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Abstract 38 

Previous studies have demonstrated legacy effects of current species distributions to past 39 

environmental conditions, but the temporal extent of such time lag dynamics remains unknown. Here, 40 

we have developed a non-equilibrium SDM approach quantifying the temporal extent that must be 41 

taken into account to capture 95 % of the effect that a given time series of past environmental 42 

conditions has on the current distribution of a species. We applied this approach on the distribution 43 

of 92 European forest birds in response to past trajectories of change in forest cover and climate. We 44 

found that non-equilibrium SDMs outperformed traditional SDMs for 95 % of the species. Non-45 

equilibrium SDMs suggest unprecedented long-lasting effects of past global changes (average time 46 

lag extent ranged from 9 years to 231 years). This framework can help to relax the equilibrium 47 
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hypothesis of traditional SDMs and to improve future predictions of biodiversity redistribution in 48 

response to global changes.  49 

 50 

Keywords: Lagged dynamics – Delayed dynamics – Relaxation time – Colonization credit – 51 

Extinction debt – Climatic debt – Disequilibrium hypothesis – Biodiversity redistribution – Climate 52 

change – Land use change 53 

 54 

Introduction 55 

Lagging dynamics in ecology occur when biodiversity is not in equilibrium with current 56 

environmental conditions, meaning that current species distribution or community composition still 57 

depend on past environmental conditions. The concept of extinction debt was thus defined as a 58 

delayed loss in species number due to a decline in habitat suitability and connectivity (Diamond, 1972; 59 

Tilman et al., 1994). Immigration credit was then used to describe a delayed increase in species 60 

number due to a lack of colonization events towards newly suitable areas (Nagelkerke et al., 2002). 61 

For instance, by relying on empirical observations of past species distributions, recent syntheses on 62 

biodiversity redistribution have demonstrated evidence for extinction debts and immigration credits 63 

at the trailing and leading edge of species distributions, respectively (e.g., Lenoir et al., 2020; Zurell 64 

et al., 2024). The question of whether or not to abandon the concept of equilibrium in ecology has 65 

been raised, due to the overwhelming body of evidence suggesting time-lagged dynamics in 66 

ecological responses to past environmental changes (Coulson, 2021). However, the concept of 67 

equilibrium is still widely used in ecology, especially so by the scientific community working with 68 

species distribution models (SDMs), for which the equilibrium between a species distribution and the 69 

current state of its environmental drivers is the main underlying assumption (Fig. 1C; Essl et al., 70 

2024). Hence, the assessment of the consequences of environmental changes on biodiversity 71 

redistribution often rely on a questionable assumption. 72 
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The relevance of legacy effects on current and future biodiversity dynamics has been argued from a 73 

variety of approaches ranging from SDMs (e.g., Dullinger et al., 2012; Rumpf et al., 2019), but also 74 

analyses of time series of community weighted means for specific functional traits (e.g., Bertrand et 75 

al., 2011; Lajeunesse et al., 2022), space-for-time substitutions (Kuussaari et al., 2009), species-area 76 

relationships (e.g., Chen et al., 2017; Ridding et al., 2021), and mechanistic species or community 77 

models (e.g., Aguadé- Gorgorió et al., 2024). Few studies have applied these methods to map the 78 

spatial patterns of the extinction debts and the immigration credits. Some of them provided evidence 79 

of long-lasting legacy effects of anthropogenic pressures aggregated at the country or the biome levels 80 

(Devictor et al., 2012; Dullinger et al., 2013; Liao et al., 2022). Other studies have reported delayed 81 

biodiversity dynamics by paying more attention to their spatial patterns (Bertrand et al., 2016; Chen 82 

et al., 2017; Duchenne et al., 2021; Haddou et al., 2022), which suggest that extinction debts could 83 

mostly be located in areas that do not match with the current network of protected areas (Chen et al., 84 

2017; Haddou et al., 2022). For instance, Haddou et al. (2022) mapped the distribution of birds across 85 

the conterminous United States in 2016 and compared the dependence of bird distribution on 86 

landscape composition in 2016 and 2001, demonstrating lagging dynamics to past landscape 87 

composition. 88 

However, to estimate lagging effects, these studies chiefly relied on just two distant events in time at 89 

a given location (i.e., diachronic analyses with one or two standardized or opportunistic biodiversity 90 

sampling associated with environmental conditions recorded at two dates; e.g., Fig. 1C), thus missing 91 

the complex dynamic that may happen in between and that can only be captured by refined time series 92 

(Daskalova et al., 2020; Liao et al., 2022). First, the detected duration of a time lag depends on the 93 

total duration of the time series available for the environmental variable under consideration. The 94 

starting date of this time series is often defined according to data availability, and is not necessarily 95 

old enough to capture the real temporal extent of a time lag effect (Fig. 1B vs. Fig. 1A). Second, the 96 

direction and magnitude of the effect for a given environmental factor is not sufficient to understand 97 
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its importance. Indeed, the rate at which the effect decreases over time (i.e., the shape of the time 98 

lagged effect) also indicates if it has a more recent or historic influence (Fig. 1A). 99 

To solve the aforementioned knowledge gaps, we developed a non-equilibrium SDM based on 100 

multivariate and temporally-weighted generalized linear regressions to infer a time lag parameter that 101 

captures two important features (Fig. 1A): (i) the time lag extent that must be considered to capture 102 

95 % of the effect that a given time series of past environmental conditions has on the current species 103 

distribution and (ii) the shape of the time-lagged dynamic along the time lag extent. First, to illustrate 104 

the capabilities of our non-equilibrium SDM approach, we performed a simulation exercise that 105 

captures the temporal extent of a lagging response we imposed to a given predictor variable. We then 106 

applied this framework to the current (2013-2017) distribution of 92 European forest birds using long-107 

term time series of past forest cover (850-2017) and climate (1850-2017). Finally, we illustrated the 108 

ability of our non-equilibrium approach to map the extinction debt and immigration credit by 109 

comparing outputs from our non-equilibrium SDMs against outputs from traditional equilibrium 110 

SDMs. We expect this study to pave the way for the use of non-equilibrium SDMs to better 111 

understand the ability of species to track global changes. 112 

 113 

Materials and methods 114 

Biodiversity data 115 

For the purpose of our work and to illustrate the relevance of our framework, we focused on forest 116 

bird species. Birds are suitable biological models because they have long been monitored by 117 

ornithologists and now by citizen science and they are highly sensitive to anthropogenic disturbances 118 

(Rosenberg et al., 2019; Keller et al., 2020). Our focus on forest-dwelling species stems from the 119 

large body of evidence that has accumulated in the scientific literature on the delayed effects that both 120 

changes in forest cover and climate conditions may have on forest biodiversity (Bertrand et al., 2011; 121 

Perring et al., 2018; Daskalova et al., 2020; Richard et al., 2021). Birds are fast-dynamic species, 122 
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which means that the identification of time lags for this taxonomic group is more likely to be 123 

generalized to other taxonomic groups of slower dynamics in terms of life history traits (Daskalova 124 

et al., 2020). 125 

We used the European Breeding Bird Atlas (EBBA2) which provides a systematic survey of species 126 

presence-absence data at a spatial resolution of 50 km × 50 km between 2013 and 2017 (median year 127 

= 2015; Keller et al., 2020). Data from European atlases have the advantage of providing exhaustive 128 

and homogenized data on species distribution, which limits potential biases compared to opportunistic 129 

records from presence-only datasets (Keller et al., 2020). We considered the 92 species 130 

(Supplementary Information, Appendix S1) of the EBBA2 whose habitat is classified as either forest 131 

or woodland according to Tobias et al. (2022). The coarse resolution of the EBBA2’s mesh size and 132 

the continental extent of the analysis have the advantage of limiting spatial autocorrelation signal due 133 

to dispersal processes on a landscape extent, which were not considered in our analysis. 134 

 135 

Environmental predictors 136 

We related species presence-absence data during 2013-2017 to long-term time series of changes in 137 

forest cover and climate conditions, which have been identified as the main determinants of bird 138 

species distributions at continental extent (Cooper et al., 2023). Long-term time series of changes in 139 

forest cover and climate conditions at a yearly resolution were extracted from the Land-Use 140 

Harmonization (LUH2; Hurtt et al., 2020) and the CHELSA Climate (Karger et al., 2017) databases, 141 

respectively. The LUH2 database provides time series of land use since 850 at a spatial resolution of 142 

0.25°  0.25°, i.e., approximately 28 km  28 km at the equator, and at a yearly resolution. We focused 143 

on the land use categories ‘primary forest’ and ‘secondary forest’ since they reflect different trends: 144 

an average decrease in the cover of primary forests, mainly to the benefit of secondary forests, and 145 

an average increase in the cover of secondary forests elsewhere in Europe, mostly due to a decline of 146 

agricultural land uses (Hurtt et al., 2020; Supplementary Information, Appendix S2). Forests are 147 
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defined as ‘primary’ if a land use has remained forest continuously over time since 850, independently 148 

of management practices. Forests are defined as ‘secondary’ if they have replaced another land use 149 

type at any time during the same period. Cases of current forests with multiple swinging states 150 

between forests and agricultural lands are considered ‘secondary’. We used standardized yearly 151 

averaged maximum temperature (hereafter called temperature) and annual sum of precipitation 152 

(hereafter called precipitation) since 1850 at a spatial resolution of 30 arcseconds, approximately 1 153 

km  1 km at the equator. Given the coarse spatial resolution and the continental extent of the atlas 154 

data, the predictors were projected in the same coordinate reference system (ETRS89-LAEA) and 155 

aggregated, using the mean, at a spatial resolution of 50 km  50 km to match the EBBA2’s mesh 156 

size. Because the period covered by the EBBA2 is a 5-year period (2013-2017), we used a 5-year 157 

sliding window to average forest cover and climate conditions backward from 2015 (average year of 158 

the EBBA2 dataset) and at a yearly resolution until 852 AD for forest cover and until 1852 for climate 159 

conditions. There were no multicollinearity issues between the averaged predictor variables 160 

considering that the absolute Spearman correlation coefficient was systematically < 0.7 (Dormann et 161 

al., 2013). 162 

 163 

Non-equilibrium species distribution models 164 

Inspired by previous works in spatial ecology (Chandler et al., 2016; Miguet et al., 2017), we 165 

developed a multivariate and temporally-weighted generalized linear regression to model the 166 

response variable, that is here a binary variable (presence-absence of a given species), as a function 167 

of current and past conditions (Eq. 1): 168 

µ𝑖 = 𝛼 + ∑ 𝛽𝑗

𝑁

𝑗=1

∑ 𝑋𝑖𝑗∆𝑡𝑊𝑗(∆𝑡)

max(∆𝑡)

∆𝑡=0

+ 𝜀𝑖 (𝐸𝑞. 1) 169 

where µi refers to each observation i of the response variable in the model formula, α is the intercept 170 

parameter and βj is the slope estimate of the predictor variable j out of the N covariates included as 171 
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predictor variables in the model formula. The residual error term 𝜀  is assumed to be randomly 172 

distributed. The slope estimate βj depends on a temporal weighting function 𝑊𝑗 = 𝑒
−0.5 (

∆𝑡

𝛾𝑗  .  max(∆𝑡)
)2

, 173 

which is used to weight the covariate value 𝑋𝑖𝑗∆𝑡 according to its age ∆𝑡. For the year 2015, ∆𝑡 = 0 174 

and it increases as we go back in time. The older the date t for the covariate 𝑋𝑖𝑗, the larger the ∆𝑡 and 175 

the lower is the weight assigned to 𝑋𝑖𝑗∆𝑡. For instance, if we consider the covariate of primary forest 176 

cover, the older date at which the weight is the lowest is 852 which corresponds to an age of 1,163 177 

years. Thus, we assumed that the effect of a covariate decreases as we go back in time. To test the 178 

sensitivity of the results to the definition of the weighting function, we also considered an alternative 179 

hypothesis of a negative exponential decrease of the effects of the covariates with 𝑊𝑗 = 𝑒
−

∆𝑡

𝛾𝑗 .  max(∆𝑡). 180 

We defined ‘the shape of the time lag’ as the shape of the weighting function that depends on the time 181 

lag parameter 𝛾𝑗, which describes how the effect of a covariate j decreases, linearly or non-linearly 182 

as we go back in time. The time lag parameter corresponds to the year at which approximately one 183 

third (63.2 %) or one quarter (75.8 %) of the effect of the covariate has occurred over time, for a 184 

negative exponential and a half-Gaussian weighting function, respectively. We also used these 185 

functions to define the time-window that should be considered to account for 95 % of the effect that 186 

a given time series of past environmental condition has on the current distribution of a species, when 187 

summing all weighted values of that focal predictor before inferring its effect size (called ‘the time 188 

lag extent’, Fig. 1A). We applied this framework, using a binomial family with a logit link function, 189 

to relate the presence-absence data of a species to primary forest cover, secondary forest cover, 190 

temperature and precipitation altogether in one single multivariate model. All the analyses were 191 

performed using the R software and the scalescape R package for parameter inference (Lowe et al., 192 

2022). The scalescape package was initially designed to fit spatially-weighted generalized linear 193 

regressions from ‘landscape matrices’ which include predictor values for different distance classes. 194 

Thus, the analysis of the bidimensional (i.e., latitude and longitude) spatial context is reduced to a 195 
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one-dimensional problem, since cumulated landscape features are taken into account according to 196 

their distance only, but not their direction, from the focal plot where the response variable is sampled. 197 

Here, we replaced the ‘landscape matrices’ by ‘temporal matrices’ including the predictor values for 198 

each ∆𝑡 , instead of distance classes, in order to fit the temporally-weighted generalized linear 199 

regressions. We used the maximum possible temporal extent of the predictors in order to maximize 200 

the possibility of correctly estimating the temporal extent of each time lag. We did not interpret time 201 

lag parameters leading to temporal extents that were larger than or equal to the maximum possible 202 

temporal extent available for the predictors (i.e., 1,163 years for primary and secondary forest 203 

cover).We performed a simulation exercise to illustrate the capabilities of our non-equilibrium SDM 204 

approach to capture the temporal extent of a lagging response to a given predictor variable for which 205 

we imposed and thus know the magnitude of the lagging dynamic (Supplementary Information, 206 

Appendix S3).  207 

 208 

Model selection, validation and predictions 209 

We compared the Akaike Information Criterion (AIC) of our non-equilibrium SDMs with an 210 

alternative equilibrium model relying on traditional SDM approaches and for which the predictors 211 

are basically averaged over the 5-year time-window of the EBBA2, namely 2013-2017. Models were 212 

considered significantly different if the AIC difference was > 2 (Burnham & Anderson, 2002). The 213 

comparison between the equilibrium SDMs and the non-equilibrium ones were not very sensitive to 214 

the definition of the weighting functions. Both the Gaussian and the negative exponential weighting 215 

functions of the non-equilibrium SDMs outperformed the equilibrium SDMs for the majority of the 216 

studied bird species (87 and 79 out of 92 species, respectively). For further analyses, we retained only 217 

the Gaussian non-equilibrium SDMs given that it leads to a better fit compared to the negative 218 

exponential non-equilibrium SDMs for the vast majority of the species (for 82 out of 92 species). 219 

The validity of the tested models depends on the typical assumptions underlying SDMs (Zurell et al, 220 
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2020). Obviously, the hypothesis of species-environment equilibrium is expected under traditional 221 

equilibrium SDMs, while the non-equilibrium SDM relaxes this assumption. For both equilibrium 222 

and non-equilibrium SDMs, observations are assumed to be unbiased and independent. The predictors 223 

are assumed to be free of errors and sufficient to capture the main determinants of European bird 224 

distributions given previous results (Cooper et al., 2023). 225 

The residual errors were calculated, applying the resid() function from the base R package. For each 226 

species, model validity was assessed from the distribution of the residual errors, which was assumed 227 

to be Gaussian and centered on zero (tested from Student’s t test). We tested for positive or negative 228 

spatial autocorrelation signals in the pooled residuals using the Moran’s I index, calculated for 229 

uniformly distributed distance classes with 500 km increments, using the correlog function from the 230 

ncf R package (Bjornstad et al., 2001). We expected that the distribution of this index would be 231 

centered on 0 (no spatial autocorrelation) and tested this using a Student's t test. The distribution of 232 

the pooled residual errors, and the pooled Moran’s I, among all the species are shown in the 233 

Supplementary Information (Appendix S4). 234 

The predictive ability of the best model was evaluated using the Area Under the Curve (AUC), the 235 

specificity and the sensitivity indices, averaged over 20 replicates of a bootstrap cross-validation 236 

procedure (70 % and 30 % partitioning for calibration and validation, respectively; Fielding & Bell, 237 

1997). We have not considered a clustered selection of cross-validated samples given that there is no 238 

extrapolation thanks to the use a European atlas with an exhaustive sampling grid and given the 239 

absence of future projections (Wenger & Olden, 2012). Species distribution models with an AUC < 240 

0.7 were excluded from further analyses to prevent inaccurate predictions.For each predictor variable, 241 

we compared the estimates of the equilibrium SDMs against the estimates of the non-equilibrium 242 

SDMs to identify potential discrepancies in direction, magnitude (using Student's t test) and 243 

variability (using Fischer’s F test). 244 

We converted presence probabilities into binary presence-absence predictions using the maximum 245 
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true skill statistic (TSS) as a threshold adapted for presence-absence data (Liu et al., 2013). To map 246 

the extinction debt and the immigration credit of forest birds across Europe, we followed Haddou et 247 

al. (2022) who subtracted the effective number of species as predicted by stacking all species binary 248 

maps based on the non-equilibrium SDMs from that obtained by the equilibrium SDMs. 249 

 250 

Results 251 

We found that non-equilibrium SDMs had the lowest Akaike Information Criterion (AIC) for 95 % 252 

of the species (87 out of 92 species) confirming that equilibrium SDMs are less relevant than non-253 

equilibrium ones, in most cases. Analyzing the effects of long-term yearly time series of land use and 254 

climate (Supplementary Information, Appendix S2), we found that time lag extents were extremely 255 

variable (Fig. 2) and were larger for changes in primary forests (mean = 231 years, SD = 229 years) 256 

compared to changes in secondary forests (mean = 137 years, SD = 190 years), and for changes in 257 

precipitation (mean = 20 years, SD = 29 years) compared to changes in temperature regimes (mean 258 

= 9 years, SD = 28 years). The shape of the temporal weighting function used in the model formula 259 

(i.e., half-Gaussian compared to exponential negative as we go back in time) underlined a slower 260 

decrease of the weight attributed to environmental conditions towards the onset of the temporal extent 261 

covered by the lagging dynamic. 262 

The non-equilibrium SDMs were valid, considering that species’ residual errors followed a normal 263 

distribution centered on zero (Student’s t p-value > 0.05; Supplementary Information, Appendix S4) 264 

and that the spatial autocorrelation signal of the species’ residual errors in the correlogram of the 265 

Moran’s I index was also centered on zero (Student’s t p-value > 0.05; Supplementary Information, 266 

Appendix S4). The cross-validated Area Under the Curve (AUC) index indicated a good overall 267 

predictive accuracy (mean = 0.82, SD = 0.06) after excluding three species with low AUC values 268 

(AUC < 0.7). Overall, the non-equilibrium SDMs tended to better predict presences than absences 269 

(mean sensitivity = 0.83, SD = 0.06; mean specificity = 0.71, SD = 0.07). 270 
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We found some discrepancies between equilibrium and non-equilibrium SDMs when comparing the 271 

direction, magnitude and variance of the slope estimates for each predictor variable (Supplementary 272 

Information, Appendix S4). For 26 % of the studied species (27 out of 87 species), non-equilibrium 273 

SDMs indicated a positive effect of secondary forests while it was the opposite (i.e., a negative effect 274 

of secondary forests) when relying on equilibrium SDMs. For the other predictor variables, the 275 

discrepancies on the direction of the effect between equilibrium and non-equilibrium SDMs 276 

concerned fewer species (⩽ 6%). We found a larger effect size and a larger variability in the slope 277 

estimates of primary forests when considering equilibrium SDMs, while the opposite was true for 278 

secondary forests (Student’s t test ≤ 0.05; Fischer’s F test ≤ 0.05; Supplementary Information, 279 

Appendix S4). 280 

We found evidence for extinction debts to be particularly pronounced in primary boreal forests, near 281 

the Carpathians, and north of the Black Sea while evidence for immigration credits were mostly 282 

pronounced in secondary forests in the Mediterranean part of the Alps and Pyrenees, as well as in the 283 

Caucasus and in the mountainous areas north of the Caspian Sea (Fig. 3; Supplementary Information, 284 

Appendix S2). 285 

 286 

Discussion 287 

Overall, we found less support for traditional species distribution models (SDMs) that rely on the 288 

equilibrium hypothesis and which showed lower fit than non-equilibrium SDMs and this was true for 289 

95 % of the 92 European forest bird species we studied. In line with former studies focusing on the 290 

fate of avian biodiversity in the context of global changes (e.g., Devictor et al., 2012; Haddou et al., 291 

2022), our result advocates for the abandonment of the equilibrium assumption in SDMs. Here, we 292 

have reported unprecedented long-lasting effects of global changes on current avian biodiversity 293 

distribution (up to 246 years for forest cover change) compared to previous studies (Figueiredo et al., 294 

2019; Daskalova et al., 2020; Liao et al., 2022), even when considering potential sources of 295 
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inaccuracies (Essl et al., 2024). The shape of the time-lag response curve (i.e., the shape of the 296 

temporal weighting function being half-Gaussian or exponential negative) along a given predictor 297 

variable also underlined the long-lasting effect of ancient environmental conditions. Because of that, 298 

the use of equilibrium SDMs can lead to biased direction, magnitude and variability in the coefficient 299 

estimates of the underlying predictor variables. The persistent use of models relying on the 300 

equilibrium hypothesis in the SDM literature is unlikely to be explained solely by a lack of available 301 

datasets, such as long-term time series of environmental conditions, because strong evidence of non-302 

equilibrium biodiversity dynamics has already been proven and generalized from the currently 303 

available datasets, at different spatiotemporal scales (Figueiredo et al., 2019). We rather suggest that 304 

the poor use of models relying on the non-equilibrium hypothesis is more likely due to a lack of 305 

generic and ready-to-use modelling frameworks, something we now provide here, but also to an 306 

underestimation of the importance and implications of the temporal extent behind time lags. 307 

 308 

The low consideration for time lag dynamics in SDMs, despite recent literature (Essl et al. 2024), 309 

might also be explained by the lack of a common definition of a time lag and how to measure it. 310 

Indeed, time lags can either refer to the time elapsed since the occurrence of a causative perturbation 311 

until the time it reaches a peak in population responses (Daskalova et al., 2020) or to the time elapsed 312 

for a debt to be completely paid off or for a credit to be completely spent (Figueiredo et al., 2019), or 313 

even to the time span elapsed between two dates in diachronic analyses (Haddou et al., 2020). 314 

However, time-lagged responses of biodiversity to environmental change trajectories were initially 315 

associated with the so-called ‘relaxation time’ which has a clear definition: the complete time window 316 

during which a disturbance has consequences on biodiversity until it returns to a new equilibrium 317 

state (Diamond, 1972; Tilman, 1995). References to the concept of relaxation time remain scarce in 318 

the scientific literature (e.g., Lalechère et al., 2018), compared to the use of the term time lag, perhaps 319 

because a return to an equilibrium state is more theoretical in the context of continuous global changes, 320 
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and is rarely verified in the natural world (Essl et al., 2024). Finally, the concept of time lag remains 321 

ambiguous, although it is more commonly used than the concept of relaxation time, which has a clear 322 

definition but lacks empirical evidence. As a consequence, we propose to use the temporal extent of 323 

a time lag to accurately define its duration, abandoning the concepts of equilibrium and relaxation 324 

time, given the temporal non-interruption of global changes during the Anthropocene.  325 

 326 

Our approach offers the possibility to assess the extent of a time lag associated with each individual 327 

predictor variable involved in explaining the contemporary distribution of a given species. For 328 

instance, we found that the distribution of European birds is strongly dependent on the historical 329 

extent of primary forests, whose decline takes longer to be paid off compared to the ongoing 330 

immigration credit to be spent following the historical increase in secondary forests. This result 331 

highlights that interacting land use changes threaten the resilience of communities, considering that 332 

some species preferentially present in primary forests are not adapted to colonize secondary forests 333 

that can have different compositional and structural characteristics (e.g., Sabatini et al., 2018; 334 

Lalechère et al., 2024). The long-lasting effects of global changes that we have found here advocate 335 

for reconsidering the debate on their relative importance taking into account the dependance of 336 

species to past environmental conditions (Lalechère et al., 2022; Thompson et al., 2023). We found 337 

larger temporal extents of time lags for precipitation compared to temperature. Time lags related to 338 

precipitation is rarely considered in the scientific literature. As a consequence, previously estimated 339 

time-lagged consequences of climate change may have been underestimated because most studies use 340 

the community temperature index to estimate time lags, while some results also highlight the 341 

importance of precipitation in habitat suitability (Devictor et al., 2012; Tehrani et al., 2021; 342 

Lajeunesse et al., 2023). 343 

 344 

Time lags can be artificially created by imperfect data, such as those caused by an inaccurate matching 345 
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between species observations, records in a database, environmental conditions and their averaging, 346 

especially when derived from model projections rather than from in situ measurements (Essl et al., 347 

2024). Here, we used land use projections from an Earth System Model that was harmonized for long-348 

term studies (LUH2; Hurtt et al., 2020). The inherent limitations (e.g., Goldewijk & Verburg, 2013) 349 

due to the coarse spatial resolution and the coarse definition of land-use classes, defined in global 350 

earth system and climatic models, may potentially affect the inferred parameters and the predictions 351 

we made in our study. Then, some inaccuracies and uncertainties can be associated to the inferred 352 

time lag parameters (Supplementary Information, Appendix S3). However, these limitations are 353 

unlikely to bias the relative differences we found between equilibrium and non-equilibrium SDMs. 354 

The extent of the time lags we report here is disproportionated (several decades or centuries) 355 

compared to the potential biases that may be introduced by these different sources of inaccuracy, 356 

excepting for temperature with time lags that are mostly of the order of several years. In this case, 357 

time lags that are very close to the lower or the upper limit of ∆𝑡 most likely indicates that the 358 

temporal extent of the temperature time series is too small for a proper inference of the lagging effect 359 

attributed to temperature changes (Arroyo‑Rodríguez et al., 2022). 360 

 361 

When compared with outputs from equilibrium SDMs, predictions from non-equilibrium SDMs 362 

allow us to assess the extinction debt and immigration credit (Haddou et al., 2022). We have shown 363 

that European bird communities are mostly affected by an extinction debt and not so much by an 364 

immigration credit. The extinction debt is particularly pronounced in boreal forests, which is 365 

consistent with the strong decline of primary forests therein. Overall, the immigration credit is mostly 366 

located in Mediterranean forests, the Caucasus and the mountainous areas north of the Caspian Sea, 367 

where secondary forests are increasing in cover. The presence of an extinction debt in some areas 368 

where secondary forests increase indicates an interaction between the progressive colonization of 369 

secondary forests and an ongoing decline of species with a low thermal tolerance due to increasing 370 
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temperature (Jiguet et al., 2010). These complex antagonistic interactions may have complicated the 371 

inference of the time lags related to temperature in areas with both delayed colonization and extinction 372 

dynamics. 373 

 374 

Few other studies have ever attempted to map the extinction debt and the immigration credit of 375 

biodiversity distribution (but see, Bertrand et al., 2016; Chen et al., 2017; Duchenne et al., 2021; 376 

Haddou et al., 2022). For example, Chen et al. (2017) mapped the delayed extinction patterns of entire 377 

communities at the global extent, analyzing their dependance to forest areas in a diachronic analysis 378 

that compared the 2000s against the 16th century. They showed that delayed extinctions did not 379 

overlap with hotspots of species richness or high extinction-risk areas based on IUCN threatened 380 

status. Focusing on avian biodiversity, Haddou et al. (2022) have mapped changes that have yet to be 381 

realized over the conterminous United States, pointing out areas of conservation concern. However, 382 

they recognize that non-equilibrium spatial patterns could be obtained by considering multiple time 383 

points over a longer time period in order to improve projections of past, current and future biodiversity. 384 

Our conceptual and modelling framework paves the way to fill this gap and to anticipate future 385 

projections of non-equilibrium biodiversity patterns using shared socio-economic pathways and land 386 

use projections. Indeed, the inference procedure in our non-equilibrium SDM is not based on a 387 

specific year or a specific temporal baseline period, but it accounts for time-series of past 388 

environmental conditions. Note that it can be also applied to time-series of biodiversity monitoring 389 

data to account for temporal variation in species distribution parameters in order to anticipate changes 390 

in time lags and species affinity to future environmental conditions. 391 

 392 

After establishing a proof of concept, one of the main perspectives of this study is to refine how 393 

species do or do not depend on past environmental conditions according to the model selection 394 

procedure. For example, this procedure could be fine-tuned considering alternative hypotheses about 395 
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the decrease of the effect size, in order to better model the dependance of current species to past 396 

environmental conditions. This can be especially true for temperature for which the temporal extent 397 

of time-lag effects is mostly shallow and vary little among species, while the literature indicates a 398 

strong variability according to species thermal tolerances (Jiguet et al., 2010). Model selection 399 

procedure can also be used to test if additional and potentially missing predictors could be identified 400 

to improve the balance of the predictive accuracy between presences and absences. However, the 401 

accessibility of long-term time series on environmental conditions is still very limited beyond land 402 

use and climate. Therefore, it would be necessary to adopt a mixed approach, by considering an 403 

equilibrium as well as a non-equilibrium hypothesis, depending on data accessibility of each predictor 404 

variable and not only based on the ecological significance. This can be easily done within the 405 

modelling framework we provide here by simply adding predictors that are invariant over time 406 

directly in Eq. 1. 407 

A second perspective is to test whether it is possible or not to identify the functional characteristics 408 

of the species which have contrasted time lag extents and which do not respond in the same way to 409 

the model selection procedure (Tobias et al., 2022). For example, we can expect that species with a 410 

short life expectancy or able to disperse at long distances are less sensible to past environmental 411 

conditions (Kitzes & Harte, 2015; Lalechère et al., 2017; Lalechère et al., 2019; Daskalova et al., 412 

2020; Couet et al., 2022). We could also expect time lags to be related to the trophic position of the 413 

species and impacted by cascading effects of cumulated time lags throughout the trophic food web, 414 

from primary producers to consumers, for example (Essl et al., 2015). 415 

A third perspective is to improve our non-equilibrium modelling framework with the integration of 416 

species dispersal kernels, or the spatial extent of effect of each individual drivers of biodiversity, that 417 

are two ways to account for spatial processes (Barbet-Massin et al., 2012; Miguet et al., 2017). In this 418 

study, the coarse spatial resolution of the bird’s atlas dataset had the advantage to limit spatial 419 

autocorrelation issues due to small-scale variation in environmental conditions. However, this coarse 420 
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spatial resolution can partly affect inference and predictions, by overlooking local microclimatic 421 

variation due to the buffering effect of vegetation, for example, which might also explain the small 422 

extent and variability of the time lags we found for temperature (Kim et al., 2022). Given that our 423 

approach is inspired by the concept of the spatial scale of effect, a logical follow-up would be to 424 

model spatiotemporal response curves to account for a decrease in the effect of a driver the further 425 

we go away, in space or time, from a given biodiversity survey. This perspective could pave the way 426 

to the inference of spatial and temporal extent of the effects, providing a common framework for 427 

multi-taxa analyses including species which do not respond to global changes at the same extents 428 

(Sandel, 2015). 429 

 430 

To conclude, we contribute to fill the gap of a conceptual and modelling framework adapted to study 431 

non-equilibrium species distribution in the context of gradual global changes. We propose to model 432 

the temporal extent of time lags that account for the full effects (95 %) of past global changes on 433 

current biodiversity. We found that it can reach several centuries, that is much more than previously 434 

reported in the scientific literature. Our non-equilibrium SDM approach revealed the spatial patterns 435 

of the mismatch of the species-environment relationships at large biogeographical extent. This 436 

approach, which challenges the concept of equilibrium, also has the important implication of making 437 

it unnecessary to define an arbitrary baseline time period to project the future distribution of species. 438 

 439 
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Figures 601 

 602 
 603 

Figure 1: Example of approaches and limits to model current species distributions in the context of 604 

gradual environmental changes (B, C) and how to circumvent these limits by using weighting 605 

functions that describe how the effects of past environmental factors decrease as we go back far into 606 

the past (A). 607 
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 608 

Figure 2: Decrease, as we go back in time (from the onset of 2015 for which ∆𝑡 = 0), of the effects 609 

of past land use and climate predictors on current bird species distribution in Europe. The grey curves 610 

depict the half-Gaussian weighting function (W) of the estimates for each species. The mean 611 

weighting functions (solid curve) and the mean temporal extent of the time lags (vertical dashed line) 612 

are depicted in green. The temporal extent of a time lag is the date at which me must go back into the 613 

past to account for 95 % of the effect that a given time series of past environmental conditions has on 614 

the current distribution of a species. For each predictor, the number of species considered varies 615 

slightly (77 species, 69 species, 63 species and 60 species for primary forest, secondary forest, 616 

precipitation and temperature, respectively) because we did not consider time lag parameters leading 617 
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to temporal extents that were larger than or equal to the maximum possible temporal extent available 618 

for the predictors (see Material and methods). The density plots represent the distribution of the 619 

temporal extents of the time lags. 620 

621 
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 622 

Figure 3: Stacked species distributions providing a richness map of current forest bird communities 623 

predicted by non-equilibrium species distribution models (SDMs, A) and the associated extinction 624 

debt (negative values, B) or immigration credit (positive values, B). In panel B, the colors depict the 625 

difference between the species richness as predicted by stacking all species binary maps based on the 626 

non-equilibrium SDM from that obtained by the equilibrium SDM. The extinction debt and the 627 

immigration credit are expressed in percent of the local, within a grid cell, total number of species 628 

predicted by equilibrium SDMs. The spatial resolution on the maps is 50 km. 629 

630 
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Supplementary Information 631 

 632 

Appendix S1: The bird species list. 633 

Using the European Breeding Bird Atlas (EBBA2), we selected the 92 species of birds whose habitat 634 

is classified as either forest or woodland according to Tobias et al. (2022). The use of a threshold of 635 

a minimum number of presences was unnecessary because the proportion of occupied EBBA2’s 636 

meshes was sufficient for all the 92 selected species (minimum proportion > 0.10 that is at least 508 637 

meshes out of 5079 for the whole study area). 638 

Table S1: Species list. 639 

 640 

Acanthis flammea 

Accipiter gentilis 

Accipiter nisus 

Aegithalos caudatus 

Aegolius funereus 

Anthus trivialis 

Asio otus 

Bombycilla garrulus 

Bonasa bonasia 

Carduelis carduelis 

Certhia brachydactyla 

Certhia familiaris 

Chloris chloris 

Ciconia nigra 

Circaetus gallicus 

Clanga pomarina 

Coccothraustes coccothraustes 

Columba oenas 

Columba palumbus 

Coracias garrulus 

Corvus corax 

Cuculus canorus 

Cyanistes caeruleus 

Dendrocopos leucotos 

Dendrocopos major 

Dendrocopos syriacus 

Dryobates minor 

Dryocopus martius 

Emberiza rustica 

Erithacus rubecula 

Falco columbarius 

Falco subbuteo 

Ficedula albicollis 

Ficedula hypoleuca 

Ficedula parva 

Fringilla coelebs 

Fringilla montifringilla 

Garrulus glandarius 

Glaucidium passerinum 

Hieraaetus pennatus 

Hippolais icterina 

Hippolais polyglotta 

Jynx torquilla 

Lanius collurio 

Leiopicus medius 

Lophophanes cristatus 

Loxia curvirostra 

Loxia pytyopsittacus 

Lullula arborea 

Luscinia megarhynchos 

Lyrurus tetrix 

Merops apiaster 

Milvus migrans 

Muscicapa striata 

Nucifraga caryocatactes 

Oriolus oriolus 

Otus scops 

Parus major 

Passer montanus 

Periparus ater 

Pernis apivorus 

Phoenicurus phoenicurus 

Phylloscopus bonelli 

Phylloscopus collybita 

Phylloscopus sibilatrix 

Phylloscopus trochiloides 

Phylloscopus trochilus 

Picoides tridactylus 

Picus canus 

Picus viridis 

Poecile montanus 

Poecile palustris 

Prunella modularis 

Pyrrhula pyrrhula 

Regulus ignicapilla 

Regulus regulus 

Scolopax rusticola 

Serinus serinus 

Sitta europaea 

Spinus spinus 

Streptopelia turtur 

Strix aluco 

Strix uralensis 

Sylvia atricapilla 

Sylvia borin 

Tetrao urogallus 

Troglodytes troglodytes 

Turdus iliacus 

Turdus merula 

Turdus philomelos 

Turdus pilaris 

Turdus viscivorus 
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Appendix S2: Spatial and temporal patterns of land uses and climate.  641 

 642 

 643 

Figure S1: Spatial patterns of land uses and climate in 2015. 644 

 645 
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 646 

Figure S2: Temporal patterns of land uses and climate conditions until 2015. Values are averaged 647 

over the whole study area. Time series begin in 852 and in 1852 for land uses and climate conditions, 648 

respectively. The historical data time series were pooled with the projections of a business-as-usual 649 

scenario (SSP2, RCP 4.5) that begins after 2005, or after 2015, for the CHELSA and the LUH2 time 650 

series, respectively (Karger et al., 2019; Hurtt et al., 2020). 651 

  652 



33 

Appendix S3: Comparison between simulated and inferred time lag parameters. 653 

 654 

To illustrate the capability of our non-equilibrium species distribution modelling (SDM) approach to 655 

capture the slope estimates (βj) and the time lag (𝛾𝑗) parameters of a lagging response to a given 656 

predictor variable j, we performed a simulation exercise by focusing on multiple reference species. 657 

First, the slope and the time-lag parameters (Eq. 1) we inferred from the bird species dataset (EBBA2), 658 

using our non-equilibrium SDM approach, were considered as the reference or the target (i.e., the 659 

“true parameters”, Fig. S3) to rely on realistic parameter combinations. For each predictor, the 660 

number of species considered varies slightly (77 species, 69 species, 63 species and 60 species for 661 

primary forest, secondary forest, precipitation and temperature, respectively) because we did not 662 

consider time lag parameters leading to temporal extents that were larger than or equal to the 663 

maximum possible temporal extent available for the predictors (see Material and methods). Then, for 664 

the sake of comparison between our simulations and the empirical observations, we used the exact 665 

same set of environmental predictors (i.e., long-term time series of changes in forest cover and climate 666 

conditions at a yearly resolution) and we focused on the exact same study area (i.e., Europe) as for 667 

the bird data. For each combination of true parameters (i.e., each  bird reference species), we 668 

generated 30 replicates of 5079 predicted occurrences (across the entire study area), using the 669 

predicted probability of presence of each species as obtained from the non-equilibrium SDM fitted 670 

with the empirical data. From these simulated set of occurrences available for each of the reference 671 

species, we fitted 30 replicates of non-equilibrium SDMs from which we extracted the estimated 672 

slope and time-lag parameters (30 sets for each reference species). Finally, we used a linear regression 673 

to evaluate both the accuracy and the uncertainty of the estimated parameters using the median values 674 

of the 30 replicates for a given species. We found that the true slope parameters (those we used to 675 

perform the simulations), for the four predictor variables, were retrieved by our non-equilibrium 676 

inference procedure with a very large accuracy and a very small uncertainty (R² ≥ 0.99, Fig. S4). This 677 
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was also true for the time-lag parameter associated with primary forests (R² = 0.97, Fig. S4), while 678 

the accuracy and the uncertainty associated to the time-lag parameters of the other predictor variables 679 

were smaller and larger, respectively (R² ≥ 0.7, Fig. S4). 680 

 681 

Figure S3: Summary of the procedure used to assess the capacity of the non-equilibrium modelling 682 

approach to recover the original parameter values set in the model formula (Eq. 1). The procedure is 683 

depicted for all reference species and one covariate j, for which we know the true values associated 684 

with the slope (βj) and the time-lag (𝛾𝑗 ) parameters. The accuracy and the uncertainty of the 685 

parameters, inferred from the non-equilibrium approach, are assessed from a linear regression line (in 686 

blue), the 95 % confidence intervals (in gray), the coefficient of determination (R²), and by comparing 687 

the regression line with the 1:1 line (in red).  688 

 689 
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 690 

Figure S4: Relationship between the true and the inferred slope (βj) and time lag (𝛾𝑗) parameters. The 691 

R² value is the coefficient of determination, the blue line is a regression line with confidence intervals 692 

in gray, and the red line is the 1:1 line. 693 

  694 
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Appendix S4: Model estimates and distribution of the residual errors. 695 

 696 

  697 

Figure S5: Distribution of the estimates of the predictors for the equilibrium and the non-698 

equilibrium models. 699 

 700 
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 701 

Figure S6: Comparison between the slope parameters of the predictors (βj) for the equilibrium and 702 

the non-equilibrium models. The larger the time lags and the more the discrepancies between the 703 

two models. 704 

  705 
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 706 

Figure S7: Validity of the non-equilibrium models according to the distribution (A) and the spatial 707 

autocorrelation (B) of the residual errors. The residual errors (A) were calculated with the R resid 708 

function and pooled here among all the non-equilibrium species distribution models (SDMs), for 709 

clarity purpose. The Moran’s I indices were calculated by distance classes for each species and then 710 

pooled (B). The pooled residual errors followed a normal distribution centered on zero (mean = 0.000, 711 

SD = 0.365, Student’s t = 0.000, p-value > 0.05) such as for the pooled distribution of the Moran’s I 712 

index (mean = 0.003, SD = 0.14; Student’s t = 0.893, p-value > 0.05).  713 


