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1
MORE Departement, Orange Labs, Paris, France

2
LAMSADE, Université Paris Dauphine, Paris,

France

3
Information System, Decision Science and

Statistics Departement, ESSEC Business School,

Cergy, France

Correspondence
Ahlam Mouaci, Orange Innovation, Paris, France.

Email: mouaci.ahlam@gmail.com

Abstract
Given a bi-directed graph modeling a telecommunication network, and a set of

origin-destination pairs representing traffic requests (commodities) along with their

associated Service Function Chains (SFCs), the Virtual Network Function Place-

ment and Routing Problem (VNFPRP) aims to find, for each commodity, one

latency-constrained routing path that visits the required Virtual Network Func-

tions in a specific order. The function installation costs together with the node

activation costs have to be minimized. In this paper, we present two extended

Mixed Integer Programming (MIP) formulations to model the VNFPRP. For each

formulation we define the master problem, the pricing problem, the associated

Lagrangian bound and a specific branching scheme, in order to derive an efficient

Branch-and-Price algorithm. We also provide several families of valid inequalities to

strengthen the LP-relaxation bounds. Computational results are reported comparing

the performance of the two Branch-and-Price algorithms with a compact MIP formu-

lation and its Branch-and-Benders-cut implementation on a set of SNDlib instances

representing telecommunication networks.

KEYWORDS
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1 INTRODUCTION

The Virtual Network Function Placement and Routing Problem (VNFPRP) is a topical problem in the design of 5G networks. In

this problem, we are given a telecommunication network, a set of Virtual Network Functions (VNFs), which correspond to soft-

ware that can be installed on-demand at network nodes. In addition, we are given a set of customer demands (also called traffic

requests or commodities) asking for services like video streaming, virtual private network (VPN), or on-line gaming. Each cus-

tomer demand has to be treated by a given subset of VNFs in a given order, defined by a Service Function Chain (SFC). SFC is a

sequence of VNFs that should be traversed by a given service flow in a predefined order [26]. For example, the network admin-

istrator may specify a policy that all http traffic should follow the policy chain: “firewall → IDS → proxy” [20].

The infrastructure around VNFs requires a system that performs central orchestration and management of traffic requests,

making sure that the traffic is routed in such a way that service function chaining constraint is respected.

This is achieved with the Software Defined Networking (SDN) technology [6]. Thanks to VNFs and SDN, the telecommuni-

cation networks are becoming dynamic and programmable. Moreover, VNFs and SDN help facilitate the service management,

minimize the service installation and management costs, and decrease deployment delays.

The VNFPRP studied in this paper consists of determining: (a) the optimal installation of VNFs at the network nodes, and

(b) the routing of each traffic demand through a latency-constrained path satisfying the SFC constraints. The costs for activating
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network nodes and installing VNFs on them have to be minimized. Further constraints can be considered, such as node and

VNF capacities, or conflicts between VNFs when installed at the same node.

In this paper, we consider the following assumptions:

• There is sufficient link capacity in the existing network to handle all traffic requests, due to the fact that we are dealing

with the tactical planning rather than with strategic network design (in which the link capacities are designed according

to anticipated traffic requests).

• The routing paths should be elementary (without circuits) to avoid the network loops.

• Each commodity requires the installation of at least one VNF (otherwise, without loss of generality, these commodities

can be eliminated in a pre-processing phase). There is a (partial) order imposed between VNFs that need to be installed

for each commodity.

• Multiple (heterogeneous or the same) VNFs can be installed at the same node in the network.

• A commodity can use the capacity of multiple copies of the same VNFs in the same node.

In this paper we deal with a variant of the VNFPRP, in which we relax the link capacity constraints based on the assumption

cited before. Furthermore, allowing creation of only elementary paths, aims to minimise the arcs utilization, which is considered

as an objective function in multiple earlier works. We consider also node and VNFs capacity constraints which were relaxed

in our previous work [21], in order to reduce the resolution time. We notice also that adding these constraints in the model

proposed in Reference [21] will in any case change the characteristics of the proposed model, but will just generate new solutions

more suited for the original version of problem. Also, this will allow us to compare both works and see which decomposition is

better for this type of problems. The version of the problem considered in this paper includes most of the technical constraints

encountered by operational teams in a real-world setting. As a result, its resolution is very challenging. To the best of our

knowledge, the decomposition methods we propose have not been investigated before for the VNFPRP.

Our contribution. Previous papers related to the VNFPRP mainly rely on compact MIP formulations and heuristics (see,

e.g., References [1-3, 13, 15, 30]). These studies show that the computational performance of compact formulations is fairly

limited, mainly because of their relatively weak LP-relaxation bounds. In this work, to enhance the capabilities of finding

exact solutions for larger instances of practical relevance, we propose two extended MIP formulations for the VNFPRP. In

both formulations, we consider an extended variable space admitting an exponential number of variables which allows us to

develop tighter MIP reformulations.

The first reformulation (denoted as PF) was proposed in Reference [25], where it was used for deriving a heuristic approach.

In the current paper, we provide a branch-and-price algorithm to solve exactly this PF model. Therein, we separate the VNF

placement problem, which is treated at the master level, from the routing problem, which is solved separately for each com-

modity in the pricing problem. The second extended formulation (denoted as DW) is an extended formulation obtained from an

alternative Dantzig-Wolfe decomposition approach. The problem is decomposed per commodity in such a way that: the mas-

ter problem ensures that exactly one path with its associated VNF installations is chosen for each commodity, and that node

and VNFs capacity constraints are satisfied. The routing and VNF placement constraints associated with each commodity are

managed in the pricing problems. In order to improve the LP-relaxation bounds of our formulations, new families of valid

inequalities are also proposed. All these elements are combined in two efficient Branch-and-Price algorithms.

Closely related to the VNFPRP is a problem that we studied in Reference [21], where the VNF installation costs are

paid per commodity, whereas in this paper they are paid per VNF. Moreover, in Reference [21], different capacity con-

straints were considered. For that problem variant, we proposed in Reference [21] a compact flow-based formulation and a

Branch-and-Benders-cut approach derived from projecting out flow variables. In the current work, we adapt the compact MIP

formulation and the Branch-and-Benders-cut approach in order to cope with additional constraints and the modified objective

function given by the VNFPRP. In our detailed computational study, the latter two approaches are compared against to the two

Branch-and-Price algorithms.

The LP-relaxation bounds of the two extended formulations dominate the respective bounds of the compact formulation

and its Benders reformulation. This is also confirmed by our empirical study which also shows that the strongest bounds among

all four formulations are obtained with the model DW. Our study also reveals that the formulation DW suffers from a trade-off

between the strength of the obtained bounds and the computational time needed for solving the pricing problem.

Outline of the paper. In Section 2, we introduce the main notation, provide the formal problem definition and give an

overview of the related literature. In Sections 3 and 4, we present the two extended formulations, we discuss the associated

pricing problems, detail the computation of the Lagrangian bound and present branching schemes. In Section 5, we provide a

set of valid inequalities that aim to strengthen the LP-relaxation bounds. In Section 6, we provide implementation details of the

Branch-and-Price (B&P) algorithms for each formulation.

In Section 7, we discuss the obtained numerical results and we conclude the paper with some remarks and perspectives in

Section 8. More detailed computational results are available in the Appendix.
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34 MOUACI ET AL.

2 PROBLEM DEFINITION AND RELATED WORK

Notation. The telecommunication network is modeled as a bi-directed graph G = (N,A). The set of all physical locations

equipped with hardware devices allowing VNFs installation is denoted by N, and called the set of nodes. The set repre-

senting all directed links between nodes is called the set of arcs, and is denoted by A. At each node u ∈ N at most cu
(cu ∈ N) VNFs can be installed, and an activation cost 𝜓u > 0 has to be paid. The arc latency luv > 0 is defined for each

arc (u, v) ∈ A.

Let F denotes the set of all virtual network functions. Each VNF f ∈ F has a limited (bandwidth) capacity mf to manage

the traffic demand. For installing a single copy of f at a node u ∈ N, an installation cost 𝜓
f
u > 0 has to be paid. For the set of all

traffic requests/commodities, denoted by C, each commodity k ∈ C is characterized by: a source node, sk; a destination node,

𝑑k (sk ≠ 𝑑k); a bandwidth bk > 0; a maximum latency value lk > 0; a subset of VNFs, Fk
⊆ F, and a set of incompatibility

constraintsk
between VNFs. Recall that each commodity requires a specific Service Function Chain to handle its data packages

in a specific (possibly partial) order. The fact that the VNF f has to be executed before VNF g in the path associated to the

commodity k is expressed by f ≺k g. Table 1 summarizes all the notation.

Definition 1 (VNFPRP). The Virtual Network Function Placement and Routing Problem consists of finding for
each commodity k ∈ C, the placement of VNFs f ∈ Fk at nodes, and the routing paths so that the sum of the VNF
installation costs 𝜓 f

u plus the sum of node activation costs 𝜓u is minimized. The following constraints have to be
satisfied:

• Node-capacity constraints: each node u ∈ N has an installation capacity cu, which means that the number of
VNFs installed at u should not exceed cu.

• VNF-capacity constraints: each VNF f ∈ F has a capacity mf to manage the amount of data. The sum of
bandwidths handled by one copy of f should be at most mf .

• Routing constraints: the sk − 𝑑k routing path associated with each commodity k ∈ C should be elementary.

• End-to-end latency constraints: the sum of arc latencies belonging to the routing path of each commodity
k ∈ C should not exceed the given latency limit of lk.

• Installation constraints: each VNF f ∈ Fk required for commodity k ∈ C should be installed at one of the
nodes of the routing path.

• Precedence constraints: for each commodity k ∈ C, the VNFs composing its Service Function Chain should be
traversed in the right order by the routing path.

• Conflict constraints (also called anti-affinity/incompatibility constraints): For each k ∈ C, two functions f and
g which are in conflict (i.e., {f , g} ∈ k) cannot be installed at the same node. These constraints are generally
used to reduce the impact of an infrastructure failure [9].

TABLE 1 Main notation, parameters, and sets

Sets

N : Set of all nodes.

A : Set of all arcs.

C : Set of all commodities (traffic requests).

F : Set of all Virtual Network Functions.

(Fk
, ≺k) : (Partially) ordered set of VNFs associated with commodity k, k ∈ C.

k
: Set of pairs of VNFs which are in conflict for commodity k, k ∈ C.

Parameters

mf : Capacity of VNF f , f ∈ F.

cu : Capacity of node u, u ∈ N.

luv : Latency of link (u, v),(u, v) ∈ A.

𝜓

f
u : Installation cost of VNF f at node u, f ∈ F, u ∈ N.

𝜓u : Activation cost of node u, u ∈ N.

sk : Source node for commodity k, k ∈ C.

𝑑k : Destination node for commodity k, k ∈ C.

lk : Maximum latency of commodity k, k ∈ C.

bk : Bandwidth of commodity k, k ∈ C.
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MOUACI ET AL. 35

In our previous work, we have shown the following result:

Theorem 2.1 ([21]). The VNFPRP is strongly NP-hard, even without latency, capacity and precedence constraints
and with a single commodity.

2.1 Related work
In the context of SDN and VNFs, the major decision problem consists of finding an optimal installation of VNFs, so that the

given traffic requests can be routed within the given network infrastructure while respecting the SFC constraints [1, 14, 22,

23]. Many different variations of the problem have been studied in the recent literature. When it comes to the definition of the

objective function, some authors consider non-linear objective functions, others are minimizing the utilization of the network

elements (like the number of links involved), and others are minimizing the VNF installation costs. In the sequel, we provide

an overview of the existing literature.

In Reference [21], we have studied a variant of the VNFPRP, where the VNF installation costs are paid per commodity,

instead of being paid per VNF (as in the current paper) and with slightly different capacity constraints. We proposed a com-

pact flow-based MIP formulation to model the problem and provided theoretical results that allowed us to reformulate the

problem using Benders decomposition. We also introduced additional valid inequalities and a MIP-based heuristic, the per-

formance of which we studied in Reference [25]. We combined all these ingredients in a Branch-and-Benders-Cut framework

and tested it on two sets of (realistic and randomly generated) benchmark instances. The obtained results have shown that this

algorithm outperforms the compact MIP formulation, and the automatic Branch-and-Benders-Cut implementation provided by

Cplex.

2.1.1 Other problem variants

Different variants were proposed for modeling a simultaneous VNF placement and routing problem. Some articles study the

problem in which only single VNF has to be installed per commodity. For example, Addis et al. [2], propose two alternative

compact MILP formulations to deal with a VNFPR variant in which a single service is installed per each commodity (i.e.,

|Fk| = 1, for all k ∈ C). The authors compare the two formulations empirically and with respect to the strength of their LP

relaxations. They also show that the two models can be generalized to handle multiple services (see also Reference [11]). Bouet

et al. [5] consider the problem of placing the virtualized Deep Packet Inspection in SDN networks. They propose a method

based on genetic algorithms, that optimizes the cost of DPI engine deployment, minimizing their number, the global network

load and the number of not analyzed flows, while considering arc capacity constraints. Moens & De Turck [23], propose a MIP

model where both physical and virtual resources are allocated to the function chains, which is tested with very small instances

using Cplex solver.

Several works assume a total order of VNFs and exploit this fact to model the problem as layered graph to deal with

the chaining constraints. Sallam et al. [27] study the Shortest Path and Maximum Flow Problems under Service Function

Chaining constraints for which virtual and not virtual network functions are considered. Authors solve the SFC-constrained

shortest path problem by transforming the graph into a layered graph. Another layered graph formulation and the associated

column generation approach for the VNFPRP with link capacities have been proposed in Reference [16]. In contrast to our

models in which partial ordering of VNFs is allowed, the formulation given in Reference [16] is only valid when a total order

for VNFs is provided. In a related study by Tomassilli et al. [31], a compact MIP model and a column generation approach

are proposed for another variant of the problem in which latency, precedence, flow, link and node capacity constraints are

considered.

In other related papers, different objective functions are tackled. For example, Mehraghdam et al. [22] model the VNFs

placement problem as a Mixed Integer Quadratically Constrained Program with two different objectives: minimizing the number

of activated nodes or the path latency. Kuo et al. [18] propose an algorithm for the VNFs placement and path selection problem

with precedence constraints, while maximizing the number of accepted demands. Furthermore, Gupta et al. [14] provide a

MIP formulation to model the placement of VNFs with chaining constraints. Their objective is to minimize network bandwidth

consumption.

The closest version of the problem to ours, considering the problem with almost all its technical constraints is studied in

Allybokus et al. [3]. The authors consider a generic version of the VNFs placement and routing problem for which many features

are taken into account. They also proposed MIP formulations, either to minimize the total deployment cost or to minimize the

number of rejected demands. A heuristic based on a continuous relaxation of one of the formulations is given, which appears to

be very efficient on instances derived from the “Geant” network topology. However, the MIP models do not seem to be strong

enough for direct resolution with the Cplex solver.
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36 MOUACI ET AL.

3 FIRST EXTENDED FORMULATION: THE PATH-BASED FORMULATION

In this section, we present the first extended MIP formulation, denoted by PF (which stands for “path-based formulation”) to

model the VNFPRP. The formulation has been introduced in Reference [25] and also used in Reference [21] to generate heuristic

solutions, by considering a compact model obtained from choosing a small but promising subset of columns. In this article

instead we focus on developing an exact method for solving the path formulation, based on a Branch-and-Price procedure. In

this model we use latency-constrained elementary path variables associated to each commodity to model routing decisions. In

this section we discuss theoretical properties of this model, along with a derivation of a valid Lagrangian bound, whereas the

details related to the B&P implementation are given in Section 6.

In the remainder of this paper, we will assume that VNFs used by a commodity cannot be installed at the source node of the

same commodity. This can be done without loss of generality, by introducing a dummy source node, say ok, for each commodity

k ∈ C, and connecting it to the source sk with an arc (ok, sk) whose latency is set to 0. In the following we denote by Γ−(v) the

set of all incoming neighbors of node v.

3.1 MIP formulation
The set of variables required in the path formulation is described in Table 2. Let us denote byk the set of all latency-constrained

elementary paths associated with commodity k ∈ C. We assume that the set k is given and that, for each chosen path, the arcs

composing it are known. Let tpk
uv be the parameter that is equal to 1 if arc (u, v) belongs to path p, p ∈ k, and equal to 0 otherwise.

The VNFPRP can be modeled as follows:

(PF) ∶ min

∑

u∈N

∑

f∈F
𝜓

f
uzf

u +
∑

u∈N
𝜓uwu (1)

∑

p∈k

𝜆

k
p = 1 k ∈ C (𝛼k) (2)

∑

f∈F
zf

u ≤ cuwu u ∈ N (3)

∑

k∈C
yfk

u bk ≤ mf zf
u f ∈ F, u ∈ N (4)

yfk
u + ygk

u ≤ 1 k ∈ C, (f , g) ∈ k
, u ∈ N (5)

∑

p∈k
(u,v)∈p

tpk
uv𝜆

k
p − 1 + xfk

v − xfk
u ≤ yfk

v k ∈ C, f ∈ Fk
, (u, v) ∈ A (𝜂fk

uv) (6)

xgk
u ≤ xfk

u k ∈ C, f , g ∈ Fk ∶ f ≺k g, u ∈ N (7)

yfk
u ≤ xfk

u k ∈ C, f ∈ Fk
, u ∈ N (8)

yfk
u ≤

∑

(v,u)∈A

∑

p∈k

tpk
vu𝜆

k
p k ∈ C, f ∈ Fk

, u ∈ N (𝜋fk
u ) (9)

∑

u∈N
yfk

u ≥ 1 k ∈ C, f ∈ Fk
(10)

TABLE 2 Decision variables of the path formulation

Variables Type

𝜆

k
p 1, if path p associated with commodity k is chosen; 0, otherwise. Binary

xfk
u 1, if the virtual network function f is installed at or before node u Binary

for commodity k; 0, otherwise.

yfk
u 1, if virtual network function f is installed at node u for commodity k; Binary

0, otherwise.

wu 1, if node u is activated; 0, otherwise. Binary

zf
u number of VNF f installed at node u. Integer
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MOUACI ET AL. 37

xfk
u =

{
0, u = sk

1, u = 𝑑k
k ∈ C, f ∈ Fk

(11)

(𝜆, x, y,w) are binary (12)

z is integer (13)

Constraints (2) are the path constraints which ensure that exactly one elementary latency-constrained path p ∈ k is chosen

for each commodity k ∈ C. Constraints (3) represent the node capacity constraints, which guarantee that the number of VNFs

installed at each node u ∈ N is bounded by its capacity cu. Constraints (4) are the VNF capacity constraints they ensure that

the volume of data treated by each function f ∈ F should not exceed its capacity mf . Constraints (5) are the conflict constraints

and they guarantee that two VNFs in conflict are not installed at the same node u ∈ N. Constraints (6) are needed to link

node installation variables (y), precedence variables (x) and path variables (𝜆): the left-hand-side is forced to 1 (implying that

the function f is installed at the node v) if and only if (i) the path p passing through the arc (u, v) is chosen for the considered

commodity k and (ii) the function f is installed at or before the node v and it is not installed at or before the node u. Constraints

(7) impose the VNFs order for each commodity. Inequalities (8) link the precedence and the installation variables, x and y, and

express the fact that if VNF f is installed at node u for the commodity k, then f is installed at or before the node u. Constraints

(9) ensure that if a VNF f ∈ Fk
is installed at a node u for a given commodity k, then the associated routing path p must enter

that node. Constraints (10) guarantee that all required functions for commodity k ∈ C are installed at the graph nodes. Finally,

constraints (11) guarantee that, for each commodity k ∈ C, no VNF is installed at or before the source node sk and all VNFs are

installed at or before the destination node 𝑑k. Model (1)–(13) admits an exponential number of path variables; thus, a column

generation (CG) procedure is needed to solve its continuous relaxation. In the following, we describe the pricing problem and

discuss three possible procedures for its resolution.

3.2 The pricing problem
Let 𝛼, 𝜂, and 𝜋 be the dual variables associated with constraints (2), (6), and (9), respectively. Let DPF denote the dual formu-

lation of the LP-relaxation of the model PF. The number of routing paths associated with each commodity can be exponential.

Thus, the number of constraints associated to the path variables is exponential in the dual.

For each k ∈ C and p ∈ k, the dual constraint associated with the path variable 𝜆
k
p is given as follows:

𝛼k −
∑

f∈Fk

[
∑

(u,v)∈A
tpk
uv 𝜂

fk
uv +

∑

u∈N

∑

v∈Γ−(u)
tpk
vu 𝜋

fk
u

]

≤ 0, k ∈ C, p ∈ k (14)

⇔ 𝛼k +
∑

(u,v)∈A

∑

f∈Fk

(

𝜋

fk
v − 𝜂fk

uv

)

tpk
uv ≤ 0, k ∈ C, p ∈ k (15)

As customary in column generation, the master problem is initialized with a subset of 𝜆 variables (resulting in the so-called

restricted master problem), and then the additional variables necessary to solve the LP-relaxation of the model are generated

on the fly by separating the associated dual constraints (15).

The pricing problem then consists of finding for each commodity k, a path p ∈ k with negative reduced costs, that is, a

path p such that:

𝛼

∗
k +

∑

(u,v)∈p

∑

f∈Fk

(

𝜋

∗fk
v − 𝜂∗fk

uv

)

> 0, (16)

where (𝛼∗, 𝜂∗, 𝜋∗) refers to a sub-vector of an optimal dual solution of the restricted master problem. This dual solution will be

used for defining the pricing problems and computing the Lagrangian bound (cf. Section Appendix A.3).

Thus, for each commodity k ∈ C, a separate pricing problem is defined in order to find an sk − 𝑑k latency-constrained

elementary path of minimum cost. Cost per each arc is defined as

c̃uv =
∑

f∈Fk

(

𝜂

∗fk
uv − 𝜋∗fk

v

)

, (u, v) ∈ A. (17)

If we find a path p ∈ Pk such that
∑
(u,v)∈p c̃uv − 𝛼∗k < 0, the associated variable 𝜆

k
p will be inserted in the restricted master

problem.

Based on the dual solution, the values defined by (17) may be negative. Therefore the pricing problem consists of finding an

elementary shortest path satisfying latency constraints on a graph that may contain negative cycles. Hence, the pricing problem

is strongly NP-hard [8]. Four different methods are proposed and computationally evaluated for solving this pricing problem

(see Appendix).
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38 MOUACI ET AL.

3.3 Linear relaxation of path variables λ
Constraints 𝜆

k
p ∈ {0, 1} are the integrality constraints guaranteeing that the latency-constrained path cannot be split. Together

with constraints (2), they ensure that there is exactly one path used to route the flow for each commodity. In the following, we

show that 𝜆
k
p ∈ {0, 1} can be relaxed. Let PF’ denote the model PF for which the integrality constraints associated with variables

𝜆 are replaced by: 𝜆
k
p ≥ 0, k ∈ C, p ∈ k.

Proposition 1. If the relaxed path formulation PF’ has an optimal solution with fractional 𝜆 values, then it must
necessarily admit an integer solution with the same objective value.

The proof of this result can be found in Appendix A.2.

Corollary 3.1. Without loss of generality, constraints 𝜆k
p ∈ {0, 1}, for all k ∈ C, p ∈ k, can be replaced by 𝜆k

p ≥ 0

in the model PF.

Corollary 3.1 indicates that, when implementing a B&P procedure to solve the model PF, we can sidestep branching on the

exponential variables 𝜆 and apply the regular branching scheme defined only for x, y, z, and w variables. In particular, this means

that (apart from the change of the coefficients in the objective function), the pricing problem will not be affected by branching

decisions.

4 SECOND EXTENDED FORMULATION: THE MODEL DW

In this section, we present an alternative extended formulation for the VNFPRP, to which we refer as the model DW (where

DW stands for Dantzig-Wolfe). First, we introduce the master problem and then, based on the master problem’s dual solution,

we describe the pricing problem and show how to calculate the value of the Lagrangian bound. At the end of this section, a

branching scheme is proposed.

4.1 MIP formulation
In the following, we use the term path-installation to indicate a path p with pre-installed VNFs satisfying latency, conflict, and

precedence constraints. The master problem aims to choose one path-installation per each commodity k while respecting node

and function capacity constraints.

Let us denote by k the set of all path-installations associated with commodity k. To create our master problem, we need

three families of variables, as described in Table 3.

The set k associated with each commodity k containing all feasible path-installations is supposed to be known. Thus, the

placement of each VNF for each path-installation at network nodes is uniquely defined. Let us denote by afpk
u the parameter

that is equal to 1 if the VNF f is used at node u for the path-installation p associated with commodity k; and that is equal to 0

otherwise.

The model DW is then given as:

(DW) ∶ min

∑

u∈N

∑

f∈F
𝜓

f
uzf

u +
∑

u∈N
𝜓uwu (18)

∑

p∈k

𝜏

k
p = 1 k ∈ C (𝛼k) (19)

∑

f∈F
zf

u ≤ cu wu u ∈ N (20)

∑

k∈C

∑

p∈k

afpk
u 𝜏

k
pbk ≤ mf zf

u f ∈ F, u ∈ N (𝛾 f
u) (21)

TABLE 3 Decision variables of the model DW

Variables Type

𝜏

k
p 1, if path-installation p associated with commodity k Binary

is chosen; 0, otherwise.

wu 1, if node u is activated; 0, otherwise. Binary

zf
u number of VNF f installed at node u. Integer

 10970037, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22144 by C

ochrane France, W
iley O

nline L
ibrary on [24/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MOUACI ET AL. 39

TABLE 4 Decision variables of the pricing problem for the model DW

Variables Type

𝑑

f
u 1, if virtual network function f is installed at or before node u; Binary

0, otherwise.

hf
u 1, if virtual network function f is installed at node u; 0, otherwise. Binary

nuv 1, if arc (u, v) belongs to the routing path; 0, otherwise. Binary

𝜏

k
p ∈ {0, 1} k ∈ C, p ∈ k (22)

wu ∈ {0, 1} u ∈ N (23)

zf
u ∈ N u ∈ N, f ∈ F (24)

Constraints (19) represent the routing constraints ensuring that one path-installation is chosen for each commodity k ∈ C.

Inequalities (20) represent the node capacity constraints. Constraints (21) are the VNF-capacity constraints.

Inequalities (18)–(24) constitute the master problem which admits an exponential number of variables. Therefore, a col-

umn generation procedure is needed to solve its continuous relaxation. The master problem is initialized with a subset of

columns (called the restricted master problem), and the missing variables necessary to solve its linear relaxation are generated

by separating the following dual constraints:

𝛼k −
∑

u∈N

∑

f∈Fk

afpk
u bk𝛾

f
u ≤ 0 k ∈ C, p ∈ k, (25)

where we associate variables 𝛼 and 𝛾 to constraints (19) and (21), respectively. The separation of constraints (25) represents the

pricing problem. Let (𝛼∗, 𝛾∗) be components of the dual solution of the restricted master problem, the pricing problem consists

of finding a commodity k and a path p ∈ k such that:

𝛼

∗
k −

∑

u∈N

∑

f∈Fk

afpk
u bk𝛾

∗f
u > 0.

4.2 The pricing problem
For each commodity k, we have one pricing problem that aims to find a path-installation. The left-hand-side in inequalities (25)

characterizes the objective function of the pricing problem. We model the pricing problem as a MIP whose set of variables

required is described in Table 4 (the index k is left out for simplicity).

The MIP formulation of the pricing problem is given as follows:

max 𝛼

∗
k −

∑

u∈N

∑

f∈Fk

hf
ubk𝛾

∗f
u

∑

(u,v)∈A
nuv −

∑

(v,u)∈A
nvu =

⎧
⎪
⎨
⎪
⎩

−1 if u = 𝑑k,

1 if u = sk,

0 otherwise.

u ∈ N (26a)

∑

(u,v)∈A
nuvluv ≤ lk (26b)

hf
u + hg

u ≤ 1 (f , g) ∈ k
, u ∈ N (26c)

nuv − 1 + 𝑑 f
v − 𝑑 f

u ≤ hf
v f ∈ Fk

, (u, v) ∈ A (26d)

𝑑

g
u ≤ 𝑑

f
u f , g ∈ Fk ∶ f ≺k g, u ∈ N (26e)

hf
u ≤ 𝑑

f
u f ∈ Fk

, u ∈ N (26f)

hf
u ≤

∑

(v,u)∈A
nvu f ∈ Fk

, u ∈ N (26g)

∑

u∈N
hf

u ≥ 1 f ∈ Fk
(26h)

𝑑

f
sk = 0 f ∈ Fk

(26i)

𝑑

f
𝑑k
= 1 f ∈ Fk

(26j)

(𝑑, h, n)is binary (26k)
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40 MOUACI ET AL.

Constraints (26a) are the flow-preservation constraints ensuring that the path goes from the source node sk to the destination

node 𝑑k. Inequalities (26b) represent the latency constraints. Inequalities (26c) are the anti-affinity constraints which ensure

that two VNFs f and g in conflict are not installed at the same node u. Constraints (26d), (26e), (26i), and (26j) represent the

precedence constraints. Constraints (26f) are the linking constraints between variables 𝑑 and h, the right-hand-site is forced to

1 in order to ensure that if VNF f is used at node u, then it is used at or before u. Inequalities (26g) link variables h and n, they

guarantee that the routing path enter all nodes at which VNFs are installed. Finally, constraints (26h) guarantee that all required

VNFs for the current commodity are installed at nodes.

Proposition 2. The binary constraints imposed on the arc variables n in the pricing problem (26a)–(26k) can be
relaxed and replaced by nuv ≥ 0, for all (u, v) ∈ A.

Proof. Observe that variables n do not appear in the objective function, and that the location variables h (which

basically determine the value of the solution) remain binary. Therefore, if there exists a feasible solution of the

pricing problem with fractional n values, there also exists a latency constrained path (corresponding to binary n
values) which satisfies all the constraints (26a)–(26k). To show the latter result, one has to follow similar arguments

as those given in the proof of Proposition 1 provided in Appendix A. ▪

4.3 Branching on 𝜏 variables
The LP-relaxation of the Dantzig-Wolfe formulation solved by CG procedure is not necessarily integral. Furthermore, applying

the Branch-and-Bound algorithm on the restricted master problem with only the generated columns at the root node will not

guarantee a feasible solution and so an optimal solution. Moreover, at each branching node, there may exist new columns with

a negative reduced cost which should be added to the master problem. Therefore, in order to find an optimal integer solution,

we should generate columns at each branching node.

Various branching schemes, specific (like the one proposed below) or generic (see e.g., Reference [32]), can be used to

generate integer solutions using column generation procedure embedded within the Branch-and-Bound algorithm. The resulting

algorithm is called Branch-and-Price.

In the following, a commodity k ∈ C is called fractional if it admits a fractional 𝜏 variable. For a path-installation p ∈ k,

we use the notation u ∈ p to indicate that the path-installation p passes through the node u. Recall that, the notation afpk
u = 1 is

used to indicate that the path-installation p passes through the node u on which the VNF f is installed for commodity k.

Proposition 3. For any given LP-solution of the (restricted) master problem with fractional 𝜏 variables, at least
one of the following cases is valid for each fractional commodity k ∈ C:

Case 1. There exist two nodes u, v ∈ N ⧵ {sk} satisfying: 0 <
∑

p∈k
u∈p,v∈p

𝜏

k
p < 1

Case 2. There exist a function f ∈ Fk
and a node u ∈ N ⧵ {sk} satisfying: 0 <

∑
p∈k

afpk
u =1

𝜏

k
p < 1

Proof. Let us suppose that k is a fractional commodity but neither Case 1 nor Case 2 holds. Hence, we have:

∑

p∈k
u∈p,v∈p

𝜏

k
p ∈ {0, 1} u, v ∈ N (27)

∑

p∈k
afpk

u =1

𝜏

k
p ∈ {0, 1} u ∈ N, f ∈ Fk

. (28)

From (28) we can distinguish two cases: (a) there exists a node u ∈ N and a function f ∈ Fk
such that

∑
p∈k

afpk
u =1

𝜏

k
p = 1,

or (b)
∑

p∈k
afpk

u =1

𝜏

k
p = 0, for each u ∈ N and f ∈ Fk

.

(a) By constraints (19), and because k is a fractional commodity, all path-installations of k in the solution are

fractional. Let p1 ∈ k be a fractional path-installation passing through node u on which VNF f is installed (i.e.,

0 < 𝜏

k
p

1
< 1). As

∑
p∈k

afpk
u =1

𝜏

k
p = 1, there must exist another fractional path-installation p2 ∈ k ⧵ {p1} passing

through node u on which VNF f is installed. Since p1 ≠ p2, we have two cases:

(I) p1 and p2 pass through the same nodes but with different function installations, that is, there exists

at least one VNF g ∈ Fk ⧵ {f } installed on a different node. Let denote by v (resp. w, v ≠ w) the

node belonging to the path-installation p1 (resp. p2) on which g is installed. As the hypothesis (28)
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MOUACI ET AL. 41

is valid for any VNF in Fk
and any node in N ⧵ {sk},

∑
p∈k

agpk
v =1

𝜏

k
p ∈ {0, 1} must hold. Given that

𝜏

k
p

1
> 0, then (1)

∑
p∈k

agpk
v =1

𝜏

k
p > 0. Thus

∑
p∈k

agpk
v =1

𝜏

k
p = 0 cannot hold. Accordingly,

∑
p∈k

agpk
v =1

𝜏

k
p = 1.

We know that 0 < 𝜏

k
p

2
< 1 and that g is not installed on v for p2, we will have: (2)

∑
p∈k

agpk
v =1

𝜏

k
p < 1.

Therefore, (1) and (2) contradict hypothesis (28).

(II) p1 and p2 pass through at least one different node, that is, there should exist another node v ≠ u
belonging to p2 and not to p1. We notice that VNF f is installed only on node u for both p1 and p2, and

that another VNF g ≠ f can or not be installed on node v belonging to the path-installation p2. Since

p2 contains u and v and 𝜏
k
p

2
> 0, this implies: (i)

∑
p∈k

u∈p,v∈p
𝜏

k
p > 0. Moreover, as

∑
p∈k

afpk
u =1

𝜏

k
p = 1 and

𝜏

k
p

1
> 0 and we know that path-installation p1 does not pass through node v, then the value 𝜏

k
p

1
can

be deleted from the following sum:
∑

p∈k
u∈p,v∈p

𝜏

k
p , which implies that (ii)

∑
p∈k

u∈p,v∈p
𝜏

k
p < 1. Therefore,

(i) and (ii) contradict hypothesis (27).

(b) Recall that for each commodity k, we assume that Fk ≠ ∅ (otherwise the commodity can be pre-processed and

eliminated). This, together with constraints (19), contradicts the assumption that for all functions f ∈ Fk
, no

path-installation p ∈ k is chosen such that afpk
u = 1 (i.e., it contradicts the hypothesis

∑
p∈k

afpk
u =1

𝜏

k
p = 0).

Therefore, the result holds. ▪

5 STRENGTHENING INEQUALITIES

In this section, we derive several families of valid inequalities that can strengthen the LP-bounds of both proposed extended

formulations. We first present inequalities that can be used to directly enhance the model PF. We then present inequalities that

are valid for both models and that can be exploited in case a function’s capacity is smaller than the respective traffic demand.

We close this section by explaining how some of inequalities proposed for the model PF could be used within the Dantzig-Wolfe

decomposition to strengthen the model DW.

5.1 Valid inequalities for the model PF

Proposition 4. Inequalities (29) and (30) are valid for the VNFPRP:

yfk
u ≤ wu, u ∈ N, k ∈ C, f ∈ Fk

. (29)

yfk
u + ygk

u ≤ wu, u ∈ N, k ∈ C, (f , g) ∈ k
. (30)

Proof. For a given commodity k ∈ C, if the VNF f ∈ Fk
is installed at node u, then node u should be activated. If

two VNFs f and g are in conflict for a commodity k ∈ C, at most one of them can be installed at the same node u,

if u is activated. ▪

Let Dk = (Fk
,E) be the conflict graph associated with commodity k, k ∈ C, where nodes in Dk represent the VNFs f ∈ Fk

.

An edge e ∈ E between two nodes f and g in Dk represents the fact that f and g are in conflict. Let k denote the set of all

maximal cliques in Dk and let 𝜔(Dk) be the clique-number (i.e., the size of the maximum clique) in the conflict graph. Linear

inequalities (30) can be generalized for each clique Q in k.

Proposition 5. Inequalities (31) are valid for the VNFPRP:
∑

f∈Q
yfk

u ≤ wu, u ∈ N, k ∈ C, Q ∈ k. (31)

Proof. For a given commodity k ∈ C, nodes in Q represent the set of VNFs in conflict, that is, they cannot be

installed at the same node. Therefore, at most one VNF in Q can be installed at node u, provided that the node u is

activated. ▪

Given a commodity k ∈ C and a node u ∈ N, if there is a unique path p going from sk to u in G, let Ap be the arcs belonging

to the path p.
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42 MOUACI ET AL.

Proposition 6. For a given commodity k ∈ C, and a node u ∈ N, if there exists a unique path from sk to u in G,
then inequalities (32) are valid for the VNFPRP:

∑

f∈Q
xfk

u ≤ |Ap|, u ∈ N, k ∈ C, Q ∈ k ∶ |Ap| < |Q|. (32)

Proof. Given a fixed commodity k, let u be a node for which we have a unique path p going from sk to u, and let

Q be a clique in the graph Dk, such that |Ap| < Q. The number of VNFs in conflict installed at or before node u
should be less than or equal the number of arcs in the path p; otherwise, two or more functions in conflict need to

be installed at the same node, which leads to an infeasible solution. ▪

Proposition 7. Inequalities (33) are valid for the VNFPRP.
∑

u∈N
wu ≥ max

{

1,max
k∈C

𝜔(Dk)
}

. (33)

Proof. Recall that each commodity requires at least one VNF. As all required VNFs should be installed at graph

nodes, at least one node in the graph must be activated. Furthermore, if there is a conflict between VNFs associated

with one commodity k, then the number of activated nodes should be at least equal to the maximum number of

VNFs in conflict, which is the clique number of Dk. ▪

Proposition 8. Inequalities (34) are valid for the VNFPRP.
∑

u∈N

∑

f∈Q
yfk

u ≥ |Q|, k ∈ C, Q ∈ k. (34)

Proof. From inequalities (10), all VNFs required for each commodity k ∈ C should be installed at graph nodes,

thus the number of nodes necessary to install VNFs in conflict should be at least equal to the number of VNFs in

conflict, which is equal to the size of the cliques from k, k ∈ C. ▪

Let Cu
⊆ C be a subset of commodities for which there exists at least one latency-constrained path visiting node u, (i.e., if

k ∉ Cu
, this means that all paths associated with k do not enter the node u). Let Nk

be the set of nodes belonging to at least

one latency-constrained path associated with commodity k ∈ C (this can be checked in polynomial time using a min-cost flow

algorithm for example).

Proposition 9. The following inequalities are valid for the VNFPRP.
∑

k∈C⧵Cu

∑

f∈Fk

yfk
u = 0, u ∈ N, (35)

∑

k∈C⧵Cu

∑

f∈Fk

xfk
u = 0, u ∈ N. (36)

Moreover, inequalities (37) are valid and dominate inequalities (10);
∑

u∈Nk

yfk
u ≥ 1, k ∈ C, f ∈ Fk

, (37)

∑

f∈F
zf

u = 0, u ∈ N ⧵ {∪k∈CNk}, (38)

∑

u∈N⧵{∪k∈CNk}
wu = 0. (39)

Proof. If there exists a node u ∈ N which is not visited by any commodity k ∈ C, then no function f ∈ Fk
can

be installed at u (35), thus at or before u (36). Therefore, VNFs associated with commodity k ∈ C can be installed

only at nodes in Nk
(37). In consequence, u cannot be activated (39), so the number of VNFs installed on it is equal

to zero (38). ▪

Proposition 10. Inequalities (40) are valid for the VNFPRP:

zf
u ≥ ⌈

bk
mf

⌉yfk
u , k ∈ C, f ∈ Fk

, u ∈ N. (40)
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MOUACI ET AL. 43

Proof. The number of VNFs installed at node u is at least equal to the number of VNFs needed to handle one

commodity k ∈ C. ▪

Proposition 11. Inequalities (41) are valid for the VNFPRP:

xfk
u ≤ 1 − yfk

𝑑k
, k ∈ C, u ∈ Γ−(𝑑k), f ∈ Fk

, (41)

Proof. If a VNF f associated with commodity k ∈ C is installed at the destination node, then, this function cannot

be installed at or before any predecessor of 𝑑k.
▪

5.2 Strengthening inequalities for both models
Besides inequalities (33), (38), and (39) which are also valid for the model DW, in the following we propose additional inequali-

ties that involve only z and w variables, and are therefore valid for both formulations studied in this paper. With valid inequalities

given in Proposition 10, we address the setting in which the capacity of a function is not sufficient to handle the full demand of a

given commodity (i.e., multiple copies of the same function need to be installed). Proposition 12 provides further generalizations

of this setting.

Proposition 12. Node capacity constraints (3) do not define facets of the polyhedron of the VNFPRP if there exists
a node u, such that cu >

∑
k∈C

∑
f∈Fk ⌈

bk
mf
⌉.

1. Therefore, inequalities (42) are valid for the VNFPRP and dominate inequalities (3).
∑

f∈F
zf

u ≤
∑

k∈C

∑

f∈Fk

⌈
bk
mf

⌉

wu, u ∈ N. (42)

2. Moreover, if |Cu| < |C|, then the linear inequalities (43) dominate (42):
∑

f∈F
zf

u ≤
∑

k∈Cu

∑

f∈Fk

⌈
bk
mf

⌉

wu, u ∈ N. (43)

3. In addition if there exists a conflict between functions in Fk for a given commodity k ∈ C, with mf
1
≤ mf

2
≤ … ≤

mf|Q|
, Q ∈ k and cu ≥

∑
k∈C

∑
f∈Fk ⌈

bk
mf
⌉, then inequalities (43) are dominated by the following inequalities.

∑

f∈F
zf

u ≤
∑

k∈C

∑

Q∈k

⎡
⎢
⎢
⎢
⎣

(
∑

f∈Fk

⌈
bk
mf

⌉)

−
|Q|∑

i=2

fi∈Q

⌈
bk
mfi

⌉⎤
⎥
⎥
⎥
⎦

wu, u ∈ N. (44)

Proof.

1. If there exists a node u having enough capacity to install VNFs required for all commodities, then the number

of VNFs needed to treat all commodities bandwidth is bounded by
∑

k∈C
∑

f∈Fk

⌈
bk
mf

⌉

, which is the maximum

number of VNFs necessary to handle all demands.

2. Only VNFs associated with commodities having at least one path passing through a node u can be installed at

node u.

3. The number of VNFs installed at node u when the conflict constraints are considered is bounded by the maximum

number of copies needed to install the VNFs with the smallest capacity for each commodity (i.e., in the worst case

we will keep the VNFs with the maximum instantiation installed at node u and install other VNFs at the other

nodes).
▪

5.3 Strengthening the model DW
Valid inequalities proposed for the model PF can be “translated” into valid inequalities for the model DW. In this subsection we

illustrate how this can be done for inequalities (29), (30), and (40). The remaining inequalities can be translated accordingly.

In order to add (29), (30), and (40) to the master problem of the model DW, we rewrite them using parameters a as (45),

(46), and (47), respectively: ∑

p∈k

afpk
u 𝜏

k
p ≤ wu, k ∈ C, u ∈ N, f ∈ Fk

(45)

∑

p∈k

(

afpk
u + agpk

u

)

𝜏

k
p ≤ wu, k ∈ C, u ∈ N, (f , g) ∈ k

(46)
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44 MOUACI ET AL.

zf
u ≥

⌈
bk
mf

⌉
∑

p∈k

afpk
u 𝜏

k
p , k ∈ C, f ∈ Fk

, u ∈ N (47)

Adding these valid inequalities generates new (non-negative) dual variables in the dual of the master program, that we denote

by 𝛿, 𝜂 and 𝜑, respectively. Thus, dual constraints (25) need to be replaced by the following inequalities:

𝛼k −
∑

u∈N

[
∑

f∈Fk

(bk𝛾
f
u + ⌈

bk
mf

⌉𝜑
fk
u + 𝛿fk

u )afpk
u +

∑

(f ,g)∈k

𝜂

fgk
u (afpk

u + agpk
u )

]

≤ 0, k ∈ C, p ∈ k

6 TWO BRANCH-AND-PRICE ALGORITHMS

In this section, we explain major implementation ingredients of the two Branch-and-Price algorithms derived from the models

PF and DW, respectively. Further implementation details regarding specific pricing algorithms and derivations of Lagrangian

bounds are given in the Appendix.

6.1 Generic column generation framework
Initialization. The restricted master problem of both models is initialized by a subset of columns building a heuristic solution

which is obtained in the initialization phase of the algorithm (see Section 6.3). If no solution has been found during a time-limit,

the CG framework is initialized with an artificial column whose cost is set to a very large number.

Bounding. At each iteration of the column generation procedure, the restricted master problem is solved, and a dual solution

is provided. Accordingly, the objective function of the pricing problem for each commodity k is updated, and the pricing problem

is solved. Depending on the pricing strategy (see Appendix A.5) multiple columns per commodity having negative reduced

costs (or at most one) are added to the restricted master problem. During this process, to reduce the number of CG iterations, we

keep track of the Lagrangian bound (see Appendices A.3 and A.4) and compare it to the objective value of the current restricted

master problem. If the difference between the two values is smaller than 𝜀, the column generation procedure is stopped and we

resort to branching.

Pricing for the model PF. We consider three methods for solving the pricing problem for the formulation PF:

(1) We utilize dynamic programming;

(2) Based on Yen’s algorithm [33], we derive a reduced cost method, and use it in two different ways; and

(3) We model the pricing problem as a MIP that we solve using an off-the-shelf solver. These strategies are explained and

computationally evaluated in the Appendix.

Pricing for the model DW. In order to price the columns associated with the DW formulation, the MIP model presented in

Section 4.2, is solved for each commodity k ∈ C, using an off-the-shelf solver. Thus, at each iteration of the column generation

procedure at most one column per commodity with negative reduced cost is generated by the pricing problems. As in the case

of the model PF, the column generation phase terminates when no more columns with a negative reduced cost are found, or

when the gap between the current value of the restricted master problem and the Lagrangian bound is smaller than 𝜀.

6.2 Branching
At the end of the column generation phase, the integrality of the solution of the relaxed master problem is verified. If the current

solution is not integer, we branch on the most fractional variable, applying the BFS (Breadth-First Search) based branching

strategy. Specifically, we explore all the nodes of the same level in the branching tree before moving to the next level. In

our implementation the algorithm explores all nodes admitting a fractional feasible solution of the same level by applying

the respective branching scheme described below. For each branching node with a fractional solution, two children nodes are

created and saved in a queue. The nodes in the queue are explored using the FIFO (First In First Out) method. A global lower

bound is calculated at each level. In our preliminary experiments, we also tried the diving strategy as an alternative to the

BFS-based branching. Whereas diving is very useful when searching for feasible solutions (see e.g., References [10, 12, 17]),

in our case this strategy did not prove useful, because a high-quality feasible solution is used to initialize the CG procedure

(see Section 6.3).

Branching scheme for the model PF. In Corollary 3.1, we showed that the binary constraints on 𝜆 variables in the PF model

can be relaxed to 𝜆 ≥ 0. Hence, in our BP implementation of the PF model, we branch only on the (x, y, z,w) variables.
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MOUACI ET AL. 45

Different branching schemes have been tested for the model PF; The one outperforming all others is to branch first on the

most fractional w variables (by imposing either w ≥ 1 or w ≤ 0), secondly on z by setting either z ≥ ⌈z∗⌉ or z ≤ ⌊z∗⌋, thirdly

on y which are forced to be y ≥ 1 or y ≤ 0 and finally on x variables using x ≥ 1 or x ≤ 0.

Branching scheme for the model DW. In our branching scheme for the model DW we start branching on z variables by

setting z ≥ ⌈z⌉, or z ≤ ⌊z⌋ and then on w variables by setting w ≤ 0, or w ≥ 1. When z and w variables are integers, we continue

by branching on the 𝜏 variables.

Given that the path-installation variables are generated as and when they are needed, we follow the specific branching scheme

for 𝜏 variables proposed in Proposition 3. Specifically, if we find a pair of two distinct nodes u, v ∈ N such that
∑

p∈k∶u∈p,v∈p 𝜏
k
p is

fractional we create two branches by imposing constraints that limit the respective sum to 0, or 1, respectively. If none such pair

can be found, we search for a node u ∈ N and a function f ∈ Fk
such that

∑

p∈k∶af pk
u =1

𝜏

k
p is fractional, and create two branches

correspondingly.

A branching scheme is said to be complete, if it can generate any feasible solution. From Proposition 3, we conclude that

our branching scheme proposed for the model DW is complete, as at least one of the two cases should hold for any fractional

commodity.

6.3 Heuristics
Before entering the B&P phase, we generate a heuristic solution which provides a high-quality upper bound and a promising

set of columns that we use to initialize the CG procedure. For the model PF, we employ the MIP-based heuristic presented

in Reference [25]. The heuristic solves a compact model derived from the formulation PF in which only a small subset of

latency-constrained paths is considered. To obtain this subset, we run Yen’s algorithm [33] which provides 𝜅 elementary paths

between two nodes, sorted from the shortest to the longest one. The number of generated paths per commodity is capped by

𝜅, and we let 𝜅 ∈ {10, 15, 20, … , 50}. As soon as the underlying MIP-based heuristic finds a feasible solution for a fixed 𝜅

value, we stop. However, for some instances, even for 𝜅 = 50 we fail to find a feasible solution.

For the model DW, we start with an artificial column, price-in the columns with negative reduced cost, and then convert the

obtained linear program into a MIP.

In both cases, there is a time limit after which this MIP-based heuristic initialization is aborted.

7 COMPUTATIONAL RESULTS

In this section, we analyze the scalability and the efficiency of the two proposed B&P algorithms and show the benefits of the

valid inequalities defined in Section 5. The B&P algorithms are compared to two other exact methods using the commercial

solver Cplex: the first one is a compact MIP formulation (denoted byC and provided in the Appendix) proposed in Reference [21]

and the second one is the Automatic Benders approach by Cplex [4] applied to the model C in which a family of flow variables is

linearly relaxed. Our experiments are designed so as to evaluate the effectiveness and the performance of the proposed extended

formulations in terms of CPU time, quality of bounds and final gaps. Eventually we also measure the advantage of the proposed

valid inequalities in improving the LP-bounds and reducing the final gaps.

All the experiments described in this section were made using a computer with Intel(R)Xeon(R) CPU E5-2650 v2 processor

clocked at 2.60 GHz, 32 cores, 2 threads per core and 252 GB RAM, under Linux operating system. All methods are implemented

using the Python API for Cplex, which is run in single-thread mode with a default memory limited to 20 GB. All Cplex

parameters were set to their default values. A default time limit of one hour is set for each tested instance. For the initialization

heuristic used within the B&P algorithm (cf. Section 6.3), the time limit is fixed to 900 s.

The following settings represent all tested methods in our computational experiments:

• PF: The Branch-and-Price implementation of the model PF with the best-performing pricing method (more details are

given in Appendix A.5);

• PF+VI: The setting PF in which Valid Inequalities (29)–(41) and (42)–(44) presented in Section 5 are additionally used

to initialize the model;

• DW: The Branch-and-Price implementation of the model DW presented in Section 4;

• DW+VI: The setting DW in which Valid Inequalities (33), (38), (39), (42)–(47) from Section 5 are added to the model;

• C: Compact formulation based on the original model proposed in Reference [21] with a modified objective function and

extended with node-capacity and VNF-capacity constraints (see Appendix);

• AB: Branch-and-Benders-cut approach derived from the formulationC (in which binary flow variables are linearly relaxed

and projected out). The implementation is based on automatic Benders decomposition of Cplex [4].
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46 MOUACI ET AL.

TABLE 5 Five services and their respective SFCs and latency values

Latency value Service SFC

≤ 60 ms Online gaming (O-G) NAT-FW-TM-WOC-IDPS

≤ 100 ms Video streaming (V-S) NAT-FW-TM-VOC-IDPS

VoIP NAT-FW-TM-FW-NAT

≤ 500 ms Web services (W-S) NAT-FW-TM-WOC-IDPS

≤∞ ms
Other services (O-S) NAT-FW-TM-WOC-VOC

7.1 Benchmark instances
In order to perform our experiments, we have generated a set of instances derived from the SNDlib library [29] of telecommuni-

cation networks. An instance from SNDlib contains a graph defined by its set of nodes, its set of arcs and a set of commodities.

For each commodity, a source node, a destination node and a bandwidth value are given. Based on a longitude and latitude val-

ues which are provided for every node, and using the fibre propagation delay per km (see, e.g., References [7, 19]), we calculate

the latency value of each arc in this graph (for more details, see Reference [25]).

The remaining parameters required for our settings are generated as follows (see also Reference [25]). To construct the set

of VNFs, we consider six Virtual Network Functions typically employed in service function chaining [16, 28]: F = {NAT:
Network Address Translator, FW: Firewall, TM: Traffic Monitor, WOC: WAN Optimization Controller, IDPS: Intrusion Detec-
tion Prevention System, VOC: Video Optimization Controller}. For each generated instance, we divide the set of commodities

in five categories defining the offered services: Online Gaming, Video Streaming, Voice over IP, Web Services, and Other
Services. Accordingly, a latency value lk and a set of chained service functions Fk

are defined. Table 5 shows the consid-

ered services and the associated latency value and SFC (representing a partial order between VNFs). For each service we

consider at most one anti-affinity constraint (AAC) between VNFs. We suppose that we cannot install Firewall and Network

Address Translator at the same node. For each commodity k ∈ C, first the length of the shortest path l(SPk) between source

and destination is calculated (with respect to arc latencies). Accordingly, the demand k is randomly assigned to one of the

categories, for which the latency value (cf. the first column in Table 5) is bigger than l(SPk). Namely, if l(SPk) = 55ms,

this implies that the commodity can be assigned to any of the five categories, and we randomly choose one. Each input

graph from the SNDlib corresponds to one instance-type from SNDlib: {“Abilene”, “Atlanta”, “Di-yuan”, “France”, “Geant”,

“Newyork”, “Nobel-eu”, “Nobel-germany”, “Nobel-us”, “Pdh”, “Polska”, “Ta1”}, and for each instance-type we generate

ten different instances by randomly assigning demands to services. The generated instances can be found in the github
repository [24].

7.2 Obtained results
In the sequel we summarize the major results obtained by our computational study. Tables with more detailed information

provided per each instance can be found in Appendix A. This subsection is divided into two parts. The first part compares

the LP-relaxation bounds generated by applying the column generation algorithm to the models PF and DW, respectively.

The comparison between the four different pricing methods proposed for the model PF in terms of CPU time, number of

added columns and generated iterations can be found in Appendix A.5.1. After determining the best configuration (i.e.,

the best pricing method) for the model PF, we focus on the improvement of the LP-gap, with respect to the LP-relaxation

bounds provided by the compact formulation (C). We compare the two extended formulations, with and without adding valid

inequalities.

In the second part of the empirical study, we compare the two proposed B&P algorithms (PF and DW) with two other

alternative MIP approaches, namely the Compact formulation (C) and the Branch-and-Benders-cut (AB). We report the overall

CPU time in seconds, and compare the quality of lower bounds after reaching the time limit. We also report the number of

added columns and generated iterations during the B&P algorithms.

We recall that the time limit is equal to 1 h for all instances solved with exact methods, which does not include the time for

the initialization heuristic (fixed to 900 s). We notice that the heuristics can find a feasible solution for all solved 120 instances.

7.2.1 Comparison of LP-relaxation bounds

Based on the comparison of CPU times between the four pricing methods proposed for the Path formulation (cf. Appendix

A.5.1), in the following, we will consider Red Cost 2 as our default pricing method for the model PF. This setting will be

denoted by PF in the remainder of this section.
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MOUACI ET AL. 47

FIGURE 1 CPU time needed to solve the LP-relaxation of the PF, C and DW formulation

FIGURE 2 CPU time needed to solve LP-relaxation for PF and DW with and without valid inequalities

We now turn our attention to the comparison of the quality of LP-relaxation bounds and the CPU time required for solving

LP-relaxation of the formulations PF, DW, and C. We also show the relative improvement of lower bounds, with respect to the

LP-bounds provided by C, by both extended formulations with and without adding valid inequalities.

Figure 1 provides a cumulative chart in which we report the CPU time for all 120 instances from our test bed. We observe

that in less than 31 s the LP-solution for any of the considered 120 instances can be found by the compact formulation C. The

CPU time consumed by the model PF is below 1000 s. Finally, the model DW can solve only 91 instances at the root node

without exceeding the time limit.

Figure 2 depicts the CPU time consumed by PF, PF+VI, DW, and DW+VI settings at the root node of the branching tree. We

observe that adding valid inequalities to both formulations increases the CPU time. Valid inequalities slow down the resolution

at the root node for the model PF; 75% of instances were solved with CPU time below 300 s, whereas after adding valid

inequalities, the same percentage of instances needs up to 1025 s. Moreover, the overall number of solved instances decreases

from 120 to 109. Similarly, for the model DW, after adding valid inequalities the number of instances for which LP-relaxation

can be solved drops from 92 to 66 instances.

In the following, we focus on 52 instances whose LP-relaxation could be solved at the root node by PF, PF+VI, DW,
DW+VI without exceeding the time limit (2 among 54 instances solved by DW+VI are not solved by PF+VI).

1
We compare the

relative improvement of lower bounds with respect to the LP-bounds obtained by the compact formulation C. Figure 3 illustrates

1
By looking into the structure of the remaining 68 instances, we realize that it is a combination of graph density (i.e., the ratio |A|∕|N|) and the number of

commodities, that makes some instance types more challenging than the others. These 68 instances have either the ratio |A|∕|N| > 4, or the large number

of commodities with respect to the number of nodes (|C|∕|N| > 10). Given that graph density and the number of commodities affect both, the number of

inequalities in the master and in the pricing problem, this explains why such instances become computationally more difficult to solve.
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48 MOUACI ET AL.

FIGURE 3 Relative improvement of LP-relaxation bounds of C by using PF and DW with/without valid inequalities

(A) # Columns (B) # Nodes (C) # Iterations

FIGURE 4 The number of added columns, generated nodes and CG iterations for the settings PF+VI and DW+VI

the relative improvement of lower bounds, calculated as ((LBa−LBC)∕LBC)×100, with a ∈ {PF, PF+VI, DW, DW+VI}.
We observe that the lower bound at the root node could be improved by between 1% to 14% (resp. by between 3% and 29 %)

with PF (resp. DW) method for all considered instances without adding valid inequalities. Moreover, the effects of adding the

valid inequalities to both extended formulations are shown. We notice that valid inequalities significantly improve the quality

of LP-relaxations bounds at the root node. The LP-relaxation bounds of the C formulation are improved from 6% to 90% for

75% of instances solved by the setting PF+VI. This improvement ranges between 14% and 100% for 75% of instances solved

by DW+VI.

7.2.2 Comparison between the proposed B&P algorithms, a compact formulation and its branch-and-benders-cut

implementation

In this section, we first look at some performance indicators of our two Branch-and-Price algorithms (settings PF+VI and

DW+VI, respectively), and then we compare them against two alternative exact approaches (the first one is based on solving the

compact formulation, and the second one is based on solving its Benders reformulation).

Box-plots given in Figure 4A–C compare the overall number of added columns during the B&P algorithm, the number

of branching nodes and the number of generated iterations for PF+VI and DW+VI, respectively. We observe that the setting

PF+VI needs more columns and more iterations and also branches more than DW+VI (within the same time limit). This is not

surprising, due to the following observations: (1) The vast number of added columns for PF+VI is explained by the fact that

we are adding all columns with negative reduced cost at each iteration of the CG procedure. This is in contrast to DW+VI where

we are using MIP-based pricing method to add only the most violated ones; (2) The number of variables that are required to be

integer in the model PF is much larger compared to the model DW, which also explains the larger number of branching nodes

for the setting PF+VI; (3) Finally, the CPU time required for a single pricing iteration is much lower for the setting PF+VI
than for DW+VI.

Finally, we compare the two proposed B&P algorithms (settings PF+VI and DW+VI) against the following two alternatives:

• Compact formulation (denoted as setting C) based on the original model proposed in Reference [21] with a modified

objective function and capacity constraints (see Appendix).

• Branch-and-Benders-cut approach derived from the formulation C and implemented using automatic Benders decompo-

sition of Cplex (setting AB).
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MOUACI ET AL. 49

FIGURE 5 Relative improvement of the global lower bound with respect to GLBmin

As we are comparing four exact methods, we focus on the quality of global lower bounds obtained upon the termination of

the respective branching procedures. The global lower bound (possibly, the optimal solution value) obtained at the time limit

by the setting a is denoted by GLBa, where a ∈ M = {PF+VI,DW+VI,C,AB}. Let GLBmin be the worst global lower bound

provided by these methods:

GLBmin = min
a∈M

GLBa.

We then calculate the relative improvement of the global lower bound with respect to GLBmin as follows:

IMPa = (GLBa − GLBmin)∕GLBmin ∗ 100%,

Figure 5 displays the values of IMPa across the set of 52 instances for which all tested methods could solve the LP-relaxation

at the root node.

We notice that for 75% of these instances (i.e., 39 instances) DW+VI improves the GLBmin by 5%, the compact formulation

improves it by 2.5%, the setting AB improves it by 2.1%, whereas PF+VI improves it by only 0.6%. Slight differences between

the GLB values provided for C and AB are due to the general purpose cutting planes used by Cplex.

For 50 out of 52 instances, the worst bound is improved by up to 10% using DW+VI, whereas this improvement is up to 2.5%
for PF+VI, and up to 5% for C and AB.

To conclude, the obtained results indicate that the best global lower bounds can be provided by the B&P algorithm derived

from the model DW, enhanced by the valid inequalities. However, we emphasize that the full potential of our B&P algorithms

has not been exploited with the current implementation, and that it might be unfair to compare our B&P methods against a

fully-fledged state-of-the-art MIP solver like Cplex. This is due to the fact that our B&P algorithms cannot benefit from advanced

MIP features available at Cplex (as opposed to C and AB), as we are using our own branching procedure in which Cplex is

employed only as an LP-solver.

8 CONCLUSION

In this paper we have proposed two extended formulations for solving the Virtual Network Functions Placement and Routing

problem. The variables of the first formulation (denoted by PF) are latency-constrained paths, whereas the variables of the

second formulation (denoted by DW) are latency-constrained paths that also embed the information regarding the function

installations at their nodes. In order to strengthen the LP-bounds, we have proposed several families of valid inequalities for both

formulations. Their benefits have been computationally demonstrated on a set of instances derived from telecommunication

networks.

We have presented a branching scheme for each formulation and have developed and implemented the associated

Branch-and-Price algorithms. The latter ones are computationally compared with a compact flow-based MIP formulation and a

Branch-and-Benders-cut approach (similar to the one from Reference [21]) derived from the compact model by projecting out

flow variables.

The obtained results have shown that the (LP-relaxation and global) lower bounds of the compact formulation (and its

Benders counterpart) can be improved by both extended formulations. The overall best global lower bounds can be obtained
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50 MOUACI ET AL.

by the model DW, however its CPU time is sacrificed by the expensive MIP-based pricing procedure. Hence, the model DW

suffers from a trade-off between the quality of its bounds and the time needed to solve the LP-relaxations.

We conclude that the full potential of the extended formulations is still to be exploited. We believe that there is a theoretical

and empirical interest in further studying these models. For example, developing some more advanced exact and heuristic

pricing schemes could help to resolve the trade-off between the quality of obtained bounds and the computational difficulty of

the pricing problems.

Moreover, there is an interest in studying alternative branching schemes, or more advanced heuristics for calculating

incumbent solutions, in order to reduce the size of the branching tree.
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[25] A. Mouaci, E. Gourdin, I. Ljubić, and N. Perrot. Virtual network functions placement and routing problem: Path formulation. Paper presented

at: 2020 IFIP Networking Conference (Networking). 2020 pp. 55–63.

[26] P. Quinn, & T. Nadeau. Problem statement for service function chaining (No. rfc7498). 2015.

 10970037, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/net.22144 by C

ochrane France, W
iley O

nline L
ibrary on [24/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/mouaciahlam/SNDLib_instances
https://github.com/mouaciahlam/SNDLib_instances
https://orcid.org/0000-0001-6517-1511
https://orcid.org/0000-0001-6517-1511
https://github.com/mouaciahlam/SNDLib_instances
https://github.com/mouaciahlam/SNDLib_instances


MOUACI ET AL. 51

[27] G. Sallam, G. R. Gupta, B. Li, and B. Ji. Shortest path and maximum flow problems under service function chaining constraints. Paper presented

at: INFOCOM Conference on Computer Communications, IEEE. 2018 pp. 2132–2140.

[28] M. Savi, M. Tornatore, and G. Verticale. Impact of processing costs on service chain placement in network functions virtualization. Paper

presented at: 2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN), IEEE. 2015 pp. 191–197.

[29] SNDlib. SNDlib. 2019 http://sndlib.zib.de/.

[30] F. Tashtarian, A. Varasteh, A. Montazerolghaem, and W. Kellerer. Distributed VNF scaling in large-scale datacenters: An ADMM-based

approach. Paper presented at: 2017 IEEE 17th International Conference on Communication Technology (ICCT), IEEE. 2017 pp. 471–480.

[31] A. Tomassilli, N. Huin, F. Giroire, and B. Jaumard. Resource requirements for reliable service function chaining. Paper presented at: 2018 IEEE

International Conference on Communications (ICC), IEEE. 2018 pp. 1–7.

[32] F. Vanderbeck, Branching in branch-and-price: A generic scheme, Math. Program. 130 (2011), 249–294.

[33] J. Y. Yen, Finding the k shortest loopless paths in a network, Manag. Sci. 17 (1971), 712–716.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: A. Mouaci, É. Gourdin, I. Ljubić, and N. Perrot, Two extended formulations for the virtual
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