

A polytypic species revisited: phylogenetic and morphological variation, taxonomic status, and geographical distribution of Trachops (Chiroptera: Phyllostomidae)

M Alejandra Camacho, Pablo Menéndez-Guerrero, Balázs Horváth, Dániel Cadar, Jérôme Murienne

▶ To cite this version:

M Alejandra Camacho, Pablo Menéndez-Guerrero, Balázs Horváth, Dániel Cadar, Jérôme Murienne. A polytypic species revisited: phylogenetic and morphological variation, taxonomic status, and geo-graphical distribution of Trachops (Chiroptera: Phyllostomidae). Journal of Mammalogy, 2024, 105 (5), pp.1001-1021. 10.1093/jmammal/gyae067. hal-04909503

HAL Id: hal-04909503 https://hal.science/hal-04909503v1

Submitted on 24 Jan 2025

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

OXFORD Journal of Mammalogy

A polytypic species revisited: Phylogenetic and morphological variation, taxonomic status, and geographical distribution of Trachops (Chiroptera: Phyllostomidae)

Journal:	Journal of Mammalogy
Manuscript ID	Draft
Manuscript Type:	Research Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Camacho, M. Alejandra; Pontificia Universidad Católica del Ecuador, Museo de Zoología Menéndez-Guerrero, Pablo; Pontificia Universidad Católica del Ecuador, 3Laboratorio de Macroecología y Cambio Global, Facultad de Ciencias Exactas y Naturales Horváth, Balázs; Bernhard Nocht Institute of Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research Cadar, Dániel; Bernhard Nocht Institute of Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research Cadar, Dániel; Bernhard Nocht Institute of Tropical Medicine, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research Murienne, Jérôme ; Université Toulouse III-Paul Sabatier, Centre de Recherche sur la Biodiversité et l'Environnement (CRBE)
Keywords:	Fringed-Lipped Bat, Mitochondrial DNA analysis, Neotropical Phyllostomids, Taxonomic evaluation, T. cirrhosus, T. ehrhardti, Trachops diversity
	·

SCHOLARONE[™] Manuscripts

1	A polytypic species revisited: Phylogenetic and morphological variation,				
2	taxonomic status, and geographical distribution of <i>Trachops</i> (Chiroptera:				
3	Phyllostomidae)				
4					
5	* M. Alejandra Camacho ^{1,2} 0000-0001-7965-184X, Pablo A. Menéndez-Guerrero ³ 0000-0002-3276-4537, Balázs				
6	Horváth ⁴ 0009-0000-4632-1908, Dániel Cadar ⁴ 0000-0002-8063-2766, Jérôme Murienne ^{1 0000-0003-1474-7829}				
7					
8	¹ Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse,				
9	CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France.				
10	² Museo de Zoología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del				
11	Ecuador, Quito, Ecuador.				
12	³ Laboratorio de Macroecología y Cambio Global, Facultad de Ciencias Exactas y Naturales,				
13	Pontificia Universidad Católica del Ecuador, Quito, Ecuador				
14	⁴ WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research,				
15	Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany				
16					
17	*Corresponding author: M. Alejandra Camacho. <u>macamachom@puce.edu.ec</u> , Av. 12 de Octubre				
18	1076 y Roca. Zip Code: 170525.				
19					
20	Short running title: Phylogenetic and morphological characterization of Trachops				
21					
22	Abstract				
23					
24	The taxonomic status of the neotropical bat genus <i>Trachops</i> has been reevaluated through an				
25	integrated study that incorporates morphological, morphometric, and molecular data across its				
26	extensive geographic range. Our research, which included previously unexamined regions,				
27	revealed substantial insights into the diversity within <i>Trachops</i> . The results support the elevation				

28 of T. cirrhosus ehrhardti to species status, due to genetic and morphological differences in 29 southeastern Brazil specimens. Conversely, our comprehensive analysis found insufficient 30 evidence to maintain the subspecific distinction of T. c. coffini, which lacks diagnosable 31 morphological characters and is not genetically distinct from T. c. cirrhosus across its distribution 32 range. Additionally, our findings challenge the previous belief of a latitudinal differentiation in 33 body size for Trachops cirrhosus, as specimens from western South America and northeastern 34 South America exhibit similar sizes to those from Central America. These results underscore the 35 importance of revising the taxonomic framework for this bat genus, contributing to a more precise 36 understanding of its evolutionary relationships, and further enhancing conservation efforts, 37 considering the potential threats to the newly recognized *T. ehrhardti* in the imperiled Atlantic 38 Forest of Brazil.

39

40 Keywords: Fringed-Lipped Bat, Mitochondrial DNA analysis, Neotropical Phyllostomids,
41 Taxonomic evaluation, *T. cirrhosus*, *T. ehrhardti*, *Trachops* diversity.

42

43 Resumen

44

45 El estatus taxonómico de los murciélagos neotropicales del género *Trachops* ha sido reevaluado 46 mediante un estudio integrado que incorpora datos morfológicos, morfométrico y moleculares a 47 través de su extensa distribución geográfica. Nuestra investigación, que incluyó regiones 48 previamente no examinadas, reveló perspectivas sustanciales sobre la diversidad dentro del 49 género Trachops. Los resultados respaldan la elevación de T. cirrhosus ehrhardti al estatus de 50 especie debido a las diferencias genéticas y morfológicas en especímenes en el sudeste de Brasil. 51 Por otro lado, nuestro análisis no encontró suficiente evidencia para mantener la distinción 52 subespecífica de T. c. coffini, que carece de caracteres morfológicos diagnosticables, y no difiere 53 genéticamente de T. c. cirrhosus en su rango de distribución. Adicionalmente, nuestros hallazgos 54 confrontan las creencias previas de una diferenciación latitudinal en el tamaño corporal de

55 Trachops cirrhosus, ya que especímenes del oeste y noreste de Sudamérica exhiben tamaños 56 similares a los encontrados en individuos de Centroamérica. Estos resultados subrayan la 57 importancia de examinar el marco taxonómico para este género de murciélagos, contribuyendo a 58 una comprensión más precisa de sus relaciones evolutivas, para aumentar los esfuerzos de 59 conservación a futuro, considerando los riesgos potenciales a la recientemente reconocida especie 50 *T. ehrhardti* en los Bosques Atlánticos amenazados de Brasil.

61

62 Palabras clave: Análisis DNA mitocondrial, diversidad *Trachops*, Evaluación taxonómica,
 63 Filostómidos Neotropicales, Murciélago de labio verrugoso, *T. cirrhosus*, *T. ehrhardti*

64

65 Introduction

66

The Frog-Eating bat, *Trachops cirrhosus* (Spix 1823), is a member of the family Phyllostomidae 67 68 (Gray 1825), and the only member of its genus (Solari et al. 2019). This species has a wide 69 distribution in the Americas, ranging from southern Mexico to Brazil, and occurring at mid to high 70 elevations at both sides of the Andes Cordillera, across the Amazon, and in the Atlantic Forest 71 (Jones and Carter 1976; Cramer et al. 2001; Williams and Genoways 2008; Solari et al. 2019). The 72 species occurs in humid tropical and subtropical forests, and its distribution encompasses 73 primary, secondary, disturbed and gallery forests, at woodland edge and near cultivated areas 74 (Fenton et al. 1992; Ditchfield 1996; Tirira 2017; Solari et al. 2019).

75

Trachops is monophyletic genus (<u>Ditchfield 1996</u>; <u>Baker et al. 2003</u>; <u>Camacho et al. 2022</u> and can
be easily distinguished from other bats by its finger-like dermal projections on the chin and lips
(Figure 1). Historically, *Trachops* taxonomy has undergone numerous changes (<u>Spix 1823</u>; <u>Gray</u>
<u>1825</u>, <u>Gray,1847</u>; <u>Felten 1956a</u>; <u>Schinz 2012</u>) until the late 1950s, when its current taxonomy was
stablished with three recognized subspecies: *Trachops cirrhosus cirrhosus* (<u>Spix 1823</u>), occurring
from Costa Rica to northeastern Brazil; *Trachops cirrhosus coffini* (<u>Goldman 1925</u>), distributed

82 from Mexico to Nicaragua; and *Trachops cirrhosus ehrhardti* (Felten, 1956b), which is found only

83 in southeastern Brazil (Figure 2) (<u>Jones and Carter 1976</u>; <u>Solari et al. 2019</u>).

84

85 The descriptions of the subspecies of Trachops cirrhosus are brief and lack comparisons with 86 specimens from Central and South America locations, leading to unclear geographic ranges and 87 diagnostic characters. Moreover, only a few recent studies have addressed the systematics of 88 *Trachops* itself. Ditchfield (1996) used partial sequences of the mitochondrial Cytochrome b gene 89 and identified 5 distinct haplotypes with an average sequence divergence ranging from 5.5% to 90 11%, demonstrating strong geographic structuring and limited sharing of haplotypes among 91 distant localities. Later, and despite the high genetic divergences yielded by the mitochondrial 92 marker COI, Clare et al. (2007) and Clare (2011) could not find congruence with the topology 93 yielded by the nuclear marker Dby. However, they observed many intraspecific groups occupying 94 sympatric distributions, strongly suggesting ongoing or past speciation events. Most recently, 95 Fonseca (2019) proposed elevating T. c. ehrhardti to the species level, based on integrative 96 evidence in morphology, ecology, and genetics, while maintaining T. c. cirrhosus and T. c. coffini as 97 subspecies of *T. cirrhosus*. But these taxonomic changes, initially proposed by Fonseca (2019), 98 have not yet been formalized in a peer-reviewed publication, and the morphological guidelines 99 for characterization of *Trachops cirrhosus* subspecies remain unclear.

100

101 In the present study, we revise the taxonomic composition and phylogenetic structure of the 102 Trachops genus based on molecular, morphological, morphometric, and geographic data that 103 includes a significant sample from the West South American region. We aim to address this issue 104 by answering the following questions: (1) Do the current subspecies of *Trachops cirrhosus* have 105 valid phylogenetic and morphological justifications? (2) What are the distinct and diagnosable 106 characters of each subspecies? (3) Can biodiversity of cryptic species be inferred in Trachops 107 through molecular and morphological analysis? We seek to clarify, correctly diagnose, and 108 geographically limit *T. cirrhosus* subspecies. We used a phylogenomic dataset based on complete

mitochondrial genome which has provided meaningful information in Phylostomids (<u>Camacho et</u>
 <u>al. 2022</u>). In addition, we performed an extended taxon sampling, ensuring comprehensive spatial
 coverage. This diverse geographic sampling encompasses a wide range of habitats and ecological
 zones where *Trachops cirrhosus* subspecies are found.

- 113
- 114 Methods
- 115

116 Specimens, tissue samples, and biorepositories: For the morphometric analyses, we measured 117 238 specimens of *Trachops cirrhosus*. Only adults were included, following the consideration from 118 Kunz et al. (1996) for sex, age, and reproductive conditions of mammals. We included 119 representatives from all named subspecies and from their complete distribution areas in Central 120 and South America. The samples comprised fluid-preserved specimens, study skins, and skulls 121 deposited in the following institutions: AMNH, American Museum of Natural History, New York, 122 NY, USA; IAvH, Colección de Mamíferos del Instituto de Investigación de Recursos Biológicos 123 Alexander von Humboldt, Villa de Leyva, Colombia; MEPN, Museo de Historia Natural Gustavo 124 Orcés, Escuela Politécnica Nacional, Quito, Ecuador; QCAZ, Museo de Zoología, División de 125 Mastozoología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador; SMF, Senckenberg 126 Naturmuseum Frankfurt, Frankfurt, Germany; USNM, National Museum of Natural History, 127 Smithsonian Institution, Washington, DC, USA; and UV, Colección del Mamíferos de la Universidad 128 del Valle, Cali, Colombia. The measurements of the specimens of Trachops cirrhosus ehrhardti from 129 the SMF (n = 3) were shared by the curator of this collection. We obtained tissue samples from the 130 following collections: AMNH; FMNH, Field Museum of Natural History, Chicago, IL, USA; MSB, 131 Museum of Southwestern Biology, Albuquerque, NM, USA; QCAZ; ROM, Royal Ontario Museum, 132 Toronto, Canada; and **SMF** (Supplementary Table 1).

133

Genomic DNA isolation, amplification, and sequencing: We gathered a dataset comprising 78
tissue samples, some of them dating back to 1910. The tissue samples encompassed heart, liver,

claws, and wing snippets. Mitochondrial DNA sequencing was achieved using a genome skimming procedure following <u>Camacho et al. (2022)</u>. Laboratory procedures were carried out at the NGS Core Facility of the Bernhard Nocht Institute for Tropical Medicine in Hamburg. The extraction and amplification of archival DNA were performed in a dedicated clean room facility, which was separate from the area where current samples and post-PCR products were handled. Stringent contamination prevention protocols and negative controls were also implemented.

142

143 The DNA extraction process for various sample types (dried skin, ethanol, or formaldehyde-144 preserved tissues) involved proteinase K digestion at 55°C using 20 µl of proteinase K and 220 µl 145 of ATL lysis buffer (MinElute Reaction Cleanup kit, Qiagen). Prior digestion, the samples were 146 thoroughly washed with nuclease-free water (Qiagen). The incubation time for proteinase K 147 digestion varied depending on the tissue type and sample preservation, ranging from 5 to 24 148 hours. Following digestion, DNA was extracted and purified using the Qiagen MinElute kit, with 149 each sample eluted to a final volume of 60 μ l. DNA concentration was measured using Qubit and 150 Bioanalyzer instruments. For library preparation, the QIAseq FX DNA Library Kit (Qiagen) was 151 used, with double index barcode labelling according to the manufacturer's instructions. DNA 152 fragmentation was often avoided due to the high degradation of nucleic acid material and low 153 concentration. The HiFi PCR Master Mix from the QIAseq FX kit was utilized to amplify DNA 154 regions with varying GC contents, minimizing sequencing bias caused by PCR, such as nucleotide 155 misincorporations from cytosine deamination. Subsequently, the libraries underwent quality 156 control to determine fragment size using the Agilent 2100 Bioanalyzer, and concentration was 157 assessed using a Qubit 2.0 Fluorometer. After normalization, the samples and negative controls 158 were pooled and subjected to sequencing on the NextSeq 2000 platform (2 × 100 cycles) (Illumina, 159 San Diego, CA, USA).

160

161 **Mitogenomes assembly and annotations:** Raw reads were first subjected to a qualitative 162 assessment, followed by the removal of adaptor sequences and the filtration of polyclonal and

163 low-quality reads (<55 bases long) using CLC Workbench (Qiagen). Overlapping paired-end (PE) 164 reads were merged to improve quality, while non-overlapping pairs and orphan reads were left 165 unchanged. Deduplication was performed with an assumed 100% identity using BBTools 166 (Bushnell 2014), expanding the length of contigs produced during de novo assembly. Custom 167 assembly was conducted using Megahit (Li et al. 2016) and Spades (Prjibelski et al. 2020) 168 applications. A specialized Chiroptera mitochondrial database and BLASTN were employed to 169 identify potential bat mitochondrial genomes in the resulting contigs. This process was followed 170 by remapping and visual validation of circularization using CLC Genomics Workbench 22. Finally, 171 the GeSeq online tool (Tillich et al. 2017) was used to annotate genomic features. All the 172 assembled mitochondrial genomes were annotated using the MITOS2 metazoan pipeline (Bernt 173 et al. 2013; Al Arab et al. 2017), followed by manual adjustment in Geneious v.9.0.5 174 (https://www.geneious.com). The mitochondrial DNA sequences obtained in this study have 175 been deposited in GenBank (Appendix 1).

176 **Phylogenetic analysis:** Ribosomal RNA (rRNA) and transfer RNA (tRNA) loci were aligned using 177 MUSCLE (Edgar 2004), while protein-coding genes sequences were aligned using TranslatorX 178 (Abascal et al. 2010). As outgroups, we selected sequences from Phyllostomus hastatus, 179 Macrophyllum macrophyllum, and Phylloderma stenops, shown as closely related in previous 180 phylogenetic studies (Botero-Castro et al. 2018; Camacho et al. 2022). We used the optimal 181 partitioning scheme of 38 partitions (2 independent partitions for rRNAs and 36 partitions for 182 tRNAs, one partition for each codon for each gene) and a Generalized Time Reversible (GTR) 183 model of substitution rates along with a gamma (G) distribution and a fraction of invariable (I) 184 sites (GTR+G+I).

185

We performed a Maximum Likelihood (ML) analysis using RAxML-NG (Kozlov et al. 2019), starting from 10 parsimony trees and 10 random trees. Bootstrap support values were obtained using the classical Felsenstein metric (Felsenstein 1985) and transfer bootstrap expectation (Lemoine et al. 2018). Bayesian inference (BI) analyses were performed using MrBayes v.3.2.7

190 (Ronquist et al. 2012). We partitioned the sequences in 38 sets corresponding to 2 independent 191 partitions for rRNAs and for tRNAs plus 36 partitions, one partition for each codon for each gene, 192 and used the best analytical scheme as evaluated by the AIC. We ran 8 Markov chain Monte Carlo 193 (MCMC) chains for 10 million generations, with default heating values. The sampling frequency 194 was set every 1000 generations, and the first 25 000 samples were discarded as burn-in. A 195 consensus tree was built under the majority rule consensus of all trees obtained in the 8 runs after 196 the burn-in period. We used the 'sumt' command to produce summary statistics for trees sampled 197 during a Bayesian MCMC analysis. Posterior probabilities of nodes were regarded as estimators 198 of confidence. Trees were visualized and edited in FigTree v.1.4.4 199 (http://tree.bio.ed.ac.uk/software/figtree/). We adopted the nodal support criteria established 200 by Moratelli et al. (2017): in the ML analysis, robust support is considered when bootstrap values 201 exceed or equal to 75%, while support is deemed moderate when values range from 50% to 75%. 202 Values equal to or below 50% are indicative of negligible support in our analyses. We calculated 203 uncorrected pairwise (p) distances within and among samples of Trachops cirrhosus using MEGA 204 11 (Stecher et al. 2020; Tamura et al. 2021).

205

Morphological and morphometric analyses: A total of 27 measurements were taken. Among
these, 9 cranial measurements and 4 external measurements were selected for statistical analyses,
as indicated by asterisks (*) below; the remaining measurements were employed for descriptive
purposes:

210

211 *Calcar length (CL):* From the joint with the ankle to the calcar tip.

212 *Ear length (E):* Intertragic notch of the ear to the outer tip

213 *Forearm length (FA): Distance from the elbow (tip of the olecranon process) to the wrist

- 214 (including the carpals). This measurement is taken with partially folded wings.
- 215 *Hindfoot length (HF):* Distance from the ankle to the tip of the claw.

- 216 *Metacarpal III (MET-III): Distance from the joint of the wrist (carpal bones) with the 3rd
- 217 metacarpal to the metacarpophalangeal joint of 3rd digit.
- 218 *Metacarpal IV (MET-IV): Distance from the joint of the wrist (carpal bones) with the 4th
- 219 metacarpal to the metacarpophalangeal joint of 4th digit.
- 220 **Metacarpal V (MET-V):* Distance from the joint of the wrist (carpal bones) with the 5th metacarpal
- to the metacarpophalangeal joint of 5th digit.
- *Tail length (T):* Distance from dorsal flexure at base of the tail to the tip of the last caudal vertebra.
- *Tibia length (TiL):* Length from the proximal end of the tibia to the distal base of the calcar.
- 224 *Total length (TL):* Head and body length excluding tail.
- 225 *Weight (W):* Mass in grams.
- 226 Braincase height (BCH): Height of the braincase, posterior to the auditory bullae from the
- basioccipital to the sagittal crest.
- *Breadth across upper molars (M2-M2): Greatest width of palate across labial margins of the alveoli
 of M2s.
- 230 **Breadth of brain case (BB):* Greatest breadth of the globular part of the braincase, excluding
- 231 mastoid and paraoccipital processes.
- 232 *Condylocanine length (CCL):* Distance from the occipital condyles to the anterior border of the of
- the upper canines.
- 234 **Condyloincisive length (CIL):* Distance between a line connecting the posteriormost margins of
- the occipital condyles and the anteriormost point on the upper incisors.
- 236 *Coronoid height (COH):* Perpendicular height from the ventral margin of mandible to the tip of
- coronoid process.
- 238 *Dentary length (DENL):* Distance from midpoint of condyle to the anteriormost point of the 239 dentary.
- 240 **Greatest length of skull (GLS):* Greatest distance from the occiput to the anteriormost point on the
- 241 premaxilla (including the incisors).

- 242 *Mandibular toothrow length (MANDL):* Distance from the anteriormost surface of the lower canine
- to the posteriormost surface of m3.
- 244 **Mastoid (process) breadth (MPW):* Greatest breadth across skull, including mastoid processes.
- 245 *Maxillary toothrow (MTRL):* Distance from the anteriormost surface of the upper canine to the
- 246 posteriormost surface of the crown of M3.
- 247 *Molariform toothrow (MLTRL): Distance from the anteriormost surface of P3 to the
- 248 posteriormost surface of the crown of M3.
- 249 *Palatal width at canines (C-C): Distance between the outermost extremities of the cinguli of upper
- 250 canines.
- *Palatal length (PL):* Distance from the posterior palatal notch to the anteriormost border of theincisive alveoli.
- 253 **Post orbital constriction breadth (PB):* Least breadth at the postorbital constriction.
- 254 **Zygomatic breadth (ZB):* Greatest breadth across the zygomatic arches.
- 255
- External and osteological characteristics were based on, but not limited to the guidelines
 proposed by <u>Velazco (2005)</u>, <u>Tavares et al. (2014)</u>, <u>Molinari et al. (2017)</u>, and <u>Garbino et al. (2020)</u>.
 Dental nomenclature follows <u>Miller (1907)</u>, <u>Freeman (1998)</u>, <u>Garbino and Tavares (2018)</u>, and
 <u>Garbino et al. (2020)</u>. Skull, dentition, and external characters were measured with digital calipers
 (to the nearest 0.01 mm). Total length, tail, hindfoot, ear, and body mass were recorded from skin
 labels and were only used for descriptive assessments (mean, range, and standard deviation).
- We log-transformed the variables and ensuring normality via Kolmogorov-Smirnov tests (Sokal and Rohlf 1995); then we performed two Analyses of Variances (ANOVAs) with the 13 morphological variables to determine sex-based differences within subspecies. With no significant differences found (all p < 0.05), we combined data from males and females for further analysis. We used Principal Component Analysis (PCA) as a unified statistical approach to investigate morphological variation in *Trachops cirrhosus*, applying it in two distinct contexts:

\mathbf{a}	1	\mathbf{n}
• •	6	
	1 1	ч
_	.,	

270 (1) Morphological Variation Among Subspecies: To assess the morphometric divergence among 271 recognized *Trachops* subspecies, we first applied the PCA focusing on taxonomic identification 272 and current distribution ranges. This involved summarizing key characteristics of the dataset to 273 interpret complex relationships and trends in morphological traits (Sokal and Rohlf 1995). 274 Subsequently, PCA scores were subjected to a multivariate analysis of variance (MANOVA) and 275 Post-hoc multiple comparisons (Holm-Bonferroni correction) to detect significant morphometric 276 differences among subspecies (Rice 1989; Irschick and Shaffer 1997). 277 278 (2) Geographic Variation Analysis: The second application of PCA was directed towards 279 understanding geographic variation patterns. Here, the same PCA was employed, but with the 280 variable being a more specific geographic distribution area, rather than country boundaries. 281 Geographic areas were established as follows, based on Molinari et al (2023):

- 282
- CAm Central America, from Mexico to Panama, delimited by the Atrato-San Juan
 Depression to the south, in Colombia.
- WSAm West South America, defined as the western slopes of the northern Andes,
 including the Colombian Western Cordillera, the Central Colombian Cordillera, and the
 Pacific coasts of Colombia, Ecuador, and Peru, to the Central Andes, delimited by the
 Atrato-San Juan Depression to the north and the Southern Andes to the south.
- ESAm East South America, demarcated as the upper forested slopes on the eastern side
 of the Andes and the low Amazon of Colombia, Ecuador, Peru, and Bolivia; the entire
 Amazon drainage of Brazil, including northeastern Bolivia, and the Orinoco drainages of
 Colombia and Venezuela.
- NEC/NWV, NE Colombia and NW Venezuela, comprising the Orinoco llanos and Andean
 piedmont plus the Venezuelan Coast range, including the Guajira peninsula and the
 Maracaibo depression (Ferrer-Pérez et al. 2009).

296	• GS - the Guyana Shield , including the Venezuelan states of Bolivar and Amazonas, and a
297	portion of Delta Amacuro, the entire territories of Guyana, Surinam, and French Guyana,
298	and parts of northern Brazil.
299	• AF - Atlantic Forest , confined to the southernmost eastern region of Brazil, including the
300	Mata Atlántica ecosystem.
301	
302	Results
303	
304	Specimens, tissue samples, and biorepositories: Altogether, we measured 238 specimens of
305	Trachops cirrhosus from all named subspecies (i.e., 202 T. c. cirrhosus, 31 T. c. coffini, and 5 T. c.
306	ehrhardti), sourced from 7 scientific collections (Supplementary Table 1). Additionally, out of the
307	78 tissue samples, we successfully sequenced a total of 54 complete mitochondrial genomes (i.e.,
308	47 T. c. cirrhosus; 5 T. c. coffini; 2 T. c. ehrhardti; Supplementary Table 1, Appendix 1). The
309	remaining 24 individuals that could not be sequenced corresponded, mostly, to samples of ancient
310	tissues preserved in formalin. 22 specimens were both measured and sequenced. To analyze
311	geographic data, we used 173 unique collection locations, duly documented (Figure 2).
312	
313	Phylogenetic analysis: Monophyly of Trachops was recovered with strong support from both the
314	ML analysis (bootstrap support [BS] = 100%), and from the Bayesian analysis (Bayesian posterior
315	probability [BPP] = 1). There is broad agreement between analysis methods (ML and BI) for this
316	dataset. We found two well-supported and genetically distant clades: one containing the
317	subspecies T. c. coffini, nested within T. c. cirrhosus (Clade 1; Figure 3) while the other contained
318	the subspecies <i>T. c. ehrhardti</i> (Clade 2, Figure 3).
319	
320	In Clade 1 we recovered 2 clear phylogroups: Phylogroup A comprising samples from Mexico,
321	Guatemala, Honduras, Panama, western and northeastern Colombia, and northwestern

322 Venezuela, and western Ecuador. According to the geographical groups analyzed in the

323 morphometric analyzes (see Methodology and following section of Results), all these sequences 324 correspond to the geographic groups CAm (Central America), WSAm (West South America) and 325 NEC/NWV (NE Colombia and NW Venezuela), except for one sequence from Bolivia (FMNH 326 114877), which in the ML topology appears nested with individuals from western Ecuador. Within 327 this phylogroup, there is a sequence from the province of El Petén, Guatemala, which is located 93 328 km away from the type locality of T. c. coffini (Guyo, Petén, Guatemala). The subspecies do not 329 align with geographically distinct monophyletic groups, and furthermore, they do not match the 330 geographical distributions historically associated with *T. c. cirrhosus* and *T. c. coffini* subspecies. 331 Mean pairwise uncorrected sequence distances between what has been named as T. c. cirrhosus 332 and T. c. coffini is 5.6% (Table 1), which is not different from the computed intraspecific 333 divergence values of 5.5% in *T. cirrhosus* (Table 2).

334

We have identified a sister clade to Phylogroup A that we named as B (Figure 3), comprising individuals from Eastern Ecuador and Eastern Venezuela (Orinoco Basin), corresponding to the geographical group ESAm (East South America), as identified in our morphometric analyses. Besides these two strongly supported phylogroups, no further distinct phylogenetic relationships were found within Clade 1, although there is a noticeable clustering of samples from the northeastern region of South America, corresponding to the Guyana Shield.

341

According to the concordant phylogenies of ML and BI analyses, Clade 2 forms a monophyletic clade containing specimens from the southeastern region of São Paulo, in Brazil, which is geographically close to the state of Santa Catarina (type locality of *T. c. ehrhardti*). According to the geographical groups analyzed in the morphometric analyses (see Methodology and the following Results section), these sequences correspond to the geographic group AF (Atlantic Forest; Figure 3).

348

349 Morphologic and morphometric variation

350 Our examination of the *Trachops* subspecies highlights the morphological congruence, 351 particularly in qualitative traits, between T. c. cirrhosus and T. c. coffini, contrasting with the 352 distinct morphology of T. c. ehrhardti. Our scrutiny failed to discern marked morphological 353 divergences between T. c. cirrhosus and T. c. coffini, challenging their current classification as 354 distinct entities. The attributes previously considered distinctive, such as skull shape, rostrum 355 morphology, dimensions of premolars and molars, and mandible features, displayed uniformity 356 across these two subspecies in our geographical sampling (Figure 4). Table 3, illustrating variable 357 ranges among the Trachops subspecies, suggests a considerable overlap, rendering these 358 variables ineffective as discrete discriminators among the 3 subspecies.

359

360 In the Principal Component Analysis (PCA), two principal components cumulatively accounted for 361 73% of the total variance in our log-transformed dataset (Table 4). The PCA plot (Figure 5) reveals 362 substantial overlap in the 2D morpho-space among the subspecies, attributed to their size and 363 shape congruities. Notably, T. c. cirrhosus is positioned towards the right on PC1, indicating its 364 relatively larger size compared to T. c. coffini, which is leaned towards the left. However, this 365 positioning does not demarcate distinct groupings. PC1 predominantly shows size variations, 366 influenced by skull length metrics such as Condyle-Incisive Length (CIL), Greatest Length of Skull 367 (GLS), Maxillary Palatal Width (MPW), and Maxillary Toothrow Length (MTRL), each with factor 368 loadings exceeding 0.8. Conversely, PC2 appears to reflect shape variations, primarily influenced 369 by Palatal Breadth (PB).

370

371 Despite the apparent overlap in morpho-space depicted in Figure 5, our multivariate analysis of 372 variance (MANOVA), employing Pillai's Trace test, identified statistically significant differences 373 among the subspecies on both PC1 and PC2 (F = 16.373, p < 0.01). Further post-hoc multiple 374 comparison analyses delineated a statistical distinction between *T. c. cirrhosus* and *T. c. coffini* in 375 terms of size on PC1 (p < 0.01), but not between *T. c. cirrhosus* and *T. c. ehrhardti* (p > 0.05). 376 Moreover, no statistical differences were noted between *T. c. coffini* and *T. c. ehrhardti* (p > 0.05). These statistical disparities might be influenced by the limited sample size for *T. c. ehrhardti*, which does not sufficiently echo in morphological differentiation. The observed statistical differences, particularly between *T. c. cirrhosus* and *T. c. coffini*, are evident in the context of size, as indicated by PC1. However, the overarching morphological congruence, especially considering the overlap in the PCA plot, suggests that these subspecies, despite some statistical variance, share a degree of morphological commonality.

383

384 Geographic variation

385 There is a noteworthy overlap in the 2D morpho-space between the geographic-based groups 386 (Figure 6). The multivariate analysis of variance suggested there are differences between the 387 geographic groups on PC1 and PC2, as suggested by Pillai's Trace test (F = 17.629, P < 0.01). Post-388 hoc multiple comparison analyses unveiled variation in size (PC1) among the samples. 389 Specifically, there was a size difference between the samples from Central America (CAm) 390 compared to those from East South America (ESAm), the Guyana Shield (GS), and North South 391 America (NEC/NWV), but not when compared to the West South American (WSAm) samples. The 392 plot illustrates that both CAm and WSAm samples cluster to the left along PC1, denoting their 393 smaller size, but they do not end up forming a separate cluster. Conversely, the Atlantic Forest 394 (AF) specimens were notably smaller in size compared to Guyana Shield (GS) samples, though not 395 significantly different from the rest of the regions. In fact, the GS sample exhibited the largest size 396 relative to all other groupings. Notably, NEC/NWV specimens did not display a clear grouping 397 pattern. Regarding the PC2, AF specimens exhibited notable differences, particularly in variables 398 such as palate width, in comparison to ESAm specimens. Additionally, a highly significant 399 difference was observed between CAm and ESAm specimens.

400

Both qualitative and quantitative assessments reveal a noticeable degree of morphological and
genetic similarity between the traditionally recognized subspecies *T. c. cirrhosus* and *T. c. coffini*.
Moreover, our geographical analysis reveals that the distribution of morphological variation

404 among different regions does not align with the historical classification of subspecies. These 405 findings strongly support their consideration as part of the same taxonomic group. Additionally, 406 our investigation provides definitive evidence for elevating *T. c. ehrhardti* to the status of a distinct 407 species, due to significant genetic and morphological disparities observed in specimens from the 408 southeastern region of Brazil.

409

410 **Discussion**

411

412 Our investigation of *Trachops*, which integrates data from morphology, morphometrics, and 413 molecular analysis encompassing almost the totality of its distribution range, has provided 414 clarification into the taxonomic status of the species. Our main findings include the recognition of 415 specific status of *T. ehrhardti*, and *T. c. coffini* as a junior synonym of *T. cirrhosus*. Incorporating *T.* 416 cirrhosus specimens from Colombia, Ecuador, and Peru was crucial to our classification, as it 417 represented the first taxonomic exploration of the species in the West South American region. We 418 not only expanded the geographical scope of the analysis, but also shed light on previously 419 unexplored genetic and morphological variations within *T. cirrhosus* populations.

420

421 Trachops in phylogenetic context

422

423 The mitochondrial DNA (mtDNA) diversity in Trachops cirrhosus is significant, as evidenced by 424 three previous studies. Using 10 partial sequences of the mitochondrial gene Cytb from localities 425 such as Guatemala, Panama, French Guyana, and Brazil, Ditchfield (1996) identified 5 clades. 426 These findings suggested that current subspecies classifications may underestimate haplotypic 427 diversity, indicating that *Trachops* should be considered a complex. In this topology, *T. c. coffini* is 428 not monophyletic as opposed to *T. c. cirrhosus,* and the author attributed this haplotypic diversity 429 to reduced mobility or increased philopatry in Trachops across its geographic range, though these 430 hypotheses remain unconfirmed (Ditchfield 1996).

Later, <u>Claire (2011)</u> investigated pattern congruence between two independently evolving genetic
regions (mitochondrial genome and Y chromosome), finding significant mitochondrial haplotypic
divergence, but not in the Dby 7th intron region. Despite using more samples than <u>Ditchfield</u>
(1996), the author did not include specimens from West South America. In this topology, *T. c. coffini* was once again not a monophyletic clade distinct from *T. c. cirrhosus*, lacking geographical
congruence to support its separation as a subspecies.

438

439 Finally, Fonseca (2019) proposed a more integrative approach with a greater number of sequences using a dataset composed of 2341 bp of Cyt-b, COI, D-loop and STAT5A from 129 440 441 tissues. Samples from western South America, particularly Colombia, Ecuador, and Peru, were not 442 included in this study. In consistency with <u>Clare et al. (2011</u>), the ML phylogeny did not render T. 443 c. coffini as an independent clade of T. c. cirrhosus, with little genetic differentiation (Fonseca 444 <u>2019</u>). The author proposed that *Trachops* should be divided into two lineages recognized at the 445 species level: *Trachops ehrhardti*, monotypic, and *T. cirrhosus*, with two subspecies (T. *c. cirrhosus*) 446 and T. c. coffini). However, the phylogenetic justification for maintaining coffini as a subspecies 447 and its distribution was unclear.

448

449 In this study, we included an extensive taxon sampling with new localities from Colombia, 450 Ecuador, and Peru, as well as information from complete mitochondrial genomes. Our findings 451 revealed two reciprocally monophyletic clades, each exhibiting significant genetic divergence. The 452 first clade, *T. cirrhosus*, notably includes sequences from northern Central America (*T. c. coffini*). 453 This challenges the classical notion of *T. c. coffini* as a distinct subspecies, suggesting instead a 454 more cohesive genetic identity within the *T. cirrhosus* clade. The second clade, *T. ehrhardti*, stands 455 as a monophyletic group, sister to T. cirrhosus. These results prompt a reconsideration of 456 Trachops' taxonomic structure, particularly the delineation of T. ehrhardti and T. cirrhosus, and 457 the subspecies status of *T. c. coffini* within this framework.

459

Trachops in the morphometric context

460

461 When T. coffini was described as a separate species by Goldman (1925), he reported larger 462 measurements for *T. cirrhosus*. The author revised 18 specimens from the type locality of *T. coffini* 463 with others from Venezuela, Colombia, and Panama, assuming that they represented typical T. 464 cirrhosus, without specifying quantity or localities. However, his analysis, based on a limited 465 geographical range and a small sample size, raised questions about the robustness of these early 466 findings. Felten (1956a) and Felten (1956b) revisited this classification, incorporating a broader 467 geographic range, including Central America. His work, which suggested classifying the Central 468 American forms as *T. c. coffini* subspecies, highlighted the potential intraspecific variation within 469 the species. However, Felten's conclusions, particularly regarding the dental morphology and size 470 differences, were largely inferential, lacking quantitative rigor. The author proposed maintaining 471 the two subspecies and added T. c. ehrhardti as a subspecies, based on 3 specimens from 472 southeastern Brazil, with no apparent difference other than the smaller size, in relation to samples 473 from Colombia, recorded by Hershkovitz (1949), but similar in size to the samples from El 474 Salvador (Felten 1956a).

475

476 No other significant morphological study of *Trachops* was published until six decades later, when 477 Fonseca (2019) revised specimens mostly from localities in Brazil. The quantitative analysis 478 revealed a substantial overlap in the morphometric space across the three subspecies studied, 479 notably between T. c. cirrhosus and T. c. coffini, challenging the notion of distinct morphometric 480 differentiation between these subspecies. This finding was an indicative of a morphometric 481 continuum rather than discrete categories. Qualitatively, she observed that T. c. coffini, exhibited 482 a pronounced angle between the rostrum and the braincase in lateral view, a characteristic less 483 evident in T. c. cirrhosus. In dental morphology, Fonseca (2019) noted that the first lower 484 premolar (p1) in *T. c. coffini* possesses a unique shape, distinct to this subspecies, although the

485 specifics of this form were not delineated. Additionally, she reported that the m1 tooth in T. c. 486 coffini demonstrates a more developed paraconid, compared to T. c. cirrhosus. The potential 487 displacement of p3 to the labial surface in T. c. coffini, as opposed to the lingual surface in T. c. 488 cirrhosus, suggests further morphological variability. Notably, Fonseca (2019) noted that the 489 specimens from Costa Rica displayed morphological traits and cranial sizes more akin to T. c. 490 coffini, diverging from the expected distribution patterns. Furthermore, the individuals from 491 Panama exhibited traits from both T. c. coffini and T. c. cirrhosus in equal frequencies. This 492 observation led Fonseca to propose a clinal variation in size across the species' range, with smaller 493 individuals observed in Central America and larger ones in South America, positioning Panama as 494 a zone of intergradation.

495

496 In our study, encompassing specimens from the western region of the Andes and northern South 497 America, we did not observe the diagnostic characters reported by Fonseca (2019). Specifically, 498 our samples from Central America did not exhibit the morphological differences between the 499 northern and southern regions as previously proposed. This discrepancy, particularly regarding 500 the distinct cranial angles in T. c. coffini and the unique shape of p1, suggests a less complex 501 morphological variability within the *Trachops* genus. Even though the Principal Component 502 Analysis (PCA) revealed a size variation on PC1, predominantly influenced by skull length metrics, 503 the PCA plot depicted considerable overlap in morpho-space, indicating a high degree of 504 morphological congruence. This overlap challenges the current subspecies classification based on 505 size and shape traits. Contrary to the proposed latitudinal cline in size, our data indicate that the 506 specimens from the western South America (WSAm), encompassing the Pacific regions of 507 Colombia and Ecuador, and NEC/NWV are similar in size to those from Central America. This 508 finding is consistent with zoogeographical studies that have identified a closer affinity between 509 the bat fauna of the western Andes and Central America Koopman (1976); (1978); (1982); 510 Hoffmann and Baker (2003); Clare (2011). Such patterns suggest the influence of historical 511 events, ecological processes, and landscape heterogeneity (Manel et al. 2003) in shaping the

distribution and morphology of bat species, including *Trachops*. The role of heterogeneity of
habitats and environmental conditions as causes of morphological and genetic divergence
(Turmelle et al. 2011; Lindsey and Ammerman 2016) is also evident in our findings.

515

516 **On the subspecific status of** *Trachops cirrhosus coffini*

517

518 Despite previous assertions, notably by Fonseca (2019), our findings indicate that T. c. cirrhosus 519 and T. c. coffini lack distinct morphological synapomorphies and do not exhibit reciprocal 520 monophyly, as required for subspecies designation. This observation aligns with the criteria 521 outlined by Patten (2015), who mentions that a subspecies should be morphologically distinct 522 and geographically circumscribed, yet not necessarily forming a distinct genetic clade. According 523 to Molinari (2023), subspecies designation is appropriate for populations with significant and 524 heritable morphological differences, even if genetic differentiation is insufficient for species-level 525 recognition. Our analyses, however, reveal that the morphological distinctions traditionally used 526 to separate T. c. coffini and T. c. cirrhosus do not meet these standards. The lack of clear 527 geographical circumscription, combined with our findings that these groups are not 528 morphologically diagnosable nor genetically distinct, challenges the validity of their current 529 subspecific status.

530

531 The reliance on size-only differences is contentious. Molinari (2023) underscores that diagnostic 532 morphological characters should not be attributed to phenotypic plasticity. Considering studies 533 indicating size variation as a source of morphological plasticity in bats (McLellan 1984; Jarrín-V 534 et al. 2010; Jarrín-V. & Menéndez-Guerrero 2011; López-Aguirre et al. 2015), the use of body size 535 as a sole criterion for taxonomic decisions becomes problematic. Geographic variation in body 536 size, influenced by a multitude of factors, including genetic adaptations and environmental 537 conditions affecting growth rates, further complicates its reliability as a distinguishing feature 538 (McLellan 1984; Berry et al. 1987; Ebenhard 1990; Jarrín-V et al. 2010; Jarrín-V. & Menéndez539 <u>Guerrero 2011</u>; <u>López-Aguirre et al. 2015</u>). Additionally, methodological inconsistencies, 540 including instrumental and human errors, can lead to data discrepancies (Fox et al. 2020), casting 541 doubt on the robustness of size-based differentiation. Our study, therefore, suggests that the 542 current classification of *T. c. coffini* as a subspecies of *Trachops cirrhosus* lacks support, both 543 morphologically and genetically.

544

545 **On the specific status of** *T. ehrhardti*

546

547 Trachops ehrhardti should be elevated to the species status based on the presence of clear 548 diagnosable morphological characters, geographically circumscription in the Atlantic forests of 549 South Brazil (Mata Atlántica), and substantial molecular divergence. Broader cranial 550 measurements (BB, MPW, ZB) allow T. cirrhosus to be separated from T. ehrhardti and both 551 species form reciprocally monophyletic clades separated by a genetic divergence of over 8%. It is 552 its geographic isolation that would primarily imply loss of ecological exchangeability, and possibly 553 mating impediments with *Trachops cirrhosus*. Originally proposed by <u>Haffer (1969)</u>, the Refuge 554 Theory for the Neotropics suggests that the Pleistocene glaciation cycles created contraction and 555 subsequent expansion of forested areas that, in turn, would create allopatry between populations 556 of the same forest-dwelling species, leading to intraspecific differentiation and consequently 557 speciation. Paleopalynological research indicates the high dynamism of Neotropical forested 558 regions: the Atlantic Forest and the Amazon were connected in the past (Vivo 1997), separating 559 themselves as increasing aridity in the Tertiary triggered the formation of the belt of xeromorphic 560 formations between them (Martins et al. 2009). There seemed to be a predominantly arboreal 561 vegetation during most of the Pleistocene, with typical Amazonia and Atlantic Forest tree species 562 found in what it is now the dry diagonal that separates these two biomes. The extent to which 563 these climatic fluctuations and associated vegetation changes affected the patterns of distribution 564 and diversification of the fauna remains a central question in understanding the evolution of 565 forest-associated taxa.

567 Implications to conservation

568

569 Recognized bat diversity has increased due to new species descriptions and taxa raised from 570 subspecific level or synonymy (Burgin et al. 2018), but also as a result of clarification of cryptic 571 species within several genera (e.g. Platyrrhinus (Velazco et al. 2023); Glossophaga (Calahorra-572 Oliart et al. 2021) or Sturnira (Yánez-Fernández et al. 2023). These changes in taxonomy may have 573 an impact on the conservation of species. The genus *Trachops* is composed of two monotypic 574 species: Trachops cirrhosus maintains its "Least Concern" conservation status at the global level, 575 with no major threats known throughout its range (Miller et al. 2015). However, it is important to 576 revise the status of *Trachops ehrhardti*. The current range of *T. ehrhardti* is restricted to 577 southeastern Brazil. The Atlantic Forest is one of the world's leading biodiversity 'hotspots'; these 578 areas possess the highest concentrations of species endemism, and simultaneously, are the most 579 severely threatened by habitat loss (Baptista & Rudel 2006). In this biome, the persistent land 580 cover is made up of 476 000 Km², which comprises 9% of the Brazil's land area (Souza et al. 2020), 581 but is highly fragmented by roads and urban centers, and immersed in a large agriculture matrix, 582 resulting in less than 12% of old secondary forest cover (i.e., >30 years) (de Rezende et al. 2015; 583 Souza et al. 2020). If this scenario remains unchanged, then elevating *Trachops ehrhardti* to a 584 species should trigger immediate protection efforts in conservation.

585

586 We present a revised description of the genus *Trachops* and the subspecies *Trachops cirrhosus* and 587 *Trachops ehrhardti* below.

588

589 Taxonomy

590 The genus *Trachops* can be easily recognized by their highly specialized warty outgrowths or 591 protuberances on the lips and chin. The margin of the nose leaf is finely serrated on the edge, 592 anteriorly connected to the upper lip (<u>Spix 1823</u>). Ears are large and anteriorly covered with hairs

593	projecting beyond anterior margins (Goldman 1925); folds inside the pinnae are well marked. The				
594	tail is short and appears on the upper side of a broad interfemoral membrane (Goodwin and				
595	<u>Greenhall 1961</u>). The ventral fur is characterized by a pale brown coloration (<u>Spix 1823</u>). Dorsal				
596	fur is cinnamon-brown, varying to darker shades in some specimens (Goodwin and Greenhall				
597	<u>1961</u>). The base of the hairs is always white, and the tips are ashy. Underparts are dull brownish				
598	tinged with grayish brown (<u>Goodwin and Greenhall 1961</u>).				
599					
600	Trachops cirrhosus Gray, 1847				
601	Vampyrus cirrhosus Spix, 1823:64. No type locality is stated in Spix's description, but on				
602	page 53 Spix said the bats were collected in Brazil. Type locality restricted to Para, Brazil,				
603	by Husson (1962: 115).				
604	<i>Ph[yllostoma</i>]. <i>cirrhosum</i> : Fischer, 1829:126. Name combination.				
605	Vampyris cirrhosum: Gray, 1847:481. Emendation of Vampyrus cirrhosus Spix				
606	Trachops fuliginosus: Gray, 1865:14. Type locality "Pernambuco," Brazil (= Vampyrus				
607	cirrhosus Spix).				
608	Phyllostoma angusticeps Gervais, 1856: 47. Type locality "province de Bahia, au Brasil."				
609	<i>Tylostoma mexicana</i> Saussure, 1860 :484. Type locality "les régions chaudes du Mexique."				
610	Trachyops cirrhosus: Dobson, 1878:481. First use of name combination and incorrect				
611	subsequent spelling of <i>Trachops</i> Gray, 1847.				
612	Trachops coffini Goldman, 1925:23. Type locality "Guyo, Petén, Guatemala." Type locality				
613	restricted to "El Gallo, 8 mi. west Yaxhá, on the Remate-El Cayo trail, Petén, Guatemala" by				
614	de la Torre (1956:189).				
615	Trachops cirrhosus coffini: Felten, 1956a:189. Type locality restricted to Para, Brazil, by				
616	Husson (1962: 115).				
617					

618 This species is monotypic.

Amended distribution and habitat: This species is widely distributed in eastern and southern Mexico, extending from Veracruz, in the southeast, southeastward through Central America, into South America, including Colombia, Venezuela, the Guyanas, Ecuador, northern and central Peru, Bolivia, Trinidad, as well as northern, southern, and central Brazil (Figure 7). This species occurs at elevations from sea level (e.g., Belem, Para, Brazil) up to 1800 m (Las Tolas, Pichincha, Ecuador; (Arcos et al. 2007). Records of *Trachops cirrhosus* are predominantly associated with habitats in humid tropical forests, as well as sub-montane and montane forests.

626

627 Emended diagnosis and comparison: Trachops cirrhosus is a relatively robust (Spix 1823), 628 medium-size bat (FA: 49.57–64.70 mm; GLS 24.70–31.24 mm). Overall size is larger than Trachops 629 *ehrhardti* (Table 5). The skull is large and elongated. The elevated braincase above the rostrum 630 was previously believed to be a distinguishing characteristic, potentially separating the 631 subspecies *cirrhosus* and *coffini*. The latter was described as having a smaller and slenderer shape 632 compared to *T. c. cirrhosus*, although similar to *T. c. ehrhardti*. This characteristic is not diagnostic; 633 rather, it displays variability across the entire species distribution. The sagittal crest may or may 634 not be developed in males and females, contrary to the well-developed sagittal crest character 635 mentioned by Goodwin and Greenhall (1961). Poorly developed sagittal crest is common in most 636 specimens reviewed for the entire area of distribution. However, the faint notch in the cutting 637 edge of the upper incisors (Goldman 1925), is variable. Inferior premolar 1 (p1) is taller compared 638 to the same tooth in *T. c. ehrhardti* which is wider overall. The first lower premolar is three-fourths 639 the height of the third premolar but wider in cross-section (Dobson 1878). The mandible of *T*. 640 cirrhosus is broad and robust; upper and lower premolars are relatively narrower than in T. 641 *ehrhardti*. The dentary is tall and has a contracted premolar toothrow, and an expanded molar 642 toothrow, with the last molar being closer to the fulcrum, a high coronoid process, and an 643 expanded angular process (Figure 4).

- 645 **Remarks:** The character of m1 with a less developed paraconid in *T. c. cirrhosus* than in *T. coffini*646 mentioned by <u>Dobson (1878)</u> was not evident as a diagnostic character.
- 647

648 Natural history: Trachops cirrhosus is a large-eared gleaning bat that hunts by listening for prey-649 generated sounds (Obrist et al. 1993). It roosts in caves, hollow trees, road culverts, sewer 650 systems, and buildings, in groups of up to 50 individuals (Hall and Dalquest 1963; Fleming et al. 651 1972; Alvarez-Castañeda and Álvarez 1991; Kalko et al. 1999; Halczok et al. 2018). The relatively 652 sedentary foraging behavior of these gleaners is reflected in their wing morphology, a 653 characteristic that influences their use of small foraging areas and short commuting distances. 654 They have been observed to engage in two distinct flight patterns while foraging: long flights that 655 extend for several uninterrupted minutes and short sally flights lasting less than one minute 656 (Cramer et al. 2001). These bats possess relatively short and broad wings, an adaptation that 657 enhances their maneuverability, particularly in environments filled with obstacles (Marinello & 658 Bernard 2014). However, this wing morphology comes with a trade-off, as it makes continuous 659 flight over extended distances energetically costly (Norberg & Rayner 1987; Kalko et al. 1999). 660 *Trachops cirrhosus* hunts for prey in continuous flight, presumably depending on prey availability. 661 Prey is usually taken from the substrate (gleaning mode) in a brief landing or may be caught 662 occasionally on the wing (aerial mode) (Kalko et al. 1999). Trachops cirrhosus is a carnivorous bat 663 that feeds on a wide variety of prey species, including insects, frogs, lizards, and other small 664 vertebrates (Gardner 1977; Pine and Anderson 1979; Barclay et al. 1981; Tuttle & Ryan 1981; 665 Bonato and Facure 2000; Bonato et al. 2004; Giannini and Kalko 2005; Page and Jones 2016). 666 Additionally, it has been observed consuming fruits and seeds (Whitaker & Findley 1980; 667 Humphrey et al. 1983;Cramer et al. 2001). Foraging areas of 3 to 12 ha and commuting distances 668 between roost and foraging areas are < 2 km (Kalko et al. 1999). The emergence time and activity

670 Leptodactylidae, (<u>Tuttle & Ryan 1981;Ryan et al. 1983</u>). The number and duration of long flights

peak of T. cirrhosus coincided with the maximum calling activity of the Tungara frogs,

671 reduce as the calling declines; giving way to an increased frequency of short flights, which might

also indicate a switch from frogs to other prey such as insects (Belwood 1990; Kalko et al. 1996,
<u>1999</u>). This bat is very flexible in its responses to prey calls by updating acoustic information with
echo acoustic and gustatory cues, as it approaches potential prey, enabling bats to avoid
potentially lethal mistakes (Page and Jones 2016). Captive studies show that cues can also be
learned socially and transmitted across individuals (Jones et al. 2013; Page and Jones 2016; Flores
et al. 2020).

678

679 Very little is known about the reproductive biology of *T. c. cirrhosus*. Females give birth to one 680 offspring at a time coinciding with the start of the rainy season (Flores and Page 2017), but the 681 gestation period length is unknown. Females of this species have been reported to be pregnant in 682 April to March and December (Villa-R 1967; Alvarez-Castañeda and Álvarez 1991). In Brazil, 683 Trajano (1984) suggested a polyestrous reproductive pattern, with two annual birth peaks, one 684 before and the other after August. In Trinidad and Tobago, Goodwin and Greenhall (1961) found 685 a colony of *T. cirrhosus* composed of 6 individuals of both sexes, including pregnant females in 686 March (Bredt et al. 1999). The social structure of *T. cirrhosus* is still not fully understood, but a 687 recent six-year study in Panama showed evidence of female philopatry and preferred co-roosting 688 associations in both sexes; kin-biased associations were also detected among pairs of females but 689 not males (<u>Flores et al. 2020</u>).

690

During the mating season, reproductive males have enlarged testes and create an odorous substance that is smeared on their forearm, called forearm crust. Flores and Page (2017) and Flores et al. (2019) discovered that fringe-lipped males scratch their body with one hind claw, including the area around a prominent mid-ventral chest gland, insert the same hind claw into the mouth, and then repeatedly lick the forearm. Apparently, this substance is not related to female preferences since two-thirds of females selected the scent of a male without forearm crust, but it would play a fundamental role in male-male interactions (Flores et al. 2019).

698

699 Trachops ehrhardti Felten, 1956

700

701 *Trachops cirrhosus ehrhardti* Felten, 1956b:369. Type locality "Joinville, Sta. Catarina,
702 Brazil."

703

704 Distribution and habitat: Southeastern Brazil. Specimens are known from the humid
705 environments of the Atlantic Forest of the states of Santa Catarina, Parana, Sao Paolo, Mina Gerais,
706 Rio de Janeiro and Espiritu Santo (Figure 7).

707

708 Diagnosis: Medium-size bat (FA: 54-60 mm; GLS 26.90-27.70 mm). Smaller than Trachops 709 *cirrhosus* (Table 5). The ventral fur from the base of the hair shows a lighter shade of brown that 710 gradually transitions to an ashy color at the tips. Dorsal fur is characterized by a reddish-brown 711 to cinnamon-brown hue. The base of the hair appears whitish, creating a contrast with the slightly 712 ashy tone at the tips. Underparts are light brownish with a grayish tint. This coloration is 713 attributed to the presence of light-colored tips on the hairs, and there are white-tipped hairs 714 specifically found on the animal's underparts. The pinnae are hairy, with marked folds. Lips and 715 chin are ornamented with wart-like protuberances and ears are large and clothed with hairs 716 projecting conspicuously beyond anterior margins as in *Trachops cirrhosus* (Goldman 1925). 717 Skull is noticeably smaller in comparison to *T. cirrhosus*. Braincase is smaller, forming an angle 718 with a less pronounced rostrum than in *T. cirrhosus*, however, this character shows more degree 719 of variation. Sagittal crest is not developed. In the analyzed skulls, which belong to the type series, 720 it is observed that the lingual edges of the w-shaped stylar shelf are longer. The molar crowns are 721 relatively longer, and in the dorsal view, the parastyle, mesostyle, and metastyle of the second and 722 third upper molars are further away from the maxillary bone. The formed cusps are further apart 723 than in T. cirrhosus, giving them a broader appearance. These characters could be important to 724 identify individuals from the eastern areas of Brazil where there could be contact between T. 725 cirrhosus and T. ehrhardti (Figure 4).

727 Natural history: To the best of our knowledge, precise data on the natural history of this 728 population is currently lacking, although it is expected to share similarities with *T. cirrhosus*. This 729 species inhabits the Atlantic Forest, which encompasses both lowland and montane systems along 730 the Atlantic coast of southeastern Brazil, as well as the contiguous moist-subtropical forest of the 731 Parana basin (Pavan et al. 2016). Similar to *T. cirrhosus*, it is likely that they seek refuge in caves, 732 hollow trees, culverts, and buildings, often in small groups comprising a few tens of individuals. The species might prey on insects, frogs, lizards, and other small vertebrates. Currently, no 733 734 information is available regarding their reproductive behavior.

735

736 **Remarks:** The species was described by Felten (1956b) based on 3 specimens collected in 1908 by W. Ehrhardt at Joinvile in the Brazilian state of Santa Catarina, considerably expanding the 737 738 southern limit of distribution of the species in South America. The only distinctive characteristic 739 of the subspecies mentioned by <u>Felten (1956b)</u> is its size, notably smaller in relation to animals 740 from the northern part of South America and similar in size to the former subspecies T. c. coffini. 741 In 2019, in a degree dissertation from the Federal University of Espírito Santo (see Fonseca, 742 unpublished data), it was proposed, based on an integrative approach to morphological, 743 ecological, and phylogenetic evidence, that *T. cirrhosus ehrhardti* should be elevated to the species 744 category; however, the species has not been formally described nor has the taxonomy been 745 validated.

746

747 **Comparisons:** The size and shape of the skull of the two species is similar, but in *Trachops* 748 *ehrhardti* it is smaller on average. In *T. cirrhosus*, the skull is larger and more elongated than in *T.* 749 *ehrhardti*, and the braincase is more elevated above the rostrum. However, this character shows 750 a degree of variation. *T. cirrhosus* presents a faint notch in the cutting edge of the upper incisors 751 while is broad, with an open groove leading to a distinct notch in the cutting edge in *T. ehrhardti* 752 (<u>Goldman 1925</u>), but this characteristic is also variable. The first lower premolar 1 (p1) in *T.* 753 *ehrhardti* is wider overall compared to the same teeth in T. *cirrhosus* which is taller than wider. 754 Molariforms toothrow in *T. cirrhosus* is longer than in *T. ehrhardti*, *Trachops cirrhosus* mandible is 755 broader and more robust than in T. ehrhardti. In T. cirrhosus, the dentary is tall and has a 756 contracted premolar toothrow, and an expanded molar toothrow, with the last molar being closer 757 to the fulcrum, a high coronoid process, and an expanded angular process. This could be 758 associated with a higher bite force (Nogueira et al. 2009). Regarding the width of the cranium, 3 759 measurements are broader in cirrhosus than ehrhardti (i.e. Breadth of brain case, Mastoid process 760 breadth, and Zygomatic breadth).

761

762

763 Acknowledgments

764 We extend our gratitude to the FSPI-Doctoral Schools Project of the French Embassy in Ecuador, 765 supported by the Ministry of Europe and Foreign Affairs. This work has greatly benefited from 766 the "Investissement d'Avenir" grants overseen by the Agence Nationale de la Recherche (CEBA, 767 ANR-10-LABX-25-01; TULIP, ANR-10-LABX-0041). We are thankful to Marisa Surovy (American 768 Museum of Natural History), Darrin Lunde (National Museum of Natural History), Nicolás Reyes-769 Amaya (Instituto de Investigación de Recursos Biológicos Alexander von Humboldt), Oscar E. 770 Murillo-García (Universidad del Valle), and Edith Montalvo (Museo de Historia Natural Gustavo 771 Orcés-V.) for providing access to invaluable specimens. We would also like to thank Adam 772 Ferguson and Bruce Paterson from the Field Museum of Natural History, Marie L. Campbell and 773 Joseph Cook from the Museum of Southwestern Biology, Jacqueline Miller and Burton Lim from 774 the Royal Ontario Museum, and Dr. Irina Ruf from the Senckenberg Naturmuseum Frankfurt for 775 their generosity in providing tissue samples. For their work on the mtDNA sequencing and 776 assembly, we express our profound thanks to Alexandra Bialonski and Marike Petersen from the 777 Bernhard Nocht Institute for Tropical Medicine. We also want to acknowledge Ruben D. Jarrín 778 from Pontificia Universidad Católica del Ecuador and Anika Vogel from the Senckenberg 779 Research Institute for their photographic contributions. Santiago F. Burneo deserves a special

780	mention for granting access to specimens under his care at QCAZ and his help with the maps				
781	presented on this manuscript. Our sincere appreciation goes to Diego Tirira and the anonymous				
782	reviewers whose insights and comments have significantly enhanced this manuscript.				
783					
784	References				
785					
786	Abascal F., Zardoya R., Telford M.J. 2010. TranslatorX: multiple alignment of nucleotide sequences				
787	guided by amino acid translations. Nucleic acids research 38, W7-13.				
788	https://doi.org/10.1093/nar/gkq291				
789					
790	Al Arab M., Höner Zu Siederdissen C., Tout K., Sahyoun A.H., Stadler P.F., Bernt, M. 2017. Accurate				
791	annotation of protein-coding genes in mitochondrial genomes. Molecular phylogenetics and				
792	evolution 106, 209–216. <u>https://doi.org/10.1016/j.ympev.2016.09.024</u>				
793					
794	Alvarez-Castañeda S.T., Álvarez T. 1991. Los murciélagos de Chiapas. México D. F. (Mexico):				
795	Instituto Politécnico Nacional. Escuela Nacional de Ciencias Biológicas.				
796	http://nebula.wsimg.com/5a7e08e5246de8d986481ed669b109cf?AccessKeyId=BA671720527				
797	0E1915465&disposition=0&alloworigin=1				
798					
799	Arcos R., Albuja L., Moreno P. 2007. Nuevos registros y ampliación del rango de distribución de				
800	algunos mamíferos del Ecuador. Revista Politécnica 27 (4) Biología 7: 126-132.				
801	http://bibdigital.epn.edu.ec/handle/15000/4747				
802					
803	Baker R.J., Hoofer S.R., Porter C.A., Van Den Bussche R.A. 2003. Diversification among New World				
804	leaf-nosed bats: an evolutionary hypothesis and classification inferred from digenomic				
805	congruence of DNA sequence. Occasional Papers 230, 32. Lubbock (TX, USA): Museum of Texas				
806	Tech University.				

- 807 <u>https://www.researchgate.net/publication/235412317_Diversification_among_New_World_leaf-</u>
- 808 <u>nosed_bats_An_evolutionary_hypothesis_and_classification_inferred_from_digenomic_congruence_of_DNA</u>
- 809 <u>sequence</u>
- 810
- 811 Baptista S.R., Rudel T.K. 2006. A re-emerging Atlantic forest? Urbanization, industrialization and
- 812 the forest transition in Santa Catarina, southern Brazil. *Environmental conservation* 33, 195–202.
- 813 https://doi.org/10.1017/S0376892906003134
- 814
- 815 Barclay R.M.R., Fenton M.B., Tuttle M.D., Ryan M.J. 1981. Echolocation calls produced by *Trachops*

816 *cirrhosus* (Chiroptera: Phyllostomatidae) while hunting for frogs. *Canadian Journal of Zoology* 59:

- 817 750–753. <u>https://doi.org/10.1139/z81-10</u>
- 818
- 819 Belwood J.J. 1990. The influence of bat predation on calling behavior in neotropical forest katydids
- 820 (Insecta: Orthoptera: Tettigoniidae) [Ph.D. thesis] [Gainesville (FL, USA)]: University of Florida.
- 821 <u>https://www.elibrary.ru/item.asp?id=5898125</u>
- 822
- 823 Bernt M., Donath A., Jühling F., Externbrink F., Florentz C., Fritzsch G., Pütz J., Middendorf M.,
- 824Stadler P.F. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation.825MolecularPhylogeneticsandEvolution69:313–319.826http://dl.ic.//dl.1016/fice.com/2012/00/0020
- 826 <u>https://doi.org/10.1016/j.ympev.2012.08.023</u>
- 827
- Berry R.J., Jakobson M.E., Peters J. 1987. Inherited differences within an island population of the
 House mouse (*Mus domesticus*). *Journal of Zoology* 211: 605–618.
 <u>https://doi.org/10.1111/j.1469-7998.1987.tb04474.x</u>
- 831
- 832 Bonato V. & K.G. Facure. 2000. Bat predation by the fringe-lipped bat *Trachops cirrhosus*
- 833 (Phyllostomidae, Chiroptera). *Mammalia* 64: 241-243.

- 834 <u>https://doi.org/10.1515/mamm.2000.64.2.241</u>
- 835
- 836 Bonato V., Facure K.G., Uieda W. 2004. Food Habits of Bats of Subfamily Vampyrinae in Brazil.
- 837 *Journal of Mammalogy* 85: 708–713. <u>https://doi.org/10.1644/BWG-121</u>
- 838
- 839 Botero-Castro F., Tilak M.-K., Justy F., Catzeflis F., Delsuc F., Douzery E.J.P. 2018. In Cold Blood:
- 840 Compositional Bias and Positive Selection Drive the High Evolutionary Rate of Vampire Bats
- 841 Mitochondrial Genomes. *Genome Biology and Evolution* 10: 2218–2239.
- 842 <u>https://doi.org/10.1093/gbe/evy120</u>
- 843
- 844 Bredt A., Uieda W., Magalhães E.D. 1999. Morcegos cavernícolas da região do Distrito Federal,
- 845 centro-oeste do Brasil (Mammalia, Chiroptera). *Revista Brasileira de Zoologia* 16: 731–770.
- 846 <u>https://doi.org/10.1590/S0101-81751999000300012</u>
- 847
- 848 Burgin C.J., Colella J.P., Kahn P.L., Upham N.S. 2018. How many species of mammals are there?
- 849 *Journal of Mammalogy* 99: 1–14. <u>https://doi.org/10.1093/jmammal/gyx147</u>
- 850
- 851 Bushnell B. 2014. BBMap: A fast, accurate, splice-aware aligner. In: Conference BBMap: A Fast,
- Accurate, Splice-Aware Aligner. 9th Annual Genomics of Energy & Environment Meeting; 17-20
- 853 Mar 2014. Walnut Creek (CA,USA): Lawrence Berkeley National Lab. (LBNL). USDOE Office of
- 854 Science (SC). <u>https://www.osti.gov/biblio/1241166</u>
- 855
- 856 Calahorra-Oliart A., Ospina-Garcés S.M., León-Paniagua L. 2021. Cryptic species in *Glossophaga*
- 857 *soricina* (Chiroptera: Phyllostomidae): do morphological data support molecular evidence?
- *Journal of Mammalogy* 102: 54–68. <u>https://doi.org/10.1093/jmammal/gyaa116</u>
- 859
- 860 Camacho M.A., Cadar D., Horváth B., Merino-Viteri A., Murienne J. 2022. Revised phylogeny from

861	complete mit	ochondrial g	enomes	of phyll	ostomid bats	resolves	subfamilial	classification.
862	Zoological	Journal	of	the	Linnean	Society	196:	1591–1607.
863	https://doi.org/10.1093/zoolinnean/zlac055							
864								
865	Clare E.L., Lim B.K., Engstrom M.D., Eger J.L., Hebert P.D.N. 2007. DNA barcoding of Neotropica							of Neotropical
866	bats: species identification and discovery within Guyana. Molecular Ecology Notes 7: 184–190						es 7: 184–190.	
867	https://doi.org/10.1111/j.1471-8286.2006.01657.x							
868								
869	Clare E.L. 2011. Cryptic species? Patterns of maternal and paternal gene flow in eight neotropical							
870	bats. <i>PloS one</i>	6(7): e21460.	https://	/doi.org/1	10.1371/journ	al.pone.00	<u>21460</u>	
871								
872	Clare E.L., Lim	B.K., Fenton M	4.B., Heb	ert P.D.N.	2011. Neotrop	oical bats: o	estimating sp	ecies diversity
873	with DNA bard	codes. <i>PloS on</i>	<i>e</i> 6(7): e	22648. <u>ht</u>	tps://doi.org/	<u>10.1371/j</u>	<u>ournal.pone.</u>	0022648
874								
875	Cramer M.J.,	Willig M.R., J	ones C.	2001. Ti	rachops cirrho	sus. Mam	malian Speci	ies 2001: 1-6.
876	https://doi.or	g/10.1644/1	545-141	<u>0(2001)6</u>	<u>56%3C0001:T</u>	<u>'C%3E2.0.</u>	<u>CO;2</u>	
877								
878	Ditchfield. A.D). 1996. Phylo	geograp	hy of Neo	otropical bats	using mito	ochondrial D	NA sequences.
879	Berkeley (CA, USA): University of California. Berkeley ProQuest Dissertations Publishing.							
880	https://www.proquest.com/openview/0e0076fbcd3dbe20c95464be536c4bb5/1?pq-							
881	origsite=gscho	olar&cbl=187	50&diss	<u>=y</u>				
882								
883	Dobson G.E. 1	878. Catalogu	e of the	Chiropte	ra in the Colle	ction of th	e British Mu	iseum. London
884	(England): British Museum (Natural History). Department of Zoology.							
885	https://doi.or	<u>g/10.5962/bl</u>	hl.title.55	<u>5341</u>				
886								
887	Ebenhard T. 1	990. A coloni	zation s	trategy in	field voles (M	licrotus ag	restis): Repr	oductive traits

- 888 and body size. *Ecology* 71: 1833–1848. <u>https://doi.org/10.2307/1937592</u>
- 889 Edgar R.C. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space
- 890 complexity. *BMC Bioinformatics* 5: 113. <u>https://doi.org/10.1186/1471-2105-5-113</u>
- 891
- 892 Felsenstein J. 1985. Confidence limits on Phylogenies: an approach using the bootstrap. *Evolution;*
- 893 International Journal of Organic Evolution 39: 783–791. https://doi.org/10.2307/2408678
- 894
- Felten H. 1956a. *Fledermäuse (Mammalia, Chiroptera) aus El Salvador*. 1956. Teil 2.
 Senckenbergiana Biologica 37:69-86.

- 898 Felten H. 1956b. Eine neue unterart von *Trachops cirrhosus*. (Mammalia, Chiroptera) aus Brasilien.
- 899 Senckenbergiana Biologica 37:369-370.

- 901 Fenton M.B., Acharya L., Audet D., Hickey M.B.C., Merriman C., Obrist M.K., Syme D.M., Adkins B.
- 902 1992. Phyllostomid Bats (Chiroptera: Phyllostomidae) as Indicators of Habitat Disruption in the
- 903 Neotropics. *Biotropica* 24: 440–446. https://doi.org/10.2307/2388615
- 904
- 905 Ferrer-Pérez A., Beltrán M., Díaz-Pulido A.P., Trujillo F., Mantilla-Meluk H., Herrera O., Alfonso A.F.,
- 906 Payán E. 2009. Lista de los mamíferos de la cuenca del río Orinoco. *Biota Colombiana* 10: 179–207.
- 907 <u>https://repositorio.unal.edu.co/handle/unal/9687</u>
- 908
- 909 Fleming T.H., Hooper E.T., Wilson D.E. 1972. Three central American bat communities: Structure,
- 910 reproductive cycles, and movement patterns. *Ecology* 53: 555–569.
- 911 <u>https://doi.org/10.2307/1934771</u>
- 912
- 913 Flores V., Page R.A. 2017. Novel odorous crust on the forearm of reproductive male fringe-lipped
- 914 bats (*Trachops cirrhosus*). Journal of Mammalogy 98: 1568–1577.
- 915 <u>https://doi.org/10.1093/jmammal/gyx137</u>
- 916
- 917 Flores V., Mateo J.M., Page R.A. 2019. The role of male forearm crust odour in fringe-lipped bats
- 918 (*Trachops cirrhosus*). *Behaviour* 156: 1435–1458. <u>https://doi.org/10.1163/1568539X-00003573</u>
- 919
- 920 Flores V., Carter G.G., Halczok T.K., Kerth G., Page R.A. 2020. Social structure and relatedness in the
- 921 fringe-lipped bat (*Trachops cirrhosus*). Royal Society Open Science 7: 192256.
- 922 <u>https://doi.org/10.1098/rsos.192256.</u>
- 923
- 924 Fonseca B. 2019. Taxonomia integrativa revela diversidade críptica em Trachops cirrhosus
- 925 (Chiroptera, Phyllostomidae). [Ph.D. thesis] [Vittoria (Brazil)]: Universidade Federal do Espírito
- 926 Santo.
- 927 <u>https://sappg.ufes.br/tese_drupal//tese_12993_Tese-BSFonseca%20-</u>
- 928 <u>%20vers%E3o%20final.pdf</u>
- 929
- 930 Fox N.S., Veneracion J.J., Blois J.L. 2020. Are geometric morphometric analyses replicable?
- 931 Evaluating landmark measurement error and its impact on extant and fossil Microtus
- 932 classification. *Ecology and Evolution* 10: 3260–3275. <u>https://doi.org/10.1002/ece3.6063</u>
- 933
- Freeman P.W. 1998. Form, function, and evolution in skulls and teeth of bats. *Papers in Natural Resources*: 9.
- 936 <u>https://digitalcommons.unl.edu/natrespapers/9?utm_source=digitalcommons.unl.edu%2Fnatr</u>
- 937 <u>espapers%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages</u>
- 938
- 939 Garbino G.S.T., da C. Tavares V. 2018. A Quaternary record of the big-eyed bat *Chiroderma villosum*
- 940 (Chiroptera: Phyllostomidae) with a revised lower molar terminology. *Mammalia* 82: 393–399.
- 941 https://doi.org/10.1515/mammalia-2017-0037

- Garbino G.S.T., Lim B.K., Tavares V.D.A.C. 2020. Systematics of big-eyed bats, genus *Chiroderma Peters*, 1860 (Chiroptera: Phyllostomidae). *Zootaxa* 4846:1.
 https://doi.org/10.11646/zootaxa.4846.1.1
- 946
- 947 Gardner A.L. 1977. Feeding habits. In: R. J. Baker (Ed), Biology of bats of the New World family
- 948 Phyllostomatidae. Part II. Special Publications. Lubbock (TX, USA): Museum of Texas Tech
- 949 University. <u>https://www.researchgate.net/publication/271848653_Feeding_habits</u>
- 950
- 951 Giannini N.P., Kalko E.K.V. 2005. The guild structure of animalivorous leaf-nosed bats of Barro
- 952 Colorado Island, Panama, revisited. *Acta Chiropterologica* 7: 131–146.
- 953 https://doi.org/10.3161/1733-5329(2005)7[131:TGSOAL]2.0.C0;2
- 954
- 955 Goldman E.A. 1925. A new bat of the genus *Trachops* from Guatemala. *Proceedings of the Biological*
- 956 Society of Washington 38: 23–34.
- 957 <u>https://www.biodiversitylibrary.org/page/34557585#page/45/mode/1up</u>
- 958
- 959 Goodwin G.G., Greenhall A.M. 1961. A review of the bats of Trinidad and Tobago: descriptions,
- 960 rabies infection, and ecology. *Bull. Am. Mus. Nat. Hist* 122 (3): 187–302.
- 961 <u>https://doi.org/10.2307/1377397</u>
- 962
- Gray J.E. 1825. An Attempt at a division of the family Vespertilionidae into groups. *Zoological*
- 964 Journal of the Linnean Society: 242–243.
- 965 <u>https://www.biodiversitylibrary.org/item/19413#page/296/mode/1up</u>
- 966
- 967 Gray J.E. 1847. Characters of six new genera of bats not hitherto distinguished. In: *Proceedings of*
- 968 the Zoological Society of London :14–15.

969	https://www.biodiversitylibrary.org/item/46213#page/28/mode/1up		
970			
971	Haffer J. 1969. Speciation in Amazonian Forest Birds. <i>Science</i> 165:131–137.		
972	https://doi.org/10.1126/science.165.3889.131		
973			
974	Halczok T.K., Brändel S.D., Flores V., Puechmaille S.J., Tschapka M., Page R.A.,Kerth G. 2018. Male-		
975	biased dispersal and the potential impact of human-induced habitat modifications on the		
976	Neotropical bat <i>Trachops cirrhosus</i> . <i>Ecology and Evolution</i> 8: 6065–6080.		
977	https://doi.org/10.1002/ece3.4161		
978			
979	Hall E.R., Dalquest W.W. 1963. The mammals of Veracruz. University of Kansas. Museum of Natural		
980	History 14(14): 165-362.		
981	https://www.biodiversitylibrary.org/page/4397374#page/201/mode/1up		
982			
983	Hershkovitz P. 1949. Mammals of northern Colombia, preliminary report no. 5: Bats (Chiroptera).		
984	Proceedings of the United States National Museum 99 (3246):429–454.		
985	https://doi.org/10.5479/si.00963801.99-3246.429		
986			
987	Hoffmann F.G., Baker R.J. 2003. Comparative phylogeography of short-tailed bats (Carollia:		
988	Phyllostomidae). <i>Molecular Ecology</i> 12: 3403–3414. <u>https://doi.org/10.1046/j.1365-</u>		
989	<u>294x.2003.02009.x</u>		
990			
991	Humphrey S.R., Bonaccorso F.J., Zinn T.L. 1983. Guild structure of surface-gleaning bats in Panamá.		
992	<i>Ecology</i> 64: 284–294. <u>https://doi.org/10.2307/1937076</u>		
993	Irschick D.J., Shaffer H.B. 1997. The Polytypic Species Revisited: Morphological Differentiation		
994	among Tiger Salamanders (<i>Ambystoma tigrinum</i>) (Amphibia: Caudata). <i>Herpetologica</i> 53: 30–49.		
995	https://www.istor.org/stable/3893241		

996	
997	Jarrín-V P., Flores C., Salcedo J. 2010. Morphological variation in the short-tailed fruit bat (<i>Carollia</i>)
998	in Ecuador, with comments on the practical and philosophical aspects of boundaries among
999	species. Integrative Zoology 5: 226–240. <u>https://doi.org/10.1111/j.1749-4877.2010.00208.x</u>
1000	
1001	Jarrín-V. P., Menéndez-Guerrero P.A. 2011. Environmental components and boundaries of
1002	morphological variation in the short-tailed fruit bat (Carollia spp.) in Ecuador. Acta
1003	Chiropterologica / Museum and Institute of Zoology, Polish Academy of Sciences 13: 319–340.
1004	http://dx.doi.org/10.3161/150811011X624802
1005	
1006	Jones J.K., Jr, Carter D.C. 1976. Annotated checklist, with keys to subfamilies and genera. In:
1007	Biology of bats of the new world family Phyllostomidae, part I. Lubbock (TX, USA): Museum of
1008	Texas Tech University. <u>https://www.depts.ttu.edu/nsrl/publications/downloads/SP10.pdf</u>
1009	
1010	Jones P.L., Ryan M.J., Flores V., Page R.A. 2013. When to approach novel prey cues? Social learning
1011	strategies in frog-eating bats. <i>Proceedings. Biological sciences / The Royal Society</i> 280: 20132330.
1012	https://doi.org/10.1098/rspb.2013.2330
1013	Kalko E.K.V., Handley C.O. Jr, Handley D. 1996. Organization, diversity, and long-term dynamics of
1014	a Neotropical bat community. In: Long-term studies of vertebrate communities. <i>Elsevier</i> : 503–553.
1015	https://doi.org/10.1016/B978-012178075-3/50017-9
1016	
1017	Kalko E.K.V., Friemel D., Handley C.O., Schnitzler HU. 1999. Roosting and Foraging Behavior of
1018	Two Neotropical Gleaning Bats, Tonatia silvicola and Trachops cirrhosus (Phyllostomidae)1.
1019	Biotropica 31: 344–353. https://www.jstor.org/stable/2663797
1020	
1021	Koopman K.E. 1976. Biology of bats of the New World family Phyllostomatidae. Part I.
1022	Zoogeography. Special publications Lubbock (TX, USA): Museum of Texas Tech University.

1023	https://www.biodiversitylibrary.org/item/241451#page/38/mode/1up
1024	
1025	Koopman K.F. 1978. Zoogeography of Peruvian bats with special emphasis on the role of the
1026	Andes. New York (NY, USA): American Museum of Natural History.
1027	https://archive.org/details/zoogeographyper2651koop/zoogeographyper2651koop/
1028	
1029	Koopman K.F. 1982. Biogeography of the bats of South America. Mammalian Biology in South
1030	America 6: 273–302.
1031	https://books.google.com.ec/books/about/Mammalian_Biology_in_South_America.html?id=R2
1032	wfAQAAIAAJ&redir_esc=y
1033	
1034	Kozlov A.M., Darriba D., Flouri T., Morel, B., Stamatakis A. 2019. RAxML-NG: a fast, scalable and
1035	user-friendly tool for maximum likelihood phylogenetic inference. <i>Bioinformatics</i> 35: 4453–4455.
1036	https://doi.org/10.1093/bioinformatics/btz305
1037	
1038	Kunz T.H., Wemmer C., Hayssen V. 1996. Sex, age, and reproductive condition of mammals. In
1039	Wilson DE, Cole FR, Nichols JD, Rudran R, Foster MS, editors "Measuring and Monitoring Biological
1040	Diversity. Standard Methods for Mammals". Washington, D.C. (USA): Smithsonian Books; pp. 279-
1041	290. https://pubs.usgs.gov/publication/5200145
1042	
1043	Lemoine F., Domelevo Entfellner JB., Wilkinson E., Correia D., Dávila Felipe M., De Oliveira T.,
1044	Gascuel O. 2018. Renewing Felsenstein's phylogenetic bootstrap in the era of big data. <i>Nature</i> 556:
1045	452-456. https://doi.org/10.1038/s41586-018-0043-0
1046	
1047	Li D., Luo R., Liu CM., Leung CM., Ting HF., Sadakane K., Yamashita H., Lam TW. 2016.
1048	MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies
1049	and community practices. <i>Methods</i> 102: 3–11. <u>https://doi.org/10.1016/j.ymeth.2016.02.020</u>

- 1051 Lindsey L.L., Ammerman L.K. 2016. Patterns of Genetic Diversification in a Widely Distributed
- 1052 Species of Bat, *Molossus molossus. Occasional Papers* Lubbock (TX, USA): Museum of Texas Tech
- 1053 University. <u>https://www.biodiversitylibrary.org/item/264256#page/1/mode/1up</u>
- 1054
- 1055 López-Aguirre C., Pérez-Torre J., Wilson L.A.B. 2015. Cranial and mandibular shape variation in
- 1056 the genus *Carollia* (Mammalia: Chiroptera) from Colombia: biogeographic patterns and
- 1057 morphological modularity. *PeerJ* 3: e1197. <u>https://doi.org/10.7717/peerj.1197</u>
- 1058
- 1059 Manel S., Schwartz M.K., Luikart G., Taberlet P. 2003. Landscape genetics: combining landscape
- 1060 ecology and population genetics. *Trends in Ecology & Evolution* 18: 189–197.
- 1061 https://doi.org/10.1016/S0169-5347(03)00008-9
- 1062
- 1063 Marinello M.M., Bernard E. 2014. Wing morphology of Neotropical bats: a quantitative and
- 1064 qualitative analysis with implications for habitat use. *Canadian Journal of Zoology* 92: 141–147.
- 1065 <u>https://doi.org/10.1139/cjz-2013-0127</u>
- 1066
- 1067 Martins F.M., Templeton A.R., Pavan A.C.O., Kohlbach B.C., Morgante J.S. 2009. Phylogeography of
- 1068 the common vampire bat (*Desmodus rotundus*): marked population structure, Neotropical
- 1069 Pleistocene vicariance and incongruence between nuclear and mtDNA markers. BMC Evolutionary
- 1070 Biology 9: 294. https://doi.org/10.1186/1471-2148-9-294
- 1071
- 1072 McLellan L.J. 1984. A morphometric analysis of *Carollia* (Chiroptera, Phyllostomidae). New York,
- 1073 (NY, USA): American Museum of Natural History; no. 2791.
- 1074 <u>https://www.biodiversitylibrary.org/bibliography/197405</u>
- 1075 Miller B., Reid F., Arroyo-Cabrales J., Cuarón A.D., de Grammont P.C. 2015. Trachops cirrhosus. The
- 1076 IUCN Red List of Threatened Species 2015: e.T22029A22042903 [accessed 30 Dec 2023]

1077	https://dx.doi.org/10.2305/10CN.0K.2015-4.RLTS.T22029A22042903.en.
1078	
1079	Miller G.S. 1907. The families and genera of bats. <i>Bulletin of the United States National Museum</i> 57:
1080	1–282. https://repository.si.edu/handle/10088/30420
1081	
1082	Molinari J., Bustos X.E., Burneo S.F., Camacho M.A., Moreno S.A., Fermín G. 2017. A new polytypic
1083	species of yellow-shouldered bats, genus Sturnira (Mammalia: Chiroptera: Phyllostomidae), from
1084	the Andean and coastal mountain systems of Venezuela and Colombia. Zootaxa 4243: 75-96.
1085	https://doi.org/10.11646/zootaxa.4243.1.3
1086	
1087	Molinari J. 2023. A bare-bones scheme to choose between the species, subspecies, and
1088	"evolutionarily significant unit" categories in taxonomy and conservation. Journal of Nature
1089	Conservation 72: 126335. <u>https://doi.org/10.1016/j.jnc.2023.126335</u>
1090	
1091	Molinari J., Gutiérrez E.E., Lim B.K. 2023. Systematics and biogeography of Anoura cultrata
1091 1092	Molinari J., Gutiérrez E.E., Lim B.K. 2023. Systematics and biogeography of <i>Anoura cultrata</i> (Mammalia, Chiroptera, Phyllostomidae): a morphometric, niche modeling, and genetic
1091 1092 1093	Molinari J., Gutiérrez E.E., Lim B.K. 2023. Systematics and biogeography of <i>Anoura cultrata</i> (Mammalia, Chiroptera, Phyllostomidae): a morphometric, niche modeling, and genetic perspective, with a taxonomic reappraisal of the genus. <i>Zootaxa</i> 5297: 151–188.
1091 1092 1093 1094	Molinari J., Gutiérrez E.E., Lim B.K. 2023. Systematics and biogeography of <i>Anoura cultrata</i> (Mammalia, Chiroptera, Phyllostomidae): a morphometric, niche modeling, and genetic perspective, with a taxonomic reappraisal of the genus. <i>Zootaxa</i> 5297: 151–188. <u>https://doi.org/10.11646/zootaxa.5297.2.1</u>
1091 1092 1093 1094 1095	Molinari J., Gutiérrez E.E., Lim B.K. 2023. Systematics and biogeography of <i>Anoura cultrata</i> (Mammalia, Chiroptera, Phyllostomidae): a morphometric, niche modeling, and genetic perspective, with a taxonomic reappraisal of the genus. <i>Zootaxa</i> 5297: 151–188. https://doi.org/10.11646/zootaxa.5297.2.1
1091 1092 1093 1094 1095 1096	Molinari J., Gutiérrez E.E., Lim B.K. 2023. Systematics and biogeography of <i>Anoura cultrata</i> (Mammalia, Chiroptera, Phyllostomidae): a morphometric, niche modeling, and genetic perspective, with a taxonomic reappraisal of the genus. <i>Zootaxa</i> 5297: 151–188. https://doi.org/10.11646/zootaxa.5297.2.1 Moratelli R., Wilson D.E., Novaes R.L.M., Helgen K.M., Gutiérrez E.E. 2017. Caribbean <i>Myotis</i>
1091 1092 1093 1094 1095 1096 1097	 Molinari J., Gutiérrez E.E., Lim B.K. 2023. Systematics and biogeography of <i>Anoura cultrata</i> (Mammalia, Chiroptera, Phyllostomidae): a morphometric, niche modeling, and genetic perspective, with a taxonomic reappraisal of the genus. <i>Zootaxa</i> 5297: 151–188. https://doi.org/10.11646/zootaxa.5297.2.1 Moratelli R., Wilson D.E., Novaes R.L.M., Helgen K.M., Gutiérrez E.E. 2017. Caribbean <i>Myotis</i> (Chiroptera, Vespertilionidae), with description of a new species from Trinidad and Tobago.
1091 1092 1093 1094 1095 1096 1097	 Molinari J., Gutiérrez E.E., Lim B.K. 2023. Systematics and biogeography of <i>Anoura cultrata</i> (Mammalia, Chiroptera, Phyllostomidae): a morphometric, niche modeling, and genetic perspective, with a taxonomic reappraisal of the genus. <i>Zootaxa</i> 5297: 151–188. https://doi.org/10.11646/zootaxa.5297.2.1 Moratelli R., Wilson D.E., Novaes R.L.M., Helgen K.M., Gutiérrez E.E. 2017. Caribbean <i>Myotis</i> (Chiroptera, Vespertilionidae), with description of a new species from Trinidad and Tobago. <i>Journal of Mammalogy</i> 98: 994–1008. https://doi.org/10.1093/jmammal/gyx062
1091 1092 1093 1094 1095 1096 1097 1098 1099	 Molinari J., Gutiérrez E.E., Lim B.K. 2023. Systematics and biogeography of <i>Anoura cultrata</i> (Mammalia, Chiroptera, Phyllostomidae): a morphometric, niche modeling, and genetic perspective, with a taxonomic reappraisal of the genus. <i>Zootaxa</i> 5297: 151–188. https://doi.org/10.11646/zootaxa.5297.2.1 Moratelli R., Wilson D.E., Novaes R.L.M., Helgen K.M., Gutiérrez E.E. 2017. Caribbean <i>Myotis</i> (Chiroptera, Vespertilionidae), with description of a new species from Trinidad and Tobago. <i>Journal of Mammalogy</i> 98: 994–1008. https://doi.org/10.1093/jmammal/gyx062
1091 1092 1093 1094 1095 1096 1097 1098 1099	 Molinari J., Gutiérrez E.E., Lim B.K. 2023. Systematics and biogeography of <i>Anoura cultrata</i> (Mammalia, Chiroptera, Phyllostomidae): a morphometric, niche modeling, and genetic perspective, with a taxonomic reappraisal of the genus. <i>Zootaxa</i> 5297: 151–188. https://doi.org/10.11646/zootaxa.5297.2.1 Moratelli R., Wilson D.E., Novaes R.L.M., Helgen K.M., Gutiérrez E.E. 2017. Caribbean <i>Myotis</i> (Chiroptera, Vespertilionidae), with description of a new species from Trinidad and Tobago. <i>Journal of Mammalogy</i> 98: 994–1008. https://doi.org/10.1093/jmammal/gyx062 Nogueira M.R., Peracchi A.L., Monteiro L.R. 2009. Morphological correlates of bite force and diet
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101	 Molinari J., Gutiérrez E.E., Lim B.K. 2023. Systematics and biogeography of <i>Anoura cultrata</i> (Mammalia, Chiroptera, Phyllostomidae): a morphometric, niche modeling, and genetic perspective, with a taxonomic reappraisal of the genus. <i>Zootaxa</i> 5297: 151–188. https://doi.org/10.11646/zootaxa.5297.2.1 Moratelli R., Wilson D.E., Novaes R.L.M., Helgen K.M., Gutiérrez E.E. 2017. Caribbean <i>Myotis</i> (Chiroptera, Vespertilionidae), with description of a new species from Trinidad and Tobago. <i>Journal of Mammalogy</i> 98: 994–1008. https://doi.org/10.1093/jmammal/gyx062 Nogueira M.R., Peracchi A.L., Monteiro L.R. 2009. Morphological correlates of bite force and diet in the skull and mandible of phyllostomid bats. <i>Functional Ecology</i> 23: 715–723.

- Norberg U.M., Rayner J.M.V. 1987. Ecological morphology and flight in bats (Mammalia;
 Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. *Philosophical Transactions of the Royal Society of London* 316: 335–427.
- 1107 <u>https://doi.org/10.1098/rstb.1987.0030</u>
- 1108
- 1109 Obrist M.K., Fenton M.B., Eger J.L., Schlegel P.A. 1993. What ears do for bats: a comparative study
- 1110 of pinna sound pressure transformation in chiroptera. *The Journal of Experimental Biology* 180:
- 1111 119–152. <u>https://doi.org/10.1242/jeb.180.1.119</u>
- 1112
- 1113 Page R.A., Jones P.L. 2016. Overcoming Sensory Uncertainty: Factors Affecting Foraging Decisions
- 1114 in Frog-Eating Bats. In: M. A. Bee and C. T. Miller, editors. Psychological Mechanisms in Animal
- 1115 Communication. New York (NY, USA): Springer International Publishing, Cham; pp. 285–312.
- 1116 <u>https://doi.org/10.1007/978-3-319-48690-1_11</u>
- 1117
- 1118 Patten M.A. 2015. Subspecies and the philosophy of science. *The Auk* 132: 481–485.
- 1119 https://doi.org/10.1642/AUK-15-1.1
- 1120
- 1121 Pavan S.E., Jansa S.A., Voss R.S. 2016. Spatiotemporal diversification of a low-vagility Neotropical
- 1122 vertebrate clade (short-tailed opossums, Didelphidae: *Monodelphis*). *Journal of Biogeography* 43:
- 1123 1299–1309. <u>https://doi.org/10.1111/jbi.12724</u>
- 1124
- 1125 Pine R.H., Anderson J.E. 1979. Notes on stomach contents in *Trachops cirrhosus* (Chiroptera:
- 1126 Phyllostomatidae). Mammalia 43: 568–570. https://doi.org/10.1515/mamm.1979.43.4.567
- 1127
- 1128 Prjibelski A., Antipov D., Meleshko D., Lapidus A., Korobeynikov A. 2020. Using SPAdes De Novo
- 1129 Assembler. *Current protocols in bioinformatics* 70: e102. <u>https://doi.org/10.1002/cpbi.102</u>
- 1130

de Rezende, C.L., Uezu A., Scarano F.R., Araujo D.S.D. 2015. Atlantic Forest spontaneous

1132	regeneration at landscape scale. <i>Biodiversity and Conservation</i> 24: 2255–2272.
1133	https://doi.org/10.1007/s10531-015-0980-y
1134	
1135	Rice W.R. 1989. Analyzing Tables of Statistical Tests. <i>Evolution</i> 43, 223–225.
1136	https://doi.org/10.2307/2409177
1137	
1138	Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard
1139	M.A., Huelsenbeck J.P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model
1140	choice across a large model space. <i>Systematic Biology</i> 61: 539–542.
1141	https://doi.org/10.1093/sysbio/sys029
1142	
1143	Ryan M.J., Tuttle M.D., Barclay R.M.R. 1983. Behavioral responses of the frog-eating bat, Trachops
1144	cirrhosus, to sonic frequencies. Journal of Comparative Physiology. 150: 413-418.
1145	https://doi.org/10.1007/BF00609567
1146	
1147	Schinz H.R. 2012. Systematisches Verzeichniss aller bis jetzt bekannten Saugethiere oder Synopsis
1148	Mammalium nach dem Cuvier'schen System. Berlin (Germany): Nabu Press.
1149	https://books.google.com.ec/books/about/Systematisches_Verzeichniss_aller_bis_je.html?id=F
1150	mai5Ds-quEC&redir_esc=y
1151	
1152	Sokal R.R., Rohlf F.J. 1995. Biometry: The Principles and Practice of Statistics in Biological Research.
1153	New York (NY, USA): W.H. Freeman and Company
1154	https://www.researchgate.net/publication/44554870_Biometry_the_principles_and_practice_of
1155	_statistics_in_biological_research_Robert_R_Sokal_and_F_James_Rohlf
1156	
1157	Solari S., Medellín R.A., Rodríguez-Herrera B., Dumont E.R., Burneo S.F. 2019. Family

- 1158 Phyllostomidae. In: Wilson DE, Mittermeier RA, editors. Handbook of the Mammals of the World.
- 1159 Barcelona (España): Lynx Ediciones; pp. 444–583.
- 1160 <u>https://www.nhbs.com/handbook-of-the-mammals-of-the-world-volumes-1-to-9</u>
- 1161
- 1162 Souza CM Jr., Z. Shimbo J, Rosa MR, Parente LL, A. Alencar A, Rudorff BFT, Hasenack H, Matsumoto
- 1163 M, G. Ferreira L, Souza-Filho PWM, et al. 2020. Reconstructing Three Decades of Land Use and
- 1164 Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. *Remote Sensing*
- 1165 12(17):2735. <u>https://doi.org/10.3390/rs12172735</u>
- 1166
- 1167 Spix J.B. 1823. Simiarum et Vespertilionum Brasiliensum: Species Novae ou Histoire Naturelle des
- 1168 Espèces Nouvelles des Singes et de Chauvesouris, Observées et Recueillies pendant le Voyage dans

1169 l'Intérieur du Brésil. Munich (Germany) : Typis Francisci Seraphici Hübschmanni.

1170 <u>https://www.biodiversitylibrary.org/bibliography/153190</u>

- 1171
- 1172Stecher G., Tamura K., Kumar S. 2020. Molecular Evolutionary Genetics Analysis (MEGA) for1173macOS.MolecularBiologyandEvolution37:1237–1239.
- 1174 <u>https://doi.org/10.1093/molbev/msz312</u>
- 1175
- 1176 Tamura K., Stecher G., Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version
- 1177 11. *Molecular Biology and Evolution* 38: 3022–3027. <u>https://doi.org/10.1093/molbev/msab120</u>
- 1178
- 1179 Tavares V.D.C., Gardner A.L., Ramírez-Chaves H.E., Velazco P.M. 2014. Systematics of Vampyressa
- 1180 melissa Thomas, 1926 (Chiroptera: Phyllostomidae), with Descriptions of Two New Species of
- 1181 Vampyressa. American Museum novitates 3813: 1–27. http://dx.doi.org/10.1206/3813.1
- 1182
- 1183 Tillich M., Lehwark P., Pellizzer T., Ulbricht-Jones E.S., Fischer A., Bock R., Greiner S. 2017. GeSeq
- 1184 versatile and accurate annotation of organelle genomes. *Nucleic Acids Research* 45: W6–W11.

1185	https://doi.org/10.1093/nar/gkx391
1186	
1187	Tirira D. 2017. Guía de campo de los mamíferos del Ecuador. Quito (Ecuador): Editorial
1188	Murciélago Blanco.
1189	https://www.researchgate.net/publication/322953093_Guia_de_campo_de_los_mamiferos_del_
1190	Ecuador
1191	
1192	Trajano E. 1984. Ecologia de populações de morcegos cavernícolas em uma região cárstica do
1193	sudeste do Brasil. Revista Brasileira de Zoologia 2: 255-320. https://doi.org/10.1590/S0101-
1194	81751984000100001
1195	
1196	Turmelle A.S., Kunz T.H., Sorenson M.D. 2011. A tale of two genomes: contrasting patterns of
1197	phylogeographic structure in a widely distributed bat. <i>Molecular Ecology</i> 20: 357–375.
1198	https://doi.org/10.1111/j.1365-294x.2010.04947.x
1199	
1200	Tuttle M.D., Ryan M.J. 1981. Bat predation and the evolution of frog vocalizations in the neotropics.
1201	Science 214: 677–678. <u>https://doi.org/10.1126/science.214.4521.677</u>
1202	
1203	Velazco P.M. 2005. Morphological Phylogeny of the Bat Genus Platyrrhinus Saussure, 1860
1204	(Chiroptera: Phyllostomidae) with the Description of Four New Species. <i>Fieldiana Zoology</i> 2005:
1205	1-53. https://doi.org/10.3158/0015-0754(2005)105[1:MPOTBG]2.0.C0;2
1206	
1207	Velazco P.M., Ly G., McAllister J., Esquivel D.A. 2023. Geographic variation in select species of the
1208	bat genus Platyrrhinus. Therya 14: 121–130. <u>https://doi.org/10.12933/therya-23-2208</u>
1209	
1210	Villa-R B. 1960. Los murciélagos de México, su importancia en la economia y la salubridad-Su
1211	Clasificación Sistemática. [Ph.D. thesis] [Mexico DF(México)]: Universidad Nacional Autónoma de

- 1212 México https://repositorio.unam.mx/contenidos/64070
- 1213
- 1214 Vivo M. de. 1997. Mammalian evidence of historical ecological change in the Caatinga semiarid
- 1215 vegetation of northeastern Brazil. Journal of Comparative Biology 2: 65–73.
- 1216 https://www.researchgate.net/publication/263389388_Mammalian_evidence_of_historical_cha
- 1217 <u>nge_in_the_Caatinga_semiarid_vegetation_of_northeastern_Brazil</u>
- 1218
- 1219 Whitaker J.O., Findley J.S. 1980. Foods Eaten by Some Bats from Costa Rica and Panama. *Journal*
- 1220 of Mammalogy 61: 540–544. https://doi.org/10.2307/1379850
- 1221
- Williams S.L., Genoways H.H. 2008. Subfamily Phyllostominae Gray, 1825. Mammals of South
 America. Volume 1: Marsupials, Xenarthrans, Shrews, and Bats. Gardner AL, editor. Chicago
 (IL,USA): The University of Chicago Press.
 http://dx.doi.org/10.7208/chicago/9780226282428.001.0001
- 1226
- 1227 Yánez-Fernández V., Marchán-Rivadeneira M.R., Velazco P.M., Burneo S.F., Tinoco N., Camacho
- 1228 M.A. 2023. On the Taxonomic Identity of *Sturnira* nana Gardner and O'Neil, 1971 (Chiroptera:
- 1229 Phyllostomidae), from Ecuador, with the Description of a New Species of *Sturnira*. *American*
- 1230 *Museum Novitates* 2023: 1–28. <u>https://doi.org/10.1206/4001.1</u>

1231 **TABLES**

1232

Table 1. Estimates of evolutionary divergence across sequence pairs between groups are
presented. The number of base differences per site, calculated by averaging over all sequence
pairs between groups, is depicted below the diagonal and scaled as percentages.

1236

	T. c. cirrhosus	T. c. coffini	T. c. ehrhardti	Outgroup
T. c. cirrhosus		0.0013	0.0018	0.0023
T. c. coffini 🧹	5.6%		0.0022	0.0025
T. c. ehrhardti	8.2%	8.6%		0.0025
Outgroup	17.7%	17.8%	17.8%	

1237

- 1239 Table 2. Estimates of evolutionary divergence across sequence pairs within groups 1240 Standard error estimate(s) are shown in the second column and were obtained by a bootstrap 1241 procedure (1000 replicates).
- 1242

	Distance %	S.E. (%)
T. c. cirrhosus	5.5	0.0
T. c. coffini	1.9	0.0
T. c. ehrhardti	0.0	0.0
Outgroup	0.1	0.0

....

Table 3. Measurements (mm) and body masses (g) of Trachops c. cirrhosus, T. c. coffini

- 1245 and *T. c. ehrhardti*. Descriptive measures: minimum-maximum; arithmetic mean (standard
- 1246 deviation).

Variable	T. cirrhosus	T. cirrhosus coffini	T. cirrhosus
	cirrhosus	(N = 31)	ehrhdarti
	(N = 202)		(N = 5)
Breadth of brain case (BB)	11.07–12.97; 11.60	10.33-12.03; 11.49	11.30–11.50; 11.40
	(0.28)	(0.26)	(0.10)
Palatal width at canines (C-C)	5.72-6.85; 6.22	5.26-6.68; 5.98	5.4 –5.80; 5.63 (0.21)
	(0.21)	(0.26)	
Condylocanine length (CCL)	22.23-26.79; 25.01	20.93-26.12; 24.17	
Condulaincicius longth (CII)	(0.71)	(0.80) 21.07.26.70.25.10	2200 2450.2420
Condytoincisive length (CIL)	23.30-27.93; 20.03	21.07-20.76; 25.10	23.90 -24.30; 24.20
Coronoid beight (COH)	4 97-6 80: 5 85	4 79_6 28. 5 42	(0.50)
coronola neight (con)	(0.30)	(0.31)	
Dentary length (DENL)	17.41-20.48: 18.97	16.11-19.93: 18.15	
	(0.60)	(0.67)	
Greatest length of skull (GLS)	26.13-31.24; 29.21	24.70-30.02; 28.27	26.90-27.70; 27.20
	(0.79)	(0.88)	(0.44)
Breadth across upper molars	9.15-11.03; 10.14	8.34–10.86; 9.77	9.80
(M2-M2)	(0.32)	(0.38)	
Mandibular toothrow length	10.71–12.40; 11.42	7.61–11.78; 10.92	
(MANDL)	(0.34)	(0.54)	
Molariform toothrow	6.68–7.81; 7.22	6.07-7.67; 6.96	
(MLTRL)	(0.21)	(0.26)	10 10 10 10 00
Mastoid (process) breadth	12.78-14.96; 13.70	11.40-14.31; 13.21	13-13.40; 13.20
(MPW) Mavillawy taathroyy (MTDL)	(U.41) 0 E0 11 22, 10 E1	(U.46) 0 57 10 02, 10 11	(0.20)
Maxinary tootinow (MTRL)	9.50-11.55; 10.51	0.57-10.95; 10.11	9.00-10; 9.0 (0.20)
Post orbital constriction	4 85-5 76: 5 34	4 66-5 71: 5 11	5
breadth (PB)	(0.17)	(0.18)	5
Palatal length (PL)	10.12-12.72; 11.40	8.92-12.42; 11.00	
	(0.47)	(0.52)	
Zygomatic breadth (ZB)	12.46-15.97; 14.53	12.06-15.70; 13.96	13.3–14.10; 13.77
	(0.48)	(0.58)	(0.42)
Braincase height (BCH)	9.24–12.20; 10.84	9.39–12.25; 10.63	
	(0.47)	(0.42)	11.00
Calcar length (CL)	9.19-18.21; 13.29	10.84–16.55; 13.64	11.62
Foregreen longth (FA)	(1.52) 52.26 (4.70, 50.22	(1.30)	
rorearin length (rA)	55.50-04.70; 59.25 (2.25)	49.57-02.11; 57.00	55.99-00; 57.29 (2.42)
Hindfoot length (HF)	(2.23) 12 40-23· 17 38	(2.31) 13 92-22: 17 66	(2. 4 3) 11 47_16 01· 13 74
minuroot rengen (m)	(2.35)	(2.04)	(3.21)
Metacarpal III (MET-III)	35.31-52.88; 48.18	37.56-53.40; 47.63	39.45-52.30; 47.56
	(2.49)	(2.27)	(4.91)
Metacarpal IV (MET-IV)	37.12-55.48; 50.24	37.98-54.43; 49.34	40.57-53.30; 49.51
	(2.56)	(2.36)	(5.18)
Metacarpal V (MET-V)	39.04-58.86; 53.53	41.15-58.13; 53.25	42.85-55.60; 51.79
	(2.73)	(2.20)	(5.2)
Tibia length (TiL)	16.82–29.69; 25.90	20.38–28.90; 24.94	20.61-25.16; 23.09
m_111((m)	(1.84)	(1.45)	(1.66)
I all length (T)	10-28; 16.93 (3.25)	10-22; 16.11(2.75)	14.38
i otal length (TL)	37./U-128; 90.10 (11 25)	30.23-107; 91.09 (15.04)	
Far length (F)	ر ده. 23 N 7_20، 21 1N	(13.74) 20_39: 31 (4.06)	27 65-21. 29 22
	20.07 07,01.10	20 07, 01 (1.00)	27.05 51,27.55

		(4.06)		(2.37)
	Weight (W)	16-55; 34.48 (7.74)	22-46; 33.19 (6.99)	
1247				

FOR REVIEW ONLY

- 1248 **Table 4.** Loadings, eigenvalues and percentage of variance for 2 principal components
- 1249 from a PCA of the 13 linear measurements for adult specimens of *Trachops*.

Variables	PC1	PC2
Breadth of brain case (BB)	.554	.280
Palatal width at canines (C-C)	.778	.314
Condyloincisive length (CIL)	.919	.068
Greatest length of skull (GLS)	.919	.071
Breadth across upper molars (M2-M2)	.756	.293
Mastoid (process) breadth (MPW)	.820	.212
Molariform toothrow (MLTRL)	.872	.067
Post orbital constriction breadth (PB)	.383	.698
Zygomatic breadth (ZB)	.864	.128
Forearm length (FA)	.743	180
Metacarpal III (MET-III)	.690	555
Metacarpal IV (MET-IV)	.800	515
Metacarpal V (MET-V)	.786	546
Eigenvalues	7.787	1.731
% of explained variance	59.9	13.3
% of cumulative variance	59.9	73.2

https://mc.manuscriptcentral.com/jmamm

Table 5. Measurements (mm) and body masses (g) of *Trachops cirrhosus* and *T. ehrhardti*.

1251

1252 Descriptive measures: minimum–maximum; arithmetic mean (standard deviation)

Variable	T. cirrhosus N = 233	T. ehrhdarti N = 5
Breadth of brain case (BB)	10.33-12.97; 11.56 (0.28)	11.30-11.50; 11.40 (0.10)
Palatal width at canines (C-C)	5.26-6.85; 6.13 (0.26)	5.40 -5.80; 5.63 (0.21)
Condylocanine length (CCL)	20.93-26.79; 24.70 (0.87)	
Condyloincisive length (CIL)	21.87-27.95; 25.67 (0.85)	23.90 -24.50; 24.20 (0.30)
Coronoid height (COH)	4.79-6.80; 5.71 (0.36)	
Dentary length (DENL)	16.11–20.48; 18.70 (0.72)	
Greatest length of skull (GLS)	24.70-31.24; 28.86 (0.94)	26.90-27.70; 27.20 (0.44)
Breadth across upper molars (M2-	8.34–11.03; 10 (0.39)	9.80
M2)		
Mandibular toothrow length	10.06–12.40; 11.05 (0.40)	
(MANDL)		
Molariform toothrow (MLTRL)	6.07-7.81; 7.12 (0.27)	
Mastoid (process) breadth (MPW)	11.40–14.96; 13.51 (0.49)	13-13.40; 13.20 (0.20)
Maxillary toothrow (MTRL)	8.57–11.33; 10.36 (0.40)	9.60–10; 9.8 (0.20)
Post orbital constriction breadth	4.66-5.76; 5.25 (0.21)	5
(PB)		
Palatal length (PL)	8.92–12.72; 11.25 (0.53)	
Zygomatic breadth (ZB)	12.06–15.97; 14.31 (0.59)	13.3–14.10; 13.77 (0.42)
Braincase height (BCH)	9.24–12.25; 10.76 (0.46)	
Calcar length (CL)	9.19–18.21; 13.41 (1.44)	11.62
Forearm length (FA)	49.57-64.70; 58.71 (2.43)	53.99-60; 57.29 (2.43)
Hindfoot length (HF)	12.40–23; 17.49 (2.24)	11.47–16.01; 13.74 (3.21)
Metacarpal III (MET-III)	35.31-53.40; 47.93 (2.41)	39.45-52.30; 47.56 (4.91)
Metacarpal IV (MET-IV)	37.12-55.48; 49.93 (2.51)	40.57–53.30; 49.51 (5.18)
Metacarpal V (MET-V)	39.04–58.86; 53.42 (2.54)	42.85–55.60; 51.79 (5.2)
Tibia length (TiL)	16.82–29.69; 25.57 (1.76)	20.61–25.16; 23.09 (1.66)
Tail length (T)	10-28; 16.61 (3.08)	14.38
Total length (TL)	56.25-128; 94.13 (11.39)	
Ear length (E)	20–39; 31.81 (3.61)	27.65–31; 29.33 (2.37)
Weight (W)	16-55; 34.07 (7.48)	

1254	Figure Legends
------	-----------------------

Figure 1. Adult *Trachops cirrhosus* captured in Parque Nacional Yasuní, Orellana, Ecuador. Note
the conspicuous finger-like dermal projections on the chin and lips. Photo: Rubén D. Jarrín.

1258

Figure 2. Collecting localities of the *Trachops* specimens analyzed in this study. The localities are shown in the Supplementary Table 1. Black symbols represent *Trachops cirrhosus*, gray symbols represent *Trachops coffini*, and white symbols represent *Trachops ehrhardti*. Circles are specimens that were measured only, squares are sequenced only, and diamonds are both.

1263

Figure 3. Maximum Likelihood phylogeny of *Trachops* based on complete mitochondrial genomes
(nucleotide sequences). The tree was reconstructed in RAxML under the GTR+G+I model using 57
complete mitogenomes including outgroups. Shaded semicircles on the nodes indicate ML
bootstrap support (as a percentage) and Bayesian posterior probabilities from a congruent
Bayesian Inference Analysis (see insert key).

1269

Figure 4. Dorsal, ventral, and lateral views of the skulls and lateral view of the mandibles of *Trachops cirrhosus cirrhosus* (left); *T. c. coffini* (middle), and *T. c. ehrhardti* (right) Photos: Rubén
D. Jarrín (QCAZ 11818); M. Alejandra Camacho (NMNH 244262); Anika Vogel (SMF 11718).

1273

Figure 5. Principal components (PC's) from a PCA based on 13 measurements from 238
individuals. Samples: *Trachops cirrhosus cirrhosus* (red circles), *T. c. coffini* (blue circles), and *T. c. ehrhardti* (green circles).

1277

Figure 6. Principal components analysis of 6 geographic groups and 238 specimens of *Trachops*of the 13 cranial measurements considered in the morphometric analysis. Meaning of Geographic
abbreviation areas: CAm - Central America; WSAm - West South America; ESAm - East South

- 1281 America; NEC/NWV, NE Colombia and NW Venezuela; GS - the Guiana Shield; and AF - Atlantic 1282 Forest.
- 1283
- 1284 Figure 7. Emended distributions of Trachops cirrhosus and Trachops ehrhardti. Black circles and
- 1285 crosses (• and ×) represent the recorded locations of *Trachops cirrhosus*. White circles and plus
- 1286 signs (o and+) correspond to the recorded locations of *Trachops ehrhardti*. The crosses and plus
- 1287 signs are the data collected by Fonseca (2019), sourced from https://github.com/bsf07/Defesa.git.
- 1288
- 1289

σ onseca (

1290	FIGURES
1291	
1292	• These figures are only referential. All the figures are presented in TIFF format in separate.
1293	

1295 **Figure 1**. Adult *Trachops cirrhosus* captured in Parque Nacional Yasuní, Orellana, Ecuador. Note

1296 the conspicuous finger-like dermal projections on the chin and lips. Photo: Rubén D. Jarrín.

1297

Figure 2. Collecting localities of the *Trachops* specimens analyzed in this study. The localities are shown in the Supplementary Table 1. Black symbols represent *Trachops cirrhosus*, gray symbols represent *Trachops coffini*, and white symbols represent *Trachops ehrhardti*. Circles are specimens that were measured only, squares are sequenced only, and diamonds are both.

¹³⁰⁴
¹³⁰⁵ Figure 3. Maximum Likelihood phylogeny of *Trachops* based on complete mitochondrial genomes
¹³⁰⁶ (nucleotide sequences). The tree was reconstructed in RAxML under the GTR+G+I model using 57
¹³⁰⁷ complete mitogenomes including outgroups. Shaded semicircles on the nodes indicate ML
¹³⁰⁸ bootstrap support (as a percentage) and Bayesian posterior probabilities from a congruent
¹³⁰⁹ Bayesian Inference Analysis (see insert key).

- 1311 **Figure 4.** Dorsal, ventral, and lateral views of the skulls and lateral view of the mandibles of
- 1312 Trachops cirrhosus cirrhosus (left); T. c. coffini (middle), and T. c. ehrhardti (right) Photos: Rubén
- 1313 D. Jarrín (QCAZ 11818); Alejandra Camacho (NMNH 244262); Anika Vogel (SMF 11718).
- 1314

1316 Figure 5. Principal components (PC's) from a PCA based on 13 measurements from 238

- 1317 individuals. Samples: Trachops cirrhosus cirrhosus (red circles), T. c. coffini (blue circles), and T. c. íczoni
- 1318 ehrhardti (green circles).

Figure 6. Principal components analysis of 6 geographic groups and 238 specimens of *Trachops*of the 13 cranial measurements considered in the morphometric analysis. Meaning of Geographic
abbreviation areas: CAm - Central America; WSAm - West South America; ESAm - East South
America; NEC/NWV, NE Colombia and NW Venezuela; GS - the Guiana Shield; and AF - Atlantic
Forest.

 1325
 100 W
 90 W
 80 W.
 70 W
 90 W.
 50 W.
 40 W.
 30 W.

 1326
 Figure 7. Emended distributions of *Trachops cirrhosus* and *Trachops ehrhardti*. Black circles and

 1327
 crosses (• and ×) represent the recorded locations of *Trachops cirrhosus*. White circles and plus

 1328
 signs (o and+) correspond to the recorded locations of *Trachops ehrhardti*. The crosses and plus

 1329
 signs are the data collected by Fonseca (2019), sourced from https://github.com/bsf07/Defesa.git.

 1330

1331 Appendix 1. List of specimens used in the present study including voucher identification,

- 1332 GenBank accession number, taxonomic information, and general features of the mitogenome
- 1333 assemblies.
- 1334

Museum number	GenBank Accession number	Species	N° of reads	Mean coverage	N° of mtDNA reads	mtDNA length	GC content (%)
AMNH-15103	Pending	T. cirrhosus	4324942	104,79	29909	16584	37,58
AMNH-31522	Pending	T. cirrhosus	2236998	37,01	10356	16601	37,58
AMNH-94538	Pending	T. cirrhosus	2151243	23,34	5747	16591	37,37
AMNH-129064	Pending	T. cirrhosus	2740862	79,92	22336	16595	37,58
AMNH-147767	Pending	T. cirrhosus	2789364	7,54	1891	16598	37,58
AMNH-185889	Pending	T. cirrhosus	3336996	17,44	4212	16596	37,25
AMNH-185891	Pending	T. cirrhosus	4357962	101,3	22996	16625	37,3
AMNH-230213	Pending	T. cirrhosus	4526938	399,14	90418	16622	37,66
AMNH-267935	Pending	T. cirrhosus	3494936	164,35	37044	16621	37,53
AMNH-272813	Pending	T. cirrhosus	5430224	147,99	33 493	16655	37,58
AMNH-278476	Pending	T. cirrhosus	5304394	57,21	12932	16653	37,59
FMNH-72150	Pending	T. cirrhosus	7428142	7,64	1773	16578	37,35
FMNH-114877	Pending	T. cirrhosus	7529998	82,99	18741	16598	37,36
FMNH-174887	Pending	T. cirrhosus	5776246	1 237,67	282126	16743	37,7
FMNH-174888	Pending	T. cirrhosus	5550234	282,11	64164	16713	37,68
MSB-311655	Pending	T. cirrhosus	4271430	68,59	15555	16600	37,58
MSB-311656	Pending	T. cirrhosus	4543408	261,75	59681	16602	37,58
MSB-311734	Pending	T. cirrhosus	4944460	169,89	38553	16603	37,37
MSB-311736	Pending	T. cirrhosus	5215900	62,19	14095	16603	37,37
QCAZ-2459	Pending	T. cirrhosus	3690346	54,62	12560	16630	37,46
QCAZ-4234	Pending	T. cirrhosus				16822	37,60
QCAZ-9239	Pending	T. cirrhosus	3751390	157,88	35638	16623	37,47
QCAZ-10617	Pending	T. cirrhosus	5240730	7,99	1829	16620	37,47
QCAZ-11632	Pending	T. cirrhosus	6075978	111,02	25064	16571	37,31
QCAZ-13317	Pending	T. cirrhosus				16619	37,50
QCAZ-13956	Pending	T. cirrhosus	5352738	29,08	6658	16621	37,35
QCAZ-14029	Pending	T. cirrhosus	6361566	104,18	23674	16619	37,42
QCAZ-17165	Pending	T. cirrhosus	6480538	20,02	4522	16614	37,34
QCAZ-18335	Pending	T. cirrhosus	4985186	83	18723	16579	37,35
ROM-95747	Pending	T. cirrhosus	5305082	299,46	67789	16624	37,32
ROM-98701	Pending	T. cirrhosus	5550346	43,24	9792	16612	37,67
ROM-99493	Pending	T. cirrhosus	3211086	79,6	18085	16621	37,31
ROM-103359	Pending	T. cirrhosus	4896612	14,83	3326	16317	36,24
ROM-103495	Pending	T. cirrhosus	4853726	522,78	118097	16621	37,59
ROM-104214	Pending	T. cirrhosus	4148188	39,36	9909	16582	37,3
ROM-107843	Pending	T. cirrhosus	4250814	17,87	4049	16617	37,41

ROM-107908	Pending	T. cirrhosus	3634508	67,38	15210	16593	37,4
ROM-107926	Pending	T. cirrhosus	3176256	169,41	38250	16602	37,41
ROM-107935	Pending	T. cirrhosus	3613554	260,21	58765	16607	37,39
ROM-107945	Pending	T. cirrhosus	4380050	281,34	63704	16637	37,65
ROM-115072	Pending	T. cirrhosus	6091173	10,53	2211	16577	37,29
ROM-115495	Pending	T. cirrhosus	7436128	21,57	4895	16624	37,42
ROM-117523	Pending	T. cirrhosus				16749	37,6
ROM-119312	Pending	T. cirrhosus	4225778	167,44	37808	16611	37,67
ROM-121044	Pending	T. cirrhosus	4673024	426,56	96388	16613	37,56
ROM-121090	Pending	T. cirrhosus	4051452	46,35	10501	16622	37,65
ROM-121159	Pending	T. cirrhosus	6174610	1006,61	227410	16594	37,62
ROM-121252	Pending	T. cirrhosus	4190554	197,92	44724	16615	37,69
ROM-122057	Pending	T. cirrhosus	4946730	215,59	49150	16622	37,67
ROM-125132	Pending	T. cirrhosus	5841756	217,79	48522	16631	37,65
ROM-125898	Pending	T. cirrhosus	5053904	26,77	6039	16589	37,51
ROM-125914	Pending	T. cirrhosus	5364036	132,02	29962	16606	37,53
FMNH-94717	Pending	T. erhardti	3597194	8,72	1996	16618	37,03
FMNH-141595	Pending	T. erhardti	4767214	20,62	4716	16619	37,3
		Average	4731900,47	138,74	36649,90	16615,22	37,46
		Standar deviation	1242366,47	172,72	52650,26	60,37	0,22

Tez Oni

Adult Trachops cirrhosus captured in Parque Nacional Yasuní, Orellana, Ecuador. Note the conspicuous finger-like dermal projections on the chin and lips. Photo: Rubén D. Jarrín.

Collecting localities of the Trachops specimens analyzed in this study. The localities are shown in the Supplementary Table 1. Black symbols represent Trachops cirrhosus, gray symbols represent Trachops coffini, and white symbols represent Trachops ehrhardti. Circles are specimens that were measured only, squares are sequenced only, and diamonds are both.

Maximum Likelihood phylogeny of Trachops based on complete mitochondrial genomes (nucleotide sequences). The tree was reconstructed in RAxML under the GTR+G+I model using 57 complete mitogenomes including outgroups. Shaded semicircles on the nodes indicate ML bootstrap support (as a percentage) and Bayesian posterior probabilities from a congruent Bayesian Inference Analysis (see insert key).

1041x910mm (28 x 28 DPI)

Dorsal, ventral, and lateral views of the skulls and lateral view of the mandibles of Trachops cirrhosus cirrhosus (left); T. c. coffini (middle), and T. c. ehrhardti (right) Photos: Rubén D. Jarrín (QCAZ 11818); M. Alejandra Camacho (NMNH 244262); Anika Vogel (SMF 11718).

Principal components (PC's) from a PCA based on 13 measurements from 238 individuals. Samples: Trachops cirrhosus cirrhosus (red circles), T. c. coffini (blue circles), and T. c. ehrhardti (green circles).

Principal components analysis of 6 geographic groups and 238 specimens of Trachops of the 13 cranial measurements considered in the morphometric analysis. Meaning of Geographic abbreviation areas: CAm - Central America; WSAm - West South America; ESAm - East South America; NEC/NWV, NE Colombia and NW Venezuela; GS - the Guiana Shield; and AF - Atlantic Forest.

Emended distributions of Trachops cirrhosus and Trachops ehrhardti. Black circles and crosses (• and \Box) represent the recorded locations of Trachops cirrhosus. White circles and plus signs (\Box and \Box) correspond to the recorded locations of Trachops ehrhardti. The crosses and plus signs are the data collected by Fonseca (2019), sourced from https://github.com/bsf07/Defesa.git.

199x139mm (300 x 300 DPI)
Suplementary Table 1. Specimens, samples, biorepositories and geographic information.

Museum	# voucher	Unique	Measured	Treatment	Species
ROM	120475	ROM-120475	No	Sequenced	Trachops cirrhosus
AMNH	278284	AMNH-278284	Yes	Measured	Trachops cirrhosus
AMNH	278402	AMNH-278402	Yes	Measured	Trachops cirrhosus
AMNH	278668	AMNH-278668	Yes	Measured	Trachops cirrhosus
AMNH	278748	AMNH-278748	No	Sequenced	Trachops cirrhosus
USNM	583009	USNM-583009	Yes	Measured	Trachops cirrhosus
AMNH	209349	AMNH-209349	Yes	Measured	Trachops cirrhosus
AMNH	209350	AMNH-209350	Yes	Measured	Trachops cirrhosus
AMNH	209348	AMNH-209348	Yes	Measured	Trachops cirrhosus
AMNH	209351	AMNH-209351	Yes	Measured	Trachops cirrhosus
AMNH	210679	AMNH-210679	Yes	Measured	Trachops cirrhosus
AMNH	210680	AMNH-210680	Yes	Measured	Trachops cirrhosus
AMNH	210681	AMNH-210681	Yes	Measured	Trachops cirrhosus
FMNH	114877	FMNH-114877	No	Sequenced	Trachops cirrhosus
USNM	584479	USNM-584479	Yes	Measured	Trachops cirrhosus
USNM	530956	USNM-530956	Yes	Measured	Trachops cirrhosus
USNM	530957	USNM-530957	Yes	Measured	Trachops cirrhosus
AMNH	92252	AMNH-92252	Yes	Measured	Trachops cirrhosus
AMNH	94536	AMNH-94536	Yes	Measured	Trachops cirrhosus
AMNH	94537	AMNH-94537	Yes	Measured	Trachops cirrhosus
USNM	549355	USNM-549355	Yes	Measured	Trachops cirrhosus
USNM	549354	USNM-549354	Yes	Measured	Trachops cirrhosus
USNM	361534	USNM-361534	Yes	Measured	Trachops cirrhosus
USNM	361533	USNM-361533	Yes	Measured	Trachops cirrhosus
USNM	460090	USNM-460090	Yes	Measured	Trachops cirrhosus
AMNH	94538	AMNH-94538	Yes	Both	Trachops cirrhosus
AMNH	95500	AMNH-95500	Yes	Measured	Trachops cirrhosus
FMNH	235204	FMNH-235204	No	Sequenced	Trachops cirrhosus
SMF	11716	SMF-11716	Yes	Measured	Trachops cirrhosus
SMF	11717	SMF-11717	Yes	Measured	Trachops cirrhosus
SMF	11718	SMF-11718	Yes	Measured	Trachops cirrhosus
USNM	200992	USNM-200992	Yes	Measured	Trachops cirrhosus
AMNH	256301	AMNH-256301	Yes	Both	Trachops cirrhosus
FMNH	141595	FMNH-141595	No	Sequenced	Trachops cirrhosus
FMNH	94717	FMNH-94717	No	Sequenced	Trachops cirrhosus
IAvH-M	954	IAvH-M-954	Yes	Measured	Trachops cirrhosus
IAvH-M	1331	IAvH-M-1331	Yes	Measured	Trachops cirrhosus
USNM	499295	USNM-499295	Yes	Measured	Trachops cirrhosus
USNM	499764	USNM-499764	Yes	Measured	Trachops cirrhosus
IAvH-M	9466	IAvH-M-9466	Yes	Measured	Trachops cirrhosus
IAvH-M	9628	IAvH-M-9628	Yes	Measured	Trachops cirrhosus

IAvH-M	9470	IAvH-M-9470	Yes	Measured	Trachops cirrhosus
IAvH-M	10098	IAvH-M-10098	Yes	Measured	Trachops cirrhosus
IAvH-M	9976	IAvH-M-9976	Yes	Measured	Trachops cirrhosus
FMNH	92309	FMNH-92309	No	Sequenced	Trachops cirrhosus
FMNH	92311	FMNH-92311	No	Sequenced	Trachops cirrhosus
USNM	281054	USNM-281054	Yes	Measured	Trachops cirrhosus
IAvH-M	7141	IAvH-M-7141	Yes	Measured	Trachops cirrhosus
IAvH-M	10622	IAvH-M-10622	Yes	Measured	Trachops cirrhosus
IAvH-M	9970	IAvH-M-9970	Yes	Measured	Trachops cirrhosus
IAvH-M	7850	IAvH-M-7850	Yes	Measured	Trachops cirrhosus
IAvH-M	8109	IAvH-M-8109	Yes	Measured	Trachops cirrhosus
IAvH-M	8110	IAvH-M-8110	Yes	Measured	Trachops cirrhosus
USNM	281926	USNM-281926	Yes	Measured	Trachops cirrhosus
USNM	281927	USNM-281927	Yes	Measured	Trachops cirrhosus
USNM	281049	USNM-281049	Yes	Measured	Trachops cirrhosus
USNM	281050	USNM-281050	Yes	Measured	Trachops cirrhosus
USNM	281037	USNM-281037	Yes	Measured	Trachops cirrhosus
USNM	281038	USNM-281038	Yes	Measured	Trachops cirrhosus
USNM	281039	USNM-281039	Yes	Measured	Trachops cirrhosus
USNM	281040	USNM-281040	Yes	Measured	Trachops cirrhosus
USNM	281045	USNM-281045	Yes	Measured	Trachops cirrhosus
IAvH-M	11372	IAvH-M-11372	Yes	Measured	Trachops cirrhosus
UV	2745	UV-2745	Yes	Measured	Trachops cirrhosus
UV	2746	UV-2746	Yes	Measured	Trachops cirrhosus
AMNH	15103	AMNH-15103	No	Sequenced	Trachops cirrhosus
IAvH-M	2218	IAvH-M-2218	Yes	Measured	Trachops cirrhosus
IAvH-M	11316	IAvH-M-11316	Yes	Measured	Trachops cirrhosus
FMNH	88070	FMNH-88070	No	Sequenced	Trachops cirrhosus
UV	5549	UV-5549	Yes	Measured	Trachops cirrhosus
AMNH	142158	AMNH-142158	Yes	Both	Trachops cirrhosus
UV	6996	UV-6996	Yes	Measured	Trachops cirrhosus
AMNH	255713	AMNH-255713	Yes	Both	Trachops cirrhosus
FMNH	71533	FMNH-71533	No	Sequenced	Trachops cirrhosus
FMNH	72150	FMNH-72150	No	Sequenced	Trachops cirrhosus
UV	5550	UV-5550	Yes	Measured	Trachops cirrhosus
IAvH-M	2921	IAvH-M-2921	Yes	Measured	Trachops cirrhosus
IAvH-M	8332	IAvH-M-8332	Yes	Measured	Trachops cirrhosus
IAvH-M	8333	IAvH-M-8333	Yes	Measured	Trachops cirrhosus
USNM	562764	USNM-562764	Yes	Measured	Trachops cirrhosus
USNM	562763	USNM-562763	Yes	Measured	Trachops cirrhosus
USNM	565808	USNM-565808	Yes	Measured	Trachops cirrhosus
USNM	568489	USNM-568489	Yes	Measured	Trachops cirrhosus
FMNH	137225	FMNH-137225	No	Sequenced	Trachops cirrhosus

USNM	526241	USNM-526241	Yes	Measured	Trachops cirrhosus
FMNH	124102	FMNH-124102	No	Sequenced	Trachops cirrhosus
QCAZ	9239	QCAZ-9239	Yes	Both	Trachops cirrhosus
MEPN	5676	MEPN-5676	Yes	Measured	Trachops cirrhosus
QCAZ	9237	QCAZ-9237	Yes	Measured	Trachops cirrhosus
QCAZ	2341	QCAZ-2341	Yes	Measured	Trachops cirrhosus
QCAZ	9238	QCAZ-9238	Yes	Measured	Trachops cirrhosus
MEPN	2014	MEPN-2014	Yes	Measured	Trachops cirrhosus
MEPN	3014	MEPN-3014	Yes	Measured	Trachops cirrhosus
QCAZ	18335	QCAZ-18335	Yes	Both	Trachops cirrhosus
USNM	528489	USNM-528489	Yes	Measured	Trachops cirrhosus
QCAZ	17164	QCAZ-17164	Yes	Measured	Trachops cirrhosus
QCAZ	17165	QCAZ-17165	No	Sequenced	Trachops cirrhosus
QCAZ	285	QCAZ-285	Yes	Measured	Trachops cirrhosus
QCAZ	3290	QCAZ-3290	Yes	Measured	Trachops cirrhosus
QCAZ	11818	QCAZ-11818	Yes	Both	Trachops cirrhosus
MEPN	5603	MEPN-5603	Yes	Measured	Trachops cirrhosus
QCAZ	18016	QCAZ-18016	Yes	Measured	Trachops cirrhosus
QCAZ	13876	QCAZ-13876	Yes	Measured	Trachops cirrhosus
QCAZ	13877	QCAZ-13877	Yes	Measured	Trachops cirrhosus
QCAZ	13415	QCAZ-13415	Yes	Measured	Trachops cirrhosus
QCAZ	13596	QCAZ-13596	Yes	Measured	Trachops cirrhosus
QCAZ	7937	QCAZ-7937	Yes	Measured	Trachops cirrhosus
QCAZ	8171	QCAZ-8171	Yes	Measured	Trachops cirrhosus
QCAZ	8172	QCAZ-8172	Yes	Measured	Trachops cirrhosus
QCAZ	8079	QCAZ-8079	Yes	Measured	Trachops cirrhosus
QCAZ	13956	QCAZ-13956	No	Sequenced	Trachops cirrhosus
QCAZ	14029	QCAZ-14029	No	Sequenced	Trachops cirrhosus
QCAZ	3289	QCAZ-3289	Yes	Measured	Trachops cirrhosus
QCAZ	1116	QCAZ-1116	Yes	Measured	Trachops cirrhosus
MEPN	5125	MEPN-5125	Yes	Measured	Trachops cirrhosus
MEPN	4477	MEPN-4477	Yes	Measured	Trachops cirrhosus
QCAZ	1475	QCAZ-1475	Yes	Measured	Trachops cirrhosus
QCAZ	10617	QCAZ-10617	Yes	Both	Trachops cirrhosus
QCAZ	4234	QCAZ-4234	Yes	Both	Trachops cirrhosus
MEPN	2013	MEPN-2013	Yes	Measured	Trachops cirrhosus
MEPN	4555	MEPN-4555	Yes	Measured	Trachops cirrhosus
MEPN	4482	MEPN-4482	Yes	Measured	Trachops cirrhosus
QCAZ	7228	QCAZ-7228	Yes	Measured	Trachops cirrhosus
QCAZ	6850	QCAZ-6850	Yes	Measured	Trachops cirrhosus
QCAZ	6855	QCAZ-6855	Yes	Measured	Trachops cirrhosus
QCAZ	6870	QCAZ-6870	Yes	Measured	Trachops cirrhosus
QCAZ	13317	QCAZ-13317	No	Sequenced	Trachops cirrhosus

QCAZ	11632	QCAZ-11632	Yes	Both	Trachops cirrhosus
QCAZ	7051	QCAZ-7051	Yes	Measured	Trachops cirrhosus
QCAZ	7578	QCAZ-7578	Yes	Measured	Trachops cirrhosus
QCAZ	10172	QCAZ-10172	Yes	Measured	Trachops cirrhosus
QCAZ	587	QCAZ-587	Yes	Measured	Trachops cirrhosus
QCAZ	5070	QCAZ-5070	Yes	Measured	Trachops cirrhosus
QCAZ	2459	QCAZ-2459	Yes	Both	Trachops cirrhosus
AMNH	267935	AMNH-267935	Yes	Both	Trachops cirrhosus
AMNH	266079	AMNH-266079	Yes	Measured	Trachops cirrhosus
AMNH	267926	AMNH-267926	Yes	Measured	Trachops cirrhosus
AMNH	267928	AMNH-267928	Yes	Measured	Trachops cirrhosus
AMNH	267930	AMNH-267930	Yes	Measured	Trachops cirrhosus
AMNH	267934	AMNH-267934	Yes	Measured	Trachops cirrhosus
AMNH	267936	AMNH-267936	Yes	Measured	Trachops cirrhosus
AMNH	266080	AMNH-266080	No	Sequenced	Trachops cirrhosus
AMNH	266089	AMNH-266089	Yes	Measured	Trachops cirrhosus
FMNH	65184	FMNH-65184	No	Sequenced	Trachops cirrhosus
ROM	99493	ROM-99493	No	Sequenced	Trachops cirrhosus
USNM	244252	USNM-244252	Yes	Measured	Trachops cirrhosus
USNM	244254	USNM-244254	Yes	Measured	Trachops cirrhosus
USNM	244256	USNM-244256	Yes	Measured	Trachops cirrhosus
USNM	244262	USNM-244262	Yes	Measured	Trachops cirrhosus
USNM	244264	USNM-244264	Yes	Measured	Trachops cirrhosus
USNM	244266	USNM-244266	Yes	Measured	Trachops cirrhosus
USNM	244268	USNM-244268	Yes	Measured	Trachops cirrhosus
USNM	244269	USNM-244269	Yes	Measured	Trachops cirrhosus
USNM	582290	USNM-582290	Yes	Measured	Trachops cirrhosus
ROM	98701	ROM-98701	No	Sequenced	Trachops cirrhosus
ROM	115072	ROM-115072	No	Sequenced	Trachops cirrhosus
ROM	115495	ROM-115495	No	Sequenced	Trachops cirrhosus
ROM	122057	ROM-122057	No	Sequenced	Trachops cirrhosus
ROM	125132	ROM-125132	No	Sequenced	Trachops cirrhosus
USNM	582292	USNM-582292	Yes	Measured	Trachops cirrhosus
USNM	582291	USNM-582291	Yes	Measured	Trachops cirrhosus
ROM	103359	ROM-103359	No	Sequenced	Trachops cirrhosus
ROM	103495	ROM-103495	No	Sequenced	Trachops cirrhosus
AMNH	182717	AMNH-182717	Yes	Measured	Trachops cirrhosus
ROM	119312	ROM-119312	No	Sequenced	Trachops cirrhosus
USNM	337270	USNM-337270	Yes	Measured	Trachops cirrhosus
USNM	339719	USNM-339719	Yes	Measured	Trachops cirrhosus
USNM	339720	USNM-339720	Yes	Measured	Trachops cirrhosus
USNM	337289	USNM-337289	Yes	Measured	Trachops cirrhosus
AMNH	129065	AMNH-129065	Yes	Measured	Trachops cirrhosus

AMNH	129072	AMNH-129072	Yes	Measured	Trachops cirrhosus
AMNH	129080	AMNH-129080	Yes	Measured	Trachops cirrhosus
AMNH	129081	AMNH-129081	Yes	Measured	Trachops cirrhosus
AMNH	129090	AMNH-129090	Yes	Measured	Trachops cirrhosus
AMNH	129732	AMNH-129732	Yes	Measured	Trachops cirrhosus
AMNH	129736	AMNH-129736	Yes	Measured	Trachops cirrhosus
AMNH	129064	AMNH-129064	No	Sequenced	Trachops cirrhosus
AMNH	129730	AMNH-129730	Yes	Measured	Trachops cirrhosus
ROM	95747	ROM-95747	No	Sequenced	Trachops cirrhosus
AMNH	185891	AMNH-185891	Yes	Both	Trachops cirrhosus
AMNH	185886	AMNH-185886	Yes	Both	Trachops cirrhosus
AMNH	185889	AMNH-185889	Yes	Both	Trachops cirrhosus
AMNH	185887	AMNH-185887	Yes	Measured	Trachops cirrhosus
AMNH	185888	AMNH-185888	Yes	Measured	Trachops cirrhosus
AMNH	185890	AMNH-185890	Yes	Measured	Trachops cirrhosus
USNM	332697	USNM-332697	Yes	Measured	Trachops cirrhosus
USNM	332698	USNM-332698	Yes	Measured	Trachops cirrhosus
USNM	332699	USNM-332699	Yes	Measured	Trachops cirrhosus
USNM	332700	USNM-332700	Yes	Measured	Trachops cirrhosus
USNM	554264	USNM-554264	Yes	Measured	Trachops cirrhosus
USNM	464596	USNM-464596	Yes	Measured	Trachops cirrhosus
USNM	464597	USNM-464597	Yes	Measured	Trachops cirrhosus
ROM	104214	ROM-104214	No	Sequenced	Trachops cirrhosus
USNM	311960	USNM-311960	Yes	Measured	Trachops cirrhosus
MSB	311736	MSB-311736	No	Sequenced	Trachops cirrhosus
MSB	311734	MSB-311734	No	Sequenced	Trachops cirrhosus
MSB	311655	MSB-311655	No	Sequenced	Trachops cirrhosus
MSB	311656	MSB-311656	No	Sequenced	Trachops cirrhosus
USNM	309362	USNM-309362	Yes	Measured	Trachops cirrhosus
USNM	309364	USNM-309364	Yes	Measured	Trachops cirrhosus
USNM	309367	USNM-309367	Yes	Measured	Trachops cirrhosus
USNM	309368	USNM-309368	Yes	Measured	Trachops cirrhosus
USNM	309369	USNM-309369	Yes	Measured	Trachops cirrhosus
USNM	309370	USNM-309370	Yes	Measured	Trachops cirrhosus
AMNH	178902	AMNH-178902	Yes	Both	Trachops cirrhosus
AMNH	143757	AMNH-143757	Yes	Measured	Trachops cirrhosus
AMNH	147767	AMNH-147767	Yes	Both	Trachops cirrhosus
AMNH	42564	AMNH-42564	Yes	Measured	Trachops cirrhosus
USNM	575470	USNM-575470	Yes	Measured	Trachops cirrhosus
USNM	312982	USNM-312982	Yes	Measured	Trachops cirrhosus
USNM	312983	USNM-312983	Yes	Measured	Trachops cirrhosus
USNM	312984	USNM-312984	Yes	Measured	Trachops cirrhosus
USNM	312985	USNM-312985	Yes	Measured	Trachops cirrhosus

USNM	174884	USNM-174884	Yes	Measured	Trachops cirrhosus
USNM	305199	USNM-305199	Yes	Measured	Trachops cirrhosus
USNM	305200	USNM-305200	Yes	Measured	Trachops cirrhosus
USNM	305201	USNM-305201	Yes	Measured	Trachops cirrhosus
USNM	309178	USNM-309178	Yes	Measured	Trachops cirrhosus
USNM	309179	USNM-309179	Yes	Measured	Trachops cirrhosus
USNM	309180	USNM-309180	Yes	Measured	Trachops cirrhosus
USNM	309181	USNM-309181	Yes	Measured	Trachops cirrhosus
FMNH	92672	FMNH-92672	No	Sequenced	Trachops cirrhosus
AMNH	233227	AMNH-233227	Yes	Both	Trachops cirrhosus
AMNH	236002	AMNH-236002	Yes	Measured	Trachops cirrhosus
AMNH	272813	AMNH-272813	Yes	Both	Trachops cirrhosus
AMNH	273176	AMNH-273176	Yes	Both	Trachops cirrhosus
AMNH	272820	AMNH-272820	Yes	Measured	Trachops cirrhosus
	272821	AMNH-272821	Yes	Measured	Trachons cirrhosus
	74026	AMNH-74026	Yes	Measured	Trachons cirrhosus
	278476	AMNH-278476	No	Sequenced	Trachops cirrhosus
	76162		Ves	Measured	
	70102		Vos	Moscurod	
	70103		Yes	Measured	
	/6164	AIMINH-76164	Yes	Measured	Trachops cirrnosus
AMNH/MUSM	132//	AMNH/MUSM-13277	Yes	Measured	Trachops cirrhosus
AMNH/MUSM	13278	AMNH/MUSM-13278	Yes	Measured	Trachops cirrhosus
AMNH/MUSM	13279	AMNH/MUSM-13279	Yes	Measured	Trachops cirrhosus
AMNH/MUSM	13280	AMNH/MUSM-13280	Yes	Measured	Trachops cirrhosus
AMNH/MUSM	15286	AMNH/MUSM-15286	Yes	Measured	Trachops cirrhosus
AMNH/MUSM	15287	AMNH/MUSM-15287	Yes	Measured	Trachops cirrhosus
	566489	USNM-566489	Yes	Measured	
	566490	USNM-566490	Yes	Measured	
	17/997	USINIM-566491	No	Sequenced	
	174007	FIVINH-174887	No	Sequenced	
FIMINH	174888	FIVINH-174888	INO	Sequenced	Trachops cirrnosus
AMNH	230213	AMNH-230213	Yes	Both	Trachops cirrhosus
USNM	364272	USNM-364272	Yes	Measured	Trachops cirrhosus
ROM	125898	ROM-125898	No	Sequenced	Trachops cirrhosus
ROM	125914	ROM-125914	No	Sequenced	Trachops cirrhosus
ROM	126156	ROM-126156	No	Sequenced	Trachops cirrhosus
ROM	117523	ROM-117523	No	Sequenced	Trachops cirrhosus
ROM	121252	ROM-121252	No	Sequenced	Trachops cirrhosus
ROM	121044	ROM-121044	No	Sequenced	Trachops cirrhosus
ROM	121090	ROM-121090	No	Sequenced	Trachops cirrhosus
ROM	121159	ROM-121159	No	Sequenced	Trachops cirrhosus
AMNH	175602	AMNH-175602	No	Sequenced	Trachops cirrhosus
AMNH	256313	AMNH-256313	Yes	Measured	Trachops cirrhosus
AMNH	180034	AMNH-180034	Yes	Measured	Trachops cirrhosus

AMNH	175603	AMNH-175603	Yes	Measured	Trachops cirrhosus
AMNH	175600	AMNH-175600	No	Sequenced	Trachops cirrhosus
ROM	107843	ROM-107843	No	Sequenced	Trachops cirrhosus
USNM	388865	USNM-388865	Yes	Measured	Trachops cirrhosus
USNM	388869	USNM-388869	Yes	Measured	Trachops cirrhosus
USNM	407611	USNM-407611	Yes	Measured	Trachops cirrhosus
USNM	407614	USNM-407614	Yes	Measured	Trachops cirrhosus
USNM	373534	USNM-373534	Yes	Measured	Trachops cirrhosus
USNM	373539	USNM-373539	Yes	Measured	Trachops cirrhosus
AMNH	235556	AMNH-235556	Yes	Measured	Trachops cirrhosus
AMNH	235557	AMNH-235557	Yes	Measured	Trachops cirrhosus
AMNH	235551	AMNH-235551	No	Sequenced	Trachops cirrhosus
USNM	517312	USNM-517312	Yes	Measured	Trachops cirrhosus
ROM	107935	ROM-107935	No	Sequenced	Trachops cirrhosus
ROM	107908	ROM-107908	No	Sequenced	Trachops cirrhosus
ROM	107926	ROM-107926	No	Sequenced	Trachops cirrhosus
USNM	388852	USNM-388852	Yes	Measured	Trachops cirrhosus
USNM	388856	USNM-388856	Yes	Measured	Trachops cirrhosus
USNM	444405	USNM-444405	Yes	Measured	Trachops cirrhosus
USNM	385510	USNM-385510	Yes	Measured	Trachops cirrhosus
USNM	385511	USNM-385511	Yes	Measured	Trachops cirrhosus
AMNH	31522	AMNH-31522	Yes	Both	Trachops cirrhosus
AMNH	31520	AMNH-31520	Yes	Measured	Trachops cirrhosus
AMNH	31521	AMNH-31521	Yes	Measured	Trachops cirrhosus
USNM	444404	USNM-444404	Yes	Measured	Trachops cirrhosus
USNM	371556	USNM-371556	Yes	Measured	Trachops cirrhosus
USNM	371557	USNM-371557	Yes	Measured	Trachops cirrhosus
USNM	419151	USNM-419151	Yes	Measured	Trachops cirrhosus
USNM	419153	USNM-419153	Yes	Measured	Trachops cirrhosus
USNM	419242	USNM-419242	Yes	Measured	Trachops cirrhosus
USNM	444396	USNM-444396	Yes	Measured	Trachops cirrhosus
USNM	444398	USNM-444398	Yes	Measured	Trachops cirrhosus
ROM	107945	ROM-107945	No	Sequenced	Trachops cirrhosus
USNM	444382	USNM-444382	Yes	Measured	Trachops cirrhosus
USNM	371559	USNM-371559	Yes	Measured	Trachops cirrhosus
USNM	371560	USNM-371560	Yes	Measured	Trachops cirrhosus
USNM	419248	USNM-419248	Yes	Measured	Trachops cirrhosus
TOTALS			238	22	Both
				216	Measured

56 Sequenced

subespecies	Country	State/Province	
coffini	Belize	Orange Walk County	
coffini	Belize	Orange Walk District	
coffini	Belize	Orange Walk District	
coffini	Belize	Orange Walk District	
coffini	Belize	Orange Walk District	
coffini	Belize	Stann Creek	
cirrhosus	Bolivia	Beni	
cirrhosus	Bolivia	Santa Cruz	
cirrhosus	Brazil	Amazonas	
cirrhosus	Brazil	Amazonas	
cirrhosus	Brazil	Amazonas	
cirrhosus	Brazil	Para	
cirrhosus	Brazil	Rondonia	
ehrhardti	Brazil	Santa Catarina	
ehrhardti	Brazil	Santa Catarina	
ehrhardti	Brazil	Santa Catarina	
ehrhardti	Brazil	Santa Catarina	
ehrhardti	Brazil	Sao Paulo	
ehrhardti	Brazil	Sao Paulo	
ehrhardti	Brazil	Sao Paulo	
cirrhosus	Colombia	Antioquia	
cirrhosus	Colombia	Antioquia	ļ
cirrhosus	Colombia	Antioquia	ļ
cirrhosus	Colombia	Antioquia	ļ
cirrhosus	Colombia	Arauca	ļ
cirrhosus	Colombia	Arauca	

cirrhosus	Colombia	Arauca	
cirrhosus	Colombia	Arauca	
cirrhosus	Colombia	Bolivar	
cirrhosus	Colombia	Caquetá	
cirrhosus	Colombia	Casanare	
cirrhosus	Colombia	Cesar	
cirrhosus	Colombia	Córdoba	
cirrhosus	Colombia	Guainía	
cirrhosus	Colombia	Guainía	
cirrhosus	Colombia	Magdalena	
cirrhosus	Colombia	Meta	
cirrhosus	Colombia	Nariño	
cirrhosus	Colombia	Norte de Santander	
cirrhosus	Colombia	Putumayo	
cirrhosus	Colombia	Putumayo	
cirrhosus	Colombia	Valle del Cauca	
cirrhosus	Colombia	Vichada	
cirrhosus	Colombia	Vichada	
cirrhosus	Colombia	Vichada	
cirrhosus	Costa Rica	Guanacaste	
cirrhosus	Costa Rica	Heredia	
cirrhosus	Costa Rica	Heredia	
cirrhosus	Costa Rica	Limon	
cirrhosus	Costa Rica	Limón	

cirrhosus	Costa Rica	Puntarenas	
cirrhosus	Costa Rica	Puntarenas	
cirrhosus	Ecuador	Esmeraldas	
cirrhosus	Ecuador	Guayas	
cirrhosus	Ecuador	Los Rios	
cirrhosus	Ecuador	Los Ríos	
cirrhosus	Ecuador	Los Ríos	
cirrhosus	Ecuador	Napo	
cirrhosus	Ecuador	Orellana	
cirrhosus	Ecuador	Orellana 🛛 🗸	
cirrhosus	Ecuador	Orellana	
cirrhosus	Ecuador	Pastaza	
cirrhosus	Ecuador	Pichincha	
cirrhosus	Ecuador	Sucumbios	
cirrhosus	Ecuador	Sucumbios	
cirrhosus	Ecuador	Sucumbios	
cirrhosus	Ecuador	Sucumbíos	ļ
cirrhosus	Ecuador	Sucumbíos	
cirrhosus	Ecuador	Sucumbíos	ļ
cirrhosus	Ecuador	Sucumbíos	
cirrhosus	Ecuador	Sucumbíos	

cirrhosus	Ecuador	Sucumbíos	
cirrhosus	Ecuador	Sucumbíos	
cirrhosus	Ecuador	Zamora Chinchipe	
cirrhosus	French Guiana	Cayenne	
cirrhosus	French Guiana	Cayenne	
cirrhosus	French Guiana	Cayenne	
cirrhosus	French Guiana	Cayenne	
cirrhosus	French Guiana	Cayenne	
cirrhosus	French Guiana	Cayenne	
cirrhosus	French Guiana	Cayenne	
cirrhosus	French Guiana	Cayenne	
cirrhosus	French Guiana	Paracou	
coffini	Guatemala	Chimaltenango	
coffini	Guatemala	El Peten	
coffini	Guatemala	Peten	
coffini	Guatemala	Peten	
coffini	Guatemala	Peten	
coffini	Guatemala	Peten	
coffini	Guatemala	Peten	
coffini	Guatemala	Peten	
coffini	Guatemala	Peten	
coffini	Guatemala	Peten	
cirrhosus	Guyana	Barima-Waini 🛛 🗸	
cirrhosus	Guyana	Barima-Waini	
cirrhosus	Guyana	Cuyuni-Mazaruni	5
cirrhosus	Guyana	Essequibo Islands-West [
cirrhosus	Guyana	Potaro-Siparuni	
cirrhosus	Guyana	Potaro-Siparuni	
cirrhosus	Guyana	Upper Demerara-Berbice	
cirrhosus	Guyana	Upper Demerara-Berbice	
cirrhosus	Guyana	Upper Demerara-Berbice	
cirrhosus	Guyana	Upper Demerara-Berbice	
cirrhosus	Guyana	Upper Takutu - Upper Es	
cirrhosus	Guyana	Upper Takutu-Upper Esse	
cirrhosus	Guyana	Upper Takutu-Upper Esse	
cirrhosus	Guyana	Upper Takutu-Upper Esse	
cirrhosus	Guyana	Upper Takutu-Upper Esse	
cirrhosus	Guyana	Upper Takutu-Upper Esse	
coffini	Honduras	Lempira	

coffini	Honduras	Lempira
coffini	Honduras	Lempira
coffini	Mexico	Campeche
coffini	Mexico	Оахаса
coffini	Mexico	Oaxaca
coffini	Mexico	Оахаса
coffini	Mexico	Оахаса
cirrhosus	Panama	Bocas Del Toro
cirrhosus	Panama	Bocas Del Toro
cirrhosus	Panama	Canal Zone
cirrhosus	Panama	Canal Zone
cirrhosus	Panama	Darien
cirrhosus	Panama	Los Santos
cirrhosus	Panama	Panama
cirrhosus	Panama	Panama
cirrhosus	Panama	Panama
cirrhosus	Panama	Veraguas
cirrhosus	Panama	

cirrhosus	Panama		
cirrhosus	Panama		
cirrhosus	Peru	Huanuco	
cirrhosus	Peru	Huanuco	
cirrhosus	Peru	Loreto	
cirrhosus	Peru 📿	Loreto	
cirrhosus	Peru	Madre De Dios	6
cirrhosus	Peru	Madre De Dios	
cirrhosus	Peru	Madre De Dios	
cirrhosus	Peru	Madre de Dios	
cirrhosus	Peru	Madre de Dios	
cirrhosus	Peru	Pasco	
cirrhosus	Peru	Pasco	
cirrhosus	Suriname	Brokopondo	
cirrhosus	Suriname	Brokopondo	
cirrhosus	Suriname	Para	
cirrhosus	Suriname	Sipaliwini	
cirrhosus	Trinidad and T	Trinidad	
cirrhosus	Trinidad and T	Trinidad	
cirrnosus	Trinidad and T	Trinidad	J

cirrhosus	Trinidad and T	Trinidad
cirrhosus	Trinidad and T	Trinidad
cirrhosus	Venezuela	Amazonas
cirrhosus	Venezuela	Apure
cirrhosus	Venezuela	Apure
cirrhosus	Venezuela	Aragua
cirrhosus	Venezuela	Bolivar
cirrhosus	Venezuela	Carabobo
cirrhosus	Venezuela	Carabobo
cirrhosus	Venezuela	Carabobo
cirrhosus	Venezuela	Falcon
cirrhosus	Venezuela	Falcon
cirrhosus	Venezuela	Falcon
cirrhosus	Venezuela	Guarico
cirrhosus	Venezuela	Trujillo
cirrhosus	Venezuela	Trujillo
cirrhosus	Venezuela	Zulia

Verbatim Precise Locality	Latitude	Longitude
Lamanai Lodge	17.752072	-88.656762
Ka'Kabish Archaeological Reserve	17.767250	-88.867436
Ka'Kabish Archaeological Reserve	17.767250	-88.867436
Ka'Kabish Archaeological Reserve	17.767250	-88.867436
Ka'Kabish Archaeological Reserve	17.767250	-88.867436
Cockscomb Basin Wildlife Sanctuary	16.773611	-88.532500
ca. 1.5 kilometers below Costa Marquez, Itenez River	-13.334992	-63.439769
ca. 1.5 kilometers below Costa Marquez, Itenez River	-13.334992	-63.439769
Baures River mouth	-11.094083	-65.281711
ca. 4 kilometers above Costa Marques, Itenez River	-13.334992	-63.439769
ca. 5 kilometers northwest of Grande River mouth	-13.334992	-63.439769
ca. 5 kilometers northwest of Grande River mouth	-13.334992	-63.439769
ca. 5 kilometers northwest of Grande River mouth	-13.334992	-63.439769
El Beni, Mamore, Camino Vilches	-13.066700	-64.800000
National Park Kempff Mercado, El Refugio	-14.766389	-61.034722
Manaus, 80 Km N (By Road)	-2.510833	-60.017500
Manaus, 80 Km N (By Road)	-2.510833	-60.017500
Rosarinho. Rio Madeira	-5.8753	-61.3903
Tauari, Tapajos River	-3.083333	-55.100000
Tauari, Tapajos River	-3.083333	-55.100000
Altamira, 17 Km S (By Road), Caverna Do Tatajuba 🥂 🌽	-3.630000	-52.350000
Altamira, 52 Km SSW, E Bank Rio Xingu 🥒	-3.650000	-52.370000
Belem, Fazenda Velha	-1.444722	-48.501389
Belem, Station A lan	-1.444722	-48.501389
Belem, Varzea	-1.444722	-48.501389
Tapajos River, Igarape Brabo	-2.466667	-54.750000
Tapajos River, Inajatuba	-4.115556	-56.609722
Rondonia, Cachoeira Nazare, Rio Ji-Parana	-8.225000	-62.726667
Joinville	-26.293056	-48.827778
Joinville	-26.293056	-48.827778
Joinville	-26.293056	-48.827778
Mount Hansa	-26.881944	-48.451389
Bairro do Betari, Gruta do Betari	-24.586389	-48.593889
Ilha do Cardoso.	-25.133300	-47.966700
Primeiro Morro.	-24.366700	-47.816700
25 Km South, 22 Km West from Zaragoza, La Tirana	7.261694	-75.028628
26 Km South, 22 Km West from Zaragoza, Aljibes	7.258047	-75.047181
Zaragoza, 25 Km S, 22 Km W, At La Tirana	7.485089	-74.867306
Zaragoza, 25 Km S, 22 Km W, At La Tirana	7.485089	-74.867306
Finca La Tormenta, Caño Salas	6.8121111	-71.0755
Caño Juriepe, Finca La Aurora, Bosques de Juriepe	6.2339722	-69.716333

Reserva Forestal Protectora Rio Tame, Vereda Sabana de La \	6.3843611	-71.926389
Vereda Puna Puna, Hacienda la Envidia	6.3301667	-71.772222
Vereda San Joaquín, finca El Santuario, bosque de vega, cerca	6.222532	-71.566834
Arauca, 1000ft: Rio Arauca.	6.203630	-68.964500
Arauca, 1000ft: Rio Arauca.	6.203630	-68.964500
Mompos, Norosi	9.239653	-74.425617
PNN Serrania de Chiribiquete, Corregimiento SE río Mesay, P	0.0741667	-72.451389
Vereda Cupiagua, caño abajo de pozo V	5.2262222	-72.626858
Vereda La Manga, finca La Reserva, caño Yaguarapo	6.198954	-71.603834
Corregimiento La Hermosa, finca Nicaragua, bajo de quebrad	5.6641667	-70.2425
Sin descripcion del lugar de colecta-Paz de Ariporo	5	-70
Sin descripcion del lugar de colecta-Paz de Ariporo	5	-70
Rio Guaimaral	9.204211	-73.656131
Rio Guaimaral	9.204211	-73.656131
Valledupar, El Orinoco, Rio Cesar	9.474669	-74.058406
Valledupar, El Orinoco, Rio Cesar 🤍	9.474669	-74.058406
Valledupar, Rio Guaimaral	9.204211	-73.656131
Valledupar, Rio Guaimaral	9.204211	-73.656131
Valledupar, Rio Guaimaral	9.204211	-73.656131
Valledupar, Rio Guaimaral	9.204211	-73.656131
Valledupar, Rio Guaimaral	9.204211	-73.656131
Corregimiento El Porveni, Vereda El Peñon, Predio de ODL	9.3963611000	-75.7071944000
Randal Alto (ca. Zancudo). Río Inírida, Guainía	2.766667	-69.366667
Randal Alto (ca. Zancudo). Río Inírida, Guainía	2.766667	-69.366667
Bonda	11.233425	-74.123428
Trocha 1 Km de la Cabaña Duda	2.180033	-73.783108
Rivera del río Tillavá	3.8275556000	-71.2658417000
Meta, Villavicencio, 400m, San Juan de Arama, Los Micos.	3.283330	-73.883300
Quebrada Alegría, Fuente de Materiales Valle	3.717222	-74.296667
Villavicencio, 650m.	4.141944	-73.626667
Inguapí del Guadual, 15 km Tumaco	1.700000	-78.766667
Rio de Oro	8.294119	-73.387344
Putumayo, San Antonio, 185m: Rio Mecaya.	0.466667	-75.333300
Putumayo, San Antonio, 185m: Rio Mecaya.	0.466667	-75.333300
Fuente de materiales, Bahía de Málaga, 40 m Valle	3.976111	-77.325278
PNN El Tuparro, Centro Administrativo	5.309489	-67.894906
PNN El Tuparro, Corregimiento Santa Rita	5.286408	-68.319869
PNN El Tuparro, Corregimiento Santa Rita	5.286408	-68.319869
Refugio Rafael Rodriguez, Hacienda Palo Verde	10.350056	-85.349583
Parque Nacional Braulio Carrillo, San Miguel, 1 Km S, 11.5 Km	9.980775	-84.051450
River Station, Bridge At, La Selva	10.427456	-84.006339
Cano Palma Biological Station	10.600000	-83.530000
Limon, 10ft: Tortuguero, shore opposite.	10.583300	-83.516700

-

Puntarenas, Monteverde. 10.300000 -84.700000 Comuna San Francisco de Bogota 1.09343 -78.7062 Estero El Salto, Centro Comunal Awa Mataje 1.200000 -78.561662 San Lorenzo, Estación La Chiquita 1.23333 -78.77 San Lorenzo, Estación La Chiquita 1.036667 -78.773612 Santo Se San Miguel (selva) - - Centra Ildiroeléctirca Marcel Lianado de Wind-Carlas Julio. R -0.9252312 -79.761266 Santo Domingo, 47 Km S (By Road), Rio Palenque Science Cer -0.88884 -79.36100 Centro Científico Rio Palenque -0.58884 -79.36100 Jondachi -0.72215 -77.7772 Jumandi, 4 km N de Archidona -0.83333 -76.36300 Amo C, 101,1 km S de Pompeya Sur -0.9419245 -76.2427 Parque Nacional Yasuní, Tambococha -1.02253 -75.442 Parque Nacional Yasuní, Ambococha -1.0251 <	Osa Peninsula, Llorona, Piedra El Arco	9.401969	-84.080308
Comuna San Francisco de Bogota 1.09343 -78.7063 Estero El Salto, Centro Comunal Awa Mataje 1.200000 78.8561667 San Lorenzo 1.275994 78.832183 San Lorenzo, Estación La Chiquita 1.23333 -78.76 Marcia San Lorenzo, Estación La Chiquita 1.23333 -78.77 Urbina 1.036667 -78.773611 San Lorenzo, Estación La Chiquita -0.9252312 -79.761266 Santo Domingo, 47 Km S (By Road), Rio Palenque Science Cet -0.58844 -79.364700 Centro Científico Rio Palenque -0.58884 -79.36100 Londachi -0.7777 Jumandi, 4 km N de Archidona -0.83333 -76.3707 S km SW de Marian -0.0419245 -77.3777 S Parque Nacional Yasuní, Tambococha -1.02253 -75.444 Parque Nacional Yasuní, Tambococha <td>Puntarenas, Monteverde.</td> <td>10.300000</td> <td>-84.700000</td>	Puntarenas, Monteverde.	10.300000	-84.700000
Estero El Salto, Centro Comunal Awa Mataje 1.200000 -78.561667 San Lorenzo 1.275994 -78.832183 San Lorenzo, Estación La Chiquita 1.23333 -78.77 San Lorenzo, Estación La Chiquita 1.23333 -78.78 San Lorenzo, Estación La Chiquita 1.036667 -78.773617 San Lorenzo, Estación La Chiquita 1.036667 -78.773617 San Lorenzo, Estación La Chiquita -0.9252312 -79.761266 Santa S de San Miguel (selva) -0.58884 -79.36100 Centro Científico Rio Palenque -0.58884 -79.36100 Contro Científico Rio Palenque -0.58884 -77.3777 Jamandi, 4 km N de Archidona -0.8721 -77.771 Gareno, Rio Gareno, junto pozo de exploracion Nemora, terr -1.0485 -77.3774 Gareno, Rio Gareno, junto pozo de exploracion Nemora, terr -1.02253 -75.448 Parque Nacional Yasuni, Tambococha -1.02253 -75.448 Parque Nacional Yasuni, Famboccha -1.02253 -75.448 Parque Nacional Yasuni, Sendero DENPENPE, Km 66, La -0.806323 -75.9326 Puente de Dosel Chuncho-Yur	Comuna San Francisco de Bogota	1.09343	-78.7063
San Lorenzo 1.275994 -78.832183 San Lorenzo, Estación La Chiquita 1.23333 -78.76 San Lorenzo, Estación La Chiquita 1.23333 -78.76 Urbina 1.036667 -78.773611 3 km al 5 de San Miguel (selva)	Estero El Salto, Centro Comunal Awa Mataje	1.200000	-78.561667
San Lorenzo, Estación La Chiquita 1.23333 -78.76 San Lorenzo, Estación La Chiquita 1.23333 -78.76 Urbina 1.036667 -78.773611 3 kma IS de San Miguel (selva) - - Central Hidroeléctirca Marcel Lianado de Wind-Carlas Julions -0.9252312 -79.761126 Santo Domingo, 47 Km S (By Road), Rio Palenque Science Cer -0.58844 -79.361700 Centro Científico Río Palenque -0.58844 -79.36170 Centro Científico Río Palenque -0.58844 -79.36170 Jumandi, 4 km N de Archidona -0.77215 -77.7721 Gareno, Río Gareno, junto pozo de exploracion Nemora, terr -1.0485 -77.3774 Parque Nacional Yasuní, Tambococha -1.02253 -75.444 Parque Nacional Yasuní, Tambococha -1.02253 -75.444 Parque Nacional Yasuní, Tambococha -1.2671 -76.3836 Puente de Dosel Pandu -0.643669 -75.9107 Puente de Dosel Pandu -0.643633 -75.9326 Via Nenke-Apaika, orillas del Río Huirrima -0.643633 -75.9326 Parque Nacional Yasuní, Sendero Barizo -0	San Lorenzo	1.275994	-78.832183
San Lorenzo, Estación La Chiquita 1.23333 -78.77 Urbina 1.036667 -78.773611 3 km al S de San Miguel (selva) - - Central Hidroeléctirca Marcel Lianado de Wind-Carlas Julio-R -0.9252312 -79.661266 Santo Domingo, 47 Km S (By Road), Rio Palenque Science Cer -0.58844 -79.364700 Centro Científico Río Palenque -0.58844 -79.36106 Centro Científico Río Palenque -0.58844 -79.36106 Jondachi -0.79215 -77.77771 Jumandi, 4 km N de Archidona -0.83333 -76.350000 Armo C, 101,1 km S de Pompeya Sur -0.9419245 -76.22474 Parque Nacional Yasuni, Tambococha -1.02253 -775.448 Parroquia Cononaco, Bloque 16, Repsol YPF-NPF, Km 66,La C -0.806932 -76.3276 Parroquia Cononaco, Rerritorio Huaorani, Zona Intangible, fr -1.2671 -76.3836 Puente de Dosel Chuncho-Yura -0.643633 -75.9136 Puente de Dosel Pandu -0.64333 -75.9136 Via Nenke-Apaika, orillas del Río Huirrima -0.64333 -76.33956 Parque Nacional Yasuní, Sendero Barizo<	San Lorenzo, Estación La Chiquita	1.23333	-78.76
Urbina1.036667-78.7736113 km al S de San Miguel (selva)Central Hidroeléctirca Marcel Lianado de Wind-Carlas Julio-R-0.9252312-79.761260Santo Domingo, 47 Km S (By Road), Rio Palenque Science Cer-0.588400-79.36100Centro Científico Río Palenque-0.58844-79.36100Centro Científico Río Palenque-0.58844-79.36100Jondachi-0.72215-77.7712Jumandi, 4 km N de Archidona-0.8723-77.7714Gareno, Río Gareno, junto pozo de exploracion Nemora, terr-1.0485-77.3774S km SW de Marian-0.083333-76.350000Amo C, 101,1 km S de Pompeya Sur-0.9419245-76.22474Parque Nacional Yasuní, Tambococha1.02253-775.448Parroquia Cononaco, Bloque 16, Repsol YPF-NPF, Km 66, LC-0.860932-76.33070Parroquia Cononaco, Rerritorio Huaorani, Zona Intangible, fr-1.2671-76.3366Puente de Dosel Chuncho-Yura-0.64366-75.9102Puente de Dosel Pandu-0.684732-75.9236Vía Nenke-Apaika, orillas del Río Huirrima-0.678103-76.33952Parque Nacional Yasuní, Sendero Ceiba, junto a la estación-0.678103-76.33952Yasuní, P.N., El Saladero, km 78-0.833333-76.33333Caimitoyacu. Cerca de la bocan del Río Yuturi-0.53978777.63333I'apari-0.440000-76.633332-76.33333Caimitoyacu. Cerca de la bocana del Río Yuturi-0.53378777.63333I'apari-0.45030-76.33333-76.33333<	San Lorenzo, Estación La Chiquita	1.23333	-78.76
3 km al S de San Miguel (selva)	Urbina	1.036667	-78.773611
Central Hidroeléctirca Marcel Lianado de Wind-Carlas Julio-R-0.9252312-79.761266Santo Domingo, 47 Km S (By Road), Rio Palenque Science Cer-0.58840-79.364700Centro Científico Río Palenque-0.58844-79.36100Centro Científico Río Palenque-0.58844-79.36100Jondachi-0.79215-77.7772Jumandi, 4 km N de Archidona-0.8721-77.7912Gareno, Río Gareno, junto pozo de exploracion Nemora, terr-1.0485-77.2772S km SW de Marian-0.083333-76.52000Amo C, 101,1 km S de Pompeya Sur-0.9419245-76.22472Parque Nacional Yasuní, Tambococha-1.02253-75.448Parque Nacional Yasuní, Tambococha-1.02253-75.448Parque Nacional Yasuní, Tambococha-1.02253-75.448Parque Nacional Yasuní, Tambococha-0.643669-75.9102Puente de Dosel Chuncho-Yura-0.643669-75.9102Puente de Dosel Pandu-0.684732-75.9236Vía Nenke-Apaika, orillas del Río Huiririma-0.67505-76.3999Estación Científica Yasuní, Sendero Ceiba, junto a la estación-0.67616-76.39333Caimitoyacu. Cerca de la boca de Suno-0.67303-76.33333Ciamitoyacu. Cerca de la boca de Suno-76.633333-76.33333Ciamitoyacu. Cerca de la boca de Suno-76.633333-76.33333Ciamitoyacu. Cerca de la boca de Suno-76.633333-76.633333Pizo petrolero Paujil-0.400000-76.633333Pozo petrolero Paujil-0.400000-76.633333Pozo	3 km al S de San Miguel (selva)		
Santo Domingo, 47 Km S (By Road), Rio Palenque Science Cer -0.586400 -79.364700 Centro Científico Río Palenque -0.58884 -79.36100 Centro Científico Río Palenque -0.58884 -77.3772 Jumandi, 4 km N de Archidona -0.79215 -77.7772 Gareno, Río Gareno, junto pozo de exploracion Nemora, terr -1.0485 -77.3777 S km SW de Marian -0.083333 -76.350000 Amo C, 101,1 km S de Pompeya Sur -0.9419245 -76.24744 Parque Nacional Yasuní, Tambococha -1.02253 -77.5448 Parque Nacional Yasuní, Tambococha -1.02253 -75.3468 Parroquia Cononaco, Bloque 16, Repsol YPF-NPF, Km 66, La C -0.684696 -75.9102 Puente de Dosel Chuncho-Yura -0.648433 -75.9136 Puente de Dosel Pandu -0.648433 -75.9336 Vía Nenke-Apaika, orillas del Río Huiririma -0.678193 -76.33333 Estación Científica Yasuní, Estación Cientifica Yasuní -0.678193 -76.33333 Ciamitoyacu. Cerca de la boca de Suno - - - Iripari - - - - <t< td=""><td>Central Hidroeléctirca Marcel Lianado de Wind-Carlas Julio-R</td><td>-0.9252312</td><td>-79.761266</td></t<>	Central Hidroeléctirca Marcel Lianado de Wind-Carlas Julio-R	-0.9252312	-79.761266
Centro Científico Río Palenque -0.58884 -79.36100 Centro Científico Río Palenque -0.58884 -79.36100 Jondachi -0.79215 -77.7772 Jumandi, 4 km N de Archidona -0.8721 -77.7712 Gareno, Río Gareno, junto pozo de exploracion Nemora, terr -1.0485 -77.3774 S km SW de Marian -0.083333 -76.350000 Amo C, 101,1 km S de Pompeya Sur -0.9419245 -76.24747 Parque Nacional Yasuní, Tambococha -1.02253 -75.448 Parque Nacional Yasuní, Tambococha -1.02263 -75.8487 Parroquia Cononaco, Bloque 16, Repsol YPF-NPF, Km 66, La -0.806932 -75.9236 Puente de Dosel Chuncho-Yura -0.643669 -75.9100 Puente de Dosel Pandu -0.684732 -75.9236 Vía Neke-Apaika, orillas del Río Huiririma -0.648473 -76.39395 Estación Científica Yasuní, Sendero Barizo -0.678193 -76.39395 Parque Nacional Yasuní, Estación Cientifica Yasuní -0.678193 -76.39356 Yasuní, P.N., El Saladero, km 78 -0.833333 -76.33333 -76.333335 Caimitoyacu.	Santo Domingo, 47 Km S (By Road), Rio Palenque Science Cer	-0.586400	-79.364700
Centro Científico Río Palenque-0.58884-79.36100Jondachi-0.79215-77.7772Jumandi, 4 km N de Archidona-0.8721-77.7712Gareno, Río Gareno, junto pozo de exploracion Nemora, terri-1.0485-77.3774S km SW de Marian-0.083333-76.350000Amo C, 101,1 km S de Pompeya Sur-0.9419245-76.22474Parque Nacional Yasuní, Tambococha-1.02253-75.448Parque Nacional Yasuní, Tambococha-1.02253-75.448Parroquia Cononaco, Bloque 16, Repsol YPF-NPF, Km 66, La-0.806932-76.3976Parroquia Cononaco, Territorio Huaorani, Zona Intangible, fr-1.2671-76.3836Puente de Dosel Chuncho-Yura-0.643669-75.9100Puente de Dosel Pandu-0.684732-75.9236Vía Nenke-Apaika, orillas del Río Huirrima-0.67505-76.3936Stación Científica Yasuní, Sendero Barizo-0.678193-76.39366Yasuní, P.N., El Saladero, km 78-0.833333-76.33333Caimitoyacu. Cerca de la boca de Suno-0.639787-77.633335Iripari-0.43000-77.3835-76.02337Comunidad Tarangaro-1.40062-77.3835La Unión del Toachi-0.31383-78.5544Parcu Biológica Limoncocha-0.400000-75.633337Pozo petrolero Paujil-0.400000-75.633337Pozo petrolero Paujil-0.400000-75.633337Pozo petrolero Paujil-0.400000-75.633337Pozo petrolero Paujil-0.400000-75.633337Pozo petrolero Paujil </td <td>Centro Científico Río Palenque</td> <td>-0.58884</td> <td>-79.36106</td>	Centro Científico Río Palenque	-0.58884	-79.36106
Jondachi-0.79215-77.777Jumandi, 4 km N de Archidona-0.8721-77.7914Gareno, Río Gareno, junto pozo de exploracion Nemora, terri-1.0485-77.3774S km SW de Marian-0.083333-76.350000Amo C, 101,1 km S de Pompeya Sur-0.9419245-76.22474Parque Nacional Yasuní, Tambococha-1.02253-776.488Parque Nacional Yasuní, Tambococha-1.02253-776.3976Parroquia Cononaco, Bloque 16, Repsol YPF-NPF, Km 66, La-0.806932-76.3976Parroquia Cononaco, Territorio Huaorani, Zona Intangible, fr-1.2671-76.3836Puente de Dosel Chuncho-Yura-0.643669-75.9102Puente de Dosel Pandu-0.684732-75.9236Vía Nenke-Apaika, orillas del Río Huiririma-0.648333-75.9136Estación Científica Yasuní, Sendero Barizo-0.675105-76.39995Parque Nacional Yasuní, Sendero Ceiba, junto a la estación-0.678193-76.33333Caimitoyacu. Cerca de la boca de Suno-0.633333-76.333333Caimitoyacu. Cerca de la boca de Suno-0.400000-77.633333Iz El Edén, Río Napo bajo, cerca a la bocana del Río Yuturi-0.539787-76.0237Comunidad Tarangaro-0.400000-75.633333Paco petrolero Paujil-0.400000-75.633333Pozo petrolero Paujil-0.400000-75.633333Destacamento Patria, hito 63-0.403000-75.633333Destacamento Patria, hito 63-0.46503-75.3451Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapao0.0315-76	Centro Científico Río Palenque	-0.58884	-79.36106
Jumandi, 4 km N de Archidona-0.8721-777.914Gareno, Río Gareno, junto pozo de exploracion Nemora, terr-1.0485-773.3774S km SW de Marian-0.083333-76.350000Amo C, 101,1 km S de Pompeya Sur-0.9419245-76.22474Parque Nacional Yasuní, Tambococha-1.02253-775.448Parque Nacional Yasuní, Tambococha-1.02253-776.3976Parroquia Cononaco, Bloque 16, Repsol YPF-NPF, Km 66, La C-0.806932-76.3976Parroquia Cononaco, Territorio Huaorani, Zona Intangible, fr-1.2671-76.3836Puente de Dosel Chuncho-Yura-0.643669-75.9102Puente de Dosel Pandu-0.684732-75.9236Vía Nenke-Apaika, orillas del Río Huiririma-0.64833-75.9136Estación Científica Yasuní, Sendero Barizo-0.67616-76.3999Estación Científica Yasuní, Sendero Ceiba, junto a la estación-0.678193-76.33333Caimitoyacu. Cerca de la boca de SunoIripariEl Edén, Río Napo bajo, cerca a la bocana del Río Yuturi-0.539787-76.0237Comunidad Tarangaro-1.40062-77.3833-78.5944Reserva Biológica Limoncocha-0.400000-75.633333Pozo petrolero PaujilRío Aguarico. Comunidad Cofán. Zábalo-0.0400000-75.633333Destacamento Patria, hito 63-0.45053-75.3451Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32113Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa	Jondachi	-0.79215	-77.7772
Gareno, Río Gareno, junto pozo de exploracion Nemora, terr -1.0485 -77.3774 5 km SW de Marian -0.083333 -76.350000 Amo C, 101,1 km S de Pompeya Sur -0.9419245 -76.22474 Parque Nacional Yasuní, Tambococha -1.02253 -75.448 Parque Nacional Yasuní, Tambococha -1.02253 -76.32976 Parroquia Cononaco, Bloque 16, Repsol YPF-NPF, Km 66, La C -0.806932 -76.33976 Parroquia Cononaco, Territorio Huaorani, Zona Intangible, fr -1.2671 -76.3836 Puente de Dosel Chuncho-Yura -0.643669 -75.9102 Puente de Dosel Pandu -0.684732 -75.9236 Vía Nenke-Apaika, orillas del Río Huiririma -0.648333 -76.33952 Estación Científica Yasuní, Sendero Barizo -0.67505 -76.33952 Parque Nacional Yasuní, Estación Científica Yasuní -0.678193 -76.33933 Caimitoyacu. Cerca de la boca de Suno - - -77.3832 Iripari -0.400000 -76.633333 -76.633333 Comunidad Tarangaro -0.400000 -75.633333 -76.33333 Pozo petrolero Paujil -0.400000	Jumandi, 4 km N de Archidona	-0.8721	-77.7914
5 km SW de Marian -0.083333 -76.350000 Amo C, 101,1 km S de Pompeya Sur -0.9419245 -76.22474 Parque Nacional Yasuní, Tambococha -1.02253 -75.448 Parque Nacional Yasuní, Tambococha -1.02253 -76.3970 Parque Nacional Yasuní, Tambococha -1.02253 -75.448 Paroquia Cononaco, Bloque 16, Repsol YPF-NPF, Km 66, La C -0.806932 -76.3970 Parroquia Cononaco, Territorio Huaorani, Zona Intangible, fr -1.2671 -76.3833 Puente de Dosel Chuncho-Yura -0.643669 -75.9100 Puente de Dosel Pandu -0.684732 -75.9236 Puente de Dosel Pandu -0.684732 -75.9236 Vía Nenke-Apaika, orillas del Río Huiririma -0.684732 -75.9236 Stación Científica Yasuní, Sendero Ceiba, junto a la estación -0.67616 -76.3956 Parque Nacional Yasuní, Estación Científica Yasuní -0.678193 -76.33333 Caimitoyacu. Cerca de la boca de Suno - - - Iripari -0.31383 -76.33333 -76.33333 La Unión del Toachi -0.31383 -76.33333 -76.33333 Pozo petrolero Paujil -0.400000 -75.6	Gareno, Río Gareno, junto pozo de <mark>explo</mark> racion Nemora, terri	-1.0485	-77.3774
Amo C, 101,1 km S de Pompeya Sur-0.9419245-76.22474Parque Nacional Yasuní, Tambococha-1.02253.75.448Parque Nacional Yasuní, Tambococha-1.02253.75.448Parroquia Cononaco, Bloque 16, Repsol YPF-NPF, Km 66, La C-0.806932.76.3976Parroquia Cononaco, Territorio Huaorani, Zona Intangible, fr-1.2671.76.3836Puente de Dosel Chuncho-Yura-0.643669.75.9102Puente de Dosel Pandu-0.684732.75.9236Puente de Dosel Pandu-0.684732.75.9236Vía Nenke-Apaika, orillas del Río Huiririma-0.64833.75.9136Estación Científica Yasuní, Sendero Barizo-0.67505.76.3995Estación Científica Yasuní, Sendero Ceiba, junto a la estación-0.678193.76.33333Caimitoyacu. Cerca de la boca de Suno.0.678193.76.33333Ciamitoyacu. Cerca de la boca de Suno.0.31383.78.9544Reserva Biológica Limoncocha.0.400000.76.633333Pozo petrolero Paujil.0.440000.75.633333Pozo petrolero Paujil.0.46503.75.3455Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa.0.0315.76.32117Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa <td>5 km SW de Marian</td> <td>-0.083333</td> <td>-76.350000</td>	5 km SW de Marian	-0.083333	-76.350000
Parque Nacional Yasuní, Tambococha-1.02253-7.5.448Parque Nacional Yasuní, Tambococha-1.02253-7.5.448Parroquia Cononaco, Bloque 16, Repsol YPF-NPF, Km 66, La C-0.806932-7.6.3976Parroquia Cononaco, Territorio Huaorani, Zona Intangible, fre-1.2671-7.6.3836Puente de Dosel Chuncho-Yura-0.643669-7.5.9102Puente de Dosel Pandu-0.684732-7.5.9236Puente de Dosel Pandu-0.684732-7.5.9236Puente de Dosel Pandu-0.684733-7.5.9236Vía Nenke-Apaika, orillas del Río Huiririma-0.678133-7.6.3995Estación Científica Yasuní, Sendero Barizo-0.678193-76.3995Stación Científica Yasuní, Sendero Ceiba, junto a la estación-0.678193-76.3956Yasuní, P.N., El Saladero, km 78-0.8333333-76.33333Caimitoyacu. Cerca de la boca de SunoIripariEl Edén, Río Napo bajo, cerca a la bocana del Río Yuturi-0.539787-76.0237Comunidad Tarangaro-1.40062-77.3835-La Unión del Toachi-0.31383-78.9544Reserva Biológica Limoncocha-0.400000-75.633333Pozo petrolero PaujilRío Aguarico. Comunidad Cofán. Zábalo-0.0315-75.3211Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315<	Amo C, 101,1 km S de Pompeya Sur 🛛 📈 💛	-0.9419245	-76.22474
Parque Nacional Yasuní, Tambococha-1.02253-75.448Parroquia Cononaco, Bloque 16, Repsol YPF-NPF, Km 66, La-0.806932-76.3976Parroquia Cononaco, Territorio Huaorani, Zona Intangible, fre-1.2671-76.3836Puente de Dosel Chuncho-Yura-0.643669-75.9102Puente de Dosel Pandu-0.684732-75.9236Puente de Dosel Pandu-0.684732-75.9236Puente de Dosel Pandu-0.684733-75.9236Vía Nenke-Apaika, orillas del Río Huiririma-0.64833-75.9136Estación Científica Yasuní, Sendero Barizo-0.67616-76.3959Estación Científica Yasuní, Sendero Ceiba, junto a la estación-0.678193-76.3936Yasuní, P.N., El Saladero, km 78-0.8333333-76.33333-76.33333Caimitoyacu. Cerca de la boca de SunoIripari-0.539787-76.0237-76.0237-El Edén, Río Napo bajo, cerca a la bocana del Río Yuturi-0.539787-76.63333-78.9544Reserva Biológica Limoncocha-0.400000-75.633333-78.9544Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-75.3453Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32117Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.	Parque Nacional Yasuní, Tambococha	-1.02253	-75.448
Parroquia Cononaco, Bloque 16, Repsol YPF-NPF, Km 66, La C-0.806932-76.3976Parroquia Cononaco, Territorio Huaorani, Zona Intangible, fr-1.2671-76.3836Puente de Dosel Chuncho-Yura-0.643669-75.9102Puente de Dosel Pandu-0.684732-75.9236Puente de Dosel Pandu-0.684733-75.9136Vía Nenke-Apaika, orillas del Río Huiririma-0.684733-75.9136Estación Científica Yasuní, Sendero Barizo-0.67505-76.3999Estación Científica Yasuní, Sendero Ceiba, junto a la estación-0.67616-76.3956Yasuní, P.N., El Saladero, km 78-0.8333333-76.33333Caimitoyacu. Cerca de la boca de SunoIripariEl Edén, Río Napo bajo, cerca a la bocana del Río Yuturi-0.539787-76.0237Comunidad Tarangaro-1.40062-77.3835-La Unión del Toachi-0.400000-76.633333-76.33333Pozo petrolero PaujilRío Aguarico. Comunidad Cofán. Zábalo-0.400000-75.633333Destacamento Patria, hito 63-0.46503-75.3451Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.315235-75.9624	Parque Nacional Yasuní, Tambococha	-1.02253	-75.448
Parroquia Cononaco, Territorio Huaorani, Zona Intangible, fre-1.2671-76.3836Puente de Dosel Chuncho-Yura-0.643669-75.9100Puente de Dosel Pandu-0.684732-75.9236Puente de Dosel Pandu-0.684732-75.9236Vía Nenke-Apaika, orillas del Río Huiririma-0.64833-75.9136Estación Científica Yasuní, Sendero Barizo-0.67505-76.3999Estación Científica Yasuní, Sendero Ceiba, junto a la estación-0.67616-76.3956Parque Nacional Yasuní, Estación Científica Yasuní-0.678193-76.3966Yasuní, P.N., El Saladero, km 78-0.833333-76.33333Caimitoyacu. Cerca de la boca de SunoIripariEl Edén, Río Napo bajo, cerca a la bocana del Río Yuturi-0.539787-76.0237Comunidad Tarangaro-1.440062-77.3835-76.33333Pozo petrolero PaujilRío Aguarico. Comunidad Cofán. Zábalo-0.400000-75.633333Destacamento Patria, hito 63-0.46503-75.34517Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32117Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315 <td< td=""><td>Parroquia Cononaco, Bloque 16, Repsol YPF-NPF, Km 66, La C</td><td>-0.806932</td><td>-76.3976</td></td<>	Parroquia Cononaco, Bloque 16, Repsol YPF-NPF, Km 66, La C	-0.806932	-76.3976
Puente de Dosel Chuncho-Yura-0.643669-75.9102Puente de Dosel Pandu-0.684732-75.9236Puente de Dosel Pandu-0.684732-75.9236Vía Nenke-Apaika, orillas del Río Huiririma-0.64833-75.9136Estación Científica Yasuní, Sendero Barizo-0.67505-76.3999Estación Científica Yasuní, Sendero Ceiba, junto a la estación-0.677616-76.3959Parque Nacional Yasuní, Estación Científica Yasuní-0.678193-76.3956Yasuní, P.N., El Saladero, km 78-0.833333-76.333333Caimitoyacu. Cerca de la boca de SunoIripariEl Edén, Río Napo bajo, cerca a la bocana del Río Yuturi-0.539787-76.0237Comunidad Tarangaro-1.40062-77.3833-76.333333La Unión del Toachi-0.400000-76.633333Pozo petrolero PaujilRío Aguarico. Comunidad Cofán. Zábalo-0.400000-75.633333Destacamento Patria, hito 63-0.46503-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Reserva de Producción Faunística Cuyabeno, Santa Elena-0.315235-75.9624	Parroquia Cononaco, Territorio Huaorani, Zona Intangible, fre	-1.2671	-76.3836
Puente de Dosel Pandu-0.684732-75.9236Puente de Dosel Pandu-0.684732-75.9236Vía Nenke-Apaika, orillas del Río Huiririma-0.64833-75.9136Estación Científica Yasuní, Sendero Barizo-0.67505-76.3996Estación Científica Yasuní, Sendero Ceiba, junto a la estación-0.67616-76.3956Parque Nacional Yasuní, Estación Cientifica Yasuní-0.678193-76.3966Yasuní, P.N., El Saladero, km 78-0.833333-76.33333Caimitoyacu. Cerca de la boca de SunoIripariEl Edén, Río Napo bajo, cerca a la bocana del Río Yuturi-0.539787-76.0237Comunidad Tarangaro-1.40062-77.3835La Unión del Toachi-0.31383-76.63333Pozo petrolero PaujilRío Aguarico. Comunidad Cofán. Zábalo-0.400000-75.633333Destacamento Patria, hito 63-0.400000-75.63333Destacamento Patria, hito 63-0.40315-76.32117Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32117Puente del Río Cuyabeno, Hostería Monte Tour, Vía	Puente de Dosel Chuncho-Yura	-0.643669	-75.9102
Puente de Dosel Pandu-0.684732-75.9236Vía Nenke-Apaika, orillas del Río Huiririma-0.64833-75.9136Estación Científica Yasuní, Sendero Barizo-0.67505-76.3996Estación Científica Yasuní, Sendero Ceiba, junto a la estación-0.67616-76.3956Parque Nacional Yasuní, Estación Cientifica Yasuní-0.678193-76.3966Yasuní, P.N., El Saladero, km 78-0.833333-76.333333Caimitoyacu. Cerca de la boca de SunoIripariEl Edén, Río Napo bajo, cerca a la bocana del Río Yuturi-0.539787-76.0237Comunidad Tarangaro-1.40062-77.3835-76.33333La Unión del Toachi-0.400000-76.633333-76.33333Pozo petrolero PaujilRío Aguarico. Comunidad Cofán. Zábalo-0.400000-75.633333Destacamento Patria, hito 63-0.46503-75.3451Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte	Puente de Dosel Pandu	-0.684732	-75.9236
Vía Nenke-Apaika, orillas del Río Huiririma-0.64833-75.9136Estación Científica Yasuní, Sendero Barizo-0.67505-76.3995Estación Científica Yasuní, Sendero Ceiba, junto a la estación-0.67616-76.3955Parque Nacional Yasuní, Estación Cientifica Yasuní-0.678193-76.3966Yasuní, P.N., El Saladero, km 78-0.833333-76.33333Caimitoyacu. Cerca de la boca de SunoIripariEl Edén, Río Napo bajo, cerca a la bocana del Río Yuturi-0.539787-76.0237Comunidad Tarangaro-1.40062-77.3835La Unión del Toachi-0.400000-76.633333Pozo petrolero PaujilRío Aguarico. Comunidad Cofán. Zábalo-0.400000-75.633333Destacamento Patria, hito 63-0.46503-75.3451Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa0.0315-76.32111Reserva de Producción Faunística Cuyabeno, Santa Elena-0.315235-75.9624	Puente de Dosel Pandu	-0.684732	-75.9236
Estación Científica Yasuní, Sendero Barizo-0.67505-76.3996Estación Científica Yasuní, Sendero Ceiba, junto a la estación-0.67616-76.3956Parque Nacional Yasuní, Estación Cientifica Yasuní-0.678193-76.39366Yasuní, P.N., El Saladero, km 78-0.8333333-76.333333Caimitoyacu. Cerca de la boca de SunoIripariEl Edén, Río Napo bajo, cerca a la bocana del Río Yuturi-0.539787-76.0237Comunidad Tarangaro-1.40062-77.3835La Unión del Toachi-0.31383-78.9544Reserva Biológica Limoncocha-0.400000-75.633333Pozo petrolero PaujilRío Aguarico. Comunidad Cofán. Zábalo-0.400000-75.633333Destacamento Patria, hito 63-0.400000-75.32112Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32112Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32112Reserva de Producción Faunística Cuyabeno, Santa Elena-0.315235-75.9624	Vía Nenke-Apaika, orillas del Río Huiririma	-0.64833	-75.9136
Estación Científica Yasuní, Sendero Ceiba, junto a la estación-0.67616-76.3959Parque Nacional Yasuní, Estación Cientifica Yasuní-0.678193-76.3959Yasuní, P.N., El Saladero, km 78-0.8333333-76.333333Caimitoyacu. Cerca de la boca de SunoIripariEl Edén, Río Napo bajo, cerca a la bocana del Río Yuturi-0.539787-76.0237Comunidad Tarangaro-1.40062-77.3835La Unión del Toachi-0.31383-78.9544Reserva Biológica Limoncocha-0.400000-75.633333Pozo petrolero Paujil-0.400000-75.633333Destacamento Patria, hito 63-0.46503-75.3451Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Reserva de Producción Faunística Cuyabeno, Santa Elena-0.315235-75.9624	Estación Científica Yasuní, Sendero Barizo	-0.67505	-76.3999
Parque Nacional Yasuní, Estación Cientifica Yasuní0.67819376.3966Yasuní, P.N., El Saladero, km 78-0.83333376.333333Caimitoyacu. Cerca de la boca de SunoIripariEl Edén, Río Napo bajo, cerca a la bocana del Río Yuturi0.53978776.0237Comunidad Tarangaro-1.4006277.3835La Unión del Toachi0.3138378.9544Reserva Biológica Limoncocha0.40000076.633333Pozo petrolero PaujilRío Aguarico. Comunidad Cofán. Zábalo0.4050375.633333Destacamento Patria, hito 630.4650375.3451Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa0.031576.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa0.031576.32111Reserva de Producción Faunística Cuyabeno, Santa Elena0.31523575.9624	Estación Científica Yasuní, Sendero Ceiba, junto a la estación	-0.67616	-76.3959
Yasuní, P.N., El Saladero, km 78-0.833333-76.333333Caimitoyacu. Cerca de la boca de SunoIripariImitoriaImitoriaIripariImitoria-0.539787-76.0237El Edén, Río Napo bajo, cerca a la bocana del Río Yuturi-0.539787-76.0237Comunidad Tarangaro-1.40062-77.3835La Unión del Toachi-0.31383-78.9544Reserva Biológica Limoncocha-0.400000-76.633333Pozo petrolero PaujilImitoriaImitoriaRío Aguarico. Comunidad Cofán. Zábalo-0.400000-75.633333Destacamento Patria, hito 63-0.46503-75.3451Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa0.0315-76.32111Reserva de Producción Faunística Cuyabeno, Santa Elena-0.315235-75.9624	Parque Nacional Yasuní, Estación Cientifica Yasuní	-0.678193	-76.3966
Caimitoyacu. Cerca de la boca de SunoInipariInipariIripariInipari-0.539787-76.0237El Edén, Río Napo bajo, cerca a la bocana del Río Yuturi-0.539787-76.0237Comunidad Tarangaro-1.40062-77.3835La Unión del Toachi-0.31383-78.9544Reserva Biológica Limoncocha-0.400000-76.633333Pozo petrolero PaujilInitiation del Cofán. Zábalo-0.400000Río Aguarico. Comunidad Cofán. Zábalo-0.400000-75.633333Destacamento Patria, hito 63-0.46503-75.34517Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.321117Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-75.9624	Yasuní, P.N., El Saladero, km 78	-0.8333333	-76.333333
IripariImage: Constant of the second of the sec	Caimitoyacu. Cerca de la boca de Suno		
El Edén, Río Napo bajo, cerca a la bocana del Río Yuturi-0.539787-76.0237Comunidad Tarangaro-1.40062-77.3835La Unión del Toachi-0.31383-78.9544Reserva Biológica Limoncocha-0.400000-76.633335Pozo petrolero Paujil-0.400000-75.633335Río Aguarico. Comunidad Cofán. Zábalo-0.400000-75.633335Destacamento Patria, hito 63-0.46503-75.3451Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa0.0315-76.32111Reserva de Producción Faunística Cuyabeno, Santa Elena-0.315235-75.9624	Iripari		
Comunidad Tarangaro-1.40062-77.3835La Unión del Toachi-0.31383-78.9544Reserva Biológica Limoncocha-0.400000-76.633333Pozo petrolero Paujil-0.400000-75.633333Río Aguarico. Comunidad Cofán. Zábalo-0.400000-75.633333Destacamento Patria, hito 63-0.46503-75.3451Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-75.9624Reserva de Producción Faunística Cuyabeno, Santa Elena-0.315235-75.9624	El Edén, Río Napo bajo, cerca a la bocana del Río Yuturi	-0.539787	-76.0237
La Unión del Toachi-0.31383-78.9544Reserva Biológica Limoncocha-0.400000-76.633333Pozo petrolero Paujil-0.400000-75.633333Río Aguarico. Comunidad Cofán. Zábalo-0.400000-75.633333Destacamento Patria, hito 63-0.46503-75.3451Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.315235-75.9624Reserva de Producción Faunística Cuyabeno, Santa Elena-0.315235-75.9624	Comunidad Tarangaro	-1.40062	-77.3835
Reserva Biológica Limoncocha-0.400000-76.633333Pozo petrolero PaujilRío Aguarico. Comunidad Cofán. Zábalo-0.400000-75.633333Destacamento Patria, hito 63-0.46503-75.3451Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Reserva de Producción Faunística Cuyabeno, Santa Elena-0.315235-75.9624	La Unión del Toachi	-0.31383	-78.9544
Pozo petrolero Paujil	Reserva Biológica Limoncocha	-0.400000	-76.633333
Río Aguarico. Comunidad Cofán. Zábalo-0.400000-75.633333Destacamento Patria, hito 63-0.46503-75.3451Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Reserva de Producción Faunística Cuyabeno, Santa Elena-0.315235-75.9624	Pozo petrolero Paujil		
Destacamento Patria, hito 63-0.46503-75.3451Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa0.0315-76.32111Reserva de Producción Faunística Cuyabeno, Santa Elena-0.315235-75.9624	Río Aguarico. Comunidad Cofán. Zábalo	-0.400000	-75.633333
Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa0.0315-76.32111Reserva de Producción Faunística Cuyabeno, Santa Elena-0.315235-75.9624	Destacamento Patria, hito 63	-0.46503	-75.3451
Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa0.0315-76.32111Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa0.0315-76.32111Reserva de Producción Faunística Cuyabeno, Santa Elena-0.315235-75.9624	Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-	-0.0315	-76.32111
Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-0.0315 -76.32111 Reserva de Producción Faunística Cuyabeno, Santa Elena -0.315235 -75.9624	Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-	-0.0315	-76.32111
Reserva de Producción Faunística Cuyabeno, Santa Elena -0.315235 -75.9624	Puente del Río Cuyabeno, Hostería Monte Tour, Vía Tarapoa-	-0.0315	-76.32111
	Reserva de Producción Faunística Cuyabeno, Santa Elena	-0.315235	-75.9624

Reserva de Producción Faunística Cuyabeno, Jamu Lodge, ori	-0.034808	-76.1644
Zábalo	-0.31812	-75.7662
Zábalo	-0.31812	-75.7662
Nueva Esmeralda	-0.18383	-76.7334
Reserva Biológica Limoncocha	-0.4079	-76.6206
Shushufindi	-0.18329	-76.6451
Destacamento Shaime, Ríos Shaime y Nangaritza	-4.3344	-78.6807
Paracou	5.283333	-52.916667
Paracou near Sinnamary	5.283333	-52.916667
Chimaltenango, 4400ft: Municipio de Yepocapa, Finca Recreo	14.466700	-90.983300
Campo Los Guacamayos, Biotopo Laguna Del Tigre, 40 km N d	17.580039	-90.811972
Guyo	16.900561	-90.293000
Guyo	- 16.900561	-90.293000
Guyo	16.900561	-90.293000
Guyo	16.900561	-90.293000
Baramita, North Side Airstrip	7.371400	-60.495800
Kumaka	7.650000	-58.950000
Mount Roraima, Ridge Camp	5.203125	-60.736975
Shanklands	6.483333	-58.583333
Sandstone, Iwokrama Forest	4.383740	-58.921220
Surama Lake	4.150980	-59.038460
Dubulay Ranch	5.681944	-57.860556
Dubulay Ranch, Region 10, Subregion 2	5.666667	-57.850000
Tropenbos, 20 km SSE of Mabura Hill	5.133306	-58.724472
Tropenbos, 20 km SSE of Mabura Hill	5.133306	-58.724472
Rupununi Savanna	2.999722	-59.499722
1 km upstream From Charwir River Mouth, Rupununi River	2.486389	-59.476389
Dadanawa, 15 Mi E, Weramna-Boco, Savannah Creek	2.824167	-59.525833
Dadanawa, 15 Mi ENE, Comiwari Wau	2.824167	-59.525833
Dadanawa, 15 Mi ENE, Comiwari Wau	2.824167	-59.525833
Dadanawa, 30 Mi ENE, Caribuan Forest	2.824167	-59.525833
Las Flores	14.711836	-88.623428

Las Flores	14.711836	-88.623428
Las Flores	14.711836	-88.623428
Las Flores	14.300000	-87.833333
44 km S of Constitucion, 44 km S, 70 km E of Escarcega	18.250000	-90.066667
4 miles west of San Pedro Tapanatepec, Ostuta River	16.371111	-94.193056
6 miles north of Matias Romero	16.878889	-95.039444
6 miles north of Matias Romero	16.878889	-95.039444
6 miles north of Matias Romero	16.878889	-95.039444
6 miles north of Matias Romero	16.878889	-95.039444
6 miles north of Matias Romero	16.878889	-95.039444
Matias Romero, 17 Mi N	16.878889	-95.039444
Matias Romero, 17 Mi N	16.878889	-95.039444
Matias Romero, 17 Mi N	16.878889	-95.039444
Matias Romero, 17 Mi N	16.878889	-95.039444
Palomares, 11.7 Mi S	17.138333	-95.062778
Isla Colon, La Gruta	9.391167	-82.277333
Isla Colon, La Gruta	9.391167	-82.277333
Parque Nacional Soberania	9.074333	-79.659778
Sherman	9.365000	-79.958611
Meteti, Filo del Tallo, Net 2	8.465395	-77.992463
Meteti, Filo del Tallo, Net 3	8.465395	-77.992463
Parque Nacional Darien, Rancho Frio, ANAM Ranger Station,	8.016700	-77.729460
Parque Nacional Darien, Rancho Frio, ANAM Ranger Station,	8.016700	-77.729460
Tacarcuna, Village Camp	8.165417	-77.295806
Tacarcuna, Village Camp	8.165417	-77.295806
Tacarcuna, Village Camp	8.165417	-77.295806
Tacarcuna, Village Camp	8.165417	-77.295806
Tacarcuna, Village Camp	8.165417	-77.295806
Tacarcuna, Village Camp	8.165417	-77.295806
La Jagua	7.866667	-80.350000
Summit	9.066667	-79.650000
40 miles east of Panama City, La Cagna River	8.910111	-78.846861
Chilibrillo River	9.171977	-79.623222
Nuri [Montijo District]	7.979194	-81.042556
Chepo Road	9.167778	-79.093611

Chilibrillo Cave	9.171977	-79.623222
Mandinga	9.450000	-79.066667
Mandinga	9.450000	-79.066667
Mandinga	9.450000	-79.066667
Pacora	9.079444	-79.290000
Panama City, Chepo Rd.	8.966670	-79.533300
Llullapichis River, tributary of Pachitea River	-9.350000	-74.510000
Llullapichis River, tributary of Pachitea River	-9.370000	-74.550000
Nuevo San Juan, Galvez River	-5.250000	-73.166667
Nuevo San Juan, Galvez River	-5.250000	-73.166667
Nuevo San Juan, Galvez River	-5.250000	-73.166667
Nuevo San Juan, Galvez River	-5.250000	-73.166667
Orosa, Amazon River	-3.533333	-72.183333
Jenaro Herrerra	-4.905000	-73.669722
Sarayacu, Ucayali River	-6.783333	-75.116667
Sarayacu, Ucayali River	-6.783333	-75.116667
Sarayacu, Ucayali River	-6.783333	-75.116667
Río Galvez; Nuevo San Juan	-5.250000	-73.166667
Río Galvez; Nuevo San Juan	-5.250000	-73.166667
Río Galvez; Nuevo San Juan	-5.250000	-73.166667
Río Galvez; Nuevo San Juan	-5.250000	-73.166667
Río Galvez; Nuevo San Juan	-5.250000	-73.166667
Río Galvez; Nuevo San Juan	-5.250000	-73.166667
Cocha Salvador	-12.003028	-71.215694
Pakitza	-11.944917	-/1.2829/2
Madre de Dios. Manu. 480m: Maskoitania. 13.4 km NNW Ata	-12.771600	-71.385400
Madre de Dios. Manu. 480m: Maskoitania. 13.4 km NNW Ata	-12.771700	-71.385500
San Juan	-10.371111	-76.198056
San Juan	-10.371111	-76.198056
Brownsberg Nature Park	4.946690	-55.183450
Brownsberg Nature Park	4.946690	-55.183450
Sabajo, Transect AF1	5.093790	-54.847260
Bakhuis	4.740597	-56.801583
Kasikasima	2.977410	-55.384790
Merian Site 3	5.103570	-54.516580
Upper Palumeu River	2.477050	-55.629410
Upper Palumeu River	2.477050	-55.629410
Cap-de-Ville	10.152500	-61.707500
Fyzabad	10.181111	-61.545833
Parry Lands, Lot 10	10.182222	-61.620833

Penal Rock Road	10.133361	-61.435972
Edwards Trace	10.116194	-61.196833
Pozon, 50 km NE of Puerto Ayacucho	6.050000	-67.416667
Rio Mavaca, 108 Km SSE Esmeralda	2.250000	-65.280000
Rio Mavaca, 108 Km SSE Esmeralda	2.250000	-65.280000
San Juan, 163 Km ESE Pto. Ayacucho, Rio Manapiare	5.300000	-66.220000
San Juan, 163 Km ESE Pto. Ayacucho, Rio Manapiare	5.300000	-66.220000
Hato Cariben, 32 Km NE Pto. Paez, La Villa	6.550000	-67.220000
Hato Cariben, 32 Km NE Pto. Paez, La Villa	6.550000	-67.220000
Rancho Grande	10.216667	-67.416667
Rancho Grande	10.216667	-67.416667
Rancho Grande	10.216667	-67.416667
Maracay, 4 Km NW, El Limon	10.283333	-67.600000
3 km E of Puerto Cabello Del Caura	7.166667	-64.983333
Hata La Cerbatana, 20 km S of Guaniamo	6.433333	-66.116667
Hato La Florida, 35 km Ese of Caicara	7.566667	-65.866667
Hato San Jose, 20 Km W La Paragua	6.820000	-63.480000
Hato San Jose, 20 Km W La Paragua 🛛 📈 🔨	6.820000	-63.480000
Icabaru, 45 Km NE Icabaru, Santa Lucia De Surukun	4.550000	-61.420000
km. 125, 85 Km SSE El Dorado	5.980000	-61.430000
km. 125, 85 Km SSE El Dorado	5.980000	-61.430000
San Esteban	10.433333	-68.016667
San Esteban	11.233333	-74.133333
San Esteban	- 10.433333	-68.016667
Riecito, 30 Km S Mirimiri	10.900000	-68.770000
Urama, 19 Km NW Urama, Km 40	10.620000	-68.400000
Urama, 19 Km NW Urama, Km 40	10.620000	-68.400000
Embalse De Guarico, 10 Km N Calabozo	9.020000	-67.430000
Embalse De Guarico, 10 Km N Calabozo	9.020000	-67.430000
Embalse De Guarico, 10 Km N Calabozo	9.020000	-67.430000
Estacion Biologica De Los Llanos, 14 Km SE Calabozo, Nr. Rio	8.820000	-67.370000
Estacion Biologica De Los Llanos, 14 Km SE Calabozo, Nr. Rio	8.820000	-67.370000
Rio Orituco, 10 km W of Chaguaramas	9.400000	-66.466667
San Jose De Tiznados, 52 Km NNW Calabozo	9.380000	-67.570000
Valera, 23 Km NNW Valera, Rio Motatan	9.530000	-70.670000
Valera, 23 Km NNW Valera, Rio Motatan	9.530000	-70.670000
El Rosario, 60 Km WNW Encontrados, Boca Del Rio De Oro	9.120000	-72.770000