 𝑑ℎ additions. This further reduces the complexity compared to Table 1.

Table 1: Computational complexity for an inference of the RNN. We neglect the bit-shifts and the
accesses to the look-up tables. FP stands for in floating-point arithmetic, fpp stands for fixed-point
precision additions, fpp𝑝,𝑝𝑎 stands for fixed-point precision multiplications between numbers coded
using 𝑝 and 𝑝𝑎 bits. We have fpp𝑡,𝑝𝑎 = fpp2,𝑝𝑎 = 0, where fpp𝑡,𝑝𝑎 is for ternary matrices.

Layer Operation ORNN QORNN HadamRNN Block-HadamRNN
𝑑ℎ = 2𝑘 𝑑ℎ = 𝑞2𝑘

Input Mult. 𝑑𝑖𝑛.𝑑ℎ FP 𝑑𝑖𝑛.𝑑ℎ fpp𝑝,𝑝𝑎 idem idem
Add. 𝑑𝑖𝑛.𝑑ℎ FP 𝑑𝑖𝑛.𝑑ℎ fpp idem idem

Recurrent Mult. 𝑑ℎ.𝑑ℎ FP 𝑑ℎ.𝑑ℎ fpp𝑝,𝑝𝑎 0 0
Add. 𝑑ℎ.𝑑ℎ FP 𝑑ℎ.𝑑ℎ fpp 𝑑ℎ.𝑑ℎ fpp 𝑑ℎ.

𝑑ℎ
𝑞 fpp

Output Mult. 𝑑ℎ.𝑑𝑜𝑢𝑡 FP 𝑑ℎ.𝑑𝑜𝑢𝑡 fpp𝑝,𝑝𝑎 idem idem
Add. 𝑑ℎ.𝑑𝑜𝑢𝑡 FP 𝑑ℎ.𝑑𝑜𝑢𝑡 fpp idem idem

4 EXPERIMENTS

In this section, we assess the performance of HadamRNN and Block-HadamRNN on four standard
benchmark datasets. These datasets are described in Section 4.1. Three tasks require retaining
information over extended periods, while the fourth focuses on a Natural Language Processing (NLP)

2The biases 𝑏𝑖 and 𝑏𝑜 use (𝑑ℎ + 𝑑𝑜)𝑝𝑎 bits.
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task with shorter sequences but larger input dimensions. In Section 4.2, we present the performance
of HadamRNN and Block-HadamRNN, and compare them to that of previously published quantized
and full-precision (FP) models. We propose ablation studies in Appendix G.1 and Appendix H.2.

4.1 DATASETS

We investigate lightweight neural networks for time series and select datasets suited to these architec-
tures. In particular, this excludes the Long Range Arena benchmarks (Tay et al., 2020), which are too
complex for full-precision ORNNs, LSTMs, and GRUs. To illustrate the limitations of the proposed
models, we include the sequential MNIST for which LSTMs are known to outperform ORNNs.

Copy task The Copy task is a standard sequential problem first introduced in (Hochreiter and
Schmidhuber, 1997). This task requires memorizing information over many timesteps, and vanilla
LSTMs are notoriously unable to solve it for long sequences (Arjovsky et al., 2016; Helfrich et al.,
2018; Lezcano-Casado et al., 2019). We follow the setup of Lezcano-Casado et al. (2019), in which
the data sequences are constructed as follows. We consider an alphabet

{

𝑎𝑘
}9
𝑘=0 of 10 characters.

Given a sentence length 𝐾 and a delay 𝐿, the first 𝐾 elements of an input sequence are sampled
uniformly and independently from

{

𝑎𝑘
}8
𝑘=1. These are followed by 𝐿 repetitions of the blank

character 𝑎0, one instance of the marker 𝑎9, and 𝐾 − 1 repetitions of 𝑎0. The first 𝐾 elements form a
sentence that the network must memorize and reproduce identically after outputting 𝐿 +𝐾 instances
of 𝑎0.

In our experiments, we fixed 𝐾 = 10 and 𝐿 = 1000 (𝑇 = 𝐿 + 2𝐾 = 1020, 𝑑𝑖𝑛 = 10, 𝑑𝑜𝑢𝑡 = 9).
The loss function is the cross-entropy, which is also used to measure performance. A naive baseline
consists of 𝐿 + 𝐾 repetitions of 𝑎0, followed by 𝐾 random values. This leads to a baseline cross-
entropy of 10 log 8

𝐿+2𝐾 = 0.021.

Permuted and sequential pixel-by-pixel MNIST (pMNIST/sMNIST) They are also classic
long-term memory tasks. From the MNIST dataset, the 28 × 28 images are serialized into 784-long
sequences of 1-dimensional 8-bits pixel values (𝑇 = 784, 𝑑𝑖𝑛 = 1, 𝑑𝑜𝑢𝑡 = 10). The serialization
is done pixel-by-pixel for sMNIST. For pMNIST, a fixed permutation is used to shuffle the pixels
within each sequence. We use the same permutation as Kiani et al. (2022). The task is to predict the
correct handwritten digit label at the last step. The learning loss is the cross-entropy, and the model’s
performance is evaluated with accuracy.

IMDB This dataset, proposed in Maas et al. (2011), is an NLP binary classification task for
sentiment analysis based on 50,000 movie reviews. As in He et al. (2016), we pad and cut the
sentences to 500 words, and use a learnable word embedding vector of size 512 (𝑇 = 500, 𝑑𝑖𝑛 = 512,
𝑑𝑜𝑢𝑡 = 1). The learning loss is the binary cross-entropy, and the model’s performance is evaluated
with accuracy.

Other Datasets We provide in Appendix F a comparison of HadamRNN, Block-HadamRNN, and
transformers on the SST-2 and QQP benchmarks from GLUE (Wang et al., 2019), as well as with
RNNs on IoT task benchmarks: HAR-2, and DSA-19, as described in Kusupati et al. (2018).

4.2 PERFORMANCE EVALUATION

The evaluation is organized as follows. In Section 4.2.1 and Table 2, we compare the results of
HadamRNN to those of the state-of-the-art. In Section 4.2.2 and Table 3, we compare the results of
Block-HadamRNN and HadamRNN.

For each task, hyperparameters were selected using validation sets and the final performance was eval-
uated on test sets. Details on the hyperparameters and implementations are provided in Appendix D.

Training times are in Appendix E.1. Training stability is analyzed in Appendix E.2.
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Table 2: Comparison of performances of the HadamRNN and the state-of-the-art on several bench-
mark datasets. Last column reports the model size in kBytes. BL (baseline) means that the model
failed to learn.

Model 𝑑ℎ W U & V activation performance size
bitwidth bitwidth bitwidth kBytes

Copy task (𝑇 = 1000, 𝑑𝑖𝑛 = 10, 𝑑𝑜𝑢𝑡 = 9, cross-ent, baseline = 0.021)

LSTM (Jing et al. (2017)) 80 FP FP FP BL 112
ORNN (Kiani et al. (2022)) 256 FP FP FP 1.1e-12 275
QORNN (Foucault et al. (2024)) " 8 8 12 1.7e-5 75.5
QORNN (Foucault et al. (2024)) " 5 5 12 2.5e-3 50.6

HadamRNN (ours) 128 1

2 FP BL 1.44
4 FP 1.6e-7 1.74
4 12 2.3e-7 1.40
6 FP 3.2e-8 2.33

Permuted MNIST (𝑇 = 784, 𝑑𝑖𝑛 = 1, 𝑑𝑜𝑢𝑡 = 10, accuracy)

ORNN (Kiani et al. (2022)) 512 FP FP FP 97.00 1046.0
ORNN (Kiani et al. (2022)) 170 FP FP FP 94.30 120.2
LSTM (Kiani et al. (2022)) " FP FP FP 92.00 456.9
QORNN (Foucault et al. (2024)) " 8 8 12 94.76 35.0
QORNN (Foucault et al. (2024)) " 6 6 12 93.94 27.9

HadamRNN (ours) 512 1

2 FP 91.13 3.48
4 FP 94.88 4.85
4 12 94.90 3.58
6 FP 95.85 6.23

Sequential MNIST (𝑇 = 784, 𝑑𝑖𝑛 = 1, 𝑑𝑜𝑢𝑡 = 10, accuracy)

LSTM (Ardakani et al. (2019)) 100 0 1 12 98.6 5.11
FastGRNN (Kusupati et al. (2018)) 170 8 8 16 98.2 6.0
ORNN (Lezcano-Casado et al. (2019)) 512 FP FP FP 98.7 1046
QORNN (Foucault et al. (2024)) 170 8 8 12 96.2 35.0
QORNN (Foucault et al. (2024)) 170 6 6 12 94.74 27.9

HadamRNN (ours) 512 1

2 FP 92.65 3.48
4 FP 96.63 4.85
4 12 96.34 3.58
6 FP 96.9 6.23

IMDB (𝑇 = 500, 𝑑𝑖𝑛 = 512, 𝑑𝑜𝑢𝑡 = 1, accuracy)

LSTM (Alom et al. (2018)) 128

0

1 FP 76.25 40.50
LSTM (Alom et al. (2018)) 128 2 FP 79.64 80.5
LSTM (He et al. (2016)) 512 2 2 88.12 514
LSTM (He et al. (2016)) 512 4 4 88.48 1026
ORNN 128 FP FP FP 84.02 320.5

HadamRNN (ours)
128

ternary FP 81.18 16.55
2 FP 85.34 16.55
2 12 85.18 16.24

512 1 4 FP 87.43 130.32
4 12 87.13 129.06

4.2.1 HADAMRNN VERSUS THE STATE-OF-THE-ART

Since we aim to design high-performance RNN architectures adapted to low-memory devices, we
assess the models’ performance based on two criteria: the model size of each architecture and its
classification accuracy or cross-entropy for the copy task. The model size of HadamRNN is calculated
as described in Section 3.6. LSTM recurrent matrix is the identity matrix and it is coded using 0 bits.
We also report the performance of fully quantized HadamRNN using the post-training quantization
strategy for activations detailed in Appendix I. The main performances on the four benchmark datasets

8



are summarized in Table 2. The plots in Appendix E.3, based on the results from Table 2, highlight
the efficiency of HadamRNN in terms of model size.

State-of-the-art We compare HadamRNN with state-of-the-art full-precision and quantized models
designed for time series modeling:

• Full-precision LSTM (Jing et al., 2017; Kiani et al., 2022) and quantized LSTM (Ardakani
et al., 2019; Alom et al., 2018; He et al., 2016) are known to fail the 1000-timesteps copy
task, and to be well-suited for modeling the sMNIST problem. LSTM also serves as an
optimistic proxy for other gated models such as GRU, since LSTM is known to usually
performs better.

• Similarly to HadamRNN, ORNN (Kiani et al., 2022) and QORNN (Foucault et al., 2024)
are instances of RNNs with orthogonal recurrent weight matrix, but operating with different
bitwidth. This comparison evaluates the performance degradation caused by binarization.

• FastGRNN (Kusupati et al., 2018) was designed to address similar problems as unitary
RNNs (Arjovsky et al., 2016; Helfrich et al., 2018), but with significantly smaller size. Since
HadamRNN is also remarkably lightweight, it appears relevant to compare the two models.

• As stated in Section 1, quantized SSMs perform poorly when the bitwidth is smaller than 8
bits (Abreu et al., 2024). Also, as discussed in Section 2 and Appendix F.1, the differences
in size and complexity between transformers and HadamRNN render the comparison
meaningless. For these reasons, we do not include the results of transformers and SSMs.

Copy-task Notably, HadamRNN is the first binary recurrent weights solution capable of learning
the long-term dependency of the copy-task. Note that full-precision and quantized LSTMs do not
learn the copy task when 𝑇 = 1020. The proposed HadamRNN outperforms the 5-bits QORNN
introduced in Foucault et al. (2024), while requiring a smaller recurrent size 𝑑ℎ. The resulting
model size gain over is 36 (= 50.6∕1.40). This improvement stems from the orthogonal nature of
the Hadamard matrices, which enables better learning of long-term dependencies compared to the
QORNN, where the matrices were only approximately orthogonal. This is also attributed to the
choice of a linear recurrent unit, which enhances memorization (see Appendix G).

pMNIST Similarly, on pMNIST, the fully quantized HadamRNN, with a size of just 3.58 kB,
outperforms the QORNN of Foucault et al. (2024), which requires 35 kB, and even a full-precision
ORNN of 120 kB. Additionally, the HadamRNN model of 6.2 kB achieves only 1.2% lower accuracy
compared to an ORNN with 𝑑ℎ = 512 of much larger size, 1046 kB. All HadamRNN architectures,
except for the smallest one, outperform full-precision LSTMs.

sMNIST For this task, which typically favors gated models like LSTM and FastGRNN, the
HadamRNN model of size 3.58kB achieves an accuracy that is only 2% lower compared to LSTMs
and FastGRNNs of the same size, and a full-precision ORNN of size 1046kB. It still outperforms the
QORNN, achieving 96.9% accuracy with a model size that is 5.6 (= 35∕6.23) times smaller.

IMDB The smallest HadamRNN models with 𝑑ℎ = 128 outperform Alom et al. (2018) binary
LSTM, while being 2.4 (= 40.5∕16.55) times smaller, and when increased to 𝑑ℎ = 512 with a size of
129 kB, it achieves 10% higher accuracy compared to the 40.5 kB model. It also outperforms full
precision ORNN with 𝑑ℎ = 128. The 2-bits (resp. 4-bits) LSTM proposed in He et al. (2016) only
offers 1% accuracy advantage over HadamRNN at the same recurrent size 𝑑ℎ = 512 but their model
size is 4 (resp. 8) times larger.

Activation quantization Regardless of the task, the results of Table 2 demonstrate that post-training
quantization of activations, as described in Appendix I, does not degrade performance.

4.2.2 BLOCK-HADAMRNN VERSUS HADAMRNN

When they have the same hidden-space dimension, Block-HadamRNN and HadamRNN are of equal
size. Their main difference lies in the computational complexity of their recurrent unit, which, as
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Table 3: Comparison of the performances of Block-HadamRNN (with paramer 𝑞) and HadamRNN
(𝑞 = 1) on several benchmarks. The last column reports the computational complexity of the recurrent
operation 𝑊 ℎ𝑡, measured in fixed-point precision additions (see Table 1). The quantization bitwith
of matrices 𝑈 and 𝑉 is 4 and the activations are not quantized.

Model 𝑑ℎ W parameter 𝑞 performance computational
bitwidth in (4) complexity

Copy task (𝑇 = 1000, 𝑑𝑖𝑛 = 10, 𝑑𝑜𝑢𝑡 = 9, cross-ent, baseline = 0.021)

Block-HadamRNN 128 ternary
32 1.6e-3 512
8 6.6e-5 2048
2 2.0e-6 8192

HadamRNN 128 1 1 1.6e-7 16,384

Permuted MNIST (𝑇 = 784, 𝑑𝑖𝑛 = 1, 𝑑𝑜𝑢𝑡 = 10, accuracy)

Block-HadamRNN 512 ternary

128 60.74 2048
32 91.42 8192
8 91.45 32,768
2 93.12 131,072

HadamRNN 512 1 1 94.88 262,144

Sequential MNIST (𝑇 = 784, 𝑑𝑖𝑛 = 1, 𝑑𝑜𝑢𝑡 = 10, accuracy)

Block-HadamRNN 512 ternary

128 27.45 2048
32 80.60 8192
8 92.49 32,768
2 96.47 131,072

HadamRNN 512 1 1 96.63 262,144

IMDB (𝑇 = 500, 𝑑𝑖𝑛 = 512, 𝑑𝑜𝑢𝑡 = 1, accuracy)

Block-HadamRNN 512 ternary

128 81.83 2048
32 84.27 8192
8 85.70 32,768
2 86.30 131,072

HadamRNN 512 1 1 87.43 262,144

explained in Section 3.6 and Table 1, is 𝑞 times smaller for Block-HadamRNN. In Table 3, we
therefore report the computational complexity and the performance for the four considered task.

Generally speaking, for fixed hidden-space dimension 𝑑ℎ, we observe that reducing the sparsity of
the recurrent weight matrix (i.e., a smaller parameter 𝑞) improves performance. On the contrary,
increasing 𝑞 improves computational complexity. For instance, Block-HadamRNN with 𝑞 = 8
consistently solves the copy task with only 2048 fixed-point precision additions, compared to
the 16, 384 ones required by the HadamRNN. In addition, for the copy-task and sMNIST, Block-
HadamRNN with 𝑞 = 2 has a negligible drop of accuracy compared to HadamRNN, while calculating
a product with its recurrent weight matrix requires only half the number of fixed-point precision
additions. This, along with the plots based on the results from Table 3 in Appendix E.3, demonstrates
that Block-HadamRNN facilitates exploration of the trade-off between computational complexity
and performance, offering flexible control over both performance and resource utilization.

5 CONCLUSION

Drawing on Hadamard matrix theory, this article presents a method for parameterizing a subset of all
binary and sparse ternary orthogonal matrices. We demonstrate that the parameters of such matrices
can be learned, using standard methods like the straight-through estimator (STE), and empirically
validate that the subset is sufficiently expressive to solve standard RNN benchmarks. We are the
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first to construct efficient orthogonal RNNs with binary and sparse ternary recurrent weight matrices.
This was recognized as a challenging problem by Ott et al. (2016) and has not been addressed since.
Experimental results show that the proposed HadamRNN matches the performance of floating-point
ORNNs while reducing the model size by up to 290-fold. Notably, we are the first to propose a binary
recurrent weight model capable of learning the copy task with more than 1,000 timesteps. With the
proposed sparse-ternary models, Block-HadamRNN, we offer ways to fine-tune the balance between
performance and computational efficiency. For future work, we propose to explore the following
directions: (1) binarizing or ternarizing Structured State Space Models to address tasks with even
longer-range dependencies, such as those in the Long Range Arena benchmark (Tay et al., 2020); (2)
implementing HadamRNNs on edge devices; and (3) applying binary orthogonal matrices to other
domains, including time series forecasting (Wu et al., 2021; Zhou et al., 2021; 2022), neural network
robustness (Cisse et al., 2017; Anil et al., 2019), Normalizing Flows (Kingma and Dhariwal, 2018),
and Wasserstein distance estimation (Brock et al., 2018).
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A BIBLIGRAPHY ON ORNNS

In this appendix, we provide a detailed bibliography on unitary and orthogonal recurrent neural
networks.

Unitary Recurrent Neural Networks (URNNs) were introduced in Arjovsky et al. (2016) to better
capture long-term dependencies compared to LSTMs. Several methods have been developed to
parameterize recurrent weight matrices in URNNs and orthogonal RNNs. These include using the
Cayley transform (Wisdom et al., 2016; Helfrich et al., 2018), Givens rotations (Jing et al., 2017),
Householder reflections (Mhammedi et al., 2017), and Kronecker matrices (Jose et al., 2018), soft-
orthogonality (Vorontsov et al., 2017), the Singular Value Decomposition (SVD) (Zhang et al., 2018),
the exponential map (Lezcano-Casado et al., 2019), and Riemannian optimization strategies (Kiani
et al., 2022). Each aimed at improving model expressivity, efficiency or reducing complexity.

The only known attempt to quantize the weights of ORNNs is detailed in Foucault et al. (2024). This
method enables the learning of challenging tasks, such as the copy task for 1000 timesteps, using 5
bits for the weights and 12 bits for the activations.

B PROOFS

We begin this section by reviewing the definition and a proposition on the Kronecker product. Then
for completeness, in Appendix B.2, we provide the proof of Proposition 3.2 and, in Appendix B.3,
we provide the proof of Proposition 3.3.

B.1 REMINDERS ON THE KRONECKER PRODUCT

Definition B.1. Let 𝑝, 𝑞, 𝑟, 𝑠 ∈ ℕ∗. Let 𝐴 =
(

𝑎𝑖𝑗
)

𝑖𝑗 ∈ ℝ𝑝×𝑞 and 𝐵 ∈ ℝ𝑟×𝑠. The Kronecker product
of 𝐴 by 𝐵, denoted 𝐴⊗ 𝐵, is the matrix of size 𝑝𝑟 × 𝑞𝑠 given by

𝐴⊗ 𝐵 =
⎛

⎜

⎜

⎝

𝑎11𝐵 … 𝑎1𝑞𝐵
⋮ ⋱ ⋮

𝑎𝑝1𝐵 … 𝑎𝑝𝑞𝐵

⎞

⎟

⎟

⎠

.

The following proposition states a well-known result concerning the Kronecker product.
Proposition B.2. Let 𝑝, 𝑞, 𝑟, 𝑠 ∈ ℕ∗. Let 𝐴 ∈ ℝ𝑝×𝑞 and 𝐵 ∈ ℝ𝑟×𝑠. If the lines of 𝐴 are pairwise
orthogonal and the lines of 𝐵 are pairwise orthogonal, then the lines of 𝐴 ⊗ 𝐵 are pairwise
orthogonal.

We provide the proof for completeness.

Proof. Let 𝐴 ∈ ℝ𝑝×𝑞 and 𝐵 ∈ ℝ𝑟×𝑠 be two matrices. We denote 𝐴𝑖 ∈ ℝ𝑞 (resp 𝐵𝑖 ∈ ℝ𝑠) the 𝑖th line
of 𝐴 (resp 𝐵). Assume that for all (𝑖, 𝑗) ∈ J1, 𝑝K2 satisfying 𝑖 ≠ 𝑗, 𝐴𝑖𝐴′

𝑗 = 0. Assume also that for all
(𝑚, 𝑛) ∈ J1, 𝑟K2 satisfying 𝑚 ≠ 𝑛, 𝐵𝑚𝐵′

𝑛 = 0.

The hypotheses imply that there is 𝛼 ∈ ℝ𝑝 and 𝛽 ∈ ℝ𝑟 such that

𝐴𝐴′ = diag(𝛼) and 𝐵𝐵′ = diag(𝛽).
Denoting

𝐶 = 𝐴⊗ 𝐵

=
⎛

⎜

⎜

⎝

𝑎11𝐵 … 𝑎1𝑞𝐵
⋮ ⋱ ⋮

𝑎𝑝1𝐵 … 𝑎𝑝𝑞𝐵

⎞

⎟

⎟

⎠

.

For any (𝑖, 𝑗) ∈ J1, 𝑝K, using block matrix multiplication, the block of size 𝑟 × 𝑟 at position (𝑖, 𝑗) of
𝐶𝐶 ′ is

𝑞
∑

𝑘=1
(𝑎𝑖,𝑘𝐵)(𝑎𝑗,𝑘𝐵)′ =

𝑞
∑

𝑘=1
𝑎𝑖,𝑘𝑎𝑗,𝑘 diag(𝛽) = diag(𝛼)𝑖,𝑗 diag(𝛽) =

{

0 if 𝑖 ≠ 𝑗
𝛼𝑖 diag(𝛽) if 𝑖 = 𝑗 .
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Therefore 𝐶𝐶 ′ = diag(𝛼 ⊗ 𝛽) and the lines of 𝐴⊗ 𝐵 are pairwise orthogonal.

B.2 PROOF OF PROPOSITION 3.2

We proceed by induction.

• Initialization: Consider 𝑘 = 1. Using the definition of 𝐒2 , we have

𝐒2 𝐒′2 =
(

1 1
1 −1

)(

1 1
1 −1

)

= 2𝐼2.

Therefore the lines of 𝐒2 are pairwise orthogonal. Since 𝐒2 is square and its components are
in {−1,+1}, 𝐒2 is a Hadamard matrix.

• Heredity: Consider 𝑘 ≥ 1 and assume that 𝐒2𝑘 is a Hadamard matrix. We want to prove

that 𝐒2𝑘+1 =
(𝐒2𝑘 𝐒2𝑘

𝐒2𝑘 −𝐒2𝑘

)

is a Hadamard matrix.

Notice first that since 𝐒2𝑘 is a Hadamard matrix, 𝐒2𝑘+1 is square and its components are in
{−1,+1}. Using the definition of the Kronecker product, we also have

𝐒2𝑘+1 =
(

1 1
1 −1

)

⊗ 𝐒2𝑘 = 𝐒2 ⊗𝐒2𝑘 .

Since the lines of 𝐒2 are pairwise orthogonal and the lines of 𝐒2𝑘 are pairwise orthogonal, we
can apply Proposition B.2 and conclude that the lines of 𝐒2𝑘+1 are also pairwise orthogonal.
We conclude that 𝐒2𝑘+1 is a Hadamard matrix.

This concludes the proof by induction.

B.3 PROOF OF PROPOSITION 3.3

Let 𝑛 ∈ ℕ∗ and 𝐻 ∈ 𝑛. We first show that 𝜙𝐻 is injective.

Let 𝑢, 𝑢′ ∈ {−1, 1}𝑛 such that 𝑢 ≠ 𝑢′. Let 𝑖 ∈ {1,… , 𝑛} be such that 𝑢𝑖 ≠ 𝑢′𝑖, that is, since 𝑢𝑖 and 𝑢′𝑖
are both in {−1, 1}, 𝑢𝑖 = −𝑢′𝑖. Denoting, for all matrix 𝐴, the 𝑖-th row of 𝐴 by 𝐴𝑖, we obtain

𝜙𝐻 (𝑢)𝑖 = 𝑢𝑖𝐻𝑖 = −𝑢′𝑖𝐻𝑖 = −𝜙𝐻 (𝑢′)𝑖

Since all the components of 𝜙𝐻 (𝑢)𝑖 are in {−1, 1}, 𝜙𝐻 (𝑢)𝑖 ≠ 0 and finally 𝜙𝐻 (𝑢)𝑖 ≠ 𝜙𝐻 (𝑢′)𝑖.

As a conclusion, for any 𝑢, 𝑢′ ∈ {−1, 1}𝑛 such that 𝑢 ≠ 𝑢′, 𝜙𝐻 (𝑢) ≠ 𝜙𝐻 (𝑢′). The mapping 𝜙𝐻 is
injective.

We now show that 𝜙𝐻 (𝑢) is a Hadamard matrix. Notice first that 𝜙𝐻 (𝑢) is square and that all its
components are {−1, 1}. We still need to show that any two distinct rows of 𝜙𝐻 (𝑢) are orthogonal.
Let 𝑖, 𝑗 ∈ {1,… , 𝑛} with 𝑖 ≠ 𝑗. Reminding that 𝜙𝐻 (𝑢)𝑖 is 𝑖-th line of 𝜙𝐻 (𝑢), we have

𝜙𝐻 (𝑢)𝑖𝜙𝐻 (𝑢)′𝑗 = 𝑢𝑖𝑢𝑗𝐻𝑖𝐻
′
𝑗 = 0.

Finally, 𝜙𝐻 (𝑢) is a Hadamard matrix.

This concludes the proof.

B.4 DETAILED PROOF OF THE ORTHOGONALITY OF THE BINARY AND SPARSE TERNARY
WEIGHTS

The proof that the binary matrix defined by

𝑊 (𝑢) = 1
√

𝑑ℎ
diag(𝑢)𝐒2𝑘 ∈ ℝ𝑑ℎ×𝑑ℎ ,
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is orthogonal when 𝑑ℎ = 4 is in Appendix C.2. The general proof is similar to the proof that the
sparse ternary matrix defined below is orthogonal. We only detail the latter proof.

Let us prove that the sparse ternary weights defined by

𝑊 (𝑢) = 1
√

2𝑘
diag(𝑢)

(

𝐼𝑞 ⊗ 𝐒2𝑘
)

∈ ℝ𝑑ℎ×𝑑ℎ , (5)

are orthogonal for all 𝑢 ∈ {−1, 1}𝑑ℎ , and 𝑑ℎ = 𝑞2𝑘.

To do so, we consider 𝑢 ∈ {−1, 1}𝑑ℎ . We first remark that the lines of 𝐼𝑞 are pairwise orthogonal.
Because 𝐒2𝑘 is a Hadamard matrix, the lines of 𝐒2𝑘 are also pairwise orthogonal. Applying Proposi-
tion B.2, we conclude that the lines of 𝐼𝑞 ⊗ 𝐒2𝑘 are pairwise orthogonal. Therefore, the lines of 𝑊 (𝑢)
are also pairwise orthogonal and the matrix 𝑊 (𝑢)𝑊 (𝑢)′ is diagonal. Let us consider 𝑖 ∈ J1, 𝑑ℎK, we
write 𝑖 = (𝑚 − 1)2𝑘 + 𝑛, where 𝑚 ∈ J1, 𝑞K and 𝑛 ∈ J1, 2𝑘K. Reminding that 𝑊 (𝑢)𝑖 is the 𝑖-th line of
𝑊 (𝑢), and (𝐒2𝑘 )𝑛 is the 𝑛-th line of 𝐒2𝑘 , we have

(

𝑊 (𝑢)𝑊 (𝑢)′
)

𝑖,𝑖 = 𝑊 (𝑢)𝑖(𝑊 (𝑢)𝑖)′ =

(

1
√

2𝑘
𝑢𝑖(𝐒2𝑘 )𝑛

)(

1
√

2𝑘
𝑢𝑖(𝐒2𝑘 )𝑛

)′

= 1
2𝑘

𝑢2𝑖

2𝑘
∑

𝑗=1
(𝐒2𝑘 )𝑛,𝑗)2

= 1
because 𝑢𝑖 ∈ {−1, 1} and all the components of 𝐒2𝑘 are in {−1, 1}.

Finally, we conclude that 𝑊 (𝑢)𝑊 (𝑢)′ = 𝐼𝑑ℎ . Because the matrix 𝑊 (𝑢) is square, we also have
𝑊 (𝑢)′𝑊 (𝑢) = 𝐼𝑑ℎ and the matrix 𝑊 (𝑢) is orthogonal.

This concludes the proof the sparse ternary matrix defined by (5) is orthogonal.

C THE STRAIGHT-THROUGH ESTIMATOR AND AN EXAMPLE

We present the Straight-through Estimator (STE) in Appendix C.1 and provide in Appendix C.2 a
detailed example of a recurrent weight matrix for the HadamRNN defined in Section 3.3, specifically
when 𝑑ℎ = 4.

C.1 THE STRAIGHT-THROUGH ESTIMATOR

In this section, we discuss the Straight-through Estimator, introduced in Hinton (2012); Bengio
et al. (2013); Courbariaux et al. (2015), a standard method for optimizing quantized neural network
weights, in the context of HadamRNN and Block-HadamRNN.

For simplicity, we omit the optimization of 𝑈 , 𝑉 , 𝑏𝑖 and 𝑏𝑜 in the following description, focusing on
the recurrent matrix.

We consider a matrix 𝑊 ∈ ℝ𝑑ℎ×𝑑ℎ . For the HadamRNNs defined in Section 3.3, we use the constant
orthogonal matrix 𝑊 = 1

√

𝑑ℎ
𝐒2𝑘 , while for the Block-HadamRNNs defined in Section 3.4, we take

𝑊 = 1
√

2𝑘

(

𝐼𝑞 ⊗ 𝐒2𝑘
)

. As described in these sections, the only trainable parameter for the recurrent

matrix is the binary vector 𝑢 which defines the recurrent weight matrix diag(𝑢)𝑊 .

We will describe the STE method for optimizing 𝑢 ∈ {−1, 1}𝑑ℎ . Therefore, we only consider a
learning objective 𝐿 ∶ ℝ𝑑ℎ ⟶ ℝ and the optimization problem

argmin𝑢∈{−1,1}𝑑ℎ 𝐿(𝑢). (6)

To optimize 𝑢, we define the quantization operator 𝐻 ∶ ℝ𝑑ℎ ⟶ {−1, 1}𝑑ℎ , where, for all �̃� ∈ ℝ𝑑ℎ ,
the vector 𝐻(�̃�) ∈ {−1, 1}𝑑ℎ is given by

𝐻(�̃�)𝑖 =
{

+1 if �̃�𝑖 ≥ 0
−1 otherwise , for all 𝑖 ∈ {1,… , 𝑑ℎ}.
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The operator 𝐻 is surjective, since for all 𝑢 ∈ {−1, 1}𝑑ℎ , 𝐻(𝑢) = 𝑢. Therefore, (6) is equivalent
to minimizing 𝐿◦𝐻 over ℝ𝑑ℎ . To minimize 𝐿◦𝐻 the STE applies a modified gradient descent
algorithm. The modification is described below.

The operator 𝐻 is piecewise constant and its gradient at �̃�, denoted 𝜕𝐻
𝜕�̃�

|

|

|�̃�
, is either undefined or 0.

This issue is standard in quantization-aware training, which aims to minimize the objective 𝐿(𝐻(�̃�))
with respect to �̃�. Backpropagating the gradient using the chain rule

𝜕𝐿◦𝐻
𝜕�̃�

|

|

|

|�̃�
= 𝜕𝐿

𝜕𝑢
|

|

|

|𝐻(�̃�)

𝜕𝐻
𝜕�̃�

|

|

|

|�̃�

is either not possible or results in a null gradient in this context.

To address this issue, backpropagation through the quantization operator 𝐻 is performed using STE
Hinton (2012); Bengio et al. (2013); Courbariaux et al. (2015). The latter approximates the gradient
using

𝜕𝐿◦𝐻
𝜕�̃�

|

|

|

|�̃�
≈ 𝜕𝐿

𝜕𝑢
|

|

|

|𝐻(�̃�)
,

as if 𝜕𝐻
𝜕�̃�

|

|

|�̃�
= 𝐼𝑑ℎ .

C.2 EXAMPLE OF A RECURRENT WEIGHT MATRICE

For HadamRNN, with 𝑑ℎ = 4, using (3) and Proposition 3.2, the recurrent weight matrices are
defined for 𝑢 ∈ {−1,+1}4 by

𝑊 (𝑢) = 1
2

⎛

⎜

⎜

⎜

⎝

𝑢1 0 0 0
0 𝑢2 0 0
0 0 𝑢3 0
0 0 0 𝑢4

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞

⎟

⎟

⎟

⎠

.

The components of 𝑢 are optimized using the STE, as described in Appendix C.1.

As mentioned in Section 3.3 and demonstrated in Appendix B.4 for the general case, it can be verified
that, for all 𝑢 ∈ {−1,+1}4, 𝑊 (𝑢) is orthogonal, i.e. 𝑊 (𝑢)𝑊 (𝑢)′ = 𝐼𝑑ℎ . Indeed, 𝑊 (𝑢)𝑊 (𝑢)′ equals

1
4

⎛

⎜

⎜

⎜

⎝

𝑢1 0 0 0
0 𝑢2 0 0
0 0 𝑢3 0
0 0 0 𝑢4

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝑢1 0 0 0
0 𝑢2 0 0
0 0 𝑢3 0
0 0 0 𝑢4

⎞

⎟

⎟

⎟

⎠

= 1
4

⎛

⎜

⎜

⎜

⎝

𝑢1 0 0 0
0 𝑢2 0 0
0 0 𝑢3 0
0 0 0 𝑢4

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜
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= 𝐼𝑑ℎ .

D EXPERIMENTS DETAILS

D.1 COPY TASK

We generated 512𝐾 samples for the training set, and 2𝐾 samples for both validation and test.
HadamRNN and Block-HadamRNN were trained using the Adam optimizer Kingma and Ba (2015).
We used a batch size of 128 samples. The learning rate is initialized to 1𝑒−4 is decayed exponentially
by applying a factor 0.98 after each epoch. 10 epochs were used for training.
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D.2 PERMUTED / SEQUENTIAL MNIST

We used 50𝐾 samples for training, 10𝐾 samples for validation and 10𝐾 samples for testing. Hadam-
RNN and Block-HadamRNN were trained using the Adam optimizer Kingma and Ba (2015). We
used a batch size of 64 samples. The learning rate is initialized to 1𝑒 − 3 is decayed exponentially by
applying a factor 0.98 after each epoch. 200 epochs were used for training.

D.3 IMDB DATASET

The IMDB dataset contains 50, 000 samples. Among these, 25, 000 samples are used for training,
and the remaining 25, 000 are equally divided between validation and testing.

We used a batch size of 100 samples. The learning rate is initialized to 5𝑒−4 is decayed exponentially
by applying a factor 0.99 after each epoch. 30 epochs were used for training.

E COMPLEMENTS ON THE EXPERIMENTS

E.1 TRAINING TIME

For each benchmark of Section 4 and Appendix F.1, we provide the training time for the HadamRNN
in Table 4. As the training times for the Block-HadamRNN are comparable, they are not explicitly
reported here. Experiments where done on a NVIDIA GeForce RTX 3080 GPU. For comparison,
FastGRNN Kusupati et al. (2018) requires 16.97 hours of training time on the MNIST dataset. The
training times for the HAR-2 and DSA-19 datasets, along with a comparison to those of FastGRNN,
are presented in Table 7.

Table 4: Training times, in hours

dataset Copy task pMNIST / sMNIST IMDB SST-2 QQP

# epochs 10 200 30 60 50

training time (hr) 13 13 0.5 0.36 7.5

E.2 TRAINING STABILITY

In this section, we examine the variability of the trained HadamRNN model based on different random
initializations and randomness in the stochastic algorithm (Adam). The experiments were conducted
using the IMDB dataset, with similar trends observed across the other benchmarks, supporting the
consistency of these conclusions.

Each trainable matrix or vector is initialized using the Glorot initialization method Glorot and Bengio
(2010), which relies on a random seed. For a fixed combination of bitwidth 𝑝 (applied to the matrices
𝑈 and 𝑉 ) and initial learning rate, we train 5 different models using 5 different random seeds. The
average performance and standard deviation of the models are reported in Table 5.

As expected, the initial learning rate significantly influences the performance of the trained model.
It appears that performance improves as the initial learning rate increases when 𝑝 decreases. In all
cases, the optimal learning rate spans approximately one order of magnitude, suggesting that the
search for the optimal initial learning rate can be conducted on an exponential scale.

A bitwidth of 𝑝 = 2 results in relatively high variability in the performance of the trained model,
whereas bitwidths of 𝑝 = 4 and 𝑝 = 6 exhibit negligible variance. As anticipated, smaller bitwidths
on U and V matrices make the training process more sensitive to the random initialization of the
parameters.

E.3 VISUALIZATION OF MODEL COMPARISONS

We provide two visual comparisons of HadamRNN, Block-HadamRNN, QORNN, LSTM and ORNN
based on different criteria, using data from Table 2 and Table 3.

21



Table 5: HadamRNN’s training variability over 5 experiments on the IMDB dataset, for each
combination of bitwidth 𝑝, for the matrices 𝑈 and 𝑉 , and initial learning rate.

U & V Initial Average Standard
bitwidth learning rate performance deviation

2

1.e-2 83.28 1.00
5.e-3 83.83 1.36
1.e-3 80.84 5.09
5.e-4 80.75 8.05
1.e-4 74.61 2.69

4

1.e-2 83.76 0.70
5.e-3 83.73 0.40
1.e-3 85.83 0.40
5.e-4 85.85 0.39
1.e-4 83.05 0.49

6

1.e-2 83.18 1.88
5.e-3 83.61 0.53
1.e-3 85.73 0.63
5.e-4 86.09 0.35
1.e-4 83.47 0.50
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Figure 1: Position of each model in the (size, performance) plane, on pMNIST. The most effective
models are located in the upper-left corner of Figure 1. The parameter 𝑝 corresponds to the bitwidth
of the quantized matrices 𝑈 and 𝑉 , as introduced in Section 3.5. 𝐹𝑃 stands for full-precision.

• In Figure 1, we plot each model in the (size, performance) plane, where size is measured
in kilobytes (kB) and performance corresponds to the accuracy of the trained model on
pMNIST. The most effective models are located in the upper-left corner of Figure 1. The
plot highlights the efficiency of HadamRNN.

• In Figure 2, we plot the HadamRNN and Block-HadamRNN models for different values of
𝑞 in the (complexity, performance) plane. Complexity is measured as the number of fixed-
point precision additions (see Table 1), while performance corresponds to the cross-entropy
of the trained model on the Copy task. The most effective models appear in the lower-left
corner of Figure 2.

This visualization highlights that, for the Copy task, 𝑞 can be adjusted to balance the trade-off
between complexity and performance.
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Figure 2: Position of HadamRNN and Block-HadamRNN models for different values of 𝑞 in the
(complexity, performance) plane. The most effective models appear in the lower-left corner of
Figure 2. The bitwidth of the quantized matrices 𝑈 and 𝑉 is set to 𝑝 = 4.

F MORE BENCHMARKS

In Appendix F.1, we provide a comparison of HadamRNN and quantized versions of BERT on the
SST-2 and QQP benchmarks from GLUE (Wang et al., 2019). In Appendix F.2, we provide results
on IoT task benchmarks: HAR-2 and DSA-19 as described in Kusupati et al. (2018).

F.1 GLUE BENCHMARK AND COMPARISON WITH TRANSFORMERS

GLUE is a well-established benchmark for NLP systems, comprising various sentence-level language
understanding tasks. The most effective solutions for these tasks are large models trained on extensive
datasets, typically large pretrained language models (LLMs) followed by fine-tuning with a task-
specific head.

Although HadamRNN and Block-HadamRNN are not designed to operate within a large language
model (LLM) framework, and no ORNN results are reported on the benchmark leaderboard, we
evaluate the performance of HadamRNN and Block-HadamRNN trained directly on the training data
of a single task. This allows us to position these networks relative to transformer-based models.

We selected two tasks: SST-2, a sentiment analysis task closely related to the objective of the IMDB
dataset, and QQP (Quora Question Pairs), which evaluates whether two questions are semantically
equivalent. For both tasks, as is standard practice, we used a tokenizer to map sentences into sequences
of indices, padded to a fixed length of 128 timesteps. For sentence pairs, as recommended (and done
in the reference code), we concatenated both sentences with two separator tokens in between.

Each task was trained using the respective training dataset without data augmentation. The network
achieving the best score on the validation dataset was retained, and its predictions were submitted to
the GLUE Benchmark website. The performance metrics provided by the website are reported in
Table 6.

Since HadamRNN and Block-HadamRNN are trained exclusively on the training data for a single
task, larger networks tend to overfit. Notably, we were unable to train and generalize effectively on
validation data using pre-trained embeddings, such as the first layer of BERT (with a size of 768).
Instead, we used a trainable embedding layer of size 256.

For the SST-2 task, the best results were achieved with an HadamRNN network having a hidden
size of 128, resulting in a total model size of approximately 8 kB and an accuracy of 81.9%. In
comparison, the smallest BiBERT model, distilled from a BERT pre-trained on a large dataset and
with a network size 550 times larger, achieves 85.4%.
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Table 6: Performance comparison of HadamRNN, Block-HadamRNN, and state-of-the-art models on
two GLUE benchmark tasks: SST-2 and QQP. The last column indicates the model size in kilobytes
(kB).

Model Performance Size
kBytes

SST-2 task (𝑇 = 128, 𝑑𝑜𝑢𝑡 = 1, accuracy)

Q8BERT (Zafrir et al., 2019) 92.24 110 000
Q-BERT (Shen et al., 2020) 92.08 48 100
TernaryBERT (Zhang et al., 2020) 92.8 18 000
MobileBERT (Sun et al., 2020) 91.6 15 100
BinaryBERT (Bai et al., 2021) 92.3 13 400
BiT (Liu et al., 2022a) 89.9 13 400
BiBERT (Qin et al. (2022)) 88.7 13 400
BiBERT (Qin et al., 2022) 87.9 6 800
BiBERT (Qin et al., 2022) 85.4 4 400
HadamRNN (ours, 𝑑𝑖 = 256, 𝑑ℎ = 128) 81.9 8

QQP task (𝑇 = 128, 𝑑𝑜𝑢𝑡 = 1, accuracy)

Q8BERT (Zafrir et al., 2019) 87.96 110 000
TernaryBERT (Zhang et al., 2020) 88.8 18 000
BinaryBERT (Bai et al., 2021) 88.9 13 400
BiT (Liu et al., 2022a) 85.4 13 400
BiBERT (Qin et al., 2022) 84.8 13 400
BiBERT (Qin et al., 2022) 83.3 6 800
BiBERT (Qin et al., 2022) 78.2 4 400
Block-HadamRNN (ours, 𝑑𝑖 = 256, 𝑑ℎ = 512, 𝑞 = 128) 82.1 33

For the QQP task, using a Block-HadamRNN network with a hidden size of 512 and a block size
of 128, we obtained an accuracy of 82.1%. This result surpasses the smallest BiBERT, despite our
model being more than 130 times smaller.

F.2 INTERNET OF THINGS (IOT) BENCHMARKS

HadamRNN and Block-HadamRNN are particularly well-suited for modeling long-term dependencies
such as the Copy task, thanks to their orthogonal recurrent weight matrix. To provide a comprehensive
evaluation, we also tested these models on two short-term memory IoT benchmarks (< 150 timesteps),
previously addressed by FastGRNN Kusupati et al. (2018). The results of these experiments are
summarized in Table 7. For both benchmarks, the hyperparameter 𝑞 in Block-HadamRNN (detailed
in Section 3.4) was optimized using grid search.

Human Activity Recognition (HAR-2) The Human Activity Recognition (HAR) dataset consists
of human motion data captured using an accelerometer and gyroscope embedded in a Samsung
Galaxy S II smartphone. The data is recorded at a fixed frequency of 50 Hz, with each sequence
spanning 128 timesteps. Each sequence is labeled with one of the following six activity classes:
Sitting, Laying, Walking_Upstairs, Standing, Walking, and Walking_Downstairs. Following the
approach in Kusupati et al. (2018), these six classes are grouped into two categories: {Sitting, Laying,
Walking_Upstairs} and {Standing, Walking, Walking_Downstairs}. The objective is to predict the
correct category for each sequence. Both the training and test sets have been preprocessed to ensure
zero mean and unit variance, ensuring consistency across the data.

Daily and Sports Activity (DSA-19) This dataset comprises motion sensor data collected from
accelerometers, gyroscopes, and magnetometers, capturing a range of daily and sports-related human
activities. The measurements are sampled at a fixed frequency of 25 Hz and segmented into sequences
of 125 timesteps. A total of 19 distinct activities were performed by the participants, with each
sequence labeled according to its corresponding activity type. The objective is to accurately predict
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Table 7: Comparison of performances of the HadamRNN, the Block-HadamRNN and FastGRNN
Kusupati et al. (2018) on two IoT benchmarks (HAR-2 and DSA-19). Last column reports the model
size in kBytes.

Model 𝑑ℎ train W U & V performance size
time (min) bitwidth bitwidth kBytes

HAR-2 (𝑇 = 128, 𝑑𝑖𝑛 = 9, 𝑑𝑜𝑢𝑡 = 1, accuracy)

FastGRNN (Kusupati et al. (2018)) 80 4.8 8 8 95.59 3.00

Block-HadamRNN (𝑞 = 2)

1024
12.1

1
4 94.81 9.13

12.5 6 95.76 11.63
10.2 8 95.36 14.13

512
12.0

1
4 94.87 4.57

12.1 6 94.56 5.82
12.2 8 95.64 7.07

HadamRNN 512
4.4

1
4 83.40 4.57

5.2 6 84.45 5.82
4.2 8 84.11 7.07

DSA-19 (𝑇 = 125, 𝑑𝑖𝑛 = 45, 𝑑𝑜𝑢𝑡 = 19, accuracy)

FastGRNN (Kusupati et al. (2018)) 80 2.2 8 8 85.67 22.00

Block-HadamRNN (𝑞 = 16)

256
5.1

1
4 76.51 9.11

6.1 6 78.30 13.11
3.0 8 75.5 17.11

512
5.2

1
4 81.32 18.14

6.2 6 85.26 26.14
3.2 8 81.86 34.14

HadamRNN 512
5.2

1
4 77.93 18.14

3.4 6 76.01 26.14
3.3 8 79.12 34.14

the activity associated with each sequence. Both the training and test sets have been preprocessed to
ensure zero mean and unit variance, ensuring consistency across the data.

We demonstrate that an optimized Block-HadamRNN delivers performance comparable to FastGRNN
while maintaining a similarly compact model size. For instance, on the DSA-19 benchmark, the
best Block-HadamRNN model achieves results within approximately 0.4% of FastGRNN, with a
comparable size. Notably, on the HAR-2 benchmark, the Block-HadamRNN surpasses FastGRNN
in performance with only a marginal size increase of a few kilobytes. These findings suggest
that HadamRNN and Block-HadamRNN are also well-suited for tasks where long-term memory
capabilities are not a critical requirement.

G LINEAR VERSUS RELU RECURRENT UNITS

In this appendix, we argue that ‘linear-ORNNs’, as considered in Section 3.1, are better suited than
‘ReLU-ORNNs’ for tasks that require strong memorization. An ablation study supporting this fact
is in Appendix G.1. The theoretical arguments are given in Appendix G.2.1 and the experimental
arguments are in Appendix G.2.2.

Throughout the appendix, we consider ℎ0 = 0, a matrix 𝑈 ∈ ℝ𝑑ℎ×𝑑𝑖𝑛 and a matrix 𝑉 ∈ ℝ𝑑𝑜𝑢𝑡×𝑑ℎ ,
𝑏𝑖 ∈ ℝ𝑑ℎ , 𝑏𝑜 ∈ ℝ𝑑𝑜𝑢𝑡 , an orthogonal recurrent weight matrix 𝑊 ∈ ℝ𝑑ℎ×𝑑ℎ and the ReLU activation
function 𝜎. We also consider inputs 𝑥1,… , 𝑥𝑇 ∈ ℝ𝑑𝑖𝑛 .

• We call linear-ORNNs, those computing the sequence of hidden states ℎ𝑙𝑖𝑛1 ,… , ℎ𝑙𝑖𝑛𝑇 ∈ ℝ𝑑ℎ

according to
ℎ𝑙𝑖𝑛𝑡 = 𝑊 ℎ𝑙𝑖𝑛𝑡−1 + 𝑈𝑥𝑡 + 𝑏𝑖. (7)
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The output is the vector 𝑉 𝜎(ℎ𝑙𝑖𝑛𝑇 ) + 𝑏𝑜 ∈ ℝ𝑑𝑜𝑢𝑡 .

• We call ReLU-ORNNs, those computing a sequence of hidden states ℎ𝑅𝑒𝐿𝑈1 ,… , ℎ𝑅𝑒𝐿𝑈𝑇 ∈
ℝ𝑑ℎ according to

ℎ𝑅𝑒𝐿𝑈𝑡 = 𝜎(𝑊 ℎ𝑅𝑒𝐿𝑈𝑡−1 + 𝑈𝑥𝑡 + 𝑏𝑖). (8)

The output is the vector 𝑉 ℎ𝑅𝑒𝐿𝑈𝑇 + 𝑏𝑜 ∈ ℝ𝑑𝑜𝑢𝑡 .

Notice that, for simplicity, we only consider many-to-one RNNs.

G.1 ABLATION STUDY

We compare the performance of HadamRNN with linear recurrent units, as described in the article,
(1) and (7), with those of a HadamRNN with ReLU recurrent units, in (8), that we call HadamRNN-
ReLU. Results are summarized in Table 8. It can be observed that the HadamRNN-ReLU fails to
learn the copy task, and obtains poor results on the other benchmarks, as compared to the HadamRNN.
This is because HadamRNN better memorize than HadamRNN-ReLU. This phenomenon is described
in Appendix G.2.

Table 8: Ablation study: performance comparison between HadamRNNs with linear recurrent units
and with classical ReLU activation function recurrent unit. All results are presented with the size 𝑑ℎ
reported in Table 2 and 4-bit quantization for 𝑈 and 𝑉 matrices. BL (baseline) means that the model
failed to learn.

Model Copy-task pMNIST sMNIST IMDB

HadamRNN 1.6e-7 94.88 96.63 87.43
HadamRNN-ReLU BL 86.82 65.06 72.68

G.2 BETTER MEMORIZATION OF LINEAR RECURRENT UNITS

G.2.1 THEORETICAL ARGUMENTS

In this section, we analyze first for linear-ORNNs, then for ReLU-ORNNs, the impact on the result

of a modification of the input 𝑥𝑡, for 𝑡 ∈ J1, 𝑇 K. To do so, we first compute
𝜕ℎ𝑙𝑖𝑛𝑇
𝜕𝑥𝑡

and then compute
𝜕ℎ𝑅𝑒𝐿𝑈𝑇
𝜕𝑥𝑡

and compare the behavior of the two quantities.

The linear-ORNN case We consider an input sequence 𝐱 =
(

𝑥1,… , 𝑥𝑇
)

∈ ℝ𝑑𝑖𝑛×𝑇 , 𝑡 ∈ J1, 𝑇 K and
𝐳 =

(

0,… , 0, 𝑧𝑡, 0,… , 0
)

∈ ℝ𝑑𝑖𝑛×𝑇 . We denote ℎ𝑙𝑖𝑛𝑇 the last hidden state computed at 𝐱 and 𝑔𝑙𝑖𝑛𝑇 the
one computed at 𝐱 + 𝐳. We can show by induction that

𝑔𝑙𝑖𝑛𝑇 = ℎ𝑙𝑖𝑛𝑇 +𝑊 𝑇−𝑡𝑈𝑧𝑡. (9)

The impact of the perturbation 𝐳 is independent of 𝐱. The timestep 𝑡 influences 𝑊 𝑇−𝑡 but has no
impact on the norm of the variation since, as 𝑊 is orthogonal,

‖𝑊 𝑇−𝑡𝑈𝑧𝑡‖ = ‖𝑈𝑧𝑡‖.

In conclusion, a linear-ORNN retains information regardless of when the information occurs in the
input sequence.

The ReLU-ORNN case Again, we consider an input sequence 𝐱 =
(

𝑥1,… , 𝑥𝑇
)

∈ ℝ𝑑𝑖𝑛×𝑇 ,
𝑡 ∈ J1, 𝑇 K and 𝐳 =

(

0,… , 0, 𝑧𝑡, 0,… , 0
)

∈ ℝ𝑑𝑖𝑛×𝑇 . We denote ℎ𝑅𝑒𝐿𝑈𝑇 the last hidden state computed
at 𝐱 and 𝑔𝑅𝑒𝐿𝑈𝑇 the one computed at 𝐱 + 𝐳. Due to the non-linear activation function, it is not possible
to derive a straightforward formula analogous to (9). To analyze the behavior of 𝑔𝑅𝑒𝐿𝑈𝑇 , we use its
first-order Taylor expansion and analyze its Jacobian.
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For 𝑡 ∈ {1,… , 𝑇 }, the Jacobian4 of ℎ𝑅𝑒𝐿𝑈𝑇 with respect to 𝑥𝑡 writes

𝜕ℎ𝑅𝑒𝐿𝑈𝑇
𝜕𝑥𝑡

=
𝜕ℎ𝑅𝑒𝐿𝑈𝑇

𝜕ℎ𝑅𝑒𝐿𝑈𝑇−1

⋯
𝜕ℎ𝑅𝑒𝐿𝑈𝑡+2

𝜕ℎ𝑅𝑒𝐿𝑈𝑡+1

𝜕ℎ𝑅𝑒𝐿𝑈𝑡+1
𝜕𝑥𝑡

= 𝐷𝑇𝑊 ⋯𝐷𝑡+1𝑊𝐷𝑡𝑈 ∈ ℝ𝑑ℎ×𝑑𝑖𝑛 ,

where, for all 𝑠, 𝐷𝑠 = diag
(

𝜎′
(

𝑊 ℎ𝑠−1 + 𝑈𝑥𝑠 + 𝑏
))

∈ {0, 1}𝑑ℎ×𝑑ℎ is diagonal.

The Euclidean norm of a vector is preserved when multiplying by 𝑊 but most often diminishes when
multiplying by a matrix 𝐷𝑠, since the latter often contains zeros on its diagonal. As a result, we
expect the influence of variations of 𝑥𝑡, for 𝑡 small, to become small or negligible. Considering 𝑥𝑡 as
a variation of 0, we see that the first inputs may have less influence on the result than the last ones.

G.2.2 EXPERIMENTAL RESULTS

We conducted an experiment to empirically demonstrate that linear-ORNNs have better memory
retention than ReLU-ORNNs.

Setup We construct a HadamRNN, which is a linear-ORNN, and consider the ReLU-ORNN
obtained when using the same weight matrices. They differ solely in the position of activation
function (see (7) and (8)). For given inputs 𝑥1,… , 𝑥𝑇 ∈ ℝ𝑑𝑖𝑛 , we denote by ℎ𝑙𝑖𝑛𝑡 and ℎ𝑅𝑒𝐿𝑈𝑡 the
hidden state at time 𝑡, for 𝑡 = 1,… , 𝑇 .

Our aim is to empirically observe that, regardless of 𝑡, a perturbation in the 𝑡-th input has a consistent
impact on the final hidden state ℎ𝑙𝑖𝑛𝑇 . In contrast, the impact of the same perturbation on the final
hidden state ℎ𝑅𝑒𝐿𝑈𝑇 of the ReLU-ORNN diminishes as 𝑡 decreases. The model gradually loses
information as the time difference increases.

To this end, we generate a 2-dimensional time serie (𝑥0,… , 𝑥𝑇 ) ∈ ℝ2×𝑇 , with 𝑇 = 200 timesteps.
We set 𝑥0 = (0, 0) and for 𝑡 = 1,… , 𝑇 , we sample 𝑥𝑡 according to the Gaussian distribution


(

𝑥𝑡−1, 𝐼2
)

.

We set 𝑑ℎ = 128 = 27, and we let the Hadamard recurrent weight matrix be 𝑊 = 1
√

𝑑ℎ
𝐒27 , as in

(3). The components of the input matrix 𝑈 ∈ ℝ128×2 are independently sampled from the normal
distribution  (0, 1). Since our focus is solely on how input variations affect the hidden state, we do
not construct the output layer of our model.

The experiment To compute 𝐞𝑙𝑖𝑛 and 𝐞𝑅𝑒𝐿𝑈 ∈ ℝ𝑇 , we apply a perturbation to 𝑥𝑡 along the first
axis, for all 𝑡 = 1,… , 𝑇 , and compute

{

𝐞𝑙𝑖𝑛𝑡 = ‖ℎ𝑙𝑖𝑛𝑇 (𝑥1,… , 𝑥𝑡,… , 𝑥𝑇 ) − ℎ𝑙𝑖𝑛𝑇 (𝑥1,… , 𝑥𝑡 + (1, 0),… , 𝑥𝑇 )‖2,

𝐞𝑅𝑒𝐿𝑈𝑡 = ‖ℎ𝑅𝑒𝐿𝑈𝑇 (𝑥1,… , 𝑥𝑡,… , 𝑥𝑇 ) − ℎ𝑅𝑒𝐿𝑈𝑇 (𝑥1,… , 𝑥𝑡 + (1, 0),… , 𝑥𝑇 )‖2.
(10)

To compute 𝐟 𝑙𝑖𝑛 and 𝐟𝑅𝑒𝐿𝑈 ∈ ℝ𝑇 , we apply the same perturbation along the second axis, and compute
{

𝐟 𝑙𝑖𝑛𝑡 = ‖ℎ𝑙𝑖𝑛𝑇 (𝑥1,… , 𝑥𝑡,… , 𝑥𝑇 ) − ℎ𝑙𝑖𝑛𝑇 (𝑥1,… , 𝑥𝑡 + (0, 1),… , 𝑥𝑇 )‖2,

𝐟𝑅𝑒𝐿𝑈𝑡 = ‖ℎ𝑅𝑒𝐿𝑈𝑇 (𝑥1,… , 𝑥𝑡,… , 𝑥𝑇 ) − ℎ𝑅𝑒𝐿𝑈𝑇 (𝑥1,… , 𝑥𝑡 + (0, 1),… , 𝑥𝑇 )‖2.
(11)

We plot the corresponding curves in Figure 3. As predicted by the analysis of Appendix G.2.1, for
the linear-ORNN, the magnitude of the difference in hidden states remains constant, whether the
perturbation is applied along the first or second axis. Conversely, in the ReLU-ORNN case, the norm
increases, possibly approaching 0. This illustrates the fact that variations in 𝑥𝑡 have a diminishing
impact on the hidden state ℎ𝑇 as 𝑇 − 𝑡 increases.

4For clarity, we use partial derivative notation for Jacobian matrices when applying the chain rule. It is
important to note that while ReLU is not differentiable at 0 in the traditional sense, the calculations remain
rigorous (Bolte and Pauwels, 2021).
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Figure 3: Top: 𝐞𝑙𝑖𝑛 and 𝐟 𝑙𝑖𝑛, bottom: 𝐞𝑅𝑒𝐿𝑈 and 𝐟𝑅𝑒𝐿𝑈 , see (10) and (11).

Conclusion Linear-ORNNs have better memorization property than ReLU-ORNNs, and are able
to retain information over arbitrarily long delays. This information may be lost after a certain delay
with a ReLU-ORNN.

H SWITCHING COLUMNS SIGNS IS NOT USEFUL

H.1 SWITCHING COLUMNS SIGNS DOES NOT PROVIDE MORE EXPRESSIVENESS

In this section, we first provide a first result stating that modifying the signs of the lines of a Hadamard
matrix (as is done by the multiplication by diag(𝑢), in Proposition 3.3 and the definition of the 𝑊 (𝑢)s
in (3) and (4)) defines the same hidden states as switching the signs of the columns. We then state
that changing the signs of both rows and columns still defines the same hidden states and is therefore
unnecessary.

To do so, we define, for 𝑛 and 𝑑ℎ ∈ ℕ∗ and a given matrix 𝐻 ∈ ℝ𝑑ℎ×𝑛, the operator 𝜙𝐻 by:

𝜙𝐻 ∶ {−1, 1}𝑑ℎ ⟶ ℝ𝑑ℎ×𝑛

𝑢 ⟼ diag(𝑢)𝐻,

and, for 𝐻 ∈ ℝ𝑛×𝑑ℎ , the operator Γ𝐻 by

Γ𝐻 ∶ {−1, 1}𝑑ℎ ⟶ ℝ𝑛×𝑑ℎ

𝑢 ⟼ 𝐻 diag(𝑢).

Proposition H.1. Let 𝐻 ∈ ℝ𝑑ℎ×𝑑ℎ , 𝑈 ∈ ℝ𝑑ℎ×𝑑𝑖𝑛 , 𝑉 ∈ ℝ𝑑𝑜𝑢𝑡×𝑑ℎ and 𝑏𝑖 ∈ ℝ𝑑ℎ .

For all 𝑢 ∈ {−1, 1}𝑑ℎ , the RNNs states ℎ𝑡 and ℎ′𝑡 defined for all 𝑥1,. . . , 𝑥𝑇 ∈ ℝ𝑑𝑖𝑛 by
{

ℎ𝑡 = 𝜙𝐻 (𝑢)ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏𝑖 for all 𝑡 ∈ J1, 𝑇 K

ℎ′𝑡 = Γ𝐻 (𝑢)ℎ′𝑡−1 + 𝜙𝑈 (𝑢)𝑥𝑡 + 𝜙𝑏𝑖 (𝑢) for all 𝑡 ∈ J1, 𝑇 K

with ℎ0 = ℎ′0 = 0, differ only by their sign:

ℎ′𝑡 = diag(𝑢)ℎ𝑡, for all 𝑡 ∈ J1, 𝑇 K.

Proof. Consider 𝐻 ∈ ℝ𝑑ℎ×𝑑ℎ , 𝑈 ∈ ℝ𝑑ℎ×𝑑𝑖𝑛 , 𝑉 ∈ ℝ𝑑𝑜𝑢𝑡×𝑑ℎ and 𝑏𝑖 ∈ ℝ𝑑ℎ . Let 𝑥1,. . . , 𝑥𝑇 ∈ ℝ𝑑𝑖𝑛 .

Let us first prove that for all 𝑢 ∈ {−1, 1}𝑑ℎ and all 𝑡 ∈ J1, 𝑇 K, ℎ′𝑡 = diag(𝑢)ℎ𝑡. Let us consider 𝑢 and
prove that the result holds by induction.

28



Table 9: Comparison of the performances of the linear HadamRNN in which only the rows switches
are learned, and the linear HadamRNN in which both rows and columns switches are learned. 𝑊 is
binary, and 𝑈 and 𝑉 are quantized over 4 bits.

Model row switches row and column switches

copy task 1.6e-7 1.3e-8

Permuted MNIST 94.88 28.99

Sequential MNIST 96.63 96.31

IMDB 87.43 85.24

• Initialization: We have ℎ′0 = 0 = diag(𝑢)0 = diag(𝑢)ℎ0.

• Heredity: Assume 𝑡 ≥ 1 is such that ℎ′𝑡−1 = diag(𝑢)ℎ𝑡−1.

Using the definition of ℎ′𝑡, the fact that diag(𝑢) diag(𝑢) = 𝐼𝑑ℎ and the definition of ℎ𝑡, we
have

ℎ′𝑡 = Γ𝐻 (𝑢)ℎ′𝑡−1 + 𝜙𝑈 (𝑢)𝑥𝑡 + Φ𝑏𝑖 (𝑢)
= 𝐻 diag(𝑢) diag(𝑢)ℎ𝑡−1 + diag(𝑢)𝑈𝑥𝑡 + diag(𝑢)𝑏𝑖
= diag(𝑢)

(

diag(𝑢)𝐻ℎ𝑡−1 + 𝑈𝑥𝑡 + 𝑏𝑖
)

= diag(𝑢)ℎ𝑡

This concludes the proof of the proposition.

This proposition ensures that, when optimizing 𝑈 and 𝑏𝑖 over a set that is invariant under multiplication
by diag(𝑢) (whether on the left or right), choosing left or right yields equivalent hidden states.

Applying Proposition H.1 to 𝐻 ′ = diag(𝑢′)𝐻 , for a fixed 𝑢′ ∈ {−1, 1}𝑑ℎ , shows that changing the
signs of both rows and columns results in the same hidden state as changing the signs of the rows
only.

H.2 SWITCHING COLUMNS SIGNS ARMS RESULTS

We compared a version of our linear HadamRNN where both row and column switches are learned
during training, to the standard linear HadamRNN in which only rows switches are learned, as
outlined in this paper.

The two versions of the models and the datasets use the same configurations as detailed in Section 4
and Appendix D. We used a binary orthogonal recurrent weight matrix for 𝑊 (see Section 3.3) and
we quantized 𝑈 and 𝑉 over 4 bits. We did not quantize the activations.

Results are reported in Table 9. The standard version consistently outperforms the variant, except in
the copy task. This, along with Appendix H.1, supports our choice to learn row switches only.

I POST TRAINING QUANTIZATION OF ACTIVATIONS

I.1 REMINDERS ON FIXED-POINT ARITHMETIC

We follow conventional notations for fixed-point arithmetic: For integers 𝑞 ≥ 0 and 𝑝 ≥ 1, the set of
𝑝-bit fixed-point numbers with 𝑞 bits allocated for the fractional part is represented as:

𝑝,𝑞 =
1
2𝑞

J−2𝑝−1, 2𝑝−1 − 1K ⊂
[

−2𝑝−𝑞−1, 2𝑝−𝑞−1
)

⊂ ℝ.

In the specific case where 𝑝 = 𝑞 + 1, we use the simplified notation:

𝑞 = 𝑞+1,𝑞 =
1
2𝑞

J−2𝑞 , 2𝑞 − 1K ⊂ [−1, 1) .
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The addition of two fixed-point numbers is only possible when they have identical fractional sizes.
For example, if 𝑥 and 𝑥′ ∈ 𝑞 , then 𝑥 + 𝑥′ ∈ 𝑞+2,𝑞 .

Multiplying two fixed-point numbers 𝑥 ∈ 𝑝,𝑞 and 𝑥′ ∈ 𝑝′,𝑞′ results in a value within 𝑥 ⋅ 𝑥′ ∈
𝑝+𝑝′−1,𝑞+𝑞′ . Thus, the product of 𝑥 ∈ 𝑞 and 𝑥′ ∈ 𝑞′ satisfies 𝑥 ⋅ 𝑥′ ∈ 𝑞+𝑞′+1,𝑞+𝑞′ = 𝑞+𝑞′ .

I.2 WEIGHT QUANTIZATION:

In the description of HadamRNN and Block-HadamRNN, matrices 𝑈 ∈ ℝ𝑑ℎ×𝑑𝑖𝑛 and 𝑉 ∈ ℝ𝑑𝑜𝑢𝑡×𝑑ℎ

are quantized on 𝑝 bits as described in Section 3.5. We will note 𝑞𝑝(𝑈 ) = 𝛼𝑈𝑈 (resp. 𝑞𝑝(𝑉 ) = 𝛼𝑉 𝑉 )

where the quantized matrix 𝑈 ∈ 𝑑ℎ×𝑑𝑖𝑛
𝑝−1 = 𝑑ℎ×𝑑𝑖𝑛

𝑝,𝑝−1 (resp. 𝑉 ∈ 𝑑𝑜𝑢𝑡×𝑑ℎ
𝑝−1 ), and 𝛼𝑈 = ‖𝑈‖max > 0

(resp. 𝛼𝑉 = ‖𝑉 ‖max > 0), where ‖𝑈‖max = sup𝑖,𝑗 |𝑈𝑖,𝑗|.

Given the definition of 𝑊 in (3) and (4), we note the recurrent matrix 𝑊 = 𝛼𝑊𝑊 , with 𝑊 ∈ 𝑑ℎ×𝑑ℎ
1

and 𝛼𝑊 = 2
√

𝑑ℎ
for HadamRNN (or 𝛼𝑊 = 2

√

2𝑘
for Block-HadamRNN). Notice indeed that, since

1 = {−1, 12 , 0,
1
2}, all the matrices 𝑊 in 1

√

𝑑ℎ
{−1,+1}𝑑ℎ×𝑑ℎ (resp. 1

√

2𝑘
{−1, 0,+1}𝑑ℎ×𝑑ℎ ) are also in

2
√

𝑑ℎ
𝑑ℎ×𝑑ℎ
1 (resp. 2

√

2𝑘
𝑑ℎ×𝑑ℎ
1 ). Taking 0 = {−1, 0} instead of 1 does not permit the components

of 2
√

𝑑ℎ
𝑊 (resp 2

√

2𝑘
𝑊 ) to reach + 1

√

𝑑ℎ
(resp + 1

√

2𝑘
).

I.3 INPUT AND HIDDEN STATE ENCODING:

For each time step 𝑡 ∈ J1, 𝑇 K, the quantized hidden state ℎ𝑡 is encoded using 𝑝𝑎 bits, where 𝑝𝑎 ≥ 1.
A fixed scaling factor 𝛼ℎ > 0 is applied such that ℎ𝑡 = 𝛼ℎℎ̃𝑡, with ℎ̃𝑡 ∈ 𝑑ℎ

𝑝𝑎−1
. We use the notation

𝑞𝛼ℎ𝑝𝑎 (𝑥) to denote the closest element of 𝑥 ∈ ℝ in 𝛼ℎ𝑝𝑎−1. This notation extends to vectors.

In practice, 𝛼ℎ must be sufficiently large to cover the range of values for the full-precision hidden
states. However, increasing 𝛼ℎ slightly may not significantly impact performance, allowing some
flexibility in its selection.

Similarly, each input 𝑥𝑡, for 𝑡 ∈ J1, 𝑇 K, is quantized using 𝑝𝑖 bits, with 𝑝𝑖 ≥ 1. For simplicity, we
continue to denote the quantized inputs as 𝑥𝑡. Using a fixed scaling factor 𝛼𝑖 > 0, we represent
𝑥𝑡 = 𝛼𝑖�̃�𝑡, where �̃�𝑡 ∈ 𝑑𝑖𝑛

𝑝𝑖−1
.

Input Quantization Examples:

• For the copy-task where input entries are either 0 or 1, we use 𝛼𝑖 = 2. As long as 𝑝𝑖 ≥ 2,
quantization does not alter the inputs.

• For the pixel-by-pixel MNIST tasks, with normalized 8-bit unsigned integer values in [0, 1],
we set 𝛼𝑖 = 1. Quantization has no effect as long as 𝑝𝑖 ≥ 9.

• For the IMDB dataset, the 512 inputs are given by a floating point word embedding prepro-
cessing. We quantize these preprocessing outputs using 𝑝𝑖 = 𝑝𝑎 bits (i.e. within 𝑝𝑎−1), and
set 𝛼𝑖 to the maximum value of the embeddings.

I.4 INDEPENDENCE TO SCALING FACTORS

It can be shown by induction that a vanilla (Linear or ReLU) RNN with parameters (𝑊 , 𝑏𝑖, 𝑈 , 𝑉 , 𝑏𝑜)
produces the same outputs as an RNN with parameters (𝑊 ,𝜆𝑏𝑖, 𝜆𝑈, 1𝜆𝑉 , 𝑏𝑜) for all 𝜆 > 0.

In the following sections, we use this idea and, instead of applying the network with quantized
weights (𝑞1(𝑊 ), 𝑏𝑖, 𝑞𝑝(𝑈 ), 𝑞𝑝(𝑉 ), 𝑏𝑜) = (𝛼𝑊 𝑊 , 𝑏𝑖, 𝛼𝑈𝑈, 𝛼𝑉 𝑉 , 𝑏𝑜), we rescale with 𝜆 = 1

𝛼𝑖𝛼𝑈
and

apply the network with the parameters (𝛼𝑊𝑊 , 𝑏𝑖
𝛼𝑖𝛼𝑈

, 1
𝛼𝑖
𝑈, 𝛼𝑖𝛼𝑈𝛼𝑉 𝑉 , 𝑏𝑜).
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Table 10: Value of 𝛼𝑊 and 𝛼ℎ for activation quantification across the datasets and bitwidth.

Model U,V Copy-task sMNIST pMNIST IMDB
bitwidth 𝛼𝑊 𝛼𝑊 𝛼ℎ 𝛼𝑊 𝛼𝑊 𝛼ℎ 𝛼𝑊 𝛼𝑊 𝛼ℎ 𝛼𝑊 𝛼𝑊 𝛼ℎ

HadamRNN 4 0.088 2.0 0.044 4.0 0.044 1.0 0.044 8.0

I.5 RECURRENCE WITH FIXED-POINT ARITHMETIC :

Given, the quantized hidden state ℎ𝑡 = 𝛼ℎℎ̃𝑡 ∈ 𝛼ℎ
𝑑ℎ
𝑝𝑎−1

, with a fixed value of 𝛼ℎ chosen later, and

the quantized input 𝑥𝑡 = 𝛼𝑖�̃�𝑡 ∈ 𝛼𝑖
𝑑𝑖𝑛
𝑝𝑖−1

.

The recurrence relation defined in (1) for the parameters (𝛼𝑊 𝑊 , 𝑏𝑖
𝛼𝑖𝛼𝑈

, 1
𝛼𝑖
𝑈, 𝛼𝑖𝛼𝑈𝛼𝑉 𝑉 , 𝑏𝑜) becomes:

𝛼ℎℎ̃𝑡 = ℎ𝑡 = 𝑞𝛼ℎ𝑝𝑎

(

𝛼𝑊 𝑊 ℎ𝑡−1 +
1
𝛼𝑖
𝑈𝑥𝑡 +

𝑏𝑖
𝛼𝑖𝛼𝑈

)

= 𝑞𝛼ℎ𝑝𝑎

(

𝛼𝑊 𝛼ℎ𝑊 ℎ̃𝑡−1 + 𝑈�̃�𝑡 +
𝑏𝑖

𝛼𝑖𝛼𝑈

)

.

In this equation, the matrix-vector multiplications 𝑊 ℎ̃𝑡−1 and 𝑈�̃�𝑡 are computed using fixed-point
arithmetic.

We take advantage of the flexibility in choosing 𝛼ℎ to ensure that multiplying by 𝛼𝑊 𝛼ℎ can be
performed with a simple bit shift. We first compute maxℎ = max𝑡∈J1,𝑇 K ‖ℎ𝑡‖∞, based on the full-
precision hidden states from the training and validation datasets. We choose 𝑛ℎ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑛∈ℕ{2𝑛 ≥
maxℎ 𝛼𝑊 }, and set 𝛼ℎ = 2𝑛ℎ∕𝛼𝑊 .

The values used in the experiments are presented in Table 10.

We also quantize the scaled bias using 𝑝𝑎 bits.

Finally, the entry of the quantization 𝑞𝛼ℎ𝑝𝑎 is a fixed-point value and thus belong to a finite set, the size
of which depends on 𝛼𝑊 𝛼ℎ and (𝑝, 𝑝𝑎, 𝑝𝑖). Thus, ℎ̃𝑡 can be computed using a simple look-up table,
eliminating the need for floating-point operations (division by 𝛼ℎ in 𝑞𝛼ℎ𝑝𝑎 ).

The quantization of the output layer follows the classical PTQ methodology, using a quantized value
of the bias 𝑏𝑜 and the multiplicative factor 𝛼𝑖𝛼𝑈𝛼𝑉 .

This leads to a fully quantized RNN. The Table 2 shows that such fully quantized RNNs with 𝑝𝑎 = 12
bits achieve equivalent results than the RNNs with quantized weights only.
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