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Abstract

We study an approximate controllability problem for the continuity equa-
tion and its application to constructing transport maps with normalizing
flows. Specifically, we construct time-dependent controls 𝜃 = (𝑤, 𝑎, 𝑏) in
the vector field 𝑥 ↦→ 𝑤(𝑎⊤𝑥 + 𝑏)+ to approximately transport a known
base density 𝜌B to a target density 𝜌*. The approximation error is mea-
sured in relative entropy, and 𝜃 are constructed piecewise constant, with
bounds on the number of switches being provided. Our main result relies
on an assumption on the relative tail decay of 𝜌* and 𝜌B, and provides hints
on characterizing the reachable space of the continuity equation in relative
entropy.

Keywords. Normalizing flows, approximate controllability, optimal trans-
port, Pinsker inequality.
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1 Introduction

By viewing discrete layers as a continuous time variable, the framework of neural
ODEs—proposed by [E17] and made feasible in computing practice by [HZRS16,
CRBD18]—has significantly influenced the study and application of neural net-
works. They are transparent objects: each (of many) data-point 𝑥 ∈ R𝑑 is propa-
gated through the flow of the Cauchy problem{︃

𝑥̇(𝑡) = 𝑣(𝑥(𝑡), 𝜃(𝑡)) for 𝑡 ∈ [0, 𝑇 ]
𝑥(0) = 𝑥;

(1.1)

the velocity field is, canonically, a perceptron

𝑣(𝑥, 𝜃) := 𝑤
(︁
𝑎⊤𝑥 + 𝑏

)︁
+

, (1.2)

with 𝜃 = (𝑤, 𝑎, 𝑏) ∈ R𝑑 ×R𝑑 ×R ∼= R2𝑑+1 being the parameters of the network.
(Natural generalizations of (1.2) can be devised, by replacing the inner product by
a matrix multiplication or discrete convolution for example.) We will consistently
assume that 𝜃(·) ∈ 𝐿∞(0, 𝑇 ;R2𝑑+1), ensuring the applicability of the Cauchy-
Lipschitz theorem. A neural network can thus be interpreted as the flow map
Φ𝑇

𝜃 : R𝑑 → R𝑑 of (1.1) at time 𝑡 = 𝑇 , yielding a representation 𝑥(𝑇 ) of each
data point 𝑥. This representation is then fed into a last layer that corresponds to
a classical machine learning task such as linear or logistic regression, in order to
predict the corresponding label.

Besides serving as a useful abstraction of discrete neural networks, this for-
malism has had tremendous impact on density estimation through the guise of
normalizing flows [GCB+18]. This is a popular methodology in machine learning
as evidenced by [PNR+21, KPB20, LCBH+22, ABVE23, GRVE22, PBHDE+23] and
the references therein, and goes back at least as [TVE10, TT13, DKB14, TW16].
To estimate an unknown probability density 𝜌*, of which samples are known,
one takes a simple initial probability density 𝜌B, and matches the solution of the
continuity (or conservative transport) equation⎧⎨⎩𝜕𝑡𝜌(𝑡, 𝑥) + div

(︁
𝑣(𝑥, 𝜃(𝑡))𝜌(𝑡, 𝑥)

)︁
= 0 in [0, 𝑇 ] × R𝑑

𝜌(0, 𝑥) = 𝜌B(𝑥) on R𝑑
(1.3)
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to the known samples. Specifically, given𝑛 iid samples𝑥1, . . . , 𝑥𝑛 of the unknown
density 𝜌*, one solves

max
𝜃

1
𝑛

𝑛∑︁
𝑖=1

log 𝜌B(Φ−𝑇
𝜃 (𝑥𝑖)) + log |det∇Φ−𝑇

𝜃 (𝑥𝑖)|. (1.4)

(We shall keep this presentation formal, and do not detail what constraints are
imposed on 𝜃 to ensure existence of maximizers.) This is the problem ofmaximum
(log-)likelihood estimation on the data. Here Φ−𝑇

𝜃 designates the end-time flow
map of (1.1) ran backwards in time, from 𝑇 to 0; the eponym "normalizing" then
stems from the fact that 𝜌B ismost often aGaussian probability density in practice.

If 𝜌* were to be known, then (1.4) is the empirical version of

max
𝜃

∫︁
𝜌*(𝑥)

(︁
log 𝜌B(Φ−𝑇

𝜃 (𝑥)) + log |det∇Φ−𝑇
𝜃 (𝑥)|

)︁
d𝑥. (1.5)

By the change of variable theorem, we have 𝜌B(Φ−𝑇
𝜃 (𝑥))|det∇Φ−𝑇

𝜃 (𝑥)| = 𝜌(𝑇, 𝑥),
and thus

(1.5) = max
𝜃

∫︁
𝜌*(𝑥) log 𝜌(𝑇, 𝑥) d𝑥

= min
𝜃

∫︁
𝜌*(𝑥) log 𝜌*(𝑥)

𝜌(𝑇, 𝑥) d𝑥. (1.6)

This is the question of minimizing the relative entropy between 𝜌* and 𝜌(𝑇 ),
or equivalently, the Kullback-Leibler divergence between the measures 𝜇* and
Φ𝑇

𝜃#𝜇B, henceforth denoted as

KL
(︁
𝜇* ‖ Φ𝑇

𝜃#𝜇B
)︁

:=
∫︁

𝜌*(𝑥) log 𝜌*(𝑥)
𝜌(𝑇, 𝑥) d𝑥,

where 𝜌* = d𝜇*
d𝑥 . It is a problem of general interest in Bayesian inference and

sampling—all we do here is to parametrize it by densities given as solutions to
(1.3).

Our focus in this paper is the feasibility problem associated to (1.6)—namely,
given an arbitrarily small 𝜀 > 0, we wish to find 𝜃 (depending on 𝜀) such that∫︁

𝜌*(𝑥) log 𝜌*(𝑥)
𝜌(𝑇, 𝑥) d𝑥 ⩽ 𝜀.

This constitutes an approximate controllability or approximate transportation prob-
lem, which is nonlinear in the controls 𝜃. Results for (1.3) are only known in
weaker1 topologies—such as 𝐿1, 𝐿2 or Wasserstein distances [RBZ23, RBZ24,
MRWZ24, ÁLHSZ24, GRRB24]—and, again inweaker topologies, also for continu-
ity equations with vector fields that are linear in the controls 𝜃 [ABBG+12, Rag24,

1see (1.8) and Remark 1.7.
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DMR19, SF23]. In addition to addressing the strong topology imposed by the rela-
tive entropy, we will require 𝜃 to be piecewise constant, with the aim of counting
the number of discontinuities (switches). This is of interest, as these switches can
be interpreted as analogous to discrete layers. In the setting of such 𝜃, given an ini-
tial density 𝜌B ∈ C0(R𝑑), (1.3) has a unique solution 𝜌 ∈ C0([0, 𝑇 ]; 𝐿1∩𝐿∞(R𝑑))
which is explicit and found by the method of characteristics (Lemma 2.3).

1.1 Main result

Our main result is as follows.

Theorem 1.1. Suppose 𝜇B = 𝒩 (𝑚B, ΣB) for an arbitrary mean 𝑚B ∈ R𝑑 and
covariance matrix ΣB ∈ S+

𝑑 (R). Let 𝜌* be any probability density on R𝑑 such that
𝜌* log 𝜌* ∈ 𝐿1(R𝑑) and for some 𝑀 > 0 and 𝜎∙ > 0,

𝜌*(𝑥) ⩽ 1
(2𝜋𝜎2

∙)
𝑑
2

𝑒
− ‖𝑥‖2

2𝜎2
∙ =: 𝜌∙(𝑥) for all ‖𝑥‖ ⩾ 𝑀. (1.7)

Then for any 𝑇 > 0 and 𝜀 > 0, there exists 𝜃 = (𝑤, 𝑎, 𝑏) : [0, 𝑇 ] → R2𝑑+1,
piecewise constant with finitely many switches, such that the corresponding solution
𝜌 to (1.3) with data 𝜌B = d𝜇B

d𝑥 satisfies∫︁
𝜌*(𝑥) log 𝜌*(𝑥)

𝜌(𝑇, 𝑥) d𝑥 ⩽ 𝜀.

Equivalently,
KL
(︁
𝜇* ‖ Φ𝑇

𝜃#𝜇B
)︁
⩽ 𝜀,

where 𝜌* = d𝜇*
d𝑥 and Φ𝑇

𝜃 : R𝑑 → R𝑑 is the flow map of (1.1) at time 𝑡 = 𝑇 .

We defer a detailed discussion on the setup and extensions of the above re-
sult to Section 1.2, and instead briefly motivate the proof. Our starting point is
[RBZ24], in which 𝐿1-approximate controllability is shown:

‖𝜌(𝑇 ) − 𝜌*‖𝐿1(R𝑑) =
⃒⃒⃒
Φ𝑇

𝜃#𝜇B − 𝜇*
⃒⃒⃒
TV

⩽ 𝜀.

The proof is entirely constructive and hinges on performing exact transportation
between piecewise constant approximations of the initial and target densities,
along with a continuity argument. This is achieved by moving and deforming
each segment of the approximated initial density to match the approximated tar-
get density using a piecewise constant control, 𝜃. Consequently, the number of
switches in 𝜃 corresponds to the number of segments in the approximation. In
higher dimensions, the proof extends by employing piecewise constant approx-
imations over grids, which result in an exponential number of cells (and thus
segments) in the dimension 𝑑. The argument proceeds via induction on the di-
mension. Since the number of cells grows exponentially with 𝑑, the number of
switches in 𝜃 similarly scales exponentially with 𝑑.
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One way to make use of [RBZ24] is to employ a functional inequality linking
KL and TV. A well-known example is the (Csizár-Kullback-)Pinsker inequality

|𝜇2 − 𝜇1|TV ⩽
√︁

2 · KL(𝜇2 ‖ 𝜇1) (1.8)

which holds for arbitrary probability measures 𝜇1, 𝜇2. While the inequality sign
in (1.8) is not in the desired direction so that we can straightforwardly apply it
to conclude, it turns out that it can be reversed under stronger conditions on the
tails of the measures (see [Ver14, Sas15, SV16]):

Lemma 1.2 (Reverse Pinsker inequality). Let 𝜇1, 𝜇2 be probability measures on
R𝑑 such that 𝜇2 ≪ 𝜇1. Then

KL(𝜇2 ‖ 𝜇1) ⩽ 1
2 ·

log
⃦⃦⃦

d𝜇2
d𝜇1

⃦⃦⃦
𝐿∞(R𝑑)

1 − 1⃦⃦⃦
d𝜇2
d𝜇1

⃦⃦⃦
𝐿∞(R𝑑)

· |𝜇2 − 𝜇1|TV. (1.9)

Recall that the Radon-Nikodym theorem only ensures that d𝜇2
d𝜇1

is measurable.
Yet for (1.9) to be non-void we need⃦⃦⃦⃦ d𝜇2

d𝜇1

⃦⃦⃦⃦
𝐿∞(R𝑑)

< +∞.

(Note that this quantity is always ⩾ 1 by definition.) Suppose instead that 𝜇1
and 𝜇2 are absolutely continuous with respect to the Lebesgue measure. We are
asking for ⃦⃦⃦⃦ d𝜇2

d𝜇1

⃦⃦⃦⃦
𝐿∞(R𝑑)

= esssup
𝑥∈R𝑑

𝜌2(𝑥)
𝜌1(𝑥) < +∞.

Therefore, to convert the TV approximation result of [RBZ24] to a KL one, we
also ought to ensure that

L(𝜌*, 𝜌(𝑇 )) := lim
‖𝑥‖→∞

𝜌*(𝑥)
𝜌(𝑇, 𝑥) < +∞, (1.10)

as well as 𝜌(𝑇, 𝑥) > 0 for all 𝑥 ∈ R𝑑. Ensuring this condition is in essence the
main novelty of our study. The complete proof can be found in Section 3.1.

At this point, we can also observe that KL is not symmetric with respect to its
inputs, whence Theorem 1.1 does not directly entail a result when the densities
are swapped. Interestingly, minimizing the reverse-KL is a problem of interest in
its own right and is referred to as variational inference (see [WJ08, BKM17, RM15,
JCP23] and the references therein for works on the topic). The following result
turns out to be a simple modification of the proof of Theorem 1.1.
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Theorem 1.3. Suppose 𝜇B = 𝒩 (𝑚B, ΣB) for an arbitrary mean 𝑚B ∈ R𝑑 and
covariance matrix ΣB ∈ S+

𝑑 (R). Let 𝜌* be any probability density on R𝑑 such that
𝜌* log 𝜌* ∈ 𝐿1(R𝑑) and for some 𝑀 > 0 and 𝜎∙ > 0,

𝜌*(𝑥) ⩾ 1
(2𝜋𝜎2

∙)
𝑑
2

𝑒
− ‖𝑥‖2

2𝜎2
∙ =: 𝜌∙(𝑥) for all ‖𝑥‖ ⩾ 𝑀. (1.11)

Then for any 𝑇 > 0 and 𝜀 > 0, there exists 𝜃 = (𝑤, 𝑎, 𝑏) : [0, 𝑇 ] → R2𝑑+1,
piecewise constant with finitely many switches, such that the corresponding solution
𝜌 to (1.3) satisfies ∫︁

𝜌(𝑇, 𝑥) log 𝜌(𝑇, 𝑥)
𝜌*(𝑥) d𝑥 ⩽ 𝜀.

Equivalently
KL
(︁
Φ𝑇

𝜃#𝜇B ‖ 𝜇*
)︁
⩽ 𝜀,

where 𝜌* = d𝜇*
d𝑥 and Φ𝑇

𝜃 : R𝑑 → R𝑑 is the flow map of (1.1) at time 𝑡 = 𝑇 .

We provide the proof in Section 3.2.

1.2 Discussion

We turn to commenting the various assumptionsmade in Theorems 1.1 and 1.3. In
Section 1.2.1, we discuss estimates on the number of switches (Remark 1.4), the
assumption of a Gaussian initial density (Remark 1.5) and the possible removal of
(1.7) (Proposition 1.6), considering different metrics (Remark 1.7), and estimation
from finitely many samples (Remark 1.8). In Section 1.2.2, we discuss changing
the model (1.2) to the one considered in [SF23], which is linear in 𝜃.

1.2.1 Generalities

Remark 1.4 (Number of switches). The controls 𝜃 from Theorem 1.1 have at most⌈︂2𝑅(𝜀)
ℎ(𝜀)

⌉︂𝑑

(𝑑 + 10) + 2𝑑

switches, where 𝑅(𝜀), ℎ(𝜀) > 0 are such that∫︁
[−𝑅(𝜀),𝑅(𝜀)]𝑑

𝜌B(𝑥) d𝑥 ∧
∫︁

[−𝑅(𝜀),𝑅(𝜀)]𝑑
𝜌*(𝑥) d𝑥 > 1 − 𝜀

and∫︁
[−𝑅(𝜀),𝑅(𝜀)]𝑑

⃒⃒⃒
𝜌ℎ𝜀

B (𝑥) − 𝜌B(𝑥)
⃒⃒⃒

d𝑥 ∨
∫︁

[−𝑅(𝜀),𝑅(𝜀)]𝑑

⃒⃒⃒
𝜌ℎ𝜀

* (𝑥) − 𝜌*(𝑥)
⃒⃒⃒

d𝑥 < 𝜀,

where 𝜌ℎ𝜀
B and 𝜌ℎ𝜀

* are piecewise constant interpolants of 𝜌B and 𝜌* on a regular grid
of the hypercube [−𝑅(𝜀), 𝑅(𝜀)]𝑑 with cells of spacing ℎ(𝜀). The exponential growth
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with 𝑑 of the number of switches is due to [RBZ24, Theorem 1], where the error scales
inversely with the cell-sizeof a multidimensional grid.

In Theorem 1.3, 𝜃 has at most⌈︂2𝑅(𝜀)
ℎ(𝜀)

⌉︂𝑑

(𝑑 + 10) + 2𝑑

switches, where 𝑅(𝜀) > 0 and ℎ(𝜀) > 0 are as in Theorem 1.1.

Remark 1.5 (Beyond Gaussians). Theorems 1.1 and 1.3 can be generalized beyond
the case of Gaussian initial densities. For Theorem 1.1, it suffices to replace (1.7) by
the following three conditions:

• The densities 𝜌B and 𝜌* have full support2. Thus, 𝜌B(𝑥) = 𝑒−𝑈B(𝑥) as well as
𝜌*(𝑥) = 𝑒−𝑈*(𝑥).

• There exists 𝑀* > 0 such that

𝑈*(𝑥) ≳ ‖𝑥‖ for all ‖𝑥‖ > 𝑀*. (1.12)

• Given 𝐴 ∈ M𝑑×𝑑(R) with spec(𝐴) ⊂ (0, +∞), there exists 𝜆𝐴 > 0 such that
the lower convex envelope, defined for all 𝑥 ∈ R𝑑 by

conv 𝑈*(𝑥) = sup
𝑈⩽𝑈*

𝑈convex

𝑈(𝑥)

satisfies

lim
‖𝑥‖→∞

conv 𝑈*(𝜆𝐴𝑥)
𝑈B(𝐴𝑥) = +∞. (1.13)

Similarly, to extend Theorem 1.3 we replace (1.11) with these conditions and instead
consider 𝑈∙ as the upper convex envelope. Furthermore, we invert the quotient in
(1.13). We provide the arguments of the proofs in Section 3.3.

To build on Remark 1.5, one can inquire whether (1.2)–(1.3) can be used to
couple two densities with tails of different nature. To this end, we suspect that
the globally Lipschitz character of (1.2) needs to be violated, in which case we
could obtain an affirmative answer as illustrated by the following partial result.
Proposition 1.6. Fix 𝑝 > 0. Consider{︃

𝜕𝑡𝜌(𝑡, 𝑥) + 𝜕𝑥((|𝑥| log 𝑥+)+𝜌(𝑡, 𝑥)) = 0 in R>0 × R
𝜌(0, 𝑥) = 𝜌B,𝑝(𝑥) in R

(1.14)

where 𝜌B,𝑝 ∈ C0(R𝑑) with 𝜌B,𝑝 ∝ exp(−|𝑥|𝑝). Then, for every 𝑞 ∈ (0, 𝑝] there
exist a time 𝑇𝑞 > 0 such that the unique weak solution 𝜌 to (1.14) satisfies

lim
𝑥→+∞

𝜌(𝑇𝑞, 𝑥)
𝜌B,𝑞(𝑥) < +∞.

2If 𝑡 ↦→ 𝜌*(𝑢𝑡) is compactly supported for some 𝑢 ∈ S𝑑−1, then lim|𝑡|→∞ 𝜌*(𝑡𝑢)/𝜌(𝑇, 𝑡𝑢) = 0
trivially. This means that we would only have to care about the directions in which the support is
unbounded.

7



Weprovide the proof in Section 3.4. Proposition 1.6 asserts that one can avoid
assuming (1.7) in Theorem 1.1 by sacrificing the globally Lipschitz character of the
nonlinearity and, in turn, use (1.3) to transport a Gaussian to a Laplace density,
for example.

Remark 1.7 (Metric). We discuss extensions of Theorem 1.1 to other divergences
which are common in statistics and information theory.

• Consider the squared Hellinger distance:

H2(𝜇1, 𝜇2) :=
∫︁ (︂√︁

𝜇1( d𝑥) −
√︁

𝜇2( d𝑥)
)︂2

.

One has
H2(𝜇1, 𝜇2) ⩽ |𝜇1 − 𝜇2|TV(R𝑑) ⩽

√
2 · H(𝜇1, 𝜇2).

Thus a direct application of [RBZ24, Theorem 1] gives

H2
(︁
Φ𝑇

𝜃#𝜇B, 𝜇*
)︁
⩽ 𝜀.

• More generally one could consider any 𝑓 -divergence between 𝜇1 ≪ 𝜇2. For a
convex function 𝑓 : (0, +∞) → R with 𝑓(1) = 0 and lim𝑡→0+ 𝑓(𝑡) ∈ [0, +∞],
the 𝑓 -divergence [PW24] is defined as

D𝑓 (𝜇1, 𝜇2) =
∫︁

𝑓

(︂ d𝜇1
d𝜇2

)︂
d𝜇2 (1.15)

For instance, 𝑓(𝑡) = 𝑡 ln 𝑡 corresponds to KL, 𝑓(𝑡) = |𝑡 − 1| corresponds to TV,
𝑓(𝑡) = (

√
𝑡 − 1)2 corresponds to H2, and 𝑓(𝑡) = |𝑡 − 1|2 corresponds to 𝜒2. From

(1.15) one sees that 𝑓1 ≲ 𝑓2 is equivalent to D𝑓1(𝜇1, 𝜇2) ≲ D𝑓2(𝜇1, 𝜇2) for all
𝜇1, 𝜇2 with 𝜇1 ≪ 𝜇2. Thus by virtue of Theorem 1.1 we deduce that for any 𝜀 > 0
and 𝑓 as above,

if sup
𝑡>0

𝑓(𝑡)
𝑡 ln 𝑡

< +∞ then D𝑓

(︁
𝜇* ‖ Φ𝑇

𝜃#𝜇B
)︁
⩽ 𝜀.

The condition is satisfied by 𝑓(𝑡) = |𝑡 − 1| and 𝑓(𝑡) = (
√

𝑡 − 1)2.

• One could also consider the Rényi entropy [PW24]: for any 𝜆 > 0 with 𝜆 ̸= 1,
the Rényi entropy of order 𝜆 between 𝜇1 ≪ 𝜇2, is defined as

D𝜆(𝜇1, 𝜇2) := 1
𝜆 − 1 log

∫︁
R𝑑

(︂ d𝜇1
d𝜇2

)︂𝜆

d𝜇2.

By continuity D1 = KL, and similarly D∞(𝜇1, 𝜇2) = log esssup d𝜇1
d𝜇2

. The latter
is known as worst-case regret. If 𝜇1 and 𝜇2 have continuous densities denoted 𝜌1
and 𝜌2 respectively, then D∞(𝜇1, 𝜇2) ⩽ 𝜀 implies

‖𝜌1 − 𝜌2‖𝐿∞(R𝑑) ≲ 𝜀. (1.16)
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Our methods do not extend to the case of worst-case regret since we rely on the
𝐿1(R𝑑)–approximation of densities of [RBZ24], which doesn’t imply (1.16). On
the other hand, for any fixed 𝜇1 ≪ 𝜇2, the map 𝜆 ∈ [0, +∞] ↦→ D𝜆(𝜇1, 𝜇2) is
non-decreasing [VEH14]. Theorem 1.1 thus implies that

D𝜆

(︁
𝜇* ‖ Φ𝑇

𝜃#𝜇B
)︁
⩽ 𝜀

if 0 ⩽ 𝜆 ⩽ 1.

Remark 1.8 (Statistics). In practice one only has access to 𝑛 samples of the target
density 𝜌*. Much like [RBZ24], we can use Theorem 1.1 to obtain sample complexity
bounds regarding the explicit construction of 𝜃. To this end, one first employs a
non-parametric estimator ̂︀𝜌*,𝑛 of 𝜌* using the 𝑛 samples (e.g., via a kernel density
estimator), and then uses Theorem 1.1 to approximate ̂︀𝜌*,𝑛 to any desired accuracy
𝜀. In doing so, sample complexity-wise, the specific construction of Theorem 1.1 can
do as well as any non-parametric estimator of 𝜌*, but at the additional cost that is
the number of switches, which may be exponential in the dimension 𝑑.

1.2.2 Linear vector field

The related work [SF23] considers the simpler vector field which is linear in 𝜃:

𝑣(𝑥, 𝜃) = 𝑤σ(𝑥) + 𝑏, 𝜃 = (𝑤, 𝑏) ∈ M𝑑×𝑑(R) × R𝑑, (1.17)

with σ : R → R assumed Lipschitz and smooth, and defined component-wise.
When σ(𝑥) = (𝑥)+, (1.17) cannot yield (1.10) in general, because σ|R⩽0 = 0.

Indeed for𝑅 > 0 large enough (depending on 𝑏) and 𝑥 ∈ (R<0)𝑑∩{𝑥 : ‖𝑥‖ ⩾ 𝑅},
the solution to (1.3) reads

𝜌(𝑡, 𝑥) = 𝜌B

(︂
𝑥 −

∫︁ 𝑡

0
𝑏(𝑠) d𝑠

)︂
, for 𝑥 ∈ (R<0)𝑑 ∩ {𝑥 : ‖𝑥‖ ⩾ 𝑅}.

For 𝑥 away from the origin, 𝜌(𝑡, 𝑥) is simply a translation of the initial data 𝜌𝐵 .
Thus, the tails will not be generally be of the same order. Much like (1.2) how-
ever (see [LLS22, RBZ23, CLLS23]), one can use (1.1)–(1.17) to transport an em-
pirical measure 𝜇0 = 1

𝑛

∑︀
𝑖∈[𝑛] 𝛿𝑥(𝑖) to a target 𝜇1 = 1

𝑛

∑︀
𝑖∈[𝑛] 𝛿𝑦(𝑖) . In the case

where σ is smooth, this can be done by using techniques from geometric control
theory based on computing iterated Lie brackets, in the spirit of the celebrated
Chow-Rashevskii theorem [AS22, CLT20, Sca23, TG22, EGBO22]. The result is
not known for (1.17) with σ(𝑥) = (𝑥)+.

We consider (︁
𝑥(𝑖), 𝑦(𝑖)

)︁
∈ R𝑑 × R𝑑, for 𝑖 ∈ [𝑛],

and, to avoid unnecessary technical details, work under the benign assumption
that 𝑥(𝑖) ̸= 𝑥(𝑗) and 𝑦(𝑖) ̸= 𝑦(𝑗) for 𝑖 ̸= 𝑗. The following holds.
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Proposition 1.9. Let 𝑇 > 0 and suppose σ(𝑥) ≡ (𝑥)+ in (1.17). Then there exists
𝜃 = (𝑤, 𝑏) : [0, 𝑇 ] → M𝑑×𝑑(R) × R𝑑, piecewise constant with at most 4𝑛 + 2
switches, such that the flow map Φ𝑡

𝜃 : R𝑑 → R𝑑 (𝑡 ∈ [0, 𝑇 ]) of (1.17) satisfies

Φ𝑇
𝜃

(︁
𝑥(𝑖)

)︁
= 𝑦(𝑖), for all 𝑖 ∈ [𝑛].

The proof may be found in Section 3.5 and relies on several modifications
of that presented in [RBZ23]. One may then ask at what level (1.1) differs from
(1.17). As it turns out, one important deviation is in the stability of 𝜃 with respect
to perturbations in the data (estimate (1.19)). This can be derived easily in the
context of (1.1) as done in [BP24]. In the context of (1.17) however, the most we
are able to say is the following.
Proposition 1.10. Suppose 𝑇 > 0, σ ∈ C0(R) and 𝑑 ⩾ 𝑛. Let 𝑦(1), . . . , 𝑦(𝑛) ∈ R𝑑

be such that
span

{︁
σ(𝑦(1)), . . . ,σ(𝑦(𝑛))

}︁
= R𝑛. (1.18)

Then there exist 𝜀 > 0 and 𝐶 > 0 such that for all 𝑥(1), . . . , 𝑥(𝑛) ∈ R𝑑 with

max
𝑖∈[𝑛]

‖𝑥(𝑖) − 𝑦(𝑖)‖1 ⩽ 𝜀,

there exist 𝑤 ∈ C0([0, 𝑇 ];M𝑑×𝑑(R)) and (𝑥𝑖(·))𝑖∈[𝑛] ∈ C1([0, 𝑇 ];R𝑛𝑑) satisfying⎧⎪⎪⎨⎪⎪⎩
𝑥̇𝑖(𝑡) = 𝑤(𝑡)σ(𝑥𝑖(𝑡)) for 𝑡 ∈ [0, 𝑇 ]
𝑥𝑖(0) = 𝑥(𝑖)

𝑥𝑖(𝑇 ) = 𝑦(𝑖)

for all 𝑖 ∈ [𝑛]. Moreover,

‖𝑤‖C0([0,𝑇 ];M𝑑×𝑑(R)) ⩽
𝐶

𝑇
max
𝑖∈[𝑛]

‖𝑥(𝑖) − 𝑦(𝑖)‖1. (1.19)

Remark 1.11 (Genericity). Suppose σ : R → R is Lipschitz and strictly increasing,
and 𝑑 ⩾ 𝑛. Then (1.18) holds with probability 1 for 𝑛 random points 𝑦(𝑖) sampled iid
from any probability density 𝜌 = d𝜇

d𝑥 on R𝑑. (For instance, this holds if σ(·) ≡ (·)+
and 𝜌 is supported on (R>0)𝑑.)

This is seen by induction on the number of points 𝑛. The base case 𝑛 = 1 trivially
holds since for the element-wise extension σ : R𝑑 → R𝑑 of σ, σ#𝜇 preserves the
zero-measure sets of 𝜇. Suppose that σ(𝑦(1)), . . . ,σ(𝑦(𝑛)) are almost surely linearly
independent for some 1 ⩽ 𝑛 < 𝑑. By absolute continuity of σ#𝜇, the subspace
spanned by these points has measure zero, so the next vector σ(𝑦(𝑛+1)) lies in the
complement with probability 1, as desired.
Remark 1.12. • Extending Proposition 1.10 to account for a bias 𝑏(𝑡) as in (1.17) is
straightforward: we simply write 𝑧̇(𝑡) = 𝑤(𝑡)σ(𝑧(𝑡)) where

𝑧 :=
[︃
𝑥
1

]︃
∈ R𝑑+1 and 𝑤 :=

[︃
𝑤 𝑏
0 0

]︃
∈ M(𝑑+1)×(𝑑+1)(R).

We now rather need 𝑑 ⩾ 𝑛 − 1.
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• With regard to Remark 1.11, when σ(·) ≡ (·)+ and 𝜌 is supported onR𝑑, one could
simply translate the inputs to (R>0)𝑑 using 𝑏(𝑡), but then a bound on 𝑏(𝑡) as in
(1.19) cannot hold.

1.3 Notation

We use [𝑛] := {1, . . . , 𝑛}, 𝑥 ∧ 𝑦 = min{𝑥, 𝑦}, 𝑥 ∨ 𝑦 = max{𝑥, 𝑦}. We use
𝑓(𝑥) ≲ 𝑔(𝑥) if there exists a finite constant 𝐶 > 0 such that 𝑓(𝑥) ⩽ 𝐶𝑔(𝑥), and
𝑓(𝑥) ∝ 𝑔(𝑥) if 𝑓(𝑥) = 𝐶𝑔(𝑥).

We denote byS+
𝑑 (R) the space of positive definite matrices. OnM𝑑×𝑑(R), we

consider the partial order 𝑃 ≺ 𝑄 iff 𝑄 − 𝑃 is positive definite. We also alternate
between 𝑎⊤𝑏 and ⟨𝑎, 𝑏⟩ depending on presentational convenience.

Given two measures 𝜇, 𝜈 on R𝑑, we write 𝜇 ≪ 𝜈 to say that 𝜇 is absolutely
continuous with respect to 𝜈. If T : R𝑑 → R𝑑 is measurable, then T#𝜇 denotes
the pushforward of 𝜇, defined by T#𝜇(𝐴) = 𝜇(T−1(𝐴)) for any measurable 𝐴.
The Gaussian measure with mean 𝑚 ∈ R𝑑 and covariance matrix Σ ∈ S+

𝑑 (R) is
denoted by 𝒩 (𝑚, Σ). Finally we write Z𝜇 = 𝜇(R𝑑).

Funding

This work was initiated during AÁ and DRB’s visit to the Department of Math-
ematics at MIT in the summer of 2023. AÁ has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 777822. DRB acknowledges “France 2030”
support managed by the Agence Nationale de la Recherche, under the reference
ANR-23-PEIA-0004.

2 Preliminary lemmas

Webeginwith a brief discussion onwhen L(𝜌*, 𝜌(𝑇 )) = lim‖𝑥‖→∞ 𝜌*(𝑥)/𝜌(𝑇, 𝑥)
can be made finite when 𝑑 = 1, purely for illustrative purposes. Recall

Lemma 2.1. Take 𝑇 > 0, a probability density 𝜌B ∈ C0(R), and

(𝑤, 𝑎, 𝑏)(𝑡) =
𝐾∑︁

𝑘=1
(𝑤𝑘, 𝑎𝑘, 𝑏𝑘)1[𝑡𝑘−1,𝑡𝑘)(𝑡) for 𝑡 ∈ [0, 𝑇 ],

where 𝑤𝑘, 𝑎𝑘, 𝑏𝑘 ∈ R with 𝑎𝑘 ̸= 0 and 0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝐾 = 𝑇 . Then the
unique solution to{︃

𝜕𝑡𝜌(𝑡, 𝑥) + 𝜕𝑥 (𝑤(𝑡)(𝑎(𝑡)𝑥 + 𝑏(𝑡))+𝜌(𝑡, 𝑥)) = 0 on [0, 𝑇 ] × R,

𝜌(0, 𝑥) = 𝜌B(𝑥) on R
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is given by

𝜌(𝑡, 𝑥) = 𝜌B(𝑥)1{︁
·⩽− 𝑏1

𝑎1

}︁(𝑥)

+ 𝑒−𝑤1𝑎1𝑡𝜌B

(︂(︂
𝑥 + 𝑏1

𝑎1

)︂
𝑒−𝑤1𝑎1𝑡 − 𝑏1

𝑎1

)︂
1{︁

·>− 𝑏1
𝑎1

}︁(𝑥)

for 𝑡 ∈ [0, 𝑡1] and

𝜌(𝑡, 𝑥) = 𝜌(𝑡𝑘−1, 𝑥)1{︁
·⩽− 𝑏𝑘

𝑎𝑘

}︁(𝑥)

+ 𝑒−𝑤𝑘𝑎𝑘𝑡𝜌

(︂
𝑡𝑘−1,

(︂
𝑥 + 𝑏𝑘

𝑎𝑘

)︂
𝑒−𝑤𝑘𝑎𝑘𝑡 − 𝑏𝑘

𝑎𝑘

)︂
1{︁

·>− 𝑏𝑘
𝑎𝑘

}︁(𝑥)

for 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘], for all 𝑥 ∈ R.

Proof. The derivation is straightforward: for 𝑡 ∈ [0, 𝑡1), 𝜌(𝑡, ·) has a single dis-
continuity at 𝑥 = −𝑏1/𝑎1, and clearly 𝜌(𝑡, 𝑥) = 𝜌B(𝑥) for 𝑥 ⩽ −𝑏1/𝑎1. In the
case 𝑥 > −𝑏1/𝑎1, note that 𝑡 ↦→ 𝜌(𝑡, 𝑥(𝑡)) is constant along the characteristics
which solve 𝑥̇(𝑡) = 𝑤1(𝑎1𝑥(𝑡)+𝑏1), whereupon we deduce the first formula. The
computation is easily repeated for 𝑘 ⩾ 1.

Remark 2.2. If 𝑎𝑘 = 0, then 𝜌(𝑡, 𝑥) = 𝜌(𝑡𝑘−1, 𝑥−𝑤𝑘(𝑏𝑘)+𝑡) for all 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘]
and 𝑥 ∈ R, again by the method of characteristics.

From Lemma 2.1 we readily gather that

𝜌(𝑇, 𝑥) =
{︃

𝛼+𝜌B(𝛼+𝑥 + 𝛽+), if 𝑥 ⩾ 𝑀,

𝛼−𝜌B(𝛼−𝑥 + 𝛽−), if 𝑥 ⩽ −𝑀

for some 𝛼± > 0, 𝛽± ∈ R and 𝑀 > 0, all explicitly depending on (𝑤, 𝑎, 𝑏)—in
other words, one can choose 𝛼±, 𝛽± by choosing (𝑤, 𝑎, 𝑏). Now consider 𝜌B and
𝜌* in Gibbs form:

𝜌B(𝑥) ∝ 𝑒−𝑈B(𝑥), 𝜌*(𝑥) ∝ 𝑒−𝑈*(𝑥),

with 𝑈B, 𝑈* ∈ C0(R;R⩾0). We see that

𝜌*(𝑥)
𝜌(𝑇, 𝑥) ∝ exp

(︀
𝑈B(𝛼±𝑥 + 𝛽±) − 𝑈*(𝑥)

)︀
for all ‖𝑥‖ ⩾ 𝑀 . So L(𝜌*, 𝜌(𝑇 )) defined in (1.10) is finite if and only if

lim
‖𝑥‖→∞

𝑈B(𝛼±𝑥 + 𝛽±) − 𝑈*(𝑥) ∈ [−∞, +∞). (2.1)

One sees the constraints that (2.1) entails. For instance, one can consider as input
the Laplace distribution—corresponding to 𝑈B(𝑥) = |𝑥 − 𝑚|/𝜎 with parameters
𝑚B ∈ R and 𝜎B > 0—, and as target the Gaussian—corresponding to 𝑈*(𝑥) =
(𝑥 − 𝑚*)2/2𝜎2

* with 𝑚* ∈ R and 𝜎* > 0—, but not the converse.
Lemma 2.1 can be generalized to the case 𝑑 ⩾ 1 without difficulty.
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Lemma 2.3. Take 𝑇 > 0, a probability density 𝜌B ∈ C0(R𝑑), and

(𝑤, 𝑎, 𝑏)(𝑡) =
𝐾∑︁

𝑘=1
(𝑤𝑘, 𝑎𝑘, 𝑏𝑘)1[𝑡𝑘−1,𝑡𝑘)(𝑡) for 𝑡 ∈ [0, 𝑇 ],

where 𝑤𝑘, 𝑎𝑘 ∈ R𝑑, 𝑏𝑘 ∈ R, and 0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝐾 = 𝑇 . Then the unique
solution to⎧⎪⎨⎪⎩𝜕𝑡𝜌(𝑡, 𝑥) + div

(︂
𝑤(𝑡)

(︁
𝑎(𝑡)⊤𝑥 + 𝑏(𝑡)

)︁
+

𝜌(𝑡, 𝑥)
)︂

= 0 on [0, 𝑇 ] × R𝑑,

𝜌(0, 𝑥) = 𝜌B(𝑥) on R𝑑
(2.2)

is given by

𝜌(𝑡, 𝑥) = 𝜌(𝑡𝑘−1, 𝑥)1{︀
⟨𝑎𝑘,·⟩+𝑏𝑘⩽0

}︀(𝑥)

+ 𝑒−𝑤⊤
𝑘 𝑎𝑘(𝑡−𝑡𝑘−1)𝜌 (𝑡𝑘−1, A𝑘(𝑥)) 1{︀

⟨𝑎𝑘,·⟩+𝑏𝑘>0
}︀(𝑥)

if 𝑤⊤
𝑘 𝑎𝑘 ̸= 0, where

A𝑘(𝑥) = 𝑒−(𝑡−𝑡𝑘−1)𝑤𝑘𝑎⊤
𝑘 𝑥 − 𝑏𝑘𝑤⊤

𝑘 𝑎𝑘

(︁
1 − 𝑒−(𝑡−𝑡𝑘−1)𝑤⊤

𝑘 𝑎𝑘

)︁
𝑤𝑘,

and

𝜌(𝑡, 𝑥) = 𝜌(𝑡𝑘−1, 𝑥)1{︀
⟨𝑎𝑘,·⟩+𝑏𝑘⩽0

}︀(𝑥) + 𝜌(𝑡𝑘−1, B𝑘(𝑥))1{︀
⟨𝑎𝑘,·⟩+𝑏𝑘>0

}︀(𝑥)

if ⟨𝑤𝑘, 𝑎𝑘⟩ = 0, where

B𝑘(𝑥) = 𝑒−(𝑡−𝑡𝑘−1)𝑤𝑘𝑎⊤
𝑘 𝑥 − 𝑒−(𝑡−𝑡𝑘−1)𝑤𝑘𝑎⊤

𝑘 (𝑡 − 𝑡𝑘−1)𝑏𝑘𝑤𝑘,

for all 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘] and for all 𝑥 ∈ R𝑑.

Proof. We again start by 𝑡 ∈ [0, 𝑡1). For 𝑥 ∈ {⟨𝑎1, ·⟩ + 𝑏1 ⩽ 0}, we clearly have
𝜌(𝑡, 𝑥) = 𝜌B(𝑥). On {⟨𝑎1, ·⟩ + 𝑏1 > 0}, 𝑡 ↦→ 𝜌(𝑡, 𝑥(𝑡)) is constant along the
characteristic surfaces parametrized by solutions to

𝑥̇(𝑡) = 𝑤1𝑎⊤
1 𝑥(𝑡) + 𝑤1𝑏1.

Suppose 𝑤⊤
1 𝑎1 ̸= 0. Since

𝑒𝑡𝑤1𝑎⊤
1 = 𝐼𝑑 + (𝑒𝑡𝑤⊤

1 𝑎1 − 1)
𝑤⊤

1 𝑎1
𝑤1𝑎⊤

1 ,

we have

𝑒𝑡𝑤1𝑎⊤
1

(︂∫︁ 𝑡

0
𝑒−𝑠𝑤1𝑎⊤

1 d𝑠

)︂
𝑤1𝑏1

= 𝑒𝑡𝑤1𝑎⊤
1 𝑏1

(︃
𝑡 +

(︃
1 − 𝑒−𝑡𝑤⊤

1 𝑎1 − 𝑡

𝑤⊤
1 𝑎1

)︃
𝑤1𝑎⊤

1

)︃
𝑤1

= 𝑏1⟨𝑤1, 𝑎1⟩
(︁
1 − 𝑒−𝑡⟨𝑤1,𝑎1⟩

)︁
𝑒𝑡𝑤1𝑎⊤

1 𝑤1.
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Thus
𝑥(𝑡) = 𝑒𝑡𝑤1𝑎⊤

1 𝑥(0) + 𝑏1𝑤⊤
1 𝑎1

(︁
1 − 𝑒−𝑡𝑤⊤

1 𝑎1
)︁

𝑒𝑡𝑤1𝑎⊤
1 𝑤1,

and so
𝜌(𝑡, 𝑥) = 𝜌B

(︁
𝑒−𝑡𝑤1𝑎⊤

1 𝑥 − 𝑏1𝑤⊤
1 𝑎1

(︁
1 − 𝑒−𝑡𝑤⊤

1 𝑎1
)︁

𝑤1
)︁

for 𝑥 ∈ {⟨𝑎1, ·⟩ + 𝑏1 > 0} when 𝑤⊤
1 𝑎1 ̸= 0.

Now suppose 𝑤⊤
1 𝑎1 = 0. Then 𝑤1𝑎⊤

1 is nilpotent, so 𝑒𝑡𝑤1𝑎⊤
1 = 𝐼𝑑 + 𝑡𝑤1𝑎⊤

1 .
Thus

𝑥(𝑡) = 𝑒𝑡𝑤1𝑎⊤
1 𝑥(0) + 𝑡𝑏1𝑤1,

and so
𝜌(𝑡, 𝑥) = 𝜌B

(︁
𝑒−𝑡𝑤1𝑎⊤

1 𝑥 − 𝑒−𝑡𝑤1𝑎⊤
1 𝑡𝑏1𝑤1

)︁
for 𝑥 ∈ {⟨𝑎1, ·⟩ + 𝑏1 > 0}.

The computations are easily repeated for 𝑘 ⩾ 1.

The following comparison principle will be useful.

Lemma 2.4. Let 𝜌1 and 𝜌2 be two solutions to (2.2) corresponding to the same 𝜃,
and to data 𝜌1(0, ·) and 𝜌2(0, ·) respectively. Suppose 𝜌1(0, 𝑥) < 𝜌2(0, 𝑥) for all
𝑥 ∈ R𝑑. Then 𝜌1(𝑡, 𝑥) < 𝜌2(𝑡, 𝑥) for all 𝑡 ∈ [0, 𝑇 ] and 𝑥 ∈ R𝑑.

Proof. Set 𝑓(𝑡, 𝑥) := 𝜌2(𝑡, 𝑥) − 𝜌1(𝑡, 𝑥) and 𝑣(𝑡, 𝑥) := 𝑤(𝑡)(𝑎(𝑡)⊤𝑥 + 𝑏(𝑡))+.
Along the characteristics 𝑥̇(𝑡) = 𝑣(𝑡, 𝑥(𝑡)),

d
d𝑡

𝑓(𝑡, 𝑥(𝑡)) = 𝜕𝑡𝑓(𝑡, 𝑥(𝑡)) + ∇𝑥𝑓(𝑡, 𝑥(𝑡))⊤𝑣(𝑡, 𝑥(𝑡))

= −𝑓(𝑡, 𝑥(𝑡)) div𝑥𝑣(𝑡, 𝑥(𝑡)).

Thus
𝑓(𝑡, 𝑥(𝑡)) = 𝑓(0, 𝑥(0)) exp

(︂
−
∫︁ 𝑡

0
div𝑥𝑣(𝑠, 𝑥(𝑠)) d𝑠

)︂
for all 𝑡 ∈ [0, 𝑇 ] and 𝑥(0) ∈ R. We may conclude.

We also use the following elementary lemma.

Lemma 2.5. Let 𝜌1 and 𝜌2 be two nonnegative and integrable functions that are
proportional to Gaussian densities with covariance matrices Σ1 and Σ2 respectively.
Suppose ⟨

(Σ−1
2 − Σ−1

1 )𝑒𝑖, 𝑒𝑖

⟩
< 0, for some 𝑖 ∈ [𝑑].

Then, for any 𝑀 > 0, there exists 𝑀(𝑖) > 0 such that

𝜌2(𝑥) > 𝜌1(𝑥) in
{︁

𝑥 ∈ R𝑑 : |𝑥𝑖| > 𝑀(𝑖) and |𝑥𝑗 | < 𝑀 for 𝑗 ̸= 𝑖
}︁

.

If Σ−1
2 ≺ Σ−1

1 , then there exists some 𝑀 > 0 such that

𝜌2(𝑥) > 𝜌1(𝑥) for all ‖𝑥‖ > 𝑀.
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Proof. Write
𝜌2(𝑥)
𝜌1(𝑥) ∝ 𝑒− 1

2 ⟨(Σ−1
2 −Σ−1

1 )𝑥,𝑥⟩+𝑂(‖𝑥‖).

The proof follows.

3 Proofs

3.1 Proof of Theorem 1.1

Proof of Theorem 1.1. Fix 𝜀0 > 0; 𝜃 = (𝑤, 𝑎, 𝑏) takes the form

𝜃(𝑡) = 𝜃(𝑡)1[0, 𝑇
2 ](𝑡) +

2𝑑∑︁
𝑘=1

𝜃𝑘1[𝑇𝑘−1,𝑇𝑘](𝑡),

where 𝑇𝑘 := 𝑇
2 + 𝑘𝑇

4𝑑 , and 𝜃 is piecewise constant with at most
⌈︁

2𝑅(𝜀)
ℎ(𝜀)

⌉︁𝑑
(𝑑 + 10)

switches and such that ⃦⃦⃦⃦
𝜌

(︂
𝑇

2

)︂
− 𝜌*

⃦⃦⃦⃦
𝐿1(R𝑑)

⩽ 𝜀0. (3.1)

Such a 𝜃 exists by virtue of [RBZ24, Theorem 1]. We seek to construct 𝜃1, . . . , 𝜃2𝑑

so that
L(𝜌*, 𝜌(𝑇 )) = lim

‖𝑥‖→+∞

𝜌*(𝑥)
𝜌(𝑇, 𝑥) = 0.

Step 1.

Thanks to Lemma 2.3, there exists a finite 𝑛 ⩾ 1, as well as polyhedra 𝑃𝑖 ⊂ R𝑑

and coefficients (𝛼𝑖, 𝐴𝑖, 𝛽𝑖) ∈ R>0 × M𝑑×𝑑(R) × R with spec(𝐴𝑖) ⊂ (0, +∞)
for 𝑖 ∈ [𝑛], such that

𝜌

(︂
𝑇

2 , 𝑥

)︂
=

𝑛∑︁
𝑖=1

𝛼𝑖𝜌B(𝐴𝑖𝑥 + 𝛽𝑖)1𝑃𝑖(𝑥) for all 𝑥 ∈ R𝑑.

Moreover, the polyhedra 𝑃𝑖 form a partition of R𝑑, which implies 𝜌 (𝑇/2) > 0.
Each 𝜌𝑖 := 𝛼𝑖𝜌B(𝐴𝑖 · +𝛽𝑖) is a Gaussian function on R𝑑, and the Gaussian prob-
ability density Z−1

𝑖 𝜌𝑖 has covariance matrix

Σ𝑖 := 𝐴−1
𝑖 ΣB

(︁
𝐴−1

𝑖

)︁⊤
.

Take 0 < 𝜎2 < min𝑖∈[𝑛] spec(Σ𝑖) and define

𝜌(𝑥) := 𝛼 exp
(︃

−‖𝑥‖2

2𝜎2

)︃
(3.2)
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for 𝑥 ∈ R𝑑, where 𝛼 > 0 is a constant to be specified. Then Σ−1
𝑖 ≺ 𝐼𝑑/𝜎2 for all

𝑖 ∈ [𝑛], so by virtue of Lemma 2.5, there exists 𝑀(𝑖) > 0 such that

𝜌(𝑥) < 𝜌𝑖(𝑥) for all ‖𝑥‖ > 𝑀(𝑖).

Taking 𝑀 ⩾ 𝑀 ∨ max𝑖∈[𝑛] 𝑀(𝑖) it follows that (1.7) and 𝜌(𝑥) < 𝜌 (𝑇/2, 𝑥) hold
for all ‖𝑥‖ > 𝑀 . Choosing 𝛼 small enough, we can deduce

𝜌(𝑥) < 𝜌

(︂
𝑇

2 , 𝑥

)︂
for all 𝑥 ∈ R𝑑, (3.3)

and 𝑀 large enough to deduce∫︁
[−𝑀,𝑀 ]𝑑

𝜌*(𝑥) d𝑥 ∧
∫︁

[−𝑀,𝑀 ]𝑑
𝜌

(︂
𝑇

2 , 𝑥

)︂
d𝑥 > 1 − 𝜀0. (3.4)

Step 2.

We will choose 𝜃1, . . . , 𝜃2𝑑 so that

𝜌∙(𝑥) < 𝜌(𝑇, 𝑥), in R𝑑 ∖ [−𝑀, 𝑀 ]𝑑, (3.5)

for some larger 𝑀 ⩾ 𝑀 , where 𝜌(𝑡, ·) is the unique solution to (1.3) in [𝑇/2, 𝑇 ]
with data 𝜌 (𝑇/2, ·) = 𝜌(·). To this end, take

𝜃2𝑘−1 := (𝜔𝑒𝑘, 𝑒𝑘, −𝑀),
𝜃2𝑘 := (−𝜔𝑒𝑘, −𝑒𝑘, −𝑀),

where 𝜔 > 0 is to be chosen, for 𝑘 ∈ [𝑑]. By virtue of Lemma 2.3, the solution
reads

𝜌(𝑡, 𝑥) =𝜌(𝑇2𝑘−2, 𝑥)1{𝑥 : 𝑥𝑘⩽𝑀}(𝑥)

+ 𝑒−𝜔(𝑡−𝑇2𝑘−2)𝜌 (𝑇2𝑘−2, A2𝑘−2(𝑡, 𝑥)) 1{𝑥 : 𝑥𝑘>𝑀}(𝑥)

if 𝑡 ∈ [𝑇2𝑘−2, 𝑇2𝑘−1], and

𝜌(𝑡, 𝑥) =𝜌(𝑇2𝑘−1, 𝑥)1{𝑥 : 𝑥𝑘⩾−𝑀}(𝑥)

+ 𝑒−𝜔(𝑡−𝑇2𝑘−1)𝜌 (𝑇2𝑘−1, A2𝑘−1(𝑡, 𝑥)) 1{𝑥 : 𝑥𝑘<−𝑀}(𝑥)

if 𝑡 ∈ [𝑇2𝑘−1, 𝑇2𝑘], where

A𝑗(𝑡, 𝑥) = 𝑒−𝜔(𝑡−𝑇𝑗)𝑒𝑘𝑒⊤
𝑘 𝑥 + (−1)𝑗𝑀𝜔2

(︁
1 − 𝑒−𝜔(𝑡−𝑇𝑗)

)︁
𝑒𝑘

for 𝑗 ∈ {2𝑘 − 2, 2𝑘 − 1}, for all 𝑘 ∈ [𝑑] and 𝑥 ∈ R𝑑. It ensues that

𝜌(𝑇, 𝑥) =𝜌

(︂
𝑇

2 , 𝑥

)︂
1[−𝑀,𝑀 ]𝑑(𝑥)

+
𝑑∑︁

𝑘=1

1∑︁
ℓ=0

𝜌𝑘ℓ
1 (𝑥)1S𝑘ℓ

(𝑥) +
∑︁

𝑞∈{0,1}𝑑

𝜌𝑞
2(𝑥)1Q𝑞 (𝑥), (3.6)
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where 𝜌𝑘ℓ
1 , 𝜌𝑘

2 are Gaussian functions on R𝑑, and Q𝑞 , S𝑘ℓ are defined by

Q𝑞 :=
{︁

𝑥 ∈ R𝑑 : (−1)𝑞𝑗 𝑥𝑗 > 𝑀 for all 𝑗 ∈ [𝑑]
}︁

and
S𝑘ℓ :=

{︁
(−1)ℓ𝑥𝑘 > 𝑀

}︁
∖

⋃︁
𝑞∈{0,1}𝑑

Q𝑞.

The Gaussian density Z−1𝜌𝑘ℓ
1 has covariance

Σ1,𝑘ℓ =
(︁
𝑒− 𝜔𝑇

4𝑑
𝑒𝑘𝑒⊤

𝑘

)︁−1
𝜎2𝐼𝑑

(︂(︁
𝑒− 𝜔𝑇

4𝑑
𝑒𝑘𝑒⊤

𝑘

)︁−1
)︂⊤

= 𝜎2
(︁
𝐼𝑑 + (𝑒− 𝜔𝑇

4𝑑 − 1)𝑒𝑘𝑒⊤
𝑘

)︁−1 (︁
𝐼𝑑 + (𝑒− 𝜔𝑇

4𝑑 − 1)𝑒𝑘𝑒⊤
𝑘

)︁−1

= 𝜎2
(︁
𝐼𝑑 + (𝑒

𝜔𝑇
4𝑑 − 1)𝑒𝑘𝑒⊤

𝑘

)︁ (︁
𝐼𝑑 + (𝑒

𝜔𝑇
4𝑑 − 1)𝑒𝑘𝑒⊤

𝑘

)︁
= 𝜎2

(︁
𝐼𝑑 + (𝑒

𝜔𝑇
2𝑑 − 1)𝑒𝑘𝑒⊤

𝑘

)︁
,

Taking

𝜔 >
2𝑑

𝑇
log

(︃
𝜎2

∙
𝜎2

)︃
, (3.7)

we find for each 𝑘 ∈ [𝑑], ℓ ∈ {0, 1}, that

⟨(︂
Σ−1

1,𝑘ℓ − 1
𝜎2

∙
𝐼𝑑

)︂
𝑒𝑘, 𝑒𝑘

⟩
= 𝑒− 𝜔𝑇

2𝑑

𝜎2 − 1
𝜎2

∙
< 0.

A similar computation for the covariance of Z−1𝜌𝑞
2 gives Σ2,𝑞 = 𝜎2𝑒

𝜔𝑇
2𝑑 𝐼𝑑. We

see that Σ−1
2,𝑞 ≺ 𝐼𝑑/𝜎2

∙ for all 𝑞 ∈ {0, 1}𝑑 when 𝜔 satisfies (3.7). By Lemma 2.5
there exists some 𝑀(0) ⩾ 𝑀 such that

𝜌∙(𝑥) < 𝜌𝑞
2 (𝑥) for all ‖𝑥‖ > 𝑀(0),

for 𝑞 ∈ {0, 1}𝑑. Also by Lemma 2.5, for all 𝑘 ∈ [𝑑] and ℓ ∈ {0, 1} there exists
𝑀(𝑘) > 0 such that

𝜌∙(𝑥) < 𝜌𝑘ℓ
1 (𝑥) in

{︁
𝑥 ∈ R𝑑 : |𝑥𝑘| > 𝑀(𝑘) and |𝑥𝑗 | < 𝑀(0) for 𝑗 ̸= 𝑘

}︁
.

Thanks to (3.6), taking 𝑀 := max𝑘∈{0,...,𝑑} 𝑀(𝑘) ensures (3.5).

Step 3.

Combining (1.7), (3.3), (3.5) and Lemma 2.4, we find

𝜌*(𝑥) < 𝜌(𝑇, 𝑥), in R𝑑 ∖ [−𝑀, 𝑀 ]𝑑.

17



In particular, this implies L(𝜌*, 𝜌(𝑇 )) = 0, where L is defined in (1.10). We more-
over have

min
𝑥∈[−𝑀,𝑀 ]𝑑

𝜌 (𝑇, 𝑥) > min
𝑥∈[−𝑀,𝑀 ]𝑑

𝜌 (𝑇, 𝑥) > 0

by (3.2), (3.3) and (3.6), so we conclude that

sup
𝑥∈R𝑑

𝜌*(𝑥)
𝜌(𝑇, 𝑥) < +∞.

On the other hand, 𝜌(𝑇, 𝑥) = 𝜌(𝑇/2, 𝑥) for 𝑥 ∈ [−𝑀, 𝑀 ]𝑑, which, combined
with (3.1) and (3.4), yields

‖𝜌(𝑇 ) − 𝜌*‖𝐿1(R𝑑) ⩽
∫︁

[−𝑀,𝑀 ]𝑑

⃒⃒⃒⃒
𝜌

(︂
𝑇

2 , 𝑥

)︂
− 𝜌* (𝑥)

⃒⃒⃒⃒
d𝑥

+
∫︁
R𝑑∖[−𝑀,𝑀 ]𝑑

𝜌(𝑇, 𝑥) d𝑥

+
∫︁
R𝑑∖[−𝑀,𝑀 ]𝑑

𝜌*(𝑥) d𝑥 < 3𝜀0.

Taking 𝜀0 small enough and applying Lemma 1.2, we conclude.

3.2 Proof of Theorem 1.3

Proof of Theorem 1.3. The proof is almost identical to that of Theorem 1.1–we only
discuss the differences.

In Step 1, we take 𝜎2 > max𝑖∈[𝑛] spec(Σ𝑖) instead of 𝜎2, defining 𝜌(𝑥) as 𝜌(𝑥)
in (3.2), as to have 𝜌(𝑥) > 𝜌(𝑇/2, 𝑥) for all 𝑥 ∈ R𝑑.

In Step 2, we take

𝜃2𝑘−1 = (−𝜔𝑒𝑘, 𝑒𝑘, −𝑀),
𝜃2𝑘 = (𝜔𝑒𝑘, −𝑒𝑘, −𝑀),

for 𝑘 ∈ [𝑑], with 𝜔 > 2𝑑 log
(︀
𝜎2

∙/𝜎2)︀ /𝑇. Then the same argument as in Step 2
yields 𝜌(𝑇, 𝑥) < 𝜌∙(𝑥) for all 𝑥 ∈ R𝑑 ∖ [−𝑀, 𝑀 ]𝑑, for some 𝑀 ⩾ 𝑀 .

In Step 3, Lemma 2.4 then yields 𝜌(𝑇, 𝑥) < 𝜌*(𝑥) for all 𝑥 ∈ R𝑑 ∖ [−𝑀, 𝑀 ]𝑑.
This implies sup𝑥∈R𝑑

𝜌*(𝑥)
𝜌(𝑇,𝑥) < +∞ because 𝜌* > 0 inR𝑑. The conclusion follows

thereupon.

3.3 Beyond Gaussians

In this section we comment on how the extension discussed in Remark 1.5 can
be accounted for in the above proofs. Fix 𝜀0 > 0. From [Aza13] we deduce the
existence of a convex 𝑈∙ ∈ C2(R𝑑) with 𝑈∙ ⩽ conv 𝑈* such that

‖𝑈∙ − conv 𝑈*‖C0(R𝑑) < 𝜀0.
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For any 𝐴 ∈ M𝑑×𝑑(R) with spec(𝐴) ⊂ (0, +∞), the 𝜆𝐴 > 0 from (1.13) gives

lim
‖𝑥‖→+∞

𝑈∙(𝜆𝐴𝑥)
𝑈B(𝐴𝑥)

= lim
‖𝑥‖→+∞

𝑈∙(𝜆𝐴𝑥) − conv 𝑈*(𝜆𝐴𝑥)
𝑈B(𝐴𝑥) + conv 𝑈*(𝜆𝐴𝑥)

𝑈B(𝐴𝑥) = +∞.

We now show that 𝑒−𝑈∙ satisfies a comparison principle similar to Lemma 2.5.
Namely, given any 𝑃, 𝑄 diagonal with positive entries and 𝛽 ∈ R𝑑, we prove that

lim
|𝑥𝑖|→+∞

𝑈∙(𝑃𝑥 + 𝛽) − 𝑈∙(𝑄𝑥) = +∞ if 𝑃𝑖 > 𝑄𝑖, (3.8)

and
lim

‖𝑥‖→+∞
𝑈∙(𝑃𝑥 + 𝛽) − 𝑈∙(𝑄𝑥) = +∞ if 𝑃 ≻ 𝑄. (3.9)

If 𝜀0 > 0 is small enough, thanks to (1.12) we have

𝑈∙(𝑥) ≳ ‖𝑥‖ for all ‖𝑥‖ > 𝑀*.

By virtue of 𝑈∙ ∈ C2 and convexity, there exists 𝑀∙ > 0 such that for all 𝑖 ∈ [𝑑],

𝜕𝑥𝑖𝑈∙(𝑥)|𝑥𝑖| ≳ 𝑥𝑖 for all ‖𝑥‖ > 𝑀∙.

Take ‖𝑥‖ > 𝑀∙ and, without loss of generality, suppose 𝑥 ∈ (R>0)𝑑, so that

𝜕𝑥𝑖𝑈∙(𝑥) ≳ 1

for all 𝑖 ∈ [𝑑]. We now decompose

𝑈∙(𝑃𝑥) − 𝑈∙(𝑄𝑥) = 𝑈∙(𝑃𝑥) − 𝑈∙ (𝑃1𝑥1, . . . , 𝑃𝑑−1𝑥𝑑−1, 𝑄𝑑𝑥𝑑)
+ · · · + 𝑈∙ (𝑃1𝑥1, 𝑄2𝑥2, . . . , 𝑄𝑑𝑥𝑑) − 𝑈∙ (𝑄𝑥)

=
𝑑∑︁

𝑖=1

∫︁ (𝑃 𝑥)𝑖

(𝑄𝑥)𝑖

𝜕𝑥𝑖𝑈∙((𝑃𝑥)<𝑖, 𝑡, (𝑄𝑥)>𝑖)𝑑𝑡,

where

((𝑃𝑥)<𝑖, 𝑡, (𝑄𝑥)>𝑖) = ((𝑃𝑥)1, . . . , (𝑃𝑥)𝑖−1, 𝑡, (𝑄𝑥)𝑖+1, . . . , (𝑄𝑥)𝑛).

Suppose 𝑃𝑖 > 𝑄𝑖 for all 𝑖. We deduce:

𝑈∙(𝑃𝑥) − 𝑈∙(𝑄𝑥) ≳
𝑑∑︁

𝑖=1
(𝑃𝑖 − 𝑄𝑖)𝑥𝑖 ≳ ‖𝑥‖.

Now suppose 𝑃𝑖 > 𝑄𝑖 for some 𝑖 ∈ [𝑑]. If we fix 𝑥𝑗 for all 𝑗 ̸= 𝑖, we deduce

𝑈∙(𝑃𝑥) − 𝑈∙(𝑄𝑥) ≳ (𝑃𝑖 − 𝑄𝑖)𝑥𝑖 − 1 ≳ 𝑥𝑖 − 1.
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These inequalities give (3.8) and (3.9).
It remains to outline the adjustments in the proof of Theorem 1.1 required to

generalize the result. The generalization of Theorem 1.3 is completely analogous.
In Step 1, since 𝛽𝑖 ∈ R𝑑 and 𝛼𝑖 > 0 are fixed for all 𝑖 ∈ [𝑛], thanks to (1.13)

we can find 𝜆 > max𝑖∈[𝑛] 𝜆𝐴𝑖 and 𝑀 > 0 such that

𝑈∙(𝜆𝑥) > max
𝑖∈[𝑛]

𝑈B(𝐴𝑖𝑥 + 𝛽𝑖) − log 𝛼𝑖 for all ‖𝑥‖ > 𝑀.

We define 𝜌(𝑥) = 𝛼𝑒−𝑈∙(𝜆𝑥) for all 𝑥 ∈ R𝑑, which satisfies

𝜌(𝑥) < min
𝑖∈[𝑛]

𝛼𝑖𝜌B(𝐴𝑖𝑥 + 𝛽𝑖) ⩽ 𝜌

(︂
𝑇

2 , 𝑥

)︂
for all ‖𝑥‖ > 𝑀.

Choosing 𝛼 small enough, we can deduce 𝜌(𝑥) < 𝜌 (𝑇/2, 𝑥) for all 𝑥 ∈ R𝑑.
In Step 2, we take the same controls 𝜃1, . . . , 𝜃2𝑑 that give (3.6), now with

𝜌𝑘ℓ
1 (𝑥) = 𝑒− 𝜔𝑇

4𝑑 𝜌
(︁(︁

𝐼𝑑 + (𝑒− 𝜔𝑇
4𝑑 − 1)𝑒𝑘𝑒⊤

𝑘

)︁
𝑥 + 𝛽1,𝑘ℓ

)︁
,

𝜌𝑞
2(𝑥) = 𝑒− 𝜔𝑇

4 𝜌
(︁
𝑒− 𝜔𝑇

4𝑑 𝑥 + 𝛽2,𝑞

)︁
for some 𝛽1,𝑘ℓ, 𝛽2,𝑞 ∈ R𝑑. Take 𝜔 > 4𝑑 log 𝜆/𝑇 , which gives 𝜌(𝑇, 𝑥) > 𝑒−𝑈∙(𝑥)

for ‖𝑥‖ large enough, thanks to (3.8) and (3.9). Since 𝑈∙ ⩽ 𝑈* by construction,
Lemma 2.4 ensures the existence of 𝑀 ⩾ 𝑀 ∨ 𝑀∙ such that

𝜌*(𝑥) < 𝜌(𝑇, 𝑥) < 𝜌(𝑇, 𝑥), in R𝑑 ∖ [−𝑀, 𝑀 ]𝑑.

3.4 Proof of Proposition 1.6

Proof of Proposition 1.6. For 𝑥 ∈ R and 𝑡 ∈ R, consider

𝑥(𝑡) =
{︃

𝑥𝑒𝑡 if 𝑥 ⩾ 1
𝑥 if 𝑥 ⩽ 1.

This function solves {︃
𝑥̇(𝑡) = (|𝑥(𝑡)| log 𝑥(𝑡)+)+ 𝑡 ∈ R
𝑥(0) = 𝑥.

It is in fact the unique solution. Indeed, the local Lipschitz condition guarantees
uniqueness on the maximal interval of existence, and 𝑥(𝑡) is defined for all 𝑡 ∈ R.

One can thus define the solution 𝜌(𝑡, 𝑥) to (1.14) uniquely in the weak sense.
We focus on the behavior of the solution 𝜌(𝑡, ·) on {𝑥 : 𝑥 > 1}. By the method of
characteristics, we can write

d
d𝑡

𝜌(𝑡, 𝑥(𝑡)) = −(log 𝑥(𝑡) + 1)𝜌(𝑡, 𝑥(𝑡)),
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which translates into∫︁ 𝑡

0

d
d𝑠

𝜌(𝑠, 𝑥(𝑠))𝜌(𝑠, 𝑥(𝑠))−1 d𝑠 =
∫︁ 𝑡

0
−(log(𝑥)𝑒𝑠 + 1) d𝑠.

Whereupon,

log 𝜌(𝑡, 𝑥(𝑡)) − log 𝜌B(𝑥) = −
(︁
log(𝑥)(𝑒𝑡 − 1) + 𝑡

)︁
,

whence
𝜌(𝑡, 𝑥(𝑡)) = 𝜌B(𝑥) exp

(︁
− log 𝑥(𝑒𝑡−1) − 𝑡

)︁
and

𝜌(𝑡, 𝑥𝑒𝑡) = 𝑒−𝑡𝜌B(𝑥)𝑥−(𝑒𝑡−1).

Taking 𝑦 = 𝑥𝑒𝑡 , we obtain 𝑦
1
𝑒𝑡 = 𝑥 and

𝜌(𝑡, 𝑦) = 𝑒−𝑡𝜌B
(︁
𝑦

1
𝑒𝑡

)︁
𝑦1− 1

𝑒𝑡 .

Upon considering the case 𝑥 < 1, we conclude

𝜌(𝑡, 𝑥) = 𝜌B(𝑥)1{𝑥 : 𝑥<1}(𝑥) + 𝑒−𝑡𝜌B
(︁
𝑥

1
𝑒𝑡

)︁
𝑥1− 1

𝑒𝑡 1{𝑥 : 𝑥⩾1}(𝑥).

We thus see that

lim
𝑥→+∞

𝜌(𝑡, 𝑥)
𝜌B,𝑞(𝑥) ∝ 𝑒−𝑡 lim

𝑥→+∞

exp
(︁
−𝑥

𝑝

𝑒𝑡

)︁
𝑥1− 1

𝑒𝑡

exp(−𝑥𝑞) .

It therefore suffices to take
𝑇𝑞 > log

(︂
𝑝

𝑞

)︂
,

which is positive if 𝑝 > 𝑞, to ensure

lim
𝑥→+∞

𝜌(𝑇𝑞, 𝑥)
𝜌B,𝑞(𝑥) < +∞.

Remark 3.1. Observe that by simply changing the sign of the vector field (or re-
versing time), we obtain the same result for 𝑞 ⩾ 𝑝.

3.5 Proof of Proposition 1.9

Ultimately, 𝜃 = (𝑤, 𝑏) takes the form

𝜃(𝑡) =
4𝑛+3∑︁
𝑘=1

𝜃𝑘1[𝑇𝑘−1,𝑇𝑘](𝑡),

where 𝜃𝑘 = (𝑤𝑘, 𝑏𝑘) ∈ M𝑑×𝑑(R) × R𝑑 are constant and determined throughout
the proof, whereas 𝑇𝑘 := 𝑘𝑇

4𝑛+3 .
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Step 1.

We begin by taking 𝜃1 = (𝑤1, 𝑏1) with

𝑤1 = 0, 𝑏1 = 𝛽11

for 𝛽1 > 0. Then for all 𝑖 ∈ [𝑛],

𝑥(𝑖)(𝑡) = 𝑥(𝑖)(0) + 𝑡𝛽1 1 for 𝑡 ∈ [0, 𝑇1].

Taking 𝛽1 large enough, we find

𝑥
(𝑖)
𝑘 (𝑇1) > 0 for all 𝑘 ∈ [𝑑].

We now take 𝜃2 = (𝑤2, 𝑏2) with

𝑤2 = 𝛼1

⎡⎢⎢⎢⎢⎢⎢⎣
0 . . . 0 . . . 0
𝑣1 . . . 𝑣𝑘 . . . 𝑣𝑑

0 . . . 0 . . . 0
... . . . ... . . . ...
0 . . . 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝑏2 = 0,

where 𝛼1 > 0 and 𝑣 = (𝑣1, . . . , 𝑣𝑑) ∈ (R>0)𝑑 is such that 𝑣 and 𝑥(𝑖)(𝑇1) −
𝑥(𝑗)(𝑇1) are not orthogonal for all 𝑖 ̸= 𝑗. Then

d
d𝑡

(︁
𝑥

(𝑖)
2 − 𝑥

(𝑗)
2

)︁
(𝑡) = 𝛼1

⟨
𝑣,
(︁
𝑥(𝑖) − 𝑥(𝑗)

)︁
(𝑡)
⟩

for 𝑡 ∈ [𝑇1, 𝑇2],

hence 𝑥
(𝑖)
2 (𝑡) − 𝑥

(𝑗)
2 (𝑡) has a sign whenever 𝑡 − 𝑇1 ≪ 1, for all 𝑖 ̸= 𝑗. Taking 𝛼1

sufficiently small and rescaling time appropriately, we deduce 𝑥
(𝑖)
2 (𝑇2) ̸= 𝑥

(𝑗)
2 (𝑇2)

for all 𝑖 ̸= 𝑗, or equivalently

Φ𝑇2
𝜃2

(︁
Φ𝑇1

𝜃1

(︁
𝑥(𝑖)

)︁)︁
2

̸= Φ𝑇2
𝜃2

(︁
Φ𝑇1

𝜃1

(︁
𝑥(𝑗)

)︁)︁
2

, for all 𝑖 ̸= 𝑗. (3.10)

Consider the backward equation{︃
𝑦̇(𝑡) = 𝑤(𝑡)(𝑦(𝑡))+ + 𝑏(𝑡) 𝑡 ∈ [𝑇4𝑛+1, 𝑇 ],
𝑦(𝑇 ) = 𝑦0,

and note that 𝑦 also solves the forward equation (1.17) for 𝜃(𝑡) = −𝜃(𝑇 − 𝑡).
Take 𝜃4𝑛+3 = (𝑤4𝑛+3, 𝑏4𝑛+3) with

𝑤4𝑛+3 = 0, 𝑏4𝑛+3 = −𝛽21

for 𝛽2 > 0 large enough to ensure

𝑦
(𝑖)
𝑘 (𝑇4𝑛+2) > 0 for all (𝑘, 𝑖) ∈ [𝑑] × [𝑛].
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Take 𝜃4𝑛+2 = (𝑤4𝑛+2, 𝑏4𝑛+2) with

𝑤4𝑛+2 = −𝛼2

⎡⎢⎢⎢⎢⎣
𝑢1 . . . 𝑢𝑘 . . . 𝑢𝑑

0 . . . 0 . . . 0
... . . . ... . . . ...
0 . . . 0 . . . 0

⎤⎥⎥⎥⎥⎦ , 𝑏4𝑛+2 = 0

where 𝛼2 > 0 and 𝑢 = (𝑢1, . . . , 𝑢𝑑) ∈ (R>0)𝑑 is such that 𝑢 and 𝑦(𝑖) − 𝑦(𝑗) are
not orthogonal for all 𝑖 ̸= 𝑗. Setting

𝑦(𝑖) := Φ𝑇4𝑛+1
−𝜃4𝑛+2

(︁
Φ𝑇4𝑛+2

−𝜃4𝑛+3

(︁
𝑦(𝑖)
)︁)︁

for 𝑖 ∈ [𝑛], arguing just as above, by choosing 𝛼2 sufficiently small, it ensues

𝑦
(𝑖)
1 ̸= 𝑦

(𝑗)
1 for all 𝑖 ̸= 𝑗.

Step 2.

Due to (3.10), we can relabel all points as to have

𝑥
(𝑖)
2 (𝑇2) < 𝑥

(𝑖+1)
2 (𝑇2) for all 𝑖 ∈ [𝑛 − 1]. (3.11)

We now show that
𝑥

(𝑖)
1 (𝑇2𝑛+1) = 𝑦

(𝑖)
1 + 𝑐1 (3.12)

for some 𝑐1 ∈ R and all 𝑖 ∈ [𝑛]. We argue by induction. The base case 𝑖 = 1
trivially holds with 𝜃3 ≡ 0 and 𝑐1 = 𝑥

(1)
1 − 𝑦

(1)
1 , at time 𝑇3. Of course, since the

points don’t move, the order (3.11) is propagated up to time 𝑇3. Assume (3.11) and
(3.12) hold at time 𝑇2𝑛−1 for all 𝑖 ∈ [𝑛 − 1]. Take 𝜃2𝑛 = (𝑤2𝑛, 𝑏2𝑛) with

𝑤2𝑛 = 0, 𝑏2𝑛 = −𝛼3 sign
(︁
𝑥

(𝑛−1)
2 (𝑇2𝑛−1)

)︁
𝑒2,

where 𝛼3 > 0. Then for all 𝑖 ∈ [𝑛],

𝑥
(𝑖)
2 (𝑡) = 𝑥

(𝑖)
2 (𝑇2𝑛−1) − 𝛼3𝑡 sign

(︁
𝑥

(𝑛−1)
2 (𝑇2𝑛−1)

)︁
,

𝑥
(𝑖)
𝑘 (𝑡) = 𝑥

(𝑖)
𝑘 (𝑇2𝑛−1) for 𝑘 ̸= 2,

for 𝑡 ∈ [𝑇2𝑛−1, 𝑇2𝑛].

By virtue of the order (3.11) which holds at time 𝑇2𝑛−1 by heredity, we can choose
𝛼3 as to ensure

𝑥
(1)
2 (𝑇2𝑛) < . . . < 𝑥

(𝑛−1)
2 (𝑇2𝑛) < 0 < 𝑥

(𝑛)
2 (𝑇2𝑛). (3.13)

All the while,
𝑥

(𝑖)
𝑘 (𝑇2𝑛) = 𝑥

(𝑖)
𝑘 (𝑇2𝑛−1)
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for all 𝑘 ̸= 2 and 𝑖 ∈ [𝑛]. Now take 𝜃2𝑛+1 = (𝑤2𝑛+1, 𝑏2𝑛+1) with

𝑤2𝑛+1 = 4𝑛 + 3
𝑇𝑥

(𝑛)
2 (𝑇2𝑛)

⎡⎢⎢⎢⎢⎣
0 𝜔 0 · · · 0
0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎦ , 𝑏2𝑛+1 = 0,

where
𝜔 = 𝑦

(𝑛)
1 − 𝑥

(𝑛)
1 (𝑇2𝑛) + 𝑐1.

Because of (3.13) we see that 𝑥
(𝑛)
1 (𝑇2𝑛+1) = 𝑦

(𝑛)
1 + 𝑐1 holds, and we moreover

have 𝑥
(𝑖)
1 (𝑇2𝑛+1) = 𝑥

(𝑖)
1 (𝑇2𝑛) = 𝑦

(𝑖)
1 + 𝑐1 for 𝑖 ∈ [𝑛 − 1] because of the heredity

assumption. All in all, we conclude that (3.12) holds.

Step 3.

We will now apply this argument simultaneously to all coordinates. We relabel
all points anew as to have

𝑥
(𝑖)
1 (𝑇2𝑛+1) < 𝑥

(𝑖+1)
1 (𝑇2𝑛+1) (3.14)

for all 𝑖 ∈ [𝑛 − 1]. We show that

𝑥(𝑖)(𝑇4𝑛) = 𝑦(𝑖) + 𝑐 (3.15)

for some 𝑐 ∈ R𝑑 and all 𝑖 ∈ [𝑛]. We again argue by induction. The base case
trivially holds at time 𝑇2𝑛+2 by taking 𝜃2𝑛+2 ≡ 0 and 𝑐𝑘 = 𝑥

(1)
𝑘 (𝑇2𝑛+1)−𝑦

(1)
𝑘 for

all 𝑘 ∈ [𝑑]. Again, since the points don’t move, the order (3.14) is propagated up
to time 𝑇2𝑛+2. Assume that (3.14) and (3.15) hold at time 𝑇4𝑛−2 for all 𝑖 ∈ [𝑛 − 1].
Take 𝜃4𝑛−1 = (𝑤4𝑛−1, 𝑏4𝑛−1) with

𝑤4𝑛−1 = 0, 𝑏4𝑛−1 = −𝛼4 sign
(︁
𝑥

(𝑛−1)
1 (𝑇4𝑛−2)

)︁
𝑒1

for 𝛼4 > 0. Then for all 𝑖 ∈ [𝑛],

𝑥
(𝑖)
1 (𝑡) = 𝑥

(𝑖)
1 (𝑇4𝑛−2) − 𝛼4𝑡 sign

(︁
𝑥

(𝑛−1)
1 (𝑇4𝑛−2)

)︁
,

𝑥
(𝑖)
𝑘 (𝑡) = 𝑥

(𝑖)
𝑘 (𝑇4𝑛−2), for 𝑘 ̸= 1,

for 𝑡 ∈ [𝑇4𝑛−2, 𝑇4𝑛−1].

By virtue of (3.14) which holds at time 𝑇4𝑛−2 by heredity, we can choose 𝛼4 as to
ensure

𝑥
(1)
1 (𝑇4𝑛−1) < . . . < 𝑥

(𝑛−1)
1 (𝑇4𝑛−1) < 0 < 𝑥

(𝑛)
1 (𝑇4𝑛−1). (3.16)

All the while
𝑥

(𝑖)
𝑘 (𝑇4𝑛−1) = 𝑥

(𝑖)
𝑘 (𝑇4𝑛−2)
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for all 𝑘 ̸= 1 and 𝑖 ∈ [𝑛]. Now take 𝜃4𝑛 = (𝑤4𝑛, 𝑏4𝑛) as

𝑤4𝑛 = 4𝑛 + 3
𝑇𝑥

(𝑛)
1 (𝑇4𝑛−1)

⎡⎢⎢⎢⎢⎣
0 0 · · · 0
𝜔1 0 · · · 0
...

... . . . ...
𝜔𝑑−1 0 · · · 0

⎤⎥⎥⎥⎥⎦ , 𝑏4𝑛 = 0,

where
𝜔𝑘 = 𝑦

(𝑛)
𝑘 − 𝑥

(𝑛)
𝑘 (𝑇4𝑛−1) + 𝑐𝑘

for 𝑘 ∈ [𝑑 − 1]. Because of (3.16), we see that 𝑥(𝑛)(𝑇4𝑛) = 𝑦(𝑛) + 𝑐, and we
moreover have 𝑥(𝑖)(𝑇4𝑛) = 𝑥(𝑖)(𝑇4𝑛−1) = 𝑦(𝑖) + 𝑐 for 𝑖 ∈ [𝑛 − 1] because of the
heredity assumption. All in all, we conclude that (3.15) holds.

We can conclude the proof by taking 𝜃4𝑛+1 = (𝑤4𝑛+1, 𝑏4𝑛+1) with

𝑤4𝑛+1 = 0, 𝑏4𝑛+1 = −𝑐.

3.6 Proof of Proposition 1.10

Let 𝑌 ∈ M𝑑×𝑛(R) be the matrix whose 𝑖-th column, for 𝑖 ∈ [𝑛], is 𝑦(𝑖) ∈ R𝑑. We
define 𝛾 : [0, 1] × M𝑑×𝑛(R) → M𝑑×𝑛(R) by

𝛾(𝑠, 𝑋) = (1 − 𝑠)𝑋 + 𝑠𝑌.

There exists 𝜀 > 0 such for all 𝑋 ∈ M𝑑×𝑛(R) with ‖𝑌 − 𝑋‖1 ⩽ 𝜀, we have

rank(σ(𝛾(𝑠, 𝑋))) = 𝑛 (3.17)

for all 𝑠 ∈ [0, 1]. Take any 𝑋 ∈ M𝑑×𝑛(R) as above, and then consider the map
G : [0, 1] × M𝑑×𝑑(R) → M𝑑×𝑛(R) defined by

G(𝑠, 𝑤) = 𝑤σ(𝛾(𝑠, 𝑋)),

with σ being applied element-wise to the matrix. Observe that G(𝑠, ·) is a linear
map for any 𝑠 ∈ [0, 1], and (3.17) ensures that G(𝑠, ·) is surjective. Therefore
G(𝑠, ·) has a right inverse F(𝑠, ·) : M𝑑×𝑛(R) → M𝑑×𝑑(R), also a linear map,
which takes the form

F(𝑠, 𝑣) = argmin
𝑤∈ker(G(𝑠,·)−𝑣)

‖𝑤‖2.

The family of linear operators (F(𝑠, ·))𝑠∈[0,1] is uniformly bounded in operator
norm, that is to say,

max
𝑠∈[0,1]

‖F(𝑠, ·)‖L(M𝑑×𝑛(R);M𝑑×𝑑(R)) ⩽ 𝐶 (3.18)

for some constant 𝐶 > 0. For 𝑡 ∈ [0, 𝑇 ] set

𝑤(𝑡) := F

(︂
𝑡

𝑇
,
𝑌 − 𝑋

𝑇

)︂
.
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For 𝑖 ∈ [𝑛], the 𝑖-th column 𝑥𝑖(𝑡) ∈ R𝑑 of

𝑋(𝑡) := 𝛾

(︂
𝑡

𝑇
, 𝑋

)︂
=
(︂

1 − 𝑡

𝑇

)︂
𝑋 + 𝑡

𝑇
𝑌

satisfies ⎧⎪⎪⎨⎪⎪⎩
𝑥̇𝑖(𝑡) = 𝑤(𝑡)σ(𝑥𝑖(𝑡)) for 𝑡 ∈ [0, 𝑇 ],
𝑥𝑖(0) = 𝑥(𝑖),

𝑥𝑖(𝑇 ) = 𝑦(𝑖).

By virtue of (3.18),

‖𝑤(𝑡)‖2 =
⃦⃦⃦⃦
F

(︂
𝑡

𝑇
,
𝑌 − 𝑋

𝑇

)︂⃦⃦⃦⃦
2
≲

𝐶

𝑇
‖𝑌 − 𝑋‖1,

as desired.
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