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Résumé. Dans le domaine du traitement d’images, les modèles de diffusion du
débruitage (DDPM) ont gagné en popularité pour leur capacité à modéliser les distri-
butions de données complexes tout en permettant une génération réaliste d’images. Ces
modèles reposent sur deux étapes principales : une phase de diffusion directe où les im-
ages sont graduellement corrompues par du bruit gaussien, suivie d’une étape de décodage
inverse où les images bruitées sont débruitées étape par étape à l’aide d’un réseau de neu-
rones. Dans ce travail, nous proposons une extension du modèle DDPM en introduisant
une version conditionnelle qui prend en compte l’appartenance des images à différents
groupes. Cette approche permet de mieux capturer la structure sous-jacente des données
en tenant compte de leur regroupement naturel. Concrètement, le modèle repose sur
l’hypothèse que les images sont réparties en Q groupes, et chaque image est modélisée
comme provenant d’une distribution conditionnelle sur les groupes. Un réseau de neurones
est ensuite entrâıné pour prédire le bruit à supprimer lors de la génération des images, en
fonction de leur appartenance à un groupe.

L’inférence dans ce modèle complexe est effectuée à l’aide d’un algorithme de type EM
variationnel, qui permet d’estimer de manière efficace les paramètres de regroupement et
les variables latentes. Cependant, l’optimisation des paramètres du réseau de neurones
pose des défis supplémentaires, nécessitant l’utilisation de techniques avancées comme la
descente de gradient stochastique. En combinant les avantages des modèles de diffusion
du débruitage avec une approche de clustering conditionnelle, cette méthode ouvre de
nouvelles perspectives dans le domaine de l’apprentissage automatique et du traitement
d’images, offrant des outils puissants pour l’analyse et la génération de données visuelles
complexes.
Mots-clés. Modèles de diffusion du débruitage, traitement d’images, algorithme EM,
descente de gradient stochastique, inférence variationnelle.

Abstract. This document presents an innovative method for clustering image data
while learning to generate new images. In the field of image processing, denoising diffusion
probabilistic models (DDPMs) have gained popularity for their ability to model complex
data distributions while enabling realistic image generation. These models rely on two
main steps: a forward diffusion phase where images are gradually corrupted by Gaussian
noise, followed by a reverse decoding step where the noisy images are denoised step by
step using a neural network. In this work, we propose an extension of the DDPM model
by introducing a conditional version that takes into account the membership of images
to different clusters. This approach allows for better capturing the underlying structure
of the data by considering their natural grouping. Specifically, the model is based on the
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assumption that images are distributed into Q clusters and that each image is modeled
as coming from a conditional distribution over the clusters. A neural network is then
trained to predict the noise to be removed during data generation, based on the image
membership to a specific cluster. Inference in this complex model is performed using a
variational EM-type algorithm, which efficiently estimates the clustering parameters and
latent variables. However, optimizing the parameters of the neural network poses addi-
tional challenges, requiring the use of techniques such as stochastic gradient descent.
By combining the advantages of denoising diffusion models with a conditional clustering
approach, this method opens up new perspectives in the field of machine learning and
image processing, providing powerful tools for the analysis and generation of complex
visual data.
Keywords. Diffusion probabilistic models, variational inference, expectation-maximisation
algorithm (EM), image processing, stochastic gradient descent.

1 Introduction

In recent years, generative models have made significant strides in generating human-
like natural language, high-quality synthetic images and diverse human speech and music.
These models find applications in various domains, such as generating images from text
prompts or learning useful feature representations. Despite their ability to produce realis-
tic outputs, there remains ample room for improvement in generative models, which could
have broad implications across graphic design, gaming, music production and beyond.
Generative adversarial networks (GAN) (Creswell et al., 2018) recently led the field of
image generation tasks, as measured by metrics like FID (Fréchet inception distance), in-
ception score and precision used to evaluate the quality and diversity of generated images.
However, GANs often struggle with diversity and can be challenging to train effectively,
requiring careful tuning of hyper-parameters and regularizers. While likelihood-based
models offer advantages in terms of diversity and ease of training, they still fall short in
visual fidelity compared to GANs. Diffusion models, a class of likelihood-based models,
have shown promising results in producing high-quality images with desirable properties
such as distribution coverage and scalability. As shown in Dhariwal and Nichol, 2021, they
can outperform GANs in the context of image processing. Here we propose to condition
the diffusion process to the assignment to a cluster of the images and we believe that this
can improve the efficiency of the generation while learning a way to cluster the images.

2 Conditional diffusion probabilistic model for the

clustering of images

2.1 Denoising diffusion probabilistic models

A denoising diffusion probabilistic model (DDPM) (Ho, Jain, and Abbeel, 2020) makes
use of two Markov chains: a forward chain that perturbs data to noise and a reverse chain
that converts noise back to data. The former is typically hand-designed with the goal
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to transform any data distribution into a simple prior distribution (e.g., standard Gaus-
sian), while the latter Markov chain reverses the former by learning transition kernels
parameterized by deep neural networks. New data points are subsequently generated by
first sampling a random vector from the prior distribution, followed by ancestral sampling
through the reverse Markov chain. Formally, given a target data distribution x0 ∼ q⋆(x0),
the forward Markov process generates a sequence of random variables x1, x2 . . . , xT with
transition kernel q(xt|xt−1). Using the chain rule of probability and the Markov prop-
erty, we can factorize the joint distribution of x1, x2, . . . xT conditioned on x0, denoted as
q(x1, . . . , xT |x0), into

q(x1, ..., xT |x0) =
T∏
t=1

q(xt|xt−1). (1)

In DDPMs, we handcraft the transition kernel q(xt|xt−1) to incrementally transform the
data distribution q⋆(x0) into a tractable prior distribution. One typical design for the
transition kernel is Gaussian perturbation and the most common choice for the transition
kernel is

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βt · ID), (2)

where D is the dimensionality of the data x0 and βt ∈ (0, 1) is a hyper-parameter chosen
ahead of model training. This kernel is the most used, although other types of kernels are
also applicable in the same vein. Specifically, with αt = 1−βt and ᾱt =

∏t
s=1 αs, we have

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt) · ID). (3)

Given x0, we can easily obtain a sample of xt by sampling a Gaussian vector ϵ ∼ N (0, ID)
and applying the reprametrisation trick:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ. (4)

When ᾱT ∼ 0 (true for high values for T ), xT follows a Gaussian white noise q(xT ) ≃
N (XT ; 0, ID). Intuitively, this forward process slowly injects noise to data until all struc-
tures are lost.
For generating new data samples, DDPMs start by first generating an unstructured noise
vector from the prior distribution (which is typically trivial to obtain), then gradu-
ally remove noise by running a learnable Markov chain in the reverse time direction.
Specifically, the reverse generative Markov chain is parameterized by a prior distribu-
tion p(xT ) = N (XT ; 0, ID) and a learnable transition kernel pθ(xt−1|xt). This learnable
transition kernel takes the form of

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (5)

where θ denotes model parameters and the mean µθ(xt, t) and variance Σθ(xt, t) are pa-
rameterized by a deep neural networks. With this reverse Markov chain in hand, we can
generate a data sample x0 by first sampling a noise vector xT ∼ p(xT ), then iteratively
sampling from the learnable transition kernel xt−1 ∼ pθ(xt−1|xt) until t = 1.
Key to the success of this sampling process is training the reverse Markov chain to match
the actual time reversal of the forward Markov chain. That is, we have to adjust the pa-
rameter θ so that the joint distribution of the reverse Markov chain pθ(x0, . . . xT ) closely
approximates that of the forward process q(x0, . . . xT ). This is achieved by minimizing
the Kullback-Leibler (KL) divergence between these two:

L = KL(pθ(x0, . . . xT )||q(x0, . . . xT )). (6)
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To sum up, diffusion models are powerful generative models that work by gradually adding
noise to a latent representation of the data and then inverting the process to reconstruct
the data. This process can be used to create realistic images, even when the latent
representation is simple. A major question is whether diffusion models are flexible enough
to be adapted to the clustering field or not.

2.2 Our contribution: mixture of denoising diffusion probabilis-
tic models

Mixture models are a powerful statistical technique used in machine learning and data
analysis, particularly for the purpose of clustering. Clustering is the process of grouping
similar data points together, where the similarity between data points is defined based on
certain characteristics or features. Through this section, we build a mixture of denoising
diffusion probabilistic models for the aim of images clustering.
Let us suppose that the train dataset is gathered into a matrix {X0

i }i≤N corresponding
to a collection of images regrouped into Q types (clusters). Each line X0

i of the matrix
X0 is a flattened image in RD. N denotes the number of images considered and D is the
number of pixels.

Generative model:
We posit the following distribution for the data:

p(X0|µ, θ, π) =
N∏
i=1

Q∑
q=1

πqpθ(X
0
i |µq), (7)

where π = (πq)q denotes the mixture proportions (the probability that an image is drawn
following the q-th component of the mixture), µq corresponds to the mean of the prior
Gaussian distribution of the q-th diffusion model and pθ refers to a conditional diffusion
model (Lu et al., 2022). Indeed we suppose that the diffusion process (the way noise
is added to images) is specific to each cluster. Clustering arises from this probabilistic
formulation with the introduction of an unobserved random variable Zi ∈ {0, 1}Q such
that Ziq = 1 if and only if the image i belongs to the q-th component. Zi is supposed to
be drawn following a multinomial distribution of parameter π

Zi
iid∼ Multinomial(1, π = (π1:Q)), ∀i ∈ {1, . . . , N}. (8)

The corresponding partition Z = {Zi} is then considered as the set of discrete latent
variables which are to be estimated, along with the model parameters. Traditionally the
posterior distribution of Z is estimated by an expectation-maximization algorithm (EM)
through variational inference.
Hence the conditional distribution of the i-th image given Zi is:

X0
i |Ziq=1 ∼ pθ(·|µq).

Instead of generating image directly from latent noise as done in variational auto-encoders
(Kipf and Welling, 2016), we construct the image sequentially. We begin by introducing
for each image i, T ∈ N⋆ latent variables X1:T

i such that X0:T
i conditioned to Z is a reverse
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time Markov chain with transition kernel pθ(X
t−1
i |X t

i , µq). Hence:

pθ(X
0:T
i |Z, µ) =

Q∏
q=1

(
p(XT

i )
T∏
t=1

pθ(X
t−1
i |X t

i , µq)

)Ziq

, (9)

where
p(XT

i ) = N (XT
i ; 0, ID) and

pθ(X
t−1
i |X t

i , Ziq = 1, µq) = N (X t−1
i ;µθ(X

t
i , t, µq), δ̄t · ID),

(10)

with µθ a neural network and δ̄ > 0 an hyper-parameter.
We point out that the reverse transition kernel now also depends on the cluster means µq.
This assumption seems natural, since we start with a white noise and want to generate
images of a certain type.

3 Inference

The complete-data log-likelihood is computed by integrating on all the latent variables,
giving:

log pθ(X
0) = log

[∑
Z

∫
X1,...,XT ,

pθ(X
0, . . . , XT , Z)dX1 . . . dXT

]
, (11)

where , X t := (X t
i )i for all t and all i.

Unfortunately, the above log-likelihood is untractable. To tackle this problem, we rely on
variational inference. We introduce a variational posterior distribution q(·) on the latent
variables that factorizes as:

q(X1, . . . , XT , Z|X0) = q(X0, . . . , XT |Z,X0) · q(Z)

=
N∏
i=1

qi(Zi)

Q∏
q=1

(
T∏
t=1

q(X t
i |X t−1

i , µq)

)Ziq

,
(12)

where
qi(Zi) := M(Zi; 1, τi), (13)

and

q(X t
i |X t−1

i , µq) = N
(
X t

i ;
1−mt

1−mt−1

√
αtX

t−1
i +

(
mt −

1−mt

1−mt−1

mt−1

)√
ᾱtµq, δt|t−1ID

)
,

(14)

with δt|t−1 = δt −
(

1−mt

1−mt−1

)2
, δt = (1− ᾱt)

2 −m2
t ᾱt and m0 ≃ 0 ≤ · · · ≤ mT ≃ 1.

As it can be seen, the model is flexible enough to introduce noise in distinct ways based on
cluster membership. What sets our approach apart is the unconventional aspect of both
the variational and generative distributions being governed by the same parameter µ.
However we need both the forward and reverse process (i.e. from image to noise) to be
cluster-dependant.

q(X t
i |X0

i , µq) is computed by marginalisation w.r.t the intermediate latent variables, re-
sulting into

q(X t
i |X0

i , Ziq = 1, µq) = N (X t
i ; (1−mt)

√
ᾱtX

0
i +mt

√
ᾱtµq, δtID). (15)
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Here the mean of the Gaussian distribution is an interpolation of the original image and
the cluster mean. The interest of this formula can be outlined by the reparametrization
trick:

XT
i = (1−mT )

√
ᾱTX

0
i +mT

√
ᾱTµq +

√
δtηT ,

where ηT ∼ N (0, ID).
Given that mT ≃ 1 and αT → 0, it follows that XT

i behaves nearly like white noise,
denoted as XT

i ≃ ηT . This result is coherent with p(XT
i ) = N (XT

i ; 0, ID).

If we inject the variational distribution into the untractatable log-likelihood, we obtain:

log pθ(X
0) = log

[∑
Z

∫
X1,...,XT

pθ(X
0, . . . , XT , Z)

q(X1, . . . , XT , Z|X0)
· q(X1, . . . , XT , Z|X0)dX1 . . . dXT

]

= logEX1,...,XT ,Z∼q(·|X0)

[
pθ(X

0, . . . , XT , Z)

q(X1, . . . , XT , Z|X0)

]
.

(16)
Since log is concave, the Jensen inequality gives:

log pθ(X
0) ≥ EX1,...,XT ,Z∼q(·)

[
log

pθ(X
0, . . . , XT , Z)

q(X1, . . . XT , Z|X0)

]
=: L(θ, µ, τ, π). (17)

We have derived one variational lower bound L(·) from the marginal log-likelihood, we
now proceed by optimising the lower bound w.r.t. the parameters.

Optimisation

In this subsection, we delve into the optimization process for our model. We start by
presenting a theorem that decomposes the variational lower bound.

Proposition 1. The variational lower bound can be decomposed as following:

L(·) =
∑
i,q

τiq

[
−1

2

∣∣∣∣√ᾱTµq

∣∣∣∣2
2
−
∑
t>1

EXt

[
1

2δ̄t
(
∣∣∣∣µ̃(X t

i , X
0
i , µq)− µθ(X

t
i , t, µq)

∣∣∣∣2
2
)

]
+ log πq − log τi,q

]
+
∑
i,q

τiqEX1 log pθ(X
0
i |X1

i , µq)

(18)
where

EXt
∆
= EXt∼q and

µ̃(X t
i , X

0
i , µq) =

1−mt

1−mt−1

δt−1

δt

√
αtX

t
i + (1−mt−1)

δt|t−1

δt

√
ᾱt−1X

0
i

+

(
mt−1δt −

mt(1−mt)

1−mt−1

αtδt−1

) √
ᾱt−1

δt
µq.

(19)

Note that by setting β1 to a very small value,one has X1
i ∼ X0

i so that the last term
of L can be neglected.
Moreover, sinceX t

i |X0
i ∼ N ((1−mt)

√
ᾱtX

0
i +mt

√
ᾱtµq; δtID), then we can re-parameterise

X t
i as:

X t
i = (1−mt)

√
ᾱtX

0
i +mt

√
ᾱtµq +

√
δtϵt where ϵt ∼ N (0, ID).
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Then any expectation with respect to X t
i can be transformed to an expectation with

respect to the couple (X0
i , ϵt) (the proof of this can easily be obtained by a change of

variable on the integral).
Now we have to fix an architecture for the neural network µθ.

Architecture of µθ:
Notice that the optimal value for µθ(X

t
i , t, µq) is µ̃(X

t
i , X

t
i , µq) (in Eq 19)

As µθ allows us to remove the correct amount of noise to pass from latent image X t
i to

X t−1
i and given that this later was added linearly in the forward process (see the functional

form of q(X t
i |X t−1

i )), we suppose that µθ has the following functional form:

µθ(X
t
i , t, µq) = cXtX t

i + cµqµq + cηθηθ(X
t
i , t, µq)

where ηθ is a neural network and

cXt =
1−mt

1−mt−1

δt−1

δt

√
αt + (1−mt−1)

δt|t−1

δt

1
√
αt

.

cµq =

(
mt−1δt −

mt(1−mt)

1−mt−1

αtδt−1

) √
¯αt−1

δt
.

cηtθ = −(1−mt−1)
δt|t−1

δt
√
αt

√
1− ᾱt.

After some calculations, one gets

µ̃− µθ = cηt

(
1√

1− ᾱt

(
mt

√
ᾱt(µq −X0

i ) +
√
δtϵt

)
− ϵθ

)
. (20)

Hence

L ≃
∑

i,q τiq

[
−1

2
||
√
ᾱTµq||22 −

∑
t>1EX0

i ,ϵ

[
c2ηt
2δ̄t

∣∣∣∣∣∣ 1√
1−ᾱt

(
mt

√
ᾱt(µq −X0

i ) +
√
δtϵt
)
− ηθ

∣∣∣∣∣∣2
2

]
+ log πq − log τi,q

]
(21)

3.1 Variational EM algorithm

Proposition 2. The optimal updates of τiq (E-step) and πq (M-step) are given by:

τiq =
πq exp

(
− 1

2
||
√
ᾱTµq ||22−

∑
t>1

1
2δ̄t

fθ,i,t,q−1
)

∑Q
q=1 πq exp

(
− 1

2
||
√
ᾱTµq ||22−

∑
t>1

1
2δ̄t

fθ,i,t,q−1
) ,

πq =
Nq

N
,

(22)

where Nq =
∑

i τiq and

fθ,i,t,q = EXt
i

∣∣∣∣µ̃(X t
i , t, µq)− µθ(X

t
i , t, µq)

∣∣∣∣2
2

= EX0
i ,ϵt

[[
c2ηt
2δ̄t

∣∣∣∣∣∣∣∣ 1√
1− ᾱt

(
mt

√
ᾱt(µq −X0) +

√
δtϵt

)
− ϵθ(M(X0

i , t, ϵt), t, µq)

∣∣∣∣∣∣∣∣2
2

]]
,

with M(X0
i , t, ϵt) = (1−mt)

√
ᾱtX

0
i +mt

√
ᾱtµq +

√
δtϵt.
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To optimize the model’s parameters (M-step), we employ the VB-EM algorithm, as
outlined in (Kipf and Welling, 2016), which is described in Algorithm 1.

We can see that the exact value of τiq cannot be explicitly determined due to the
expectation inside fθ,i,t,q.

4 Conclusion

We have demonstrated the potential extension of diffusion models, a class of likelihood-
based models with a stationary training objective, to the clustering field, akin to numerous
other generative models. Unfortunately, due to time constraints and the unresolved issue
regarding τiq, experimental validation was not feasible within this study. However, we
intend to present these experiments directly during the presentation should our paper be
accepted, providing a more comprehensive evaluation of our approach.

Algorithm 1: Training algorithm

while not convergence, for each step k do
For i = 1, . . . N
For q = 1, . . . Q
Compute τ kiq and πk

q according to Equation 22
For l = 1, 2, . . . Niter do
For q = 1, . . . Q do
Sample t ∼ Uniform{1, . . . T}, ϵt ∼ N (0, ID) and i ∼ Uniform{1, . . . N}
Compute X t

i = (1−mt)
√
ᾱtX

0
i +mt

√
ᾱtµq +

√
δtϵt

Take gradient step on

∇θ,µqτiq

[∣∣∣∣∣∣∣∣ 1√
1− ᾱt

(
mt

√
ᾱt(µq −X0

i ) +
√
δtϵt

)
− ηθ(X

t
iq, t, µq)

∣∣∣∣∣∣∣∣2
2

+
ᾱT

2
||µq||22

]
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