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Abstract: We have previously reported a new design for drift-free liquid-crystal polarization
modulators (LCMs) based on liquid-crystal variable retarders (LCVRs). Here, we study their
performance on Stokes and Mueller polarimeters. LCMs have polarimetric responses similar to
LCVRs and can be used as temperature-stable alternatives to many LCVR-based polarimeters.
We have built an LCM-based polarization state analyzer (PSA) and compared its performance
to an equivalent LCVR-based PSA. Our system parameters remained stable over a wide range
of temperature, precisely from 25°C to 50°C. Accurate Stokes and Mueller measurements have
been conducted, paving the way to calibration-free polarimeters for demanding applications.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Polarization is a feature of light that appears to be very useful for numerous applications. In
the field of material science, ellipsometry [1] for example is a well-established technique to
characterize semi-conductor thin films, as accurate polarization control allows in situ monitoring
of thin layer growth. More challenging applications include polarimetry for remote sensing [2],
astronomy [3] and bio-medicine [4] since environmental factors cannot be easily controlled. In
that context, robust polarimeters are required.

Over the years, many designs have been proposed [5] and new ideas continue to be developed
(e.g. polarization-sensitive micro-patterned imaging polarimeters [6], fast Mueller polarimeters
involving spectral encoding [7] or metasurface-based polarimeters [8], among others). Most
imaging polarimeters are based on conventional detectors coupled with dynamic polarization
optics that would sequentially modulate the polarization of light. To that end, a variety of devices
have been proposed: rotating waveplates [9], Pockels cells [10], photoelastic modulators [11,12],
liquid crystal modules (Liquid Crystal Variable Retarders (LCVRs) [13] or Ferroelectric Liquid
Crystal cells (FLCs) [14,15]).

Liquid crystals are particularly well suited for polarimetric imaging and are widely used in
the research community, as well as in commercial polarimeters. They allow total control of
the polarization and are easily driven electronically. Without moving part, they avoid image
wanderings or vibrations. Their fast switching times (of the order of 1-10 ms for LCVRs) are
compatible with full characterization of polarimetric responses within seconds. At the same
time, liquid crystals can maintain a sufficiently long polarization state for most applications when
combined with CCD or CMOS cameras. Finally, the usability of LCVRs (available with various
form factors, small footprint, and low driving voltage in the 1-10 V range) makes them ideal for
portable or space-qualified instruments.

The major drawback of LCVR-based polarimeters is their temperature dependence. Conse-
quently, frequent and complete calibration of the system [16] is necessary (for example before
any measurement [17]) to sustain accurate measurements. It has to be done over the whole range
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of temperature where the polarimeter operates [18]. However, the drift of the measurement
matrix would still affect the precision and the comparability of measurements taken at different
temperatures: the conditioning of the system may vary, as the noise distribution over the elements
of the Mueller matrix may change [19][20]. Alternatively, an active temperature control of
LCVR modules has been proposed [21]. Such a strategy poses several challenges: thermalization
time, maintaining uniform temperature distribution over the entire LCVR, additional power
consumption, etc.

In Part I of this work [22], we have introduced a new design for temperature-stable Liquid
Crystal Modulators (LCM) that can replace LCVRs in any LCVR-based polarimeter. In this
paper, we will assess such an LCM-based polarimeter. In section 2, we explore the conditions
under which an optimal polarimeter can be built with LCMs, in particular by taking into account
achievable delays. Section 3 exposes the experimental setup and methods of data analyses for an
LCM-based polarization state analyzer (PSA). Experimental validation is presented in section 4
and discussed in section 5.

2. Polarimeters based on liquid crystal modulators

LCVRs are very versatile and flexible. They have been used in various polarimeters. In some
cases, only one polarization state is considered in the contrast optimization process for a given
scene [23]. To determine the complete Stokes vector of an incoming light, at least four different
samplings are required, and in the case of active polarimetry, a total of 4× 4 measurements are
necessary to retrieve the Mueller matrix of a sample (four polarization states for the illumination
and four for the outgoing waves).

Here we explore the performance of LCM-based polarimeters, namely full Stokes and Mueller
polarimeters, as compared to their LCVR-based counterparts.

2.1. LCMs as temperature-stable alternative to LCVRs

In this section, we recall the main results of Part I of this work [22], where we have shown
that an LCM has the same polarimetric response as a conventional LCVR, except for the
temperature-dependent retardance drift.

LCVRs act as continuously variable retarders with fixed eigen-axes. If we note φ(T,V) the
retardance of an LCVR for a given temperature-voltage couple (T, V), and T0 the operating
temperature it has been designed for, we have established that the response of the LCVR would
only depend on a single parameter α according to:

φ(T , V) = φT0 (V) + αφT0 (V)(T − T0) (1)

hence, the higher the operating retardance at T0, the greater its rate of change with temperature.
The LCMs are built by stacking together two LCVRs (LCVRA and LCVRB) with their

eigen-axes perpendicular to each other. We have shown that with this configuration the retardance
of the LCM is equal to φLCM =φA-φB. Parameter α varies from one LCVR to the next, allowing
a mutual compensation of the temperature drift of LCVRA and LCVRB. Temperature-stable
operation of the LCM happens at calibrated voltage couples. Conversely, the compensation can
be virtually switched off when φB is set to zero (see also Fig. S1 in the Supplement 1). Then the
temperature dependence becomes negligible compared to the variations in retardance of LCVRA.

In our previous work, we have also established that the LCMs would have reduced retardance
range as compared to LCVRs mounted in the compensated modules. In the following, we show
that LCMs can be used as a temperature-stable replacement of LCVRs in any LCVR-based
polarimeter.

https://doi.org/10.6084/m9.figshare.22110497
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2.2. Conventional LCVR-based Stokes and Mueller polarimeters

In LCVR-based polarimeters, LCVRs usually act as electronically controlled polarization state
selectors. For Stokes polarimetry, the compound LCVR-polarizer-sensor is generally referred to
as Polarization State Analyser (PSA). As for Mueller polarimeters, a polarizer-LCVR stack is
inserted in front of the illumination and is called a Polarization State Generator (PSG).

A standard configuration for a PSA (or reciprocally for a PSG) is the combination of a linear
polarizer, an LCVR (LCVR1) with its eigen-axis at 45° with respect to the polarizer axis,
followed by a second LCVR (LCVR2) with its eigen-axis parallel to the polarizer axis. Such a
configuration permits to attain any pure polarization state on the Poincaré sphere. The analyzed
(resp. generated) Stokes vector is expressed as [24,25] :

S =
[︂

1 cos(φ1) sin(φ2) sin(φ1) cos(φ2) sin(φ1)
]︂T

(2)

where φ1,2 is the retardance of LCVR1,2 respectively. On the Poincaré sphere, a retarder acts as
a rotator around the Stokes vector identifying its eigen-axis, with a rotation angle equal to its
retardance. This is illustrated in Fig. 1.a) for the case φ1 =φ2 = 120°. The initial polarization
corresponds to a horizontal linear polarization S= [1 1 0 0]T (Point PA in Fig. 1.a). After
interacting with LCVR1, the polarization state is rotated along the larger dotted circle towards
S= [1 -0.5 0

√
3/2]T (Point PB in Fig. 1.a). With LCVR2, the polarization state is rotated along

the smaller dotted circle to position S= [1 -0.5 0.75 −
√

3/4]T (Point PC in Fig. 1.a). The whole
trajectory PA-PB-PC on the Poincaré sphere is represented by a solid blue line.
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1Fig. 1. Well-conditioned measurement matrix involving LCMs with limited retardance
range. a) Trajectory on the Poincaré sphere as light travels across a PSG (blue line). The
dotted lines represent the intersection of the Poincaré sphere with the planes where LCVR1
and LCVR2 operate their respective rotations. The starting point is at S= [1 1 0 0]T. In
the represented example: φ1 =φ2 = 120°. b) In red, boundary of the area that can be
explored with retardance range of [0° 240°] for both LCMs. In this case, measurement
matrix with ideal condition number (κ(A)=

√
3) is obtained. The inscribed tetrahedron

permits to visualize one such matrix A.

For a Stokes- (or a Mueller-) polarimeter, 4 (or 4× 4= 16) intensity measurements have to be
performed with different PSA states (or PSG and PSA). If we note A the 4× 4 matrix obtained by
stacking the 4 Stokes vectors set with the PSA, the Stokes vector S of the light to be analyzed
may be deduced from the measured vector I according to:

S = A−1I (3)
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The condition number of A (noted κ(A)) is frequently used as a figure of merit for polarimeters,
as it quantifies the error propagation across the system [20,26–28]. The theoretical lower limit
for such a number in the case of an ideal PSA is

√
3. It is obtained when the 4 probing Stokes

vectors form a regular tetrahedron within the Poincaré sphere [29].

2.3. Stokes and Mueller polarimeters based on compensated modulators

LCM-based polarimeters have been built according to the same scheme. However, if both LCMs
forming a PSA have retardance ranging less than 360°, some areas of the Poincaré sphere would
not be reached (however, if one of the LCMs ranges up to 360° or more, it is sufficient for
the second one to span 180° for any polarization state to be attained). It is worth mentioning
that even in that case, ideal systems, i.e., systems with best conditioned A-matrix, can still be
obtained. This is illustrated in Fig. 1.b) where retardance of both LCMs ranges from φmin= 0° to
φmax= 240°. Accessible polarization states on the Poincaré sphere are colored in blue, which
entails that a large area of the sphere (enclosed by the red line) is not accessible. It is still possible
to select 4 Stokes vectors forming a regular tetrahedron, one solution being provided by the four
yellow points within the blue zone (see Fig. 1.b).

To start with, we look for the minimum range needed to obtain an optimal κ(A). To that end,
we perform a calculation by imposing the minimal retardance to φmin= 0° for both LCMs, and
by varying the highest temperature-compensated retardance φmax for each LCM. A constrained
optimization (using fmincon in MATLAB R2016b) on the condition number of A has been
performed, with the retardance of each LCM maintained within the range [φmin, φmax]. Figure 2
shows a map of the lowest condition number as a function of φmax for both LCMs. The theoretical
limit for the best achievable κ(A) has been achieved, even for limited ranges. A higher range for
one of the LCMs allows to relax the constraints on the other. For example, if the first LCM (φA)
has a range of 360° or more, the second (φB) one may have retardance as low as 90°. If both
LCMs sweep within the same range, φmax must be higher than 212° so as to reach the optimum.
In practice, when building LCM-based polarimeters, a trade-off between thermal stability and
condition number is needed. Indeed for low noise data, it would still be possible to obtain fine
polarimetric measurements with non-optimal κ(A) [15].

Fig. 2. Map for condition number. Contour plot of lowest κ(A). attainable as a function of
the retardance range of LCVRA ([0° φAmax]) and LCVRB ([0° φBmax]).
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3. Materials and methods

In order to investigate the performance of an LCM-based polarimeter, we have performed
polarimetric measurements with varying temperatures. To that end, we have mounted a
temperature-stable PSA by combining two home-built LCMs and conducted experiments in a
temperature controlled enclosure.

3.1. Setup

Our setup is shown in Fig. 3. It corresponds to a Mueller polarimeter. The light source is a
fiber-guided halogen lamp (Dolan-Jenner MI 150) collimated with an objective (Avenir TV zoom
lens 75 mm, f/22) and filtered around 600 nm by means of a bandpass filter (50 nm FWHM,
Edmund Optics #84-797).

Fig. 3. Schematic of the optical setup. F: dichroic filter, P: polarizer, W: rotating waveplate,
PD: detector. The hatched box represents the temperature controlled enclosure

The PSG is based on a rotating waveplate (λ/4 at 632.8 nm, Newport, 20RP34). It is combined
with a polarizer (Newport, 20LP-VIS) positioned upstream towards the illumination. The
waveplate generates a retardance of 96.4° at the operating wavelength (600 nm). It is sequentially
set at four angles: -51.69°, -15.12°, 15.12°, 51.69°, which permits to generate an optimized set
of 4 incoming polarization states [20,30]. For such a configuration, the measurement matrix W
has a condition number of κ(W)= 3.07.

The light then interacts with the sample and is subsequently analyzed with the LCM-based
PSA. The latter will be described in detail in the next section. Behind the PSA, a lens (f= 35
mm, Thorlabs) concentrates the outgoing light onto a single-channel silicon detector (PDA
100A2 Thorlabs). The PSA and the detector are assembled in a heated enclosure which is
thermally isolated. It also includes a fan insuring rapid homogenization of the air within the
close. Temperatures of the LCVRs are continually monitored by sensors inserted in their mount.

3.2. LCM-based polarimeter

Two home-built LCMs have been assembled according to the procedure described in Part I of
this work [22]. Briefly, each LCM consists of two commercially available LCVRs (Meadowlark,
LRC 300 VIS) mounted in a metal holder with their eigen-axes perpendicular to each other.
The LCMs are calibrated within a heated enclosure similar to the one described above. Such a
calibration would determine their operating points, i.e., the pairs of voltage for which thermal
drift of the LCVRs would mutually compensate.

For validation purposes, we have conducted experimentations on an LCM-based PSA. It has
the conventional architecture of LCVR-based polarimeters as described in section 2.2, namely a
linear polarizer (on the detector side) followed by two LCMs. With respect to the laboratory
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Fig. 4. Temperature dependence of the measurement matrix A of a PSA with compensation
(LCM-PSA, blue line) and without compensation (LCVR-PSA, red line).

frame, the axis of the polarizer and those of the first and second LCMs are set to 0°, 45° and 0°
respectively.

Based on the previous retardance calibration, four projecting polarization states have been
chosen for the PSA. The corresponding Stokes vectors were then stacked in a 4× 4 matrix A. The
retardance of the first LCM would range from -250° to -12° for a temperature stable operation.
As for the second, the range was [4° 210°]. An optimized configuration of the PSA has been
sought by means of a constrained optimization procedure such as the one described in section 2.3.

3.3. Polarimetric measurements with a compensated PSA

The combination of the rotating PSG and the LCM-based PSA would form a Mueller polarimeter.
It will be used to retrieve the Mueller matrix of a pure element such as a waveplate. By combining
two-by-two the polarization states chosen for the PSG (matrix W) and those for the PSA (matrix
A), the 4× 4 intensity matrix B would satisfy:

B = AMWPW (4)

where MWP is the Mueller matrix of the waveplate. The experimental setup permits to observe
the temperature dependent behavior of the measurement matrix A, as well as the impact of
the temperature fluctuations on the measure MWP. At room temperature T0, the measurements
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matrices A(T0) and W(T0) were determined by means of the Eigenvalues Calibration Method
(ECM) [16]. After calibration, the Mueller matrix MWP of the waveplate is measured. Since
the waveplate and the PSG are set outside of the heated enclosure, MWP and W are considered
temperature independent.

MWP being the Mueller matrix of a retarder, is invertible (even unitary). By setting the
temperature in the enclosure to T, A(T) is determined by inverting Eq. (4):

A(T) = B(T)W−1M−1
WP (5)

By noting M’WP the Mueller matrix retrieved thanks to the measurement matrices calibrated at
room temperature, thermal effects may be investigated by comparing such a matrix to MWP, as it
satisfies:

M′
WP = A(T0)

−1B(T)W−1 (6)

M’WP represents the Mueller matrix that would be obtained when using a polarimeter calibrated
at room temperature. Since the Mueller matrix of the waveplate does not depend on temperature,
M’WP is indicative of measurement errors due to temperature induced changes in the system. In a
temperature-stable system, however, A(T) remain constant and equal to A(T0) and MWP=M’WP
at any given temperature.

4. Results

The setup exhibited in the previous section has been used to expose the benefits of LCMs over
LCVRs. The first investigation has been conducted on the response of the system itself when
varying the temperature. With the same setup, we have also monitored the impact of thermal
stabilization on polarimetric measurements, should it be for Stokes or Mueller polarimeters.

4.1. Measurement matrix of a compensated PSA

Although the temperature dependence of a single LCVR can be summarized by a simple equation
(Eq. (1)), in an LCVR-based polarimeter the temperature dependence can be quite complex. A
Mueller polarimeter, for example, involves 4 LCVRs (two for the PSG and two for the PSA), with
each LCVR operating at 4 different voltages. The retardance drifts are module dependent as well
as voltage dependent, and the final matrix A(T) will be significantly impacted by the coalescence
of all the parameters.

In the following experiments, we will be focusing on the temperature dependence of a PSA only.
This means considering a Stokes-meter, i.e., a polarimeter analyzing light incoming (without
control over the illuminating polarization). The temperature dependent matrix A(T) related to
the LCM-based PSA has been measured according to the procedure described in section 3.3.
To that end, two sets of voltages have been considered. The “LCM-PSA” optimized voltage set
has been chosen in such a way as to compensate temperature dependence. The “LCVR-PSA”
voltage set simulates an LCVR-based system. The latter has been obtained by imposing φB= 0
for both LCMs (see section 2.1). As for LCM-PSA, the corresponding four Stokes vectors are
adjusted with retardances accessible with both LCMs. In the LCVR-PSA situation, only LCVRA
of each LCM will be used to sweep through retardances, so that the A-matrices are equal at
25°C. The evolution of matrix A for both LCM-PSA and LCVR-PSA are compared in Fig. 4,
with temperature ranging from 25°C to 50°C. In the absence of compensation, the elements
of ALCVR undergo very significant shifts: for example, A2,2 varies from -0.52 at 25°C to 0.45
(almost 50% of the total range for this element) at 50°C. Not all elements are affected in the same
way. In the current situation, A1,4 and A2,3 for example are almost constant over the considered
temperature range. Such behaviors can be explained by several factors: a) firstly, by the fact that
the temperature dependence is stronger when the retardance is high, b) secondly, by the nonlinear
dependence of the elements on the retardance (see Eq. (1) in section 2.1), c) finally, by a possible
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mutual compensation of the drift effects by the first and second LCM (especially for the fourth
column of A).

Fig. 5. Temperature dependence of the transfer matrix A25°C
−1ATmeas of a PSA with

compensation (LCM-PSA, blue line) and without compensation (LCVR-PSA, red dotted
line).

LCM-PSA exhibits a much more stable A-matrix. We observe variations limited to 0.1 over the
whole range of temperature. In our experiments, perfect compensation of the temperature-drift
has not been achieved. A small mismatch has been observed on the derivatives of the retardance
curves of the LCVRs forming each LCM. Such a residual mismatch appears to be the limiting
factor for achieving even better stabilization of matrix A.

4.2. Stokes parameters

Relating the perturbations affecting matrix A to the errors propagated in the retrieved Stokes
vector is not straightforward. In practice, the measurement errors of the polarimeter will depend
on the polarization itself. To better support our argument, we have calculated the product of
the inverted PSA matrix obtained at room temperature and the PSA matrix at the operating
temperature T, i.e, A25°C

−1ATmeas. It corresponds to the transition matrix between the real Stokes
vector S and the measured Stokes vector Smeas. Indeed:

Smeas = A(T0)
−1Imeas = A(T0)

−1A(T)S (7)
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In a well-calibrated system, the transition matrix is equal to the identity. Deviations of
the (i,j)-element of such a matrix from the expected value are significant of the impact of the
temperature on the i-th element of Smeas, provided the j-th element of S.

The behavior of A25°C
−1ATmeas between 25°C and 50°C is shown in Fig. 5 for both systems

(LCVR-PSA and LCM-PSA). Again, for LCVR-PSA, deviations are significant from the expected
identity matrix. The second element on the diagonal drops from 1 to almost 0 at 50°C while some
off-diagonal elements surpass 0.5. In the current case, S0 and S3 remain relatively unaffected by
perturbations, conversely S1 and S2 are very sensitive to temperature-drift.

For illustration purpose, Table 1 shows the results obtained as measurements were made at
30°C and calibration performed at 25°C. Here, the incoming Stokes vector is Sreal = [1 0 1 0]T.
In the LCM-PSA configuration, the transfer matrix A25°C

−1ATmeas remains stable within 0.1 for
all elements, over the whole temperature range. An improvement of one order of magnitude for
S2 may be observed.

Table 1. Measurement errors at
30°C for a system calibrated at

25°C

Sreal Smeas LCVR Smeas LCM

1 1.002 1.010

0 -0.182 0.027

1 0.959 1.002

0 -0.057 -0.022

4.3. Mueller matrices

The performance of the LCMs inserted in a Mueller polarimeter has been investigated by
retrieving the Mueller matrix of a waveplate under temperature stabilization or not, and by
extracting the physical characteristics of the optical element. Again, the calibration matrix A25°C
obtained at 25°C has been used for the measurements made over the entire range of temperature.
It is worth noting that only the PSA is located in the heated enclosure. The PSG with the
rotating waveplate remained at room temperature during the whole experiment. Once the Mueller
matrix obtained (by applying Eq. (6)), its polar decomposition has been carried out according
to an adapted version of the Lu and Chipman approach [31,32]. Such an algorithm allows to
extract fundamental polarimetric properties (retardance, diattenuation, depolarization) from
the Mueller matrix. The variations of the retardance, orientation of the retarder, diattenuation
and depolarization are shown in Fig. 6 a), b), c) and d) respectively. At room temperature, a
retardance of 127° and an orientation of 33° were obtained. As expected for a waveplate, the
diattenuation and depolarization were close to 0.

The measured retardance remained stable for both LCVR- and LCM-PSA from 25°C to about
35°C, where the retardance measured with the LCVR-PSA started to deviate quickly. At 50°C,
the error on the retardance reached 14° for the LCVRs and was limited to 3° for the LCMs. The
orientation of the waveplate was more sensitive to temperature changes. With the LCVR-PSA,
the values drifted continuously up to 46° at 50°C while with the LCM-PSA, deviations were 1°
at the most from the expected value of 33°.

The drift of the measurement matrix for the LCVR-PSA can also be associated with the
appearance of anomalous diattenuation and depolarization as temperature increases. The
diattenuation features an almost linear dependence on temperature and reaches 0.43 at 50°C. The
depolarization increases more slowly to attain 0.13 at 50°C. For LCM-PSA, these anomalies
remain close to 0. A residual increase of the parameters may however be observed: it is limited
to 0.03 for diattenuation and 0.027 for depolarization.
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Fig. 6. Temperature dependent parameters of a waveplate obtained with compensated
(LCM-PSA) and standard (LCVR-PSA) PSA in the Mueller configuration: (a) Retardance,
(b) orientation of the retarder, (c) Diattenuation, and (d) Depolarization extracted from the
Mueller matrix using polar decomposition [31,32].

5. Discussion and conclusion

In this part of our work on drift-free LCMs, we have shown that such modulators may be considered
as interesting alternatives to LCVRs for polarimeters. To that end, we have demonstrated that the
limited retardance-range of LCMs is not an obstacle for mounting polarimeters with optimal
performances. We have then built and tested such an LCM-based polarimeter. At room
temperature, the device has the same characteristics (condition number, low operating voltages,
small footprint. . . ) as an LCVR-based polarimeter. As the temperature changes, the LCM is
by far more robust in terms of stability. This has been established for both the instrumental
measurement matrix and polarimetric (Stokes and Mueller) assessments.

With further developments, the retardation range may be extended. This could be achieved
either by carefully selecting the LCVR pair forming the LCM or by developing liquid crystals
especially optimized for such a purpose. As on the limits of achievable condition number, our
study may also apply to LCVRs with limited retardance range, which could occur at certain
wavelengths, or for LCVRs optimized for fast switching times.

The current investigations have proven that LCM-based polarimeters are capable of providing
reliable measurements over a wide range of temperature. Even more accurate measurements
could be achieved by taking into account the residual retardance-drifts by assessing beforehand
the temperature response of the polarimeter to be employed.

To conclude, our system corrects the main shortcoming of LCVRs, which otherwise are
excellent modulators for polarimetry. The stability of an LCM-based instrument should permit
to drastically reduce the amount of calibration procedures. It would also produce stable
measurements in unsteady thermal environments. Obvious fields of application of this new
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device would be biomedical polarimetry and astronomy. Such an instrument is currently being
used by our team in a clinical trial for imaging skin lesions.
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