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A B S T R A C T   

Warming in subarctic ecosystems will be two-fold higher compared to lower latitudes under current climate 
change projections. While the effects of warming in northern ecosystems on plants and microorganisms have 
been extensively studied, the responses of soil fauna have received much less attention, despite their important 
role in regulating key soil processes. We analyzed the response of soil hexapod communities in a subarctic 
grassland exposed to a natural geothermal gradient in Iceland with increases of +3 and + 6 ◦C above ambient 
temperature. We characterized hexapod communities using environmental DNA (eDNA) metabarcoding. We 
analyzed the amounts of microbial carbon (Cmic), microbial N (Nmic), dissolved organic C (DOC) and dissolved 
organic N (DON) and then assessed whether these variables could help to account for the compositional 
dissimilarity of ground hexapod communities across temperatures. The increases in soil temperature did lead to 
changes in the composition of hexapod communities. The compositional differences caused by +6 ◦C plots were 
correlated with a decrease in Cmic and Nmic, soil DOC and DON. Our results highlight the response of soil 
hexapods to warming, and their interaction with microbial biomass ultimately correlated with changes in the 
availabilities of soil C and N.   

1. Introduction 

Northern regions are experiencing the fastest warming rate on Earth 
[1,2]. Under these new temperature conditions soil microbial activity is 
accelerated, increasing decomposition rates and reducing the stocks of 
labile carbon (C; Saad & Conrad, 1993). Despite the initial increase in 
microbial activity, substrate depletion leads to the loss of microbial C 
(Cmic), as well as microbial N (Nmic; Marañón-Jiménez et al., 2019; [3]. 
The ultimate depletion of labile C and N may have a larger impact on 
plant productivity than the direct effects of temperature alone, and so 

the impacts on nutrient dynamics are important for ecosystem func-
tioning in northern latitudes [4–6]. However, the impacts of C and N 
availability and warming on soil biodiversity of subarctic regions are 
mostly unknown, despite subarctic ecosystems accounting for the largest 
pool of soil C on the surface of Earth [7]. 

Most information about the response of subarctic species to climate 
change is limited to the aboveground ecosystems, with soil fauna being 
mostly unexplored [8]. Previous studies have not reached a consensus 
about how subarctic hexapod diversity responds to warming. While 
some studies have argued that the direct reaction should be strong, with 
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generalized reductions of hexapod species abundances and drastic al-
terations in community composition [9], other studies have suggested 
that these changes may only be transient due to their high resilience at a 
community level [10,11]. Accordingly, some studies have reported that 
soil warming can even improve the fitness of particular hexapod species, 
which could even expand their areas of distribution [12,13]. However, 
global warming can also have multiple indirect effects over soil biodi-
versity [14]. Thus, downstream shifts in C and N availability as a result 
of the effect of soil warming over soil microbial communities and 
vegetation can strongly impact indirectly the communities of soil ar-
thropods [15]. Nonetheless, the impact of C and N throughout soil 
food-webs remains poorly studied. Most soil ecosystems are relatively 
poor in N, and many detritivore hexapods have low-N diets and Nmic is 
their main pathway for N assimilation [16]. Therefore, the abundances 
of some hexapod species may decrease with lower C to N ratio (C:N), 
while other microvorous arthropods may exploit the increases in bac-
terial and fungal biomass (Peguero et al., 2022). This complexity and the 
lack of a general pattern linking warming with C and N availability, 
microbial decomposers and hexapod communities in soil hampers our 
ability to predict their combined responses to climate change and the 
consequences for ecosystem functioning, which may be particularly 
sensitive at higher latitudes. 

The role of soil hexapods in C and N cycling is still poorly known 
despite their prominent contribution to the dynamics of soil nutrients 
[17]. Hexapod detritivores break down soil organic matter into particles 
with higher surface to volume ratios, facilitating their further decom-
position and mineralization by the local microbial community [18,19]. 
Microbial feeders, though, exert a strong top-down control on microbial 
communities, thus regulating their abundance, diversity and activity 
[19,20]. The typically cryptic morphological traits used in the identifi-
cation of soil hexapod species is likely one of the main reasons hindering 
our knowledge of these communities. Advanced molecular techniques 
like metabarcoding have recently facilitated their identification, even 
using DNA remnants in the soil [21,22]. This environmental DNA 
(eDNA) can be easily extracted from soil samples and allows a detailed 
community description and even the discovery of species that otherwise 
could not be detected [23], thereby facilitating the study of soil faunal 
communities. 

Here, we studied the impact of soil warming on soil hexapod com-
munity composition in a subarctic grassland. We collected soil samples 
across a natural geothermal site in Iceland at ambient temperature, +3 
and + 6 ◦C above ambient. We characterized soil hexapod communities 
using eDNA metabarcoding and analyzed the amounts of Cmic, Nmic, 
soil dissolved organic C (DOC) and soil dissolved organic N (DON). We 
then assessed whether these variables could help to account for the 
compositional dissimilarity of hexapod communities across tempera-
tures. We hypothesized that soil warming would have an impact on the 
structure and composition of soil hexapod communities likely through 
indirect effects arising from alterations of microbial communities’ C and 
N concentrations. 

2. Material and methods 

2.1. Site description and experimental conditions 

This study was conducted at the ForHot research site in Iceland [24] 
between August 2017 and June 2018 (64◦0′N, 21◦11′W). Soil type was a 
Brown Andosol [25]. Mean annual temperature at the site was 5.1 ◦C. 
The coldest and warmest temperatures in the neighboring village of 
Eyrarbakki in 2016 were − 12.3 ◦C and 21.6 ◦C, respectively. Average 
annual precipitation for the same year was 1153 mm [26]. The vege-
tation was an unmanaged grassland dominated by Agrostis capillaris L., 
Galium boreale L. and Anthoxantum odoratum L.. Vascular plants cover 
46% of the area over a moss mat which covers up to 88% of the ground. 
Natural N deposition in the area is 1.3 ± 0.1 kg N ha-1 y-1 [27]. This 
grassland has been geothermally warmed since 29 May 2008, when an 

earthquake transferred geothermal energy from hot groundwater to 
previously unheated soils [24]. Belowground temperatures at 10 cm 
depth now display a permanent warming gradient reaching +10 ◦C, 
with a less severe increase in temperature at the soil surface of +0.2 C. 
The warming has only been mildly disruptive respective to previous 
conditions, and the warmed area experiences a similar magnitude of 
warming and cooling over the seasons. Soil humidity was only 
marginally affected, with volumetric water content changing from 40% 
to 38%, and water pH increased from 5.6 in unheated soil to up to 6.3 
after warming. Geothermal groundwater has remained in the bedrock 
and has not reached the root zone, thus avoiding direct eco-toxicological 
effects [24]. The resulting stable conditions and lack of artifacts provide 
a realistic natural belowground experiment on soil warming under 
climate change. Even though, we acknowledge that aboveground effects 
of the on-going warming should lead to an opposite warming gradient 
across the soil profile (i.e., warmer at the top) and it may also entail 
complex plant-soil feedbacks that may not be entirely captured by the 
geothermal warming present at our study site. Five transects were 
established, each one consisting of three 2 × 2 m plots, and each plot at 
different temperature: an unheated control, a low warming level of ca. 
+3 ◦C and a higher warming level of ca. +6 ◦C above the ambient 
reference in the control (henceforth referred as “+3 ◦C” and “+6 ◦C”). 

2.2. Soil core sampling 

Soil cores were collected using an auger to a depth of ~10 cm, 
excluding the O horizon. Soil cores were sampled seasonally four times: 
August 2017, corresponding to late growing season; November 2017, at 
start of winter and initial soil freezing; April 2018, with the first soil 
thaw in un-warmed soils, and June 2018, in the early part of the growing 
season. We thus collected a total of 20 core samples for each warming 
treatment (5 replicates in 4 seasons for 3 temperature levels = 60 
samples). All samples were immediately sieved to remove roots and 
stones larger than 2 mm. Fifteen grams of each sample were then frozen 
in plastic bags in liquid N in the field to immediately stop all biological 
processes. All frozen samples were then freeze-dried in the laboratory 
following the standard protocol of the commercial lyophilizer for this 
type of sample (FreeZone 2.5 L -50C Benchtop Freeze Dryers, LabConco 
Corp., Kansas City, MO. USA). eDNA was extracted from 15 g soil 
samples as previously described [22,28]. 

2.3. . Metabarcoding analysis 

The soil hexapod communities were characterized based on Molec-
ular Operational Taxonomic Units (MOTUs) using an eDNA meta-
barcoding approach. We amplified the 16S mitochondrial rDNA region 
using the Ins16S_l primer pair (Ins16S_1-F: 5′-TRRGACGAGAA-
GACCCTATA-3′; Ins16_1-R: 5′-TCTTAATCCAACATCGAGGTC-3′; Clarke 
et al. 2014). This primer pair, specifically designed for hexapod meta-
barcoding, introduces a very limited taxonomic bias and performs very 
well for identifications at the species level throughout the Hexapoda 
subphylum (e.g. Refs. [29,30]. PCR amplification was performed in 
triplicate in 20-μL mixtures consisting of 10 μL of AmpliTaq Gold Master 
Mix (Life Technologies, Carlsbad, USA), 5.84 μL of nuclease-free Ambion 
water (Thermo Fisher Scientific, Waltham, USA), 0.25 μM each primer, 
3.2 μg of bovine serum albumin (Roche Diagnostic, Basel, Switzerland) 
and 2 μl of DNA template that was diluted 10-fold to reduce PCR inhi-
bition by humic substances. The thermal profile of the PCR amplification 
was 40 cycles of denaturation at 95 ◦C (30 s), annealing at 49 ◦C (30 s) 
and elongation at 72 ◦C (60 s), with a final elongation step at 72 ◦C for 7 
min. Tags had at least five differences between them to minimize am-
biguities [31]. The sequenced multiplexes comprised extractions/PCR 
blank controls, unused tag combinations and positive controls [29]. The 
PCR products were then sequenced using the MiSeq platform (Illumina 
Inc., San Diego, USA), with the expected sequencing depth set at 400 
000 reads per sample. 

M. Ferrín et al.                                                                                                                                                                                                                                  



European Journal of Soil Biology 117 (2023) 103513

3

The sequences were processed using ObiTools software [32]. 
Low-quality sequences (containing Ns, alignment scores <50, lengths 
<140 bp or >320 bp and singletons) were excluded. The remaining 
sequences were clustered into MOTUs using SUMACLUST [33] at a 
threshold of sequence similarity of 97%. The final number of MOTUs 
after curation was 11785. The hexapod MOTUs were taxonomically 
assigned using Basic Local Alignment Search Tool, (BLAST), with a 
query coverage criterion of 95%. MOTUs showing <80% similarity with 
either the local or the EMBL reference databases were removed, leading 
to 590 MOTUs [34]. These retained MOTUs included taxa from classes 
Insecta and Entognatha, which both belong to the subphylum Hexapoda. 
All sequences with a frequency of occurrence below 0.05 per MOTU and 
per run were discarded. This threshold was empirically determined to 
clear the negative sequencing controls (non-used tag combinations) 
included in our global data production procedure. We then applied a 
post-processing pipeline [35] to minimize PCR and sequencing errors, 
contaminations and false-positive sequences, and a detailed curation of 
ecologically incongruent assignments also to deal with the ambiguous 
matches and provide more reliable information about species identifi-
cations (e.g., taxa with distributions outside the Palearctic and Nearctic 
zones, none barcoded MOTUs and redundant assignations). This con-
servative approach retained a total of 40 identified species. We then 
used checklists of Icelandic hexapod species and information from pre-
vious studies at the same study site [10,36] to assess the performance of 
our eDNA metabarcoding protocol to properly describe the hexapod 
communities in the soil. 

2.4. . Environmental variables 

Dissolved organic C (DOC), dissolved organic N and total dissolved N 
(TDN) in all soils were quantified in 1 M KCl extracts. Soil Cmic and 
Nmic were determined by the chloroform-fumigation extraction method 
(48 h incubation period), followed by 1 M KCl extraction. All extracts 
were analyzed for DOC and TDN with a TC/TN- Analyzer (Shimadzu, 
TOC-VCPH/CPNTNM-1 analyzer). There were no correlations between 
environmental variables (Tables S1–S4). 

2.5. Data analysis 

All data handling, visualization and statistical analyses were con-
ducted using R v4.0.6 [37]. We first identified the relationships between 
all environmental variables (the amounts of DOC and DON, and Cmic 
and Nmic) across temperatures using principal component analyses 
(PCAs) and simple general linear models (GLMs), with warming as 
categorical fixed-effect terms. We then built simple GLMs, with tem-
perature as fixed-effects terms, to identify differences in rarefied mOTU 
abundance and richness due to warming. Changes in the composition of 
the hexapod communities for each pair of temperature levels were 
assessed using sparse partial least squares discriminant analysis 
(sPLS-DA) as implemented in the mixOmics package [38]. sPLS-DA se-
lects variables and classifies the most discriminative taxa in the com-
munity matrices. The optimal number of components was chosen based 
on the error rate of t-tests, which suggested the use of single-component 
sPLS-DAs in both warming levels. The mixOmics package also delivers P 
values based on the area under the receiver operating characteristic 
curve to complement the sPLS-DA performance results. The main 
sPLS-DA variates (the x-variate, capturing the compositional similarity 
of soil hexapod communities) were then subjected to simple GLMs 
against the set of environmental variables: the amounts of soil DOC and 
DON, Cmic and Nmic. 

3. Results 

3.1. Environmental variables 

The amounts of Cmic, soil DOC and DON decreased with warming, 

while Nmic did so marginally (P < 0.05, P < 0.05, P < 0.05 & P = 0.08, 
respectively; Table 1). The confidence ellipses of the environmental 
PCAs overlap between the control and the temperature levels (Fig. 1). 

3.2. Insect community description 

eDNA metabarcoding identified 40 species, corresponding to 
different lineages within the subphylum Hexapoda: Collembola (14 
species), Coleoptera (12 species), Diptera (six species), Hemiptera (five 
species), Hymenoptera (one species), Dermaptera (one species) and 
Lepidoptera (one species). Three springtail species were previously un-
recorded for Iceland: Sminthurinus bimaculatus (244 reads across nine 
samples), Pogonognathellus flavescens (110 reads across three samples) 
and Megalothorax perspicillum (two reads in one sample). The most 
abundant group was four species of springtails belonging to the order 
Neelipleona, which together accounted for 42% of all reads. The next 
most abundant orders were Diptera (18.6%), Entomobryomorpha 
(9.1%), Hemiptera (9.1%), Symphypleona (8.4%) and Poduromorpha 
(7.6%). 

3.3. Community response to soil warming 

The number of eDNA reads did not differ significantly across tem-
perature levels (P = 0.54; Fig. 2a), nor did the richness of the soil 
hexapod communities (P = 0.29; Fig. 2b). The sPLS-DA with the 
warming levels identified significant compositional dissimilarities be-
tween the control, the +3 and + 6 ◦C treatments (P < 0.01 for both, 
Fig. 3a and b). The first sPLS-DA variate (x-variate) from the control and 
the +3 ◦C treatment accounted for 11% of the variance, the variate 
including the control and the +6 ◦C treatment accounted for 19%, and 
the variate including both warming levels explained 16% of variance 
(Fig. 3). In all sPLS-DAs, higher scores in the x-variate implied increasing 
compositional dissimilarity with higher temperatures (Fig. 3). Compo-
sitional changes with warming were driven mainly by springtails (e.g. 
Tomocerus ocreatus, Folsomia quadrioculata and Megalothorax svalbar-
densis), beetles (e.g. Liogluta microptera and Hypnoidus sp. 1), and the 
dipteran Bradysia subvernalis (Fig. 4). 

None of the four environmental variables had a significant effect at 
+3 ◦C when we assessed the capacity of the environmental variables to 
account for such differences in the composition of the soil hexapod 
community. Compositional similarities at +6 ◦C, however, were nega-
tively correlated with the amounts of Cmic and Nmic and marginally 
correlated with the amount of DOC and DON found in the control (P <
0.05, P < 0.05, P = 0.07 & P = 0.06, respectively; Table 2). The negative 
correlation between the Control vs +6 ◦C sPLS-DA x-variate and these 
environmental variables imply that Cmic, Nmic, soil DOC and DON 
depletion lead to communities with species compositions similar to 
those found at the +6 ◦C (Fig. 3). 

4. Discussion 

Our results indicated that warming causes changes in the 

Table 1 
Variation of environmental variables across temperatures.  

Environmental variable Estimate F P Adjusted R2 

Microbial C − 0.005 ± 0.002 6.26 0.02 * 0.27 
Microbial N − 0.01 ± 0.00 3.58 0.08 • 0.15 
Soil DOC − 0.06 ± 0.02 6.18 0.02 * 0.27 
Soil DON − 0.20 ± 0.07 7.70 0.01 * 0.32 

Effect estimates followed by their standard errors are the output of general linear 
models for each environmental variable. The intercept is always the control, and 
the explanatory variable is always the corresponding environmental variable: 
microbial carbon (C), microbial nitrogen (N), soil dissolved organic carbon 
(DOC) or soil dissolved organic nitrogen (DON). •, P < 0.1; *, P < 0.05. All 
models have 13◦ of freedom. 
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compositions of the soil hexapod community in a subarctic grassland. In 
this case of study, an increase in soil temperature of 6 ◦C above ambient 
had an impact on the community composition, which correlated with 

decreases in the amounts of Cmic, Nmic, DOC and DON. These results 
highlight how the responses of soil hexapod community assemblages to 
warming can be associated with changes in microbial biomass and shifts 
in C and N availability. Moreover, eDNA metabarcoding was an efficient 
methodological approach to obtain a description of the soil hexapod 
communities. Additionally, eDNA metabarcoding allowed us to detect 
three springtail species not previously reported for Iceland but exten-
sively distributed across the northernmost part of continental Europe 
(GBIF, 2021). 

Our results support previous findings that exposure to soil warming 
for over a decade in this subarctic grassland may not result in a shift of 
either soil hexapod abundance or richness [10]. We found, however, 
compositional dissimilarities that may threaten the functionality of soil 
hexapod communities more than can simple changes in species richness 
or abundance [18,39]. Shifts in community composition in our study 
were mainly driven by springtail, beetle and fly species, which were also 
the richest lineages with the most DNA reads. The species driving such 
changes in community composition differed not only between the con-
trol and higher temperature levels, but also between the +3 and + 6 ◦C 
treatments. These differences may have been associated with different 
temperature optima, sensitivity to temperature maxima or resilience to 
warming by the populations of hexapod species [12,13]. For instance, 
the rove beetle Liogluta microptera and wireworms of the genus Hyp-
noidus are known to prefer warmer and drier soils (Ottesen 1996; [40], 
while some fungus gnats of the genus Bradysia are also known to have a 
temperature-sensitive phenology [41] (Fig. 4). Changes in food re-
sources caused by warming are also an important factor capable of 
altering soil hexapod communities [10,42], both by affecting the 
amount of litter input or the microbial biomass (S. F [43]. 

The impacts on soil hexapod communities under the most extreme 
conditions of soil warming correlated with the depletion of Cmic and 
Nmic in the topsoil. Previous studies at the same site have found that 
warming leads to the loss of soil organic C (SOC) stocks in the topsoil 
ultimately reducing the amount of Cmic [3,44,45]. A proportional loss 
of Nmic might have followed this loss of C due to the relatively tight C:N 
stoichiometric balance of microbial metabolism at the site [46–48]. The 
depletion of labile DOC and DON in the warmest soils in our study, 
however, only affected marginally the soil hexapod communities 
(Table 2, Fig. 3). The reduction of Cmic and DOC should have negatively 
affected important soil hexapod trophic guilds such as microbial feeders 
and detritivores relying on bacterial and fungal biomass as well as litter 
input. In contrast, the lack of effect of the moderate +3 ◦C warming may 
have been associated with the threshold dynamics of the soil 

Fig. 1. Principal component analyses of the distribution of the environmental 
variables, with 95% confidence ellipses denoting different treatments. 

Fig. 2. Violin plots of the numbers of reads (a) and molecular operative taxo-
nomic units –mOTU- (b) across sites and treatments. Horizontal lines inside 
each plot from the lowest to the highest denote the first, second and 
third quartiles. 

Fig. 3. Compositional variation of the soil hexapod communities based on a single-component sparse partial least squares discriminant analysis (sPLS-DA) for control 
against +3 ◦C warming (a), control against +6 ◦C warming (b) and +3 ◦C against +6 ◦C (c). The amount of explained variance of the x-variate is shown in each figure. 
Confidence ellipses are set at 95%. The linear relationships between the x-variate scores with the corresponding soil environmental variables (microbial carbon, 
microbial nitrogen, soil dissolved organic carbon and nitrogen -DOC and DOC, respectively-) are shown on top of each sPLS-DA. Solid and dashed lines show sig-
nificant and marginally significant slope parameters (P < 0.05, and P < 0.1, respectively). See Table 2 for further information on the linear models. 
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microorganisms found in this subarctic grassland, where only increases 
in temperature equal or above 6 ◦C have been shown to lead to abrupt 
shifts in microbial diversity and composition [49,50]. 

Global warming is generally expected to increase SOM decomposi-
tion leading to higher N availability [51,52]. However, at a decadal scale 

the impact of warming correlated with lower DOC and DON availability 
as well as with a loss of Cmic and Nmic. The impact of warming was 
therefore quite different from the predicted short-term warming 
response, which should be driven by the initial enhanced availability of 
N. The requirements of hexapods for C and N, and the sources of C and N, 
are of great interest for predicting the response of soil hexapods to 
warming. In our study, we consider it likely that the loss of Cmic and 
Nmic due to warming depleted the food resources of hexapod bacter-
ivores and fungivores [53], increasing litter concentration and exerting 
a positive feedback on hexapod detritivores. These differences in C and 
N availability, together with the species-specific temperature optima 
and sensitivity, may account for the lack of a common compositional 
response across warming levels. The stoichiometric balance of micro-
organisms and hexapods also highlight the importance of the C and N to 
understand the mechanistic response of soil hexapods to warming. The 
nutrient requirements and elemental stoichiometry of microorganisms 
and plants have been well studied [54], but our knowledge of hexapod 
stoichiometry is a lot less advanced [55]. For instance, previous work 
suggests that arthropod stoichiometric response to temperature is not 
necessarily monotonic in shape [56], and that resource quality (e.g. C:N 
and C:P ratios) plays a major role in ground arthropod feeding behavior 
[57,58]. Therefore, the complex behavior of arthropods hamper our 
ability to assess their nutritional requirements [59,60]. 

Furthermore, it is crucial to consider potential biases in these re-
sponses, as the study system differs from global warming in two signif-
icant aspects. Firstly, geothermal warming exhibits a contrasting vertical 
gradient compared to climatic warming, with warmer temperatures 
increasing from deep soil layers rather than the surface. Previous 
research indicates that such warming influences the composition of soil 
hexapod communities across the soil profile. For instance, in regions 
with a natural gradient of European climatic aridity, specific traits of 
soil-dwelling springtail species are favored on the soil surface, whereas 
short-term exposure to drought induces a different response, promoting 
traits associated with soil conditions (Ferrín et al., 2021). Secondly, 
global warming can lead to shifts in vegetation communities, which also 
have implications for hexapod populations. In subarctic regions, one 
common response to warming is the expansion of shrubs into grasslands 
and tundra, a process known as shrubification. This vegetation change 
alters nutrient dynamics, microbial activity, and hexapod communities 
[61–63]. Therefore, it is essential to interpret these results with caution, 

Fig. 4. Identity of the main hexapod species driving the compositional differences between the controls and the warming treatments. Only species with a loading 
score >0.1 in the corresponding discriminant analysis are shown. 

Table 2 
Relationship between the compositional similarities of the soil hexapod com-
munity with the environmental variables across temperatures.  

Treatment Environmental 
variable 

Estimate F P Adjusted 
R2 

Control vs 
þ3 ◦C 

Microbial C 0.000 ±
0.001 

0.10 0.75 0 

Microbial N 0.002 ±
0.004 

0.23 0.64 0 

Soil DOC − 0.02 ±
0.01 

2.42 0.15 0.13 

Soil DON − 0.02 ±
0.04 

0.24 0.63 0 

Control vs 
þ6 ◦C 

Microbial C − 0.002 ±
0.000 

8.23 0.02 
* 

0.44 

Microbial N − 0.008 ±
0.003 

7.38 0.02 
* 

0.41 

Soil DOC − 0.03 ±
0.01 

4.04 0.07 
•

0.25 

Soil DON − 0.07 ±
0.03 

4.65 0.06 
•

0.28 

þ3 ◦C vs 
þ6 ◦C 

Microbial C − 0.001 ±
0.001 

0.65 0.44 0 

Microbial N − 0.004 ±
0.005 

0.70 0.42 0 

Soil DOC − 0.02 ±
0.04 

0.28 0.60 0 

Soil DON − 0.03 ±
0.09 

0.12 0.72 0 

Results are general linear models, with the first variate (X-variate 1) from an 
sPLS-DA of the hexapod communities as the response variable modeled against 
each environmental variable: microbial carbon (C), microbial nitrogen (N), soil 
dissolved organic carbon (DOC) or soil dissolved organic nitrogen (DON). Effect 
estimates are followed by their standard errors. •, P < 0.1; *, P < 0.05. All 
models have 8◦ of freedom. Note that the higher the value of the sPLS-DA x- 
variate, the higher the similarity with the communities of the higher tempera-
ture level of the pair (see Fig. 3). 
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considering the unique characteristics of the study system and the po-
tential influence of these factors. Nonetheless, experimental and mech-
anistic approaches allow the identification of the nutritional demands 
affecting soil hexapods over a multiplicity of biomes, and by extension 
their community responses to warming, clarifying belowground 
ecological dynamics. Future studies on this topic are therefore strongly 
recommended. 
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E. Gunnarsdóttir, M. Holmstrup, K. Ilieva-Makulec, T. Kätterer, B. Marteinsdóttir, 
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D. Sigurdsson, J. Peñuelas, I.A. Janssens, T. Urich, A.T. Tveit, A. Richter, Increased 
microbial expression of organic nitrogen cycling genes in long-term warmed 
grassland soils, ISME Communications 1 (1) (2021) 69, https://doi.org/10.1038/ 
s43705-021-00073-5. 

[48] T.W.N. Walker, C. Kaiser, F. Strasser, C.W. Herbold, N.I.W. Leblans, D. Woebken, I. 
A. Janssens, B.D. Sigurdsson, A. Richter, Microbial temperature sensitivity and 
biomass change explain soil carbon loss with warming, Nat. Clim. Change 8 (10) 
(2018) 885–889, https://doi.org/10.1038/s41558-018-0259-x. 
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