
HAL Id: hal-04909441
https://hal.science/hal-04909441v1

Submitted on 23 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lowering entry barriers to developing custom simulators
of distributed applications and platforms with SimGrid
Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, Frédéric

Suter

To cite this version:
Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, Frédéric Suter. Lowering entry
barriers to developing custom simulators of distributed applications and platforms with SimGrid.
Parallel Computing, 2025, 123, pp.103125. �10.1016/j.parco.2025.103125�. �hal-04909441�

https://hal.science/hal-04909441v1
https://hal.archives-ouvertes.fr

Lowering Entry Barriers to Developing Custom Simulators of
Distributed Applications and Platforms with SimGrid

Henri Casanovaa, Arnaud Gierschb, Arnaud Legrandc, Martin Quinsond, Frédéric Sutere

aInformation and Computer Sciences, University of Hawai‘i at Manoa, Honolulu, HI, USA
bUniversité Marie et Louis Pasteur, CNRS, Institut FEMTO-ST, F-90000 Belfort, France

cUniv. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, Grenoble, France
dRennes University, Inria, IRISA, Rennes, France

eOak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract

Researchers in parallel and distributed computing (PDC) often resort to simulation because experiments conducted
using a simulator can be for arbitrary experimental scenarios, are less resource-, labor-, and time-consuming than their
real-world counterparts, and are perfectly repeatable and observable. Many frameworks have been developed to ease
the development of PDC simulators, and these frameworks provide different levels of accuracy, scalability, versatility,
extensibility, and usability. The SimGrid framework has been used by many PDC researchers to produce a wide range
of simulators for over two decades. Its popularity is due to a large emphasis placed on accuracy, scalability, and
versatility, and is in spite of shortcomings in terms of extensibility and usability. Although SimGrid provides sensible
simulation models for the common case, it was difficult for users to extend these models to meet domain-specific
needs. Furthermore, SimGrid only provided relatively low-level simulation abstractions, making the implementation
of a simulator of a complex system a labor-intensive undertaking. In this work we describe developments in the last
decade that have contributed to vastly improving extensibility and usability, thus lowering or removing entry barriers
for users to develop custom SimGrid simulators.

Keywords: Simulation of distributed computing systems, SimGrid

1. Introduction

Many parallel and distributed computing (PDC) re-
search results are obtained, at least in part, based on ex-
periments conducted in simulation. Reasons for PDC re-
searchers to use simulation are: the ability to explore arbi-
trary experimental scenarios; the fact that simulation ex-
periments can be less labor-, time- and resource-intensive
than their real-world counterparts; and the fact that simu-
lation experiments can be precisely controlled and instru-
mented, making them perfectly observable and repeat-
able. Many discrete-event simulation frameworks have

⋆This manuscript has been authored in part by UT-Battelle, LLC,
under contract DE-AC05-00OR22725 with the US Department of En-
ergy (DOE). The US government retains and the publisher, by ac-
cepting the article for publication, acknowledges that the US govern-
ment retains a nonexclusive, paid-up, irrevocable, worldwide license
to publish or reproduce the published form of this manuscript, or al-
low others to do so, for US government purposes. DOE will provide
public access to these results of federally sponsored research in ac-
cordance with the DOE Public Access Plan (http://energy.gov/
downloads/doepublic-access-plan).

Email addresses: henric@hawaii.edu (Henri Casanova),
agiersch@femto-st.fr (Arnaud Giersch),
Arnaud.Legrand@imag.fr (Arnaud Legrand),
Martin.Quinson@ens-rennes.fr (Martin Quinson),
suterf@ornl.gov (Frédéric Suter)

been developed to provide abstractions and models for
compute, communication, and I/O resources and their
usage, thus easing the implementation of PDC simula-
tors. The main concerns for these framework are: (i) accu-
racy – do their simulation models make it possible for the
simulated behavior to match that of the real-world system
being simulated? (ii) scalability – do they allow the simu-
lation of large and long-running scenarios with low com-
putational complexity and memory footprint? (iii) versa-
tility – can they be used to develop simulators for a di-
verse range of PDC scenarios and domains? (iv) exten-
sibility – can their simulation models be configured, ex-
tended, or even replaced so that the simulator can serve
specific purposes? and (v) usability – do they make it
possible to implement simulators with low software en-
gineering and development effort?

PDC simulation frameworks have been developed for
decades, placing different levels of emphasis on and us-
ing different approaches for achieving compromises be-
tween these often conflicting concerns. For instance, a
possible approach for achieving higher accuracy is to im-
plement the simulation at a higher level of detail, but do-
ing so typically increases computational complexity and
memory footprint, thus reducing scalability. A way to
increase scalability is to target a specific PDC domain,

Preprint submitted to Parallel Computing January 23, 2025

http://energy.gov/downloads/doepublic-access-plan
http://energy.gov/downloads/doepublic-access-plan

Cluster Distributed Cloud IoT Multi-Core/GPU
Target platform

0

20

40

60

80

100

Nu
m

be
r o

f r
es

ea
rc

h
pu

bl
ica

tio
ns

PDC domains
Algorithms, Applications, Systems
Architecture, Networking
Scheduling
Green Computing
Modeling, Simulation
Other

Figure 1: Publication counts by PDC domains and platforms for 176 re-
search publications between 2016 and 2022 that include SimGrid-driven
simulation results. The sum of the counts is larger than 176 because
some publications target multiple domains and/or platform scenarios.

which makes it possible to eschew simulating features of
the real-world system that are not relevant to that specific
domain. For instance, when simulating an IoT system in
which only small messages are exchanged, one can forgo
the simulation of network contention effects and still pro-
duce meaningful results. But doing so reduces versatility
by design.

The SimGrid framework [1] has demonstrated that it
is possible to design and implement a simulation frame-
work that achieves high accuracy, scalability, and versa-
tility, as shown in the reference SimGrid paper published
in 2014 [2] and in many validation studies [3–15].

In [2] it is claimed that SimGrid could be used to de-
velop simulators for a broad range of PDC domains, thus
achieving versatility. We keep track of research publi-
cations that include simulation results obtained with the
SimGrid software [16], which makes it possible to verify
the validity of that claim. Figure 1 shows the counts of the
176 research publications between 2016 and 2022 that use
SimGrid (out of 646 such publications to date since 2001).
We have categorized each publication by target PDC do-
main and target platform scenario based on our own in-
spection of each publication’s content. The "Other" cat-
egory for the target PDC domains includes publications
that focus on fault-tolerance, model-checking, security,
and education. Although our categorization of some re-
search publications may not be 100% accurate, the counts
clearly show SimGrid’s versatility.

Despite its popularity, SimGrid had severe shortcom-
ings in terms of extensibility and usability. First, it was
difficult for users to customize, extend, let alone replace,
simulation models. While these simulation models are
sensible for the common case, the range of research ques-
tions that users seek to answer using simulation is large
and often requires going beyond SimGrid’s extant mod-
els. Second, SimGrid only provided relatively low-level
simulation abstractions and corresponding APIs. These

shortcomings were seen plainly in user-provided feed-
back and through direct interactions with users during
SimGrid-focused events and hackathons, and also men-
tioned in the literature [17]. Then, implementing a sim-
ulator of custom and/or complex systems often required
large software engineering and development efforts.

In the last decade, since the publication of [2], which
used SimGrid v3.10 (which we call v3 for simplicity), nu-
merous efforts have focused on improving SimGrid’s ex-
tensibility and usability. The overall goal was to lower
or remove entry barriers for users to develop custom
and/or complex simulators, while retaining all of Sim-
Grid’s accuracy, scalability, and versatility advantages.
To achieve this goal, many features have been released
over a 10-year development cycle up to v3.36, culminat-
ing in the SimGrid v4 release. While SimGrid has been
the subject of several previous publications, this work de-
scribes technical developments and report on measures
of success that have never been previously published.
Specifically:

1. A description of the fundamental simulation ab-
stractions in SimGrid v4 (Section 3);

2. A description of mechanisms for customizing or
replacing simulation models underlying these ab-
stractions (Section 4);

3. A description of how these abstractions can be com-
bined into higher-level abstractions (Section 5);

4. A demonstration of how a single simulator can em-
ploy several programming models (Section 5);

5. A survey of how the above has enabled a wide
range of use cases (Section 6); and

6. A quantitative comparison of simulation scalability
of SimGrid v3 and SimGrid v4 (Section 7).

2. Related work

There is a large literature devoted to the simulation
of PDC platforms and applications with many proposed
PDC simulation frameworks. Some of these frameworks
have garnered sizable user communities and are still ac-
tively maintained at the time of writing. They can be
placed into two broad categories based on the level of de-
tails of their underlying simulation models, with different
implications on accuracy, scalability, and versatility.

Perhaps the most natural approach is to implement
simulation models at a high level of details, in an at-
tempt to reproduce near-exact real-world behaviors so as
to achieve high accuracy. Many simulation frameworks
have followed this approach for simulating network re-
sources (packet-level simulators [18, 19]), compute re-
sources (cycle-accurate simulators [20, 21]), and I/O re-
sources (block-accurate simulators [22]). These frame-
works are not versatile from a PDC standpoint because
they each focus on a particular class of hardware compo-
nents, and as such are typically used by researchers who
specialize in studying these components. While it is con-
ceivable to combine multiple such frameworks to create

2

a versatile PDC simulation framework, doing so is typ-
ically impractical due to scalability limitations as simu-
lation time is typically orders of magnitude longer than
simulated time. Some PDC simulation frameworks have
been developed that simulate network communications
at the packet level for high accuracy, with typically a se-
vere loss in scalability, but simulate other components at
lower levels of details [23, 24].

One solution to address the scalability issue posed
by simulation models that implement a high level of
detail is to employ Parallel Discrete Event Simulation
(PDES) [25]. This approach has been used successfully
by PDC simulation frameworks developed for simulat-
ing high-performance computing (HPC) applications and
platforms [26–30]. The use of PDES allows these frame-
works to scale up the platform on which the simulation
is executed, possibly requiring a platform of the same
scale as that of the platform being simulated. By contrast,
many other PDC simulation frameworks, as discussed
hereafter, aim to achieve simulation scalability when exe-
cuting the simulation on a single compute node (or even
a single core).

An alternate approach for achieving scalable simula-
tions, without scaling up compute resources, is to imple-
ment simulation models at a relatively low level of detail.
That is, rather than simulating "microscopic" behaviors
of the target system, these models instead rely on mathe-
matical models that aim to capture "macroscopic" behav-
iors. For instance, rather than simulating the lifecycle of
individual network packets, they compute instantaneous
data transfer rates based on network path bandwidths
and latencies and on current network usage. The main
challenge is to come up with such coarse-grain simula-
tion models that are reasonably accurate in spite of this
low level of detail [4].

Several PDC frameworks have been developed us-
ing the above approach. The most notable two such
frameworks are SimGrid and GridSim [31], both of which
have garnered large user communities, but using dif-
ferent approaches for and achieving different levels of
versatility, accuracy, scalability, usability, and extensibil-
ity. SimGrid aims to be directly versatile across a large
range of PDC domains (see Figure 1). Instead, versatility
has been achieved in GridSim by implementing domain-
specific frameworks on top of it such as CloudSim [32]
(which was later re-implemented standalone reusing a
subset of the GridSim simulation abstractions) for cloud
simulations, iFogSim [33] for IoT simulations, DISSECT-
CF [34] for IoT and cloud simulations, GroudSim [35]
for grid and cloud simulations, or OpenDC [36] and DC-
Sim [37] for data center simulations. The main focus of
SimGrid up to v3 was the development of accurate and
scalable simulation models via extensive validation and
invalidation studies [3–15].

GridSim and the frameworks built on top of it have
provided high usability (due to providing higher-level
simulation abstractions) and high extensibility (as seen

in the number of works that have successfully extended
CloudSim, e.g., [38–41]). By contrast, SimGrid v3 has had
usability and extensibility shortcomings, as already dis-
cussed in Section 1. This paper focuses on the technical
developments that have addressed these shortcomings,
while preserving simulation accuracy and scalability.

3. Fundamental simulation abstractions

SimGrid v4 provides convenient APIs, and efficient
implementations thereof, for three fundamental simula-
tion abstractions that are sufficient to describe and simu-
late virtually any PDC scenario: resource, activity, and
actor. SimGrid v3 provided abstractions similar in in-
tent, but suffered from a lack of separation of concern
between the models that determine the behaviors of re-
sources, the activities that consume these resources and
the actors that launch these activities. The refactoring and
re-implementation of SimGrid in C++ in the last 10 years,
was the occasion to enforce a strong separation between
the user and kernel spaces: each abstraction exposed to
the user has its counterpart in the simulation kernel. This
design has been instrumental for improving both exten-
sibility and usability: the fundamental abstractions can
be customized and/or replaced in various ways (see Sec-
tion 4) and they can serve as the basis for higher-level ab-
stractions (see Section 5).

3.1. Resources
The first step in most SimGrid simulations is to de-

scribe a hardware platform to simulate. This platform
is composed of three types of basic hardware resources
based on the following three abstractions: (i) CPUs, de-
fined by a number of cores and a core compute speed;
(ii) Network links, defined by a latency and a bandwidth;
and (iii) Disks, defined by read and write bandwidths.

These basic resources are then aggregated and struc-
tured in higher-level abstractions to describe a hardware
platform either programmatically in the simulator’s code
or in an external XML file. A physical host comprises a
CPU, any number of disks, and a network endpoint. Sim-
Grid provides also a virtual machine abstraction, which is a
non-physical host that can be instantiated on and moved
between physical hosts. A route is a vector of network
links that defines a possibly multi-hop network path be-
tween two network endpoints (e.g., between two hosts).
A route is either defined by the user or computed using
some algorithm, and the set of routes defines the physi-
cal network topology. A network zone represents a set of
hosts and links, has a network endpoint, and knows how
to determine the routes, if they exist, between two hosts
in the set and between a host and the zone’s endpoint.
For instance, a network zone can be defined to represent
a compute cluster in which all nodes can communicate
with each other and communicate with the outside world
via a shared endpoint. Finally, a platform is a hierarchy of

3

network zones. Determining the route between two hosts
in differing network zones is done recursively [42].

3.2. Activities
3.2.1. Activity abstraction

Given a hardware platform description, the goal of
any simulator is to simulate the execution of activities
on the platform’s hardware resources: computations on
CPUs, communications on network links, and I/O oper-
ations on disks. SimGrid thus provides an activity ab-
straction, and its API allows the user to write the code to
create and manage the execution of activities. All activ-
ities, regardless of on which resources they are meant to
run, follow the same lifecycle depicted in Figure 2.

Figure 2: SimGrid activity lifecycle.

Once created (Init state), configuration parameters or
properties of an activity can be set using setters, includ-
ing setting dependencies on other activities. The activity
is then started, at which point it may run immediately
(Running state) or be held back (Vetoed state). The ac-
tivity may be in the Vetoed state because it depends on
the completion of other ongoing activities or because the
resource on which the activity must execute is not yet
available or identified. While running, an activity may
be paused (Suspended state) and resumed any number
of times. When an activity terminates it can end up in
four different states depending on whether it terminates
successfully (Done state), is canceled by the user code
(Cancel state), terminates unsuccessfully due to a simu-
lated resource failure or shutdown (Fail state), or reaches
a user-specified timeout (Timeout state).

3.2.2. Activity simulation
At the core of SimGrid are simulation models that de-

termine the completion date, in simulated time, of each
activity. Each activity is defined by a total amount of
work to do (e.g., bytes to read, compute operations to
perform), an amount of work that remains to be done,
and a set of resources that are used to perform this work.
The objective is to compute the activity’s completion date
based on a notion of latency, in seconds, and of a maxi-
mum rate of progress, or speed, in units of work per time
unit, both of which are computed based on the hardware
specifications of these resources. The latency is computed
as function (e.g., the sum) of the latencies of the resources.
The speed is based on a determination of the bottleneck
resource and on the specifications of that resource.

372
435

245
245

530
530

50
664

+ +

+

... ⩽CA

⩽CB

⩽CE

⩽CC

⩽CD

...

...

...

Activities

Constraints

work

remaining

variable

(for Host A)

(for Link B)
(for Link C)
(for Link D)
(for Link E)

Actors

User
interface

Simulation
kernel

Linear MaxMin solver

ϱaA1 1

ϱ1

ϱaB2 2

ϱaC2 2 ϱaC3 3

ϱaE3 3

ϱaD2 2

ϱaAn n

ϱ2 ϱ3 ϱn

1 2 3 n

Simulation
Host BHost A

Host C

Li
n
k

C

Lin
k D

Link B

Link E

Host D

exec 1

exec n

comm 3

comm 2

Figure 3: Overview of a SimGrid simulation.

At some point during the simulation multiple concur-
rent activities can contend for some resources. In this
case, resource shares must be computed and allocated to
each of these activities. SimGrid computes these resource
shares using a linear max-min (LMM) solver, which is in-
voked at each simulation step. It solves a constrained op-
timization problem to compute the speed of each activity.
The default objective function is to maximize the mini-
mum speed across all activities. The constraints impose
that linear combinations of one or more activity speeds
are bounded by constants. These constants depend on
the hardware characteristics of the resources and on user-
imposed constraints on the rate of progress of activities.
The coefficients in the linear combinations are used to
model various effects (see Section 4.3). Once the speed of
each activity has been computed, the time until the first
activity termination is computed, the simulation clock
is advanced accordingly, and the amounts of remaining
work for all activities are updated based on their speed
and time elapsed. Completed Activities are then removed
from consideration for the next invocation of the solver.

Figure 3 depicts a 4-host platform with a 5-link "dog-
bone" network topology (right-hand side). 4 concurrent
activities are simulated, each shown in a different color:
two computation activities on Host A, a communication
activity that uses links B, C, and D, and another commu-
nication that uses links C and E. The two computations
contend for Host A’s compute capacity, and the two com-
munications contend for Link C’s bandwidth. All these
activities are defined in the simulation kernel by total and
remaining amounts of work. Each activity is also asso-
ciated to a variable ϱ, which is the activity’s speed and
whose value needs to be determined by the LMM solver
(left-hand side). The constraints of the optimization prob-
lem are shown in the lower-left part of the figure. There
is one constraint for each resource used by ongoing activ-
ities, where the right-hand side is the resource’s capacity
and the left-hand side is a linear combination of the ac-
tivity speeds, each scaled by some factor (denoted as ax,y

where x is the resource and y is the activity). For instance,
the speed of the two communication activities (ϱ2 and ϱ3)
both appear in the constraint for Link C since both activ-
ities use some of that link’s bandwidth. See [2] for all de-

4

T1

A B C D E

Maestro

 Actor 2

Actor 3

Actor 1

T2T1 T1 T1

(a) Simulation execution timeline in simulated time.

Actor 2 Actor 3 Actor 3Actor 1 Actor1Actor 2Maestro Maestro Maestro

simcall return

A

simcall handling
user code model solving /

time advancesimcall invocation

B C D E

T1 T2T1 T1 T1

(b) Simulation execution timeline in wallclock time.

Figure 4: Example simulation execution timeline for three actors between simulated times T1 and T2. (a) Simulated time – Initially, the maestro is
involved in running the LMM solver to update all activities’ remaining amounts of work. These activities correspond to simcall invocations by the
three actors, which, in this example, all complete at the same simulated time (T1). At this point, a scheduling round begins and each actor executes
its code until the next simcall is placed (shown as blue line segments). Once all actors are blocks on a simcall, the maestro regains control and handles
all these simcalls (B). In this example, the simcalls placed by Actor 2 and Actor 3 take zero simulated time. A new scheduling rounds begins and
the code of these two actors is resumed (C) until they place a new simcall and become blocked again (D). Since all actors are blocked on simcalls,
the maestro regains control, processes these two new simcalls, which, in this example, take non-zero simulated time. The LMM solver is invoked
to update all activities’ remaining amounts of work, thus advancing the simulated time until the first simcall completion (T2). This occurs for Actor
1, whose code is resumed (E). This process continues until all actors have completed, or until no actor can make further progress (which denotes a
deadlock bug in the simulator). (b) Wallclock time – The flow of control in the simulation’s actual execution alternates between the maestro and the
actors. Importantly, the code of two actors (in between the simcalls they place) never executes concurrently.

tails regarding SimGrid’s simulation models, and [3–15]
for their experimental validations.

3.3. Actors
3.3.1. Actor abstraction

It is possible to write a SimGrid simulator that merely
creates activities (typically with dependencies), assigns
them to resources, and then launches the simulation,
which ends when all activities have completed. Most
users, however, wish to simulate complex systems with
dynamic runtime behaviors using a more general Com-
municating Sequential Processes (CSP) model. To do so,
a SimGrid simulator can create one or more actors. An ac-
tor is a (simulated) sequential process, defined by a main
procedure written by the user. This procedure can cre-
ate activities and manage their lifecycle.An actor can start
an activity in three modes: (i) Blocking – the start call is
blocking, and the corresponding actor can only proceed
when the activity terminates; (ii) Asynchronous – the start
call returns immediately with a handle for the activity,
which provides an API to check for and to wait on the ac-
tivity’s termination; (iii) Detached – the start call returns
immediately without a handle in a "fire and forget" fash-
ion. A simulation typically comprises many actors, each
of which is responsible for one or more activities.

Conceptually actors execute on hosts independently,
just like processes would in a real-world platform. Ac-
tors can synchronize with each other using classical syn-
chronization abstractions (i.e., mutex, condition variable,
semaphore, barrier). These abstractions are implemented
internally as zero-time activities. There is another syn-
chronization abstraction called a mailbox. A mailbox is a
logical rendez-vous point through which actors can ex-
change messages, similar to a URL on which one could
post and retrieve data. Mailboxes are only used to match
the put and get requests of actors. Each such matching
results in a communication activity, either within a host
when the communicating actors run on the same host, or
over an end-to-end network path when the communicat-
ing actors run on different hosts.

3.3.2. Actor simulation
For the sake of deterministic execution, the actors can-

not modify their environment directly: each modification
of the activities or other interaction with the simulation
kernel is serialized through a central component that pro-
cesses them in a deterministic order. For the sake of mod-
ularity and correctness, SimGrid is designed as an operat-
ing system: the actors issue simcalls (akin to system calls)
to a simulation kernel (akin to an OS kernel) called the
maestro. The maestro decides which actors can proceed
and which ones must wait. Simcalls can be either immedi-
ate if they take no time in the simulation (e.g., spawning
another actor), or blocking if their completion must wait
for future events (e.g., mutex locks require the mutex to
be unlocked by its owner; communications wait for the
network to have provided enough communication band-
width for the data transfer to have completed).

A SimGrid simulation proceeds as a sequence of
scheduling rounds. At each round, code in all actors that
are not currently blocked on a simcall gets executed. This
is done by the maestro, which passes the control flow to
the code of each actor in sequence. The control flow is
returned to the maestro when the actor blocks on its next
simcall. Once all actors have executed up until the point
where they have placed a simcall, all simcalls are han-
dled by the maestro. If some simcalls are immediate, an-
other scheduling round starts immediately for those ac-
tors that are ready to execute. Once all actors have placed
a blocking simcall, the maestro invokes the LMM solver,
which computes the time at which the first pending sim-
call terminates. The simulation time is then advanced to
that point, one or more actors are unblocked, and a new
scheduling round begins. Figure 4a depicts scheduling
rounds for an example with three actors. From the simu-
lation’s perspective the code written in between each sim-
call by the user for each actor takes zero time; only sim-
calls can take time. If the user wishes to simulate the time
taken to execute this code, then a compute activity must
be created and started (via a simcall).

5

By default, the maestro and the actors execute sequen-
tially on a single core of the processor that runs the simu-
lator (a multi-core execution mode is also available [43]).
Figure 4b shows the same example as that shown in Fig-
ure 4a, but with the timeline drawn according to wall-
clock time instead of simulated time. The execution flow
alternates between the maestro and the actors, and the
code of two actors (in between the simcalls they place)
never executes concurrently. As a result, although actors
are implemented as threads of control within the same
address space, they can share memory without any risk of
race condition. This greatly simplifies the design and im-
plementation of a SimGrid simulator: although the simu-
lator conceptually implements a distributed system, this
implementation can safely use globally visible data struc-
tures for actors to share information in zero simulated
time. For instance, consider a simulator of a distributed
storage system in which there is a central directory of file
locations, but the overhead of accessing/updating this di-
rectory is deemed negligible by the user. In this case, in-
stead of implementing the in-simulation management of
this directory (i.e, implementing the directory as an ac-
tor with which other actors must communicate via mes-
sages), the directory can simply be implemented as, say,
a dictionary data structure.

3.3.3. Model checking ability
As stated in the previous section, the design by which

all interactions of the actors with their environment are
properly mediated via simcalls and the maestro ensures
that the simulated execution is deterministic. As a result,
simulated execution events are observable and the causal-
ity between these events is well-defined. This makes
it possible to replace the classical performance-oriented
simulation engine with another engine that only models
the causal ordering of observed events for the purpose of
software model checking (SMC) [44]. The goal is to ef-
ficiently explore all possible outcomes of the simulated
application’s execution so as to assess the correctness of
the application’s implementation (i.e., discover possible
deadlocks, livelocks, message mismatches, and other log-
ical bugs). SimGrid v4 now comes with a model checker
that performs SMC and uses formal techniques to reduce
the explored search space by exploiting symmetries and
prune causally equivalent histories. This model checker
can be used to verify MPI applications [45] and pthread
applications [46]. More generally, the correctness of any
application whose execution is simulated using SimGrid
can be evaluated in this manner (which, incidentally, also
helped ironing out bugs in SimGrid itself).

4. Extension mechanisms

A key concern for a simulation framework is its exten-
sibility. This is because users often want to model (part
of their) target systems in specific ways that do not cor-
respond to the common case. In SimGrid v3 users had

to understand and modify internals to extend simulation
abstractions and/or models. We have since added vari-
ous mechanisms so that the simulation framework can be
extended conveniently.

4.1. Rich and unified resources
In SimGrid v3, to answer the needs of many users, it

was possible to model Dynamic Voltage Frequency Scal-
ing (DVFS) for CPU resources, by which each CPU re-
source naturally implements a notion of pstate, where a
given state is defined by a numeric id and a compute
speed, and can be associated to a wattage. It was also
possible to model background load on CPU resources by
attaching a load profile to a host that specifies dynamic
changes in the nominal speed according to a trace file or
to a random generator. Finally, it was also possible to at-
tach to a host a state profile to specify whether the host is
up or down, which makes it possible to simulate arbitrary
host failures and churn patterns.

The above features were clearly useful but limited to
CPUs and hosts. Since SimGrid v3.11 they have been ex-
tended to the other resources (network links and disks),
thus unifying resource abstractions. As a result, users
can now modify the behavior of any resource by using
the pstate, load profile, and state profile features in cre-
ative ways to simulate a range of complex phenomena,
the simulation of which would have been labor-intensive
(i.e., requiring modifying internals) with SimGrid v3. For
instance, the startup period of any resource can now be
modeled easily with an extra pstate in which the resource
performs no work for activities on that resource. An ac-
tor can be in charge of changing the resource’s pstate af-
ter a given lapse of time that corresponds to the duration
of the startup period. Another example is the simulation
of Wi-Fi networks (introduced in SimGrid v3.26), where
the bandwidth experienced by a station is a function of
the signal-to-noise ratio between the station and the ac-
cess point. It turns out that this phenomenon can be sim-
ulated by assigning particular pstate values to network
links. Section 5.2 describes how this technique, combined
with other extension mechanisms, makes it possible to
model the behavior of Wi-Fi networks.

4.2. Plugins
In SimGrid v4 we have developed a generic plugin fea-

ture, by which arbitrary callbacks can be attached to sig-
nals that are fired by specific simulation events (e.g., ac-
tivity starts and completions, actor creations and termina-
tions). Plugins can be configured through arbitrary prop-
erties attached to any resource when the simulated plat-
form is instantiated. They can also extend any simulation
abstraction with any arbitrary objects. These objects can
be used to store persistent state for the callbacks to use
throughout the simulation.

Plugins have allowed us to not only simplify Sim-
Grid’s internal implementation but also to make Sim-

6

Grid more extensible. For instance, SimGrid v3 pro-
vided a model of the energy consumption of CPU re-
sources. The implementation of this model was spread
throughout SimGrid’s core, so as to pass relevant pa-
rameters to the energy model and invoke it to update
the energy consumption values at the correct simulated
times. This implementation was difficult to maintain.
Furthermore, a user wanting to modify (let alone extend
or replace) the energy model had to become essentially a
full-fledged SimGrid developer. The energy model was
re-implemented as a self-contained plugin with its own
configuration (which specifies the consumption of each
pstate in Watts) and callbacks for the relevant events re-
lated to CPU resources and their use by activities. The im-
plementation of the plugin is confined to a single source
file which contains only 350 lines of C++ code, that is easy
for users to copy and modify.

The SimGrid distribution now comes with several
built-in plugins (e.g., network link load and energy mod-
eling (v3.18), WiFi network load and energy modeling
(v3.26), host energy modeling (v3.11), host load model-
ing (v3.22), file system (v3.18), batteries and solar panels
(v3.34), computer room air handling (v3.35)). Users can
also easily develop their own plugins from scratch. For
instance, often users wish to collect and output informa-
tion regarding specific events that happen throughout the
simulated execution, typically for post-mortem analysis.
Say that the user wishes to output to the terminal a time-
stamped trace of actor termination events. They can de-
velop such a tracing plugin in only a few lines of C++, as
shown in Figure 5.

1 SIMGRID_REGISTER_PLUGIN(tracer, "Tracer", &tracer_init)
2

3 / / Callback to place whenever an a c t o r terminates
4 static void trace_exit(simgrid::s4u::Actor& actor) {
5 std::cout << simgrid::s4u::Engine::get_clock() << ",";
6 std::cout << actor->get_name() << std::endl;
7 }
8 / / Plugin i n i t i a l i z a t i o n function
9 void tracer_init() {

10 / / Attaching the cal lback to the relevant event
11 simgrid::s4u::Actor::on_exit(&trace_exit);
12 }

Figure 5: A simple "tracing" plugin.

4.3. Advanced modeling mechanisms
As explained in Section 3.2, SimGrid’s simulation core

is implemented as a constrained optimization problem
solver, the LMM solver. Using the SimGrid v4 API, there
are three ways for users to modify the LMM so as to ex-
tend SimGrid’s simulation models, as described hereafter.

First, it is possible to simulate changes of the speed at
which resources perform activities, given the current set
of simulated activities, by defining ad hoc correction fac-
tors applied to the resources’ latencies and speeds. Such
factors were already present in SimGrid v3, for the spe-
cific purpose of simulating various network protocol ef-
fects (e.g., for modeling TCP overhead [4] or adaptive

protocols used by MPI implementations [3]). But these
factors were global, static, only for network links and
communication activities, and were all hard-coded in the
LMM. In SimGrid v4 we have extended these correction
factors to all resource kinds. A callback function can be
attached to each resource, at creation time or later. This
function takes the size of an activity as parameter and ap-
plies user-specified correction factors. This allows users
to extend SimGrid’s simulation core to, for instance, sim-
ulate CPU affinities to study classical unrelated-machines
scheduling problems, account for protocol change de-
pending on resources (e.g., Infiniband RDMA between
distinct nodes, memory copy for intra-node communica-
tions, cudaMemcpy when GPUs are involved) or simu-
late the heteroscedastic performance of mechanical disks.

Second, it is now possible to modify the LMM to simu-
late the fact that the performance delivered by a resource
can degrade with contention. In other words, although
by default the LMM simulates a linear sharing of a re-
source among contending activities, the user can specify
arbitrary, including non-linear, sharing policies. Specifi-
cally, a user can attach an arbitrary function to a resource,
which computes the current resource’s speed as a func-
tion of the number of concurrent activities using that re-
source. This function could implement any analytical
model, or could reproduce specific discrete behaviors ob-
served on particular real-world resources. This function
is invoked by the LMM each time new resource shares
must be computed for that resource.

Combining these two methods, introduced in Sim-
Grid v3.29, correction factors and non-linear sharing be-
haviors, makes it possible to simulate resource behaviors
that go beyond what the default LMM can do. For in-
stance, it has allowed us to faithfully simulate the execu-
tion of I/O benchmarks on several types of mechanical
and solid-state disk drives [7].

Third, users can specify arbitrary concurrency limits
for any resource. When the number of activities that try to
use this resource exceeds that limit, the extraneous activi-
ties are delayed and have to wait for currently running ac-
tivities to complete. Specifying different concurrency lim-
its makes it possible to extend the use of SimGrid to many
scenarios, such as, the simulation of network throttling on
a multiprocessor system-on-chip, or to study scheduling
algorithms under classical theoretical constraints (e.g., 1-
port network model, strictly serial executions on a CPU).

The above mechanisms allow users to vastly modify
and extend the default behavior of the LMM so as to sim-
ulate a wide range of real-world phenomena. But Sim-
Grid also offers the capability to bypass the LMM alto-
gether. For instance, SimGrid can be compiled to use the
well-known ns-3 packet-level network simulator [18] as
a network model. Packet-level simulation accounts for
the movement of every network packet involved in every
communication. This higher level of detail, compared to
the LMM-based models that only recompute the respec-
tive instantaneous speeds of the currently ongoing com-

7

munications when a communication starts or stops, ex-
pectedly comes with a much higher simulation time.

Finally, users can extend SimGrid with ar-
bitrary models by overriding two methods:
next_occurring_event(), which returns the date of
the next event that will occur according to the model, and
update_state(delta), which updates the model’s
state by shifting the date forward by delta seconds.
SimGrid v4 uses this plugin mechanism to simulate the
behavior of resources that are not handled by SimGrid’s
extant models, e.g., batteries or solar panels that provide
power to hosts. The battery plugin can thus interrupt
the simulation when a battery becomes depleted, which
requires to turn off the hosts that use that battery as their
primary power source. An FMI (Functional Mock-up
Interface) plugin for SimGrid has also been developed
that makes it possible to run a SimGrid simulation while
co-simulating any FMI model [47], such as ones built
with OpenModelica. This plugin leverages the above
extension mechanism to enable such co-simulation, inter-
rupting the SimGrid simulation when an event occurs in
the FMI model, and allowing SimGrid actors to modify
the parameters of the FMI model during the simulation.

5. Better usability via composite abstractions and pro-
gramming models

Using the abstractions in Section 3 and the extension
mechanisms in Section 4, we have implemented several
high-level, composite abstractions in SimGrid v4. We
have also made it possible to combine multiple program-
ming models within the same SimGrid simulator. The
goal is to increase usability by making simulator imple-
mentation easier for a broad range of use cases.

5.1. Composite platforms
Although the abstractions described in Section 3.1

make it possible to specify any conceivable hardware
platform, doing so for large platforms is time-consuming
or labor-intensive, and almost always error-prone. One of
the most common parallel computing platforms is a ho-
mogeneous cluster in which hosts are interconnected via
some network topology. Describing a cluster using the
XML format would entail specifying: (1) each host indi-
vidually with its own name and speed; (2) a private link
connecting a host to a single backbone switch define by
its latency and bandwidth; (3) the backbone switch itself
with its own latency and bandwidth values; and (4) all the
routes between each pair of hosts. Figure 6 shows such an
XML description of a 64-node homogeneous cluster.

Unsurprisingly, many SimGrid users target such clus-
ter platforms (see Figure 1). To increase usability for these
users SimGrid’s XML format was extended (even before
SimGrid v3) with built-in netzone definitions that can be
re-used, customized, and combined at will.

1 <platform version="4.1">
2 <zone id="cluster" routing="Full">
3 <!−− Declare the 64 hosts −−>
4 <host id="node-0.cluster" speed="1Gf"/>
5 <host id="node-1.cluster" speed="1Gf"/>
6 [...]
7 <host id="node-63.cluster" speed="1Gf"/>
8

9 <!−− Declare the 64 pr ivate l inks −−>
10 <link id="link_0" bandwidth="10Gbps" latency="10us"/>
11 <link id="link_1" bandwidth="10Gbps" latency="10us"/>
12 [...]
13 <link id="link_63" bandwidth="10Gbps" latency="10us"/>
14

15 <!−− Declare the backbone switch −−>
16 <link id="backbone" bandwidth="100Gbps" latency="100us">
17

18 <!−− Declare the (64 x 63) / 2 routes −−>
19 <route src="node-0.cluster" dst="node-1.cluster">
20 <link_ctn id="link_0"/>
21 <link_ctn id="backbone"/>
22 <link_ctn id="link_1"/>
23 </route>
24 [...]
25 <route src="node-62.cluster" dst="node-63.cluster">
26 <link_ctn id="link_62"/>
27 <link_ctn id="backbone"/>
28 <link_ctn id="link_63"/>
29 </route>
30 </zone>
31 </platform>

Figure 6: A partial verbose XML description of a homogeneous cluster.

Figure 7 describes the same platform as in Figure 6
but using the built-in <cluster> tag that drastically sim-
plifies the code users have to write. The underlying net-
work topology and routing of the clusters are computed
automatically [42], in a way that is more efficient than
when done as in Figure 6. Additional built-in descrip-
tions of complex network topologies commonly found in
HPC clusters, such as multi-dimensional torus, Fat-Tree,
or Dragonfly topologies are made available to the users.

Describing platforms in XML is convenient as users
can produce human- and machine-readable descriptions
relatively easily. Unfortunately, it has proven difficult to
evolve SimGrid’s XML format to include new capabilities
while maintaining backward compatibility. To illustrate
these limitations let us consider the Summit leadership-
class supercomputer from Oak Ridge National Labora-
tory. SimGrid’s XML format makes it possible to de-
clare a cluster with the desired number of nodes (i.e., ap-
proximately 4,600 compute nodes) and the desired topol-
ogy (i.e., 3-level FatTree network topology with 18 di-
rector switches) using the appropriate properties in the
<cluster> tag. However, this tag only supports com-
pute nodes defined as simple multicore processors. As a
result, while the <cluster> tag is convenient for some
users, it is too limiting for others who then have to revert

1 <platform version="4.1">
2 <!−− Declare a 64−node c l u s t e r −−>
3 <cluster id="cluster" prefix="node-" radical="0-63"

suffix=".cluster" speed="1Gf" bw="10Gbps"
lat="10us" bb_bw="100Gbps" bb_lat="100us"/>

4 </platform>

Figure 7: A compact XML description of a homogeneous cluster.

8

to an overly complex XML platform description. For this
reason we have introduced, in SimGrid v3.28, the capabil-
ity to describe platforms programmatically directly in the
code of the simulator. This provides users with a much
greater flexibility than with XML, allowing them to com-
bine the fundamental abstractions (CPU, network link,
disk) in arbitrary fashion. For instance, in the Summit use
case, it is straightforward to implement a programmatic
description of each compute node as comprising 2 CPUs,
6 GPUs, 2 NICs, and 1 NVMe, all interconnected via a
custom internal network topology. Note that although
SimGrid does not provide a built-in GPU model, custom
GPU models can be easily built by combining SimGrid’s
fundamental abstractions [48].

Figure 8 shows a programmatic C++ description of a
more complex platform with two independent hosts, rep-
resenting a coordinator and a database service, each con-
nected to three homogeneous clusters of different sizes.
While this way of describing platforms may seem more
complicated at first, it is much easier to evolve than its
XML counterpart. For instance, adding three more clus-
ters to that platform to simulate a larger scale scenario
would simply amount to adding three more sizes in the
vector (line 42), but would require adding three more
<cluster> tags and declare all the additional routes in
the XML description, which is error-prone. Moreover, in-
creasing the complexity of the internal structure of the
cluster can be done programmatically, while it is highly
constrained by the XML format, as explained earlier.

5.2. Composite network routes
By default, network topologies specified in simulated

platforms assume classical TCP-based end-to-end net-
work routes. But expressing composite routes where dif-
ferent behaviors are simulated for different portions of
the routes can be compelling. This is the case of the sim-
ulation of Wi-Fi networks, for instance, needed to study
IoT platforms. This requires a new type of network zone
that comprises the access points of the Wi-Fi network, the
hosts (stations in the Wi-Fi terminology) connected to it,
and a single network link declared with a specific band-
width sharing policy adapted to Wi-Fi networks. This
pseudo-link is then included into the network routes be-
tween any two stations within the Wi-Fi zone.

One fundamental difference between Wi-Fi and wired
networks is that the performance of the former is not
determined by the bandwidths and latencies of network
links but by two characteristics of the access point, de-
fined as properties of the zone. First, the Modulation
and Coding Scheme (MCS) defines the speed at which
the access point exchanges data with all the stations. This
speed directly depends on the access point’s model and
configuration, and also on the distance between the in-
volved station and access point. More precisely, the data
rate depends on the signal-noise ratio (SNR) between the
communicating entities. Second, the number of anten-
nas defines the amount of Spatial Streams that the ac-

1 NetZone* create_cluster(NetZone* root, std::string suffix,
int num_hosts) {

2 auto* cluster =
create_star_zone("cluster"+suffix)->set_parent(root);

3

4 / / c r e a t e gateway
5 cluster->set_gateway(cluster->create_router("cluster" +

suffix + "-router"));
6

7 / / c r e a t e the backbone link
8 auto* backbone = cluster->create_link("backbone" +

suffix, "100Gbps")->set_latency("100us");
9

10 / / c r e a t e a l l hosts and connect them to outside world
11 for (int i = 0; i < num_hosts; i++) {
12 std::string name = "node-"+std::to_string(i)+suffix;
13 / / c r e a t e host
14 auto* host = cluster->create_host(name, "1Gf");
15 / / c r e a t e link
16 auto* link =

cluster->create_link(name+"_link","10Gbps")
->set_latency("10us");

17 / / add route between host and any other host
18 cluster->add_route(host, nullptr, {link, backbone});
19 }
20 cluster->seal();
21 return cluster;
22 }
23

24 int main(int argc, char** argv) {
25 / / Create the platform
26 auto* root = create_full_zone("world");
27

28 / / Create a coordinator zone / host
29 auto coordinator_zone =

create_full_zone("Coordinator")->set_parent(root);
30 coordinator_zone->create_host("coordinator.org", "1Gf");
31 coordinator_zone->seal();
32

33 / / Create a database zone / host
34 auto database_zone =

create_full_zone("Database")->set_parent(root);
35 database_zone->create_host("database.org", "1Gf")

->create_disk("db", "100MBps", "50MBps");
36 database_zone->seal();
37

38 / / Create a single link as a simple a b s t r a c t i o n of the
whole wide−area network

39 auto* internet = root->create_link("internet","200MBps")
->set_latency("1ms");

40

41 / / Create three c l u s t e r s and connect them to the
coordinator and database

42 std::vector<int> cluster_sizes = {16, 32, 40};
43 int i = 0;
44 for (auto size : cluster_sizes) {
45 auto* cluster =

create_cluster(root,".cluster"+std::to_string(i++)+
".org", size);

46 root->add_route(coordinator_zone, cluster, {internet});
47 root->add_route(database_zone, cluster, {internet});
48 }
49 root->seal();
50 }

Figure 8: Programmatic C++ description a platform composed of two
individual hosts and three homogeneous clusters of different sizes.

cess point can simultaneously serve. In practice, a given
access point will provide several levels of performance
(called Data Rates) depending on its hardware character-
istics. In SimGrid, the Wi-Fi pseudo-link is given a set
of pstates representing each of these data rates (see Sec-
tion 4.1). Each host connected to this access point may
have a different pstate on that link, representing the MCS
that would be used between the station and the access
point corresponding to the SNR between these elements.
Additionally, the LMM is extended to model non-linear

9

resource sharing (see Section 4.3) so that the maximum
throughput of a Wi-Fi network is not a constant but rather
a function of the number of concurrent flows [49]. Imple-
menting a fast but accurate model of Wi-Fi performance
would have been much more difficult without these ex-
tension mechanisms provided since v3.26 (pstates for any
resource, user-provided resource sharing function).

5.3. Composite activities
When writing a simulator for complex application ex-

ecution scenarios, actors often need to start multiple ac-
tivities of different types asynchronously and manage
their concurrent execution. For instance, when writing
a simulator of an iterative numerical simulation based on
domain decomposition, each actor may have to exchange
data with its neighbors, write intermediate results to the
file system, and perform computations, all concurrently.
To ease the management of concurrent asynchronous ac-
tivities, SimGrid v3.35 introduced an ActivitySet data con-
tainer, in which asynchronous activities of any types can
be stored. This container allows users to simply test or
wait for the completion of any or all the activities.

As seen in Figure 2, activities have a well-defined life-
cycle that corresponds to the unique execution of a cer-
tain amount of work. However, in some execution mod-
els, such as Synchronous Data Flow (SDF) or Bulk Syn-
chronous Parallel (BSP), the same activity, or activity se-
quence, must be repeated several times.

To support such execution models, SimGrid v3.34 in-
troduced the concept of tasks. A task has an underlying
activity that can be repeated multiple times. Tasks can be
organized in graphs to simulate complex iterative execu-
tion patterns with inter-task control dependencies. Sim-
Grid v4 also introduced the notion of tokens that circu-
late through a task graph and can carry any user-defined
data to implement inter-task data dependencies. When
all dependencies of a task become satisfied it fires a new
instance of its underlying communication, computation,
or I/O activity. It then blocks until all its dependencies
become satisfied again. The parameters and successors of
a task can be redefined at runtime using the same call-
back/signal mechanism as that used for plugins. This
allows users to dynamically change the topology of the
task graph, implement conditional branches, or introduce
variability in the duration of the simulated activities.

The task and token abstractions can be used to simu-
late relatively simple, yet commonplace, designs which
involve pipelined activities. As an example, Figure 9
illustrates the usage of tasks and tokens to implement
an iterative "computation and data exchange" pattern
between two hosts, which is automatically repeated N
times. That is, at each iteration, each host performs a
computation task and then a communication task to sim-
ulate the exchange of data over the network. This exam-
ple also includes the simulation of a periodic checkpoint
that must occur every n ≪ N iterations. This is easily sim-

ulated via a token sent every n iterations, which triggers
the execution of an I/O task.

Figure 9: A simple BSP execution implemented with tasks and tokens.
Two hosts perform a computation and then exchange their data. This
pattern is automatically repeated N times. A conditional checkpoint is
triggered by the emission of a token sent every n ≪ N iterations.

Although the above task and token abstractions are
powerful, they can become relatively costly in terms of
simulation time due to each operation being simulated as
an individual task. This would be the case, for instance,
for simulating the buffered transfer of data stored on disk
to a remote host, which involves fine-grain pipelining
of I/O operations and communications. For this reason,
SimGrid v4 provides simulation abstractions that imple-
ment these types of concurrent operations using a contin-
uous fluid approximation. This approximation does not
simulate the discrete execution of these operations, but
instead computes the bottleneck operation and makes all
operations proceed at the speed of that bottleneck. The
simulation is thus implemented at a coarser grain, trad-
ing off simulation details for faster simulation execution.
Specifically, two such abstractions are provided: parallel
task, or ptask, and I/O stream (introduced in v3.31). A
ptask encapsulates computations and communications to
be executed over a set of interconnected hosts (e.g., an
iterative matrix multiply parallel computation). It is de-
fined by volumes of computation to be executed at each
host and volumes of data to transfer between each host
pair. An I/O stream encapsulates I/O operations and
communications for sending data between hosts and/or
disks (e.g., a video stream application with repeating I/O
reads on a host, each followed by network transfer to a
remote host).

5.4. Composite programming models
The simulation abstractions presented in Section 3 al-

low users to implement a simulator using the CSP pro-
gramming model, which is general and can be used to im-
plement a simulator of virtually any distributed system.
However, SimGrid also supports other, less general, pro-
gramming models that are specialized for common use
cases, so that simulators for these use cases can be imple-
mented with minimal effort.

As mentioned at the beginning of Section 3.3, it is pos-
sible to implement a SimGrid simulator without creating
any actor: the simulator simply creates activities and sets
up dependencies between these activities. Since SimGrid
v3.30, it is possible to describe a static Directed Acyclic
Graph (DAG) of activities. Each activity in this DAG can
be a computation, a network communication, an I/O op-
eration, or any of the composite activities described in

10

Section 5.3. As a result, it is possible to describe a static
data-flow application, and the simulator merely specifies
on which resource(s) each activity is to be executed. It
can then launch the simulation until completion of all
activities or until a particular lapse of (simulated) time
has elapsed. This programming model is more restricted
than the CSP model, but proves useful and convenient
for many users. Figure 1 shows that many SimGrid users
develop simulators for evaluating scheduling algorithms.
Many of these simulators are used to study applications
structured as static DAGs, for which different schedules
are computed and must be evaluated in simulation. The
above programming model makes it straightforward to
implement such simulators.

A commonplace programming model for cluster plat-
forms (the most frequently targeted class of platform ac-
cording to Figure 1) is distributed-memory programming
using message-passing. In practice, this programming
model is implemented using the Message Passing Inter-
face (MPI) standard [50], which is not a fully general
CSP programming model but provides many convenient
higher-level abstractions such as collective communica-
tions. For this reason, SimGrid provides an implementa-
tion of MPI, called SMPI (Simulated MPI). It makes it pos-
sible for users to write standard MPI programs, or use un-
modified existing MPI programs, and execute them seam-
lessly in simulation. SMPI uses several techniques to en-
sure that the simulated executions can be executed on a
single machine scalably [15]. It also implements accurate
simulation models of both point-to-point and MPI collec-
tive communication operations, accounting for the spe-
cific schemes and algorithms implemented in particular
implementations of the MPI standard (which the user can
select at will). These models have been thoroughly vali-
dated, and we refer the reader to [3, 9, 51] for experimen-
tal validation results and all technical details.

A key usability enhancement in SimGrid v4 is that all
the above programming models can now be combined at
will within a single simulator: different components of a
simulator can use different programming models.

To illustrate this capability, we present a full-fledged
example. Consider a coordinator-worker application
where each worker executes on a node of a compute
cluster. When idle, each worker requests work from a
coordinator that is running on some remote host. This
coordinator-worker scheme can be implemented natu-
rally using SimGrid’s CSP programming model. Say that
the work that each worker must perform consists in in-
voking an MPI program that executes on all compute
nodes of its cluster. At each iteration of this MPI program
the MPI ranks perform a computation and then synchro-
nize via an all-to-all communication. This can be imple-
mented easily, since v3.34, using SimGrid’s MPI program-
ming model. Say now that, as part of this computation,
at each iteration the MPI process with rank 0 must up-
load 1MB of data to a remote database. This consists in
sending 1MB to a remote host and then writing 1MB to

a disk at that host. This can be easily implemented as a
2-activity sequence using SimGrid’s data-flow program-
ming model. While the general CSP programming model
would be conceptually sufficient to implement the entire
simulator, the ability to combine multiple programming
models vastly reduces the overall development effort.

We have produced a working implementation of the
above example using SimGrid’s C++ API in less than 150
lines of code (code available on GitHub [52]). We show
here relevant code fragments, all redacted for brevity.
Most of the code of the main() function (Figure 10) de-
fines the simulated hardware (as already shown in Fig-
ure 8). A few lines of code are used to state that one Coor-
dinator actor is to be started on some host in the platform,
and one Worker actor is to be started on a compute node
of each of 3 clusters (lines 9-13).

1 int main(int argc, char **argv) {
2 / / Create a simulation engine
3 auto engine = new Engine(&argc, argv);
4 / / Create a simulated platform
5 std::vector<int> cluster_sizes = {16, 32, 40};
6 [...]
7 / / Create 1 coordinator
8 Actor::create("Coordinator",

Host::by_name("coordinator.org"), Coordinator());
9 / / Create 3 worker a c t o r s

10 Actor::create("Worker1",
Host::by_name("host-0.cluster1.org"), Worker());

11 Actor::create("Worker2",
Host::by_name("host-0.cluster2.org"), Worker());

12 Actor::create("Worker3",
Host::by_name("host-0.cluster3.org"), Worker());

13 / / Launch the simulation
14 engine->run();
15 }

Figure 10: main() code for the example in Section 5.4.

Figure 11 shows the Coordinator code which first cre-
ates its mailbox (line 5), and then constructs a queue
of workunits for workers to perform (lines 7-9). Each
workunit is described by a number of iterations, an
amount of data to communicate, and an amount of work
to compute. The workunit queue ends with 3 "poison
pills" through which workers will discover that there is no
more work to be done. The coordinator then goes through
a loop (lines 15-22) in which it waits for workers to send it
a mailbox to which it replies with the next workunit to be
performed (via a simulated 128-byte message), until all
workunits have been performed.

Figure 12 shows the Worker code. First, the worker
identifies the database’s host and disk (lines 4-6) and the
compute nodes in its cluster (line 8), after which it creates
its own mailbox (line 10) and loops (line 13). At each it-
eration of the loop it requests work from the coordinator
via a 32-byte message (line 15), receives a workunit (line
17), and aborts if the workunit is a poison pill (line 19). If
the workunit is not a poison pill, then it asynchronously
starts a simulated MPI program at line 22. The first argu-
ment to the SMPI_app_instance_start() function is
a name that will be used to later wait for the completion of
the MPI program. The second argument is a lambda ex-

11

1 class Coordinator {
2 public:
3 void operator()() {
4 / / Create my mailbox
5 auto my_mailbox = Mailbox::by_name("coordinator_mb");
6 / / Create 10 workunits : i t e r =100 , s ize =10MB, work=2Gf
7 std::deque<WorkUnit*> todo;
8 for (int i = 0; i < 10; i++)
9 todo.push_front(new WorkUnit(100, 10*MB, 2*Gf));

10 / / Add " poison p i l l s " for worker terminations
11 for (int i = 0; i < num_workers; i++)
12 todo.push_front(new WorkUnit(0, 0, 0));
13

14 / / Main loop
15 while (not todo.empty()) {
16 / / Wait for a worker to send me t h e i r mailbox
17 auto worker_mailbox = my_mailbox->get<Mailbox>();
18 / / Reply with the next workunit (128 − byte message)
19 worker_mailbox->put(todo.back(), 128);
20 / / Remove workunit from queue
21 todo.pop_back();
22 }
23 }

Figure 11: Coordinator C++ functor for the example in Section 5.4.

pression whose code is standard MPI code (lines 23-53).
The third argument is the list of compute nodes on which
to execute the MPI program (line 54).

At line 29, the program allocates sufficient memory
for the buffer that will be used for all-to-all commu-
nication, based on the workunit’s specification. While
this could be done using a standard malloc(), the
simulation’s memory footprint would become too large
when simulating the program’s execution with many
MPI processes. Instead, the data is allocated using the
SMPI_SHARED_MALLOC() macro. This macro, as ex-
plained in details in [51], allocates memory that is shared
by all simulated MPI processes. While using this macro
would make a real MPI program incorrect, for a pro-
gram that does not perform any actual computation but
only simulates the execution of computation volumes, it
makes it possible to simulate the execution of large-scale
programs on a single computer. The MPI program then
loops in BSP fashion (lines 30-51). At each iteration of the
loop, each process performs some computation volume
as specified by the workunit (line 32), followed by an MPI
all-to-all communication for a data volume also specified
by the workunit (line 34). The process with rank 0 per-
forms extra work at each iteration (lines 36-50). It cre-
ates an I/O activity to be performed on the database disk
(line 38) and a communication activity to be performed
between the host this process runs on and the database
host (line 41). Both these activities have a 1MB payload,
and the I/O activity depends on the communication ac-
tivity (line 43). The process starts both activities and waits
for the completion of the communication activity (lines
46 and 49). Finally, once all BSP iterations have been per-
formed, each simulated MPI process frees the data buffer
and calls MPI_Finalize() (lines 53-54).

1 class Worker {
2 public:
3 void operator()() {
4 / / Get database host and disk
5 auto dbhost = Host::by_name("database.org");
6 auto dbdisk = dbhost->get_disks().front();
7 / / Get l i s t of compute nodes in my c l u s t e r
8 auto nodes = this_actor::get_host()

->get_englobing_zone()->get_all_hosts();
9 / / Create my mailbox

10 auto mailbox = Mailbox::by_name(this_actor::get_name());
11

12 / / Main loop
13 while (true) {
14 / / Ask the coordinator for work (32 − byte message)
15 Mailbox::by_name("coordinator_mb")->put(mailbox, 32);
16 / / Get a workunit back
17 auto wu = my_mailbox->get<WorkUnit>();
18 / / I f i t ’ s a poison p i l l , terminate
19 if (wu->iterations == 0) break;
20

21 / / S t a r t and MPI program to perform the work
22 SMPI_app_instance_start(this_actor::get_cname(),

[wu, dbhost, dbdisk]() {
23 MPI_Init();
24 int numprocs, myrank;
25 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
26 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
27 / / Allocate a data buffer
28 void *data = SMPI_SHARED_MALLOC(wu->size * numprocs);
29 for (int it= 0; it< wu->iterations; it++) {
30 / / Perform BSP compute work
31 this_actor::execute(wu->work);
32 / / Perform BSP a l l −to − a l l communication
33 MPI_Alltoall(data, wu->size, MPI_CHAR, data,

wu->size, MPI_CHAR, MPI_COMM_WORLD);
34 / / Rank 0 performs a database update
35 if (myrank == 0) {
36 / / Create 1MB read a c t i v i t y on the database disk
37 auto io_activity =

dbdisk->io_init(1*MB, Io::OpType::READ);
38 / / Create 1MB communication a c t i v i t y
39 / / from my host to the database host
40 auto comm_activity =

Comm::sendto_init(this_actor::get_host(),
dbhost)

->set_payload_size(1*MB));
41 / / Create a c t i v i t y dependency
42 comm_activity->add_successor(io_activity);
43 / / S t a r t the I /O a c t i v i t y , but i t won ’ t s t a r t
44 / / u n t i l the communication a c t i v i t y completes
45 io_activity->start();
46 / / S t a r t the communication a c t i v i t y
47 / / and wait for i t s completion
48 comm_activity->start()->wait();
49 }
50 }
51 / / Free the data buffer
52 SMPI_SHARED_FREE(data);
53 MPI_Finalize();
54 }, nodes);
55

56 / / Wait for the MPI program to terminate
57 SMPI_app_instance_join(this_actor::get_cname());
58 }
59 }

Figure 12: Worker C++ functor for the example in Section 5.4.

6. Impact on simulation practice

In this section we demonstrate the impact of the en-
hanced usability and extensibility of SimGrid v4 on sim-
ulation practice. The simulation abstractions and pro-
gramming models that we have described in the previous
sections allow users to implement simulators for many
different use cases with reasonably low effort. This has
led users to develop simulators for several domains, as

12

seen in Figure 1. Hereafter we describe notable projects
for which SimGrid provides a foundation and that form
a large SimGrid ecosystem. Some of these projects have
produced simulators or simulation frameworks that aim
at avoiding duplication of effort in research communi-
ties. Others have produced simulators or simulation-
based tools for various production uses. All these projects
are a testimony to SimGrid’s versatility and have all ben-
efited from its capabilities in terms of accuracy and scala-
bility. But, in all that follows, we specifically explain how
they have benefited from the extensibility and usability
enhancements described in Sections 4 and 5.

6.1. Distributed cyberinfrastructure simulation
Many researchers wish to simulate the execution of

various application workloads on distributed platforms,
and often end up re-implementing the same simulation
abstractions and mechanisms. WRENCH [53] is a simula-
tion framework that provides implementations of highly
configurable services that users can re-use as building
blocks in their simulators. It also removes the burden
of implementing inter-process communication, which is
labor-intensive and error-prone when developing a sim-
ulator of a complex distributed system. The user only
writes the code of one kind of actors called execution con-
trollers. These controllers interact with the services de-
ployed on the simulated platform using simple APIs, so
as to execute application workloads defined by data and
compute volumes with arbitrary dependencies. As a re-
sult, it is possible to implement simulators of complex de-
ployments and runtime systems with low software engi-
neering effort. WRENCH achieves this objective because
SimGrid’s API is expressive enough to describe a wide
range of interoperable services and sufficiently usable to
render the implementation of these services tractable. In
particular, WRENCH relies on plugins (Section 4.2), on
the ability to mix different programming models (Sec-
tion 5.4), and on composite activities (Section 5.3).

6.2. Resources and jobs management systems simulation
An active research area is Resources and Jobs Man-

agement Systems (RJMS), i.e., the systems in charge of
the scheduling of user jobs on shared parallel comput-
ing platforms. In particular, RJMS must employ so-called
batch scheduling algorithms, which have been the sub-
ject of active research for decades, and are typically eval-
uated in simulation. The Batsim project [54] is a SimGrid-
based RJMS simulator. While most research in this area
simulates batch jobs at a completely abstract level (e.g.,
rectangles in a Gantt chart), Batsim users can describe
workloads in which each job is defined by a profile that
encodes specific computation, communication, and I/O
patterns. Job executions are then simulated so that they
generate load, contention, and electrical power consump-
tion on hardware resources. The ElastiSim project [55]
shares Batsim’s objectives but specifically targets the sim-
ulation of malleable batch jobs that can both adapt their

resource demands and report on their progress at run-
time. These two features dramatically increase the design
space for batch scheduling algorithms as these algorithms
can make decisions regarding a job during that job’s ex-
ecution. Batsim uses the pstate feature for rich resource
descriptions (Section 4.1), and both Batsim and ElastiSim
rely on SimGrid’s composite ptask activities (Section 5.3).

6.3. HPC runtimes and applications
Many researchers have used simulation for research

and development in the field of HPC, a field in which
SimGrid has seen a lot of usage (as seen in the fraction
of works that target Cluster platforms in Figure 1). The
most common use of simulation if to evaluate the perfor-
mance of application workloads when executed at differ-
ent scales on candidate platforms. Fast simulations can
provide a first performance approximation before pro-
ceeding with resource-intensive testing on or even pur-
chasing of real compute infrastructures.

Several large projects have used SimGrid in this con-
text due to its SMPI component being able to simulate the
execution of (almost) unmodified MPI applications. Eval-
uating the performance of classical application workloads
on particular platforms and/or with particular runtime
systems is so important to the HPC community that sev-
eral "proxy apps" have been developed and maintained
over the years. These correspond to representative MPI
applications for various application domains (ECP proxy
applications [56], MeteoFrance proxy applications [57])
and to standard MPI benchmarks from various bench-
mark suites (HPL, CodeVault, Trinity-Nersc, CORAL).
Many such applications have been executed directly with
SMPI, and are now part of SimGrid’s integration testing
infrastructure [58], along with the test suite for the Open-
MPI implementation of the MPI standard [59] and the
Intel MPI benchmarks [60]. The S4BXI project [61] has
developed a full-fledged simulator of the Portals 4 net-
work API [62] using SimGrid, in the context of MPI ap-
plications. The goal is not only to enable in-simulation
performance evaluation capabilities, but also to perform
what-if analyses to decide promising areas for hardware
platform design optimization. S4BXI uses a multimodel
simulation approach, by which SimGrid’s SMPI feature is
used for fast simulation of some portions of the execution
and much slower, but highly accurate, simulation tech-
niques are used to simulate other portions. The BigDFT
project [63, 64], which provides open-source software
for simulating macromolecular systems at the nanoscale,
uses SimGrid to include simulated executions in its con-
tinuous integration process and regression testing pro-
cess. Finally, SimGrid has also been used by Intel and
Bull/Atos to explore different solutions and configura-
tions for hardware components of HPC platforms, such
as network interconnects or node size [3].

Key to the success of the above projects is SimGrid’s
scalability and accuracy levels. But key to their feasi-
bility in the first place is the use of some of the exten-

13

sibility and usability features added to SimGrid v4. All
these projects use the composite platform features (Sec-
tion 5.1) for better usability of SimGrid when describing
complex HPC platforms. The advanced modeling mech-
anisms (Section 4.3) are also used heavily to make the ac-
curate simulation models of MPI point-to-point and col-
lective communications. Some of these projects also rely
on the extensibility plugin feature (Section 4.2), e.g., for
energy consumption simulation.

A notable HPC project that uses SimGrid but does
not target MPI is StarPU [65]. It provides a unified run-
time system for programming heterogeneous multicore
architectures (i.e., multicore processors with accelerators
and/or coprocessors, such as GPUs). StarPU integrates
with SimGrid so that StarPU applications can seamlessly
execute in simulation mode, which is a powerful testi-
mony to SimGrid’s usability. Simulated executions are
also used for StarPU’s continuous integration and perfor-
mance evaluation purposes, and have been instrumental
in uncovering performance bugs in StarPU. StarPU builds
on SimGrid’s models and abstractions to develop its own
models and abstractions for the simulation of GPUs [48],
which was made possible by the extensibility capabilities
of SimGrid v4, namely rich and unified resources (Sec-
tion 4.1) and advanced modeling (Section 4.3).

7. Impact on scalability

The usability and extensibility features described in
this work have required a full rewrite of SimGrid v3’s
monolithic simulation core as well as performing API
overhauls, including moving from C to C++. There-
fore, one may wonder whether these developments have
had a negative impact on scalability. To answer this
question we consider a benchmark simulator that im-
plements a coordinator-worker application (available on
GitHub [66]). Each worker actor executes on one core of
a multi-core host and a single coordinator actor executes
on one core of a separate host. All hosts are intercon-
nected over a network topology that comprises 100 net-
work links. The route between any two hosts consists of
10 randomly selected links. The core speed of each host is
sampled uniformly between 100 and 200 Mflop/sec, and
the bandwidth of each link is sampled uniformly between
100 and 200 MB/sec. The coordinator greedily assigns
workunits to idle workers. Each workunit entails sending
100 MB of data from the coordinator to the worker, and
performing 100 Mflops of computation at the worker. The
simulation of energy consumption is enabled. We built
this benchmark for both SimGrid v3 and SimGrid v4 in
the same Debian 12 Docker image (using the same com-
piler), and executed it on one core of a dedicated 2.3GHz
Intel Xeon Platinum 8380 CPU.

Figure 13 shows results when simulating the execu-
tion of between 4,000 and 60,000 workunits on 1,000 4-
core hosts. As expected, simulation time increases with
the number of workunits (since more discrete events need

10000 20000 30000 40000 50000 60000
of workunits

0.5

1.0

1.5

2.0

2.5

Ti
m

e
(s

ec
)

SimGrid v3

SimGrid v4
100

150

200

250

300

350

M
em

or
y

Fo
ot

pr
in

t (
M

B)

Simulation Time
Maximum RSS

Figure 13: Simulation time and memory footprint vs. number of worku-
nits on 1,000 4-core hosts for a benchmark coordinator-worker simula-
tor, using SimGrid v3 and v4. Lines show average values over 10 re-
peats; error bars show minimum and maximum values.

to be simulated) and memory footprint is roughly con-
stant (since memory is freed each time a workunit com-
pletes). The most striking observation is the large reduc-
tion in memory footprint when going from SimGrid v3
to SimGrid v4. Specifically, SimGrid v4 leads to at least
a 4.1x reduction in memory footprint. This is due to op-
timizations of data structures and to the move from C to
C++, allowing the use of smart pointers with reference
counting for automated garbage collection to avoid mem-
ory leaks. The use of smart pointers and the extensibil-
ity and usability improvements described in this work do
cause increases in simulation time. But these increases
are largely offset by usage of the highly optimized data
containers provided by the C++ standard library and by
the rounds of optimizations that have been applied to the
source code over the last decade. As a result, for this
benchmark SimGrid v4 leads to at least a 1.45x reduction
in simulation time when compared to SimGrid v3.

10 20 30 40 50 60
of cores / host (1000 hosts)

0

10

20

30

40

50

Ti
m

e
(s

ec
)

SimGrid v3

SimGrid v4

0

1000

2000

3000

4000

5000

M
em

or
y

Fo
ot

pr
in

t (
M

B)

Simulation Time
Maximum RSS

Figure 14: Simulation time and memory footprint vs. number of work-
ers for executing 60,000 workunits for a benchmark coordinator-worker
simulator, using SimGrid v3 and v4. Lines show average values over 10
repeats; error bars show minimum and maximum values.

Figure 14 shows results when simulating the execu-
tion of 60,000 workunits on 1,000 hosts where the number
of cores per host varies from 4 to 60. As expected memory
footprint increases due to the fact that each worker actor
on each core of the simulated worker hosts has a mem-
ory footprint throughout the whole simulated execution.

14

One may expect the execution time to be constant, since
the number of simulated discrete events does not depend
on the number of worker actors. But as the number of
worker actors increases, so does the number of concurrent
simulated activities, which in turn increases the computa-
tional complexity of the LMM solver (linearly). In these
results, for the same reasons as for the results in Figure 13,
SimGrid v4 leads to at least a 1.40x memory footprint re-
duction and a 4.21x simulation time reduction when com-
pared to SimGrid v3.

Overall, while this work has focused on describing
features that make SimGrid v4 significantly more exten-
sible and more usable than SimGrid v3, the above results
show that it is also significantly more scalable.

8. Conclusion

The primary research and development goals of the
SimGrid simulation framework have been accuracy and
scalability. A key accomplishment is that SimGrid can
achieve high accuracy and scalability while remaining
versatile, i.e., it has been used for conducting simula-
tions for broad ranges of PDC domains and platforms.
In spite of these achievements, a shortcoming of SimGrid
has been its usability: the relatively low-level simula-
tion abstractions it provided made the implementation of
simulators of complex systems a labor-intensive process.
Another shortcoming was extensibility. Although Sim-
Grid provided simulation models that catered to the com-
mon case, it was difficult to users to extend these models
for research- or domain-specific purposes. In this work
we have described several usability and extensibility im-
provements implemented over the last decade. These im-
provements have enabled many research results and a led
to a rich ecosystem of development and production tools.

Many simulation challenges have been addressed
over the last couple of decades resulting by PDC sim-
ulation frameworks that provide various levels of accu-
racy, scalability, versatility, extensibility, and usability. Al-
though future improvements along these five axes are
still possible, the state of PDC simulation is now suffi-
ciently mature for broader and overarching challenges to
be tackled. One such challenge is simulation calibration:
picking the simulation model parameter values in a way
that maximizes simulation accuracy with respect to some
ground-truth. A review of research articles that have used
SimGrid-based simulators in recent years shows that cal-
ibration is often not performed, and that when it is per-
formed is is mostly a labor-intensive and manual pro-
cess [67]. A clear future research direction is the devel-
opment of an automated simulation calibration tool that
can be used by PDC simulator users to achieve desir-
able trade-offs between accuracy and scalability. Another
broad challenge is that of the duplication of effort when
it comes to simulator development. Many SimGrid simu-
lator developers implement their own simulation abstrac-
tions using the mechanisms in Sections 4 and 5. The ques-

tion is that of how these custom-developed abstractions,
which would often be useful to others, can be contributed
back to SimGrid. Relying on pull requests is too labor-
intensive (code reviews, increasing amount of code that
must be maintained and documented using the SimGrid
standards, regular release schedule constraints, etc.). An
alternative approach, used successfully by the ns-3 net-
work simulation framework [68], is to establish a SimGrid
app store on which contributors can publish their simu-
lation abstractions as standalone components (composite
abstractions, programmatic platform descriptions, plu-
gin implementations, implementations of reusable dis-
tributed system building blocks).

References

[1] The SimGrid Project, http://simgrid.org (2024).
[2] H. Casanova, A. Giersch, A. Legrand, M. Quinson, F. Suter, Versa-

tile, Scalable, and Accurate Simulation of Distributed Applications
and Platforms, Journal of Parallel and Distributed Computing
74 (10) (2014) 2899–2917. doi:10.1016/j.jpdc.2014.06.008.

[3] P. Bédaride, A. Degomme, S. Genaud, A. Legrand, G. S. Marko-
manolis, M. Quinson, M. Stillwell, F. Suter, B. Videau, Toward
Better Simulation of MPI Applications on Ethernet/TCP Net-
works, in: Proceedings of the 4th International Workshop on
Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), 2013. doi:10.1007/
978-3-319-10214-6_8.

[4] P. Velho, L. M. Schnorr, H. Casanova, A. Legrand, On the Validity
of Flow-Level Tcp Network Models for Grid and Cloud Simula-
tions, ACM Transactions on Modeling and Computer Simulation
23 (4) (Dec. 2013). doi:10.1145/2517448.

[5] P. Velho, A. Legrand, Accuracy Study and Improvement of Net-
work Simulation in the SimGrid Framework, in: Proceedings of
the 2nd Intl. Conf. on Simulation Tools and Techniques, 2009.
doi:10.4108/ICST.SIMUTOOLS2009.5592.

[6] K. Fujiwara, H. Casanova, Speed and Accuracy of Network Sim-
ulation in the SimGrid Framework, in: Proceedings of the 1st In-
ternational Workshop on Network Simulation Tools, 2007. doi:
10.4108/nstools.2007.2010.

[7] A. Lèbre, A. Legrand, F. Suter, P. Veyre, Adding Storage Simulation
Capacities to the SimGrid Toolkit: Concepts, Models, and API, in:
Proceedings of the 15th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, Shenzen, China, 2015. doi:
10.1109/CCGrid.2015.134.

[8] L. Pouilloux, T. Hirofuchi, A. Lebre, SimGrid VM: Virtual Machine
Support for a Simulation Framework of Distributed Systems, IEEE
Transactions on Cloud Computing (Sep. 2015). doi:10.1109/
TCC.2015.2481422.

[9] A. Degomme, A. Legrand, G. Markomanolis, M. Quinson, M. Still-
well, F. Suter, Simulating MPI applications: the SMPI approach,
IEEE Transactions on Parallel and Distributed Systems 18 (8) (2017)
2387–2400. doi:10.1109/TPDS.2017.2669305.

[10] A. Rizvi, T. Toha, M. Lunar, M. Adnan, A. Islam, Cooling Energy
Integration in SimGrid, in: Proceedings of the 2017 International
Conference on Networking, Systems and Security, 2017, pp. 132–
137. doi:10.1109/NSysS.2017.7885814.

[11] F. C. Heinrich, T. Cornebize, A. Degomme, A. Legrand, A. Carpen-
Amarie, S. Hunold, A. Orgerie, M. Quinson, Predicting the Energy-
Consumption of MPI Applications at Scale Using Only a Sin-
gle Node, in: Proceedings of the 2017 IEEE International Confer-
ence on Cluster Computing, 2017, pp. 92–102. doi:10.1109/
CLUSTER.2017.66.

[12] L. Stanisic, E. Agullo, A. Buttari, A. Guermouche, A. Legrand,
F. Lopez, B. Videau, Fast and Accurate Simulation of Multi-
threaded Sparse Linear Algebra Solvers, in: Proceedings of the
2015 IEEE 21st International Conference on Parallel and Dis-

15

http://simgrid.org
https://doi.org/10.1016/j.jpdc.2014.06.008
https://doi.org/10.1007/978-3-319-10214-6_8
https://doi.org/10.1007/978-3-319-10214-6_8
https://doi.org/10.1145/2517448
https://doi.org/10.4108/ICST.SIMUTOOLS2009.5592
https://doi.org/10.4108/nstools.2007.2010
https://doi.org/10.4108/nstools.2007.2010
https://doi.org/10.1109/CCGrid.2015.134
https://doi.org/10.1109/CCGrid.2015.134
https://doi.org/10.1109/TCC.2015.2481422
https://doi.org/10.1109/TCC.2015.2481422
https://doi.org/10.1109/TPDS.2017.2669305
https://doi.org/10.1109/NSysS.2017.7885814
https://doi.org/10.1109/CLUSTER.2017.66
https://doi.org/10.1109/CLUSTER.2017.66

tributed Systems, 2015, pp. 481–490. doi:10.1109/ICPADS.
2015.67.

[13] A. Fanfakh, Predicting the Performance of MPI Applications over
Different Grid Architectures, Journal of University of Babylon for
Pure and Applied Sciences 27 (1) (2019) 468–477. doi:10.29196/
jubpas.v27i1.2232.

[14] L. Stanisic, A Reproducible Research Methodology for Designing
and Conducting Faithful Simulations of Dynamic HPC Applica-
tions, Ph.D. thesis, Université Grenoble Alpes, France (2015).
URL https://theses.hal.science/tel-01248109v2/
document

[15] T. Cornebize, A. Legrand, F. C. Heinrich, Fast and Faithful Perfor-
mance Prediction of MPI Applications: the HPL Case Study, in:
Proceedings of the 2019 IEEE International Conference on Clus-
ter Computing, 2019, pp. 1–11. doi:10.1109/CLUSTER.2019.
8891011.

[16] SimGrid’s Use in Research Publications, https://simgrid.
org/usages.html (2023).

[17] G. Kecskemeti, S. Ostermann, R. Prodan, Fostering Energy-
Awareness in Simulations Behind Scientific Workflow Manage-
ment Systems, in: Proceedings of the 7th IEEE/ACM Intl. Conf. on
Utility and Cloud Computing, 2014, pp. 29–38. doi:10.1109/
UCC.2014.11.

[18] G. F. Riley, T. R. Henderson, The ns-3 Network Simulator, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 15–34. doi:10.
1007/978-3-642-12331-3_2.

[19] L. Mészáros, A. Varga, M. Kirsche, INET Framework, Springer In-
ternational Publishing, Cham, 2019, pp. 55–106. doi:10.1007/
978-3-030-12842-5_2.

[20] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, D. A. Wood, The
gem5 simulator, SIGARCH Comput. Archit. News 39 (2) (2011)
1–7. doi:10.1145/2024716.2024718.

[21] T. E. Carlson, W. Heirman, L. Eeckhout, Sniper: exploring the level
of abstraction for scalable and accurate parallel multi-core sim-
ulation, in: Proc. of the 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, As-
sociation for Computing Machinery, New York, NY, USA, 2011.
doi:10.1145/2063384.2063454.

[22] D. Gouk, M. Kwon, J. Zhang, S. Koh, W. Choi, N. S. Kim, M. Kan-
demir, M. Jung, Amber: Enabling Precise Full-System Simulation
with Detailed Modeling of All SSD Resources, in: 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2018, pp. 469–481. doi:10.1109/MICRO.2018.00045.

[23] G. G. Castañé, A. Núñez, J. Carretero, iCanCloud: A Brief Archi-
tecture Overview, in: 2012 IEEE 10th International Symposium on
Parallel and Distributed Processing with Applications, 2012, pp.
853–854. doi:10.1109/ISPA.2012.131.

[24] D. Kliazovich, P. Bouvry, Y. Audzevich, S. U. Khan, GreenCloud: A
Packet-Level Simulator of Energy-Aware Cloud Computing Data
Centers, in: 2010 IEEE Global Telecommunications Conference
GLOBECOM 2010, 2010, pp. 1–5. doi:10.1109/GLOCOM.2010.
5683561.

[25] R. M. Fujimoto, Parallel discrete event simulation, Commun. ACM
33 (10) (1990) 30–53. doi:10.1145/84537.84545.

[26] J. Cope, N. Liu, S. Lang, P. Carns, C. Carothers, R. Ross, CODES:
Enabling Co-Design of Multilayer Exascale Storage Architectures,
in: Proc. of the Workshop on Emerging Supercomputing Technolo-
gies, 2011.

[27] C. Carothers, D. Bauer, S. Pearce, ROSS: A High-Performance,
Low Memory, Modular Time Warp System, in: Proc. of the 14th
ACM/IEEE/SCS Workshop of Parallel on Distributed Simulation,
2000, pp. 53–60. doi:10.1109/PADS.2000.847144.

[28] S. Böhm, C. Engelmann, xSim: The extreme-scale simulator, in:
Proc. of the International Conference on High Performance Com-
puting & Simulation, 2011, pp. 280–286. doi:10.1109/HPCSim.
2011.5999835.

[29] M.-Y. Hsieh, R. Riesen, K. Thompson, W. Song, A. Rodrigues,
SST: A Scalable Parallel Framework for Architecture-Level Perfor-
mance, Power, Area and Thermal Simulation, The Computer Jour-

nal 55 (2) (2012) 181–191. doi:10.1093/comjnl/bxr069.
[30] SST/macro 14.1: User’s Manual, https://raw.

githubusercontent.com/sstsimulator/sst-macro/
refs/heads/master/manual-sstmacro-14.1.pdf (2024).

[31] R. Buyya, M. Murshed, GridSim: A Toolkit for the Modeling and
Simulation of Distributed Resource Management and Scheduling
for Grid Computing, Concurrency and Computation: Practice and
Experience 14 (11 2002). doi:10.1002/cpe.710.

[32] T. Goyal, A. Singh, A. Agrawal, Cloudsim: Simulator for Cloud
Computing Infrastructure and Modeling, Procedia Engineering
38 (2012) 3566–3572. doi:https://doi.org/10.1016/j.
proeng.2012.06.412.

[33] E. U. Yousuf Khan, T. Rahim Soomro, M. Nawaz Brohi, iFogSim: A
Tool for Simulating Cloud and Fog Applications, in: Proceedings
of the International Conference on Cyber Resilience, 2022, pp. 01–
05. doi:10.1109/ICCR56254.2022.9996018.

[34] G. Kecskemeti, DISSECT-CF: A Simulator to Foster Energy-Aware
Scheduling in Infrastructure Clouds, Simulation Modelling Prac-
tice and Theory 58 (2015) 188–218. doi:https://doi.org/10.
1016/j.simpat.2015.05.009.

[35] S. Ostermann, K. Plankensteiner, R. Prodan, T. Fahringer,
GroudSim: An Event-Based Simulation Framework for Compu-
tational Grids and Clouds, in: Proceedings of the Euro-Par 2010
Parallel Processing Workshops, 2011, pp. 305–313. doi:10.1007/
978-3-642-21878-1_38.

[36] F. Mastenbroek, G. Andreadis, S. Jounaid, W. Lai, J. Burley, J. Bosch,
E. van Eyk, L. Versluis, V. van Beek, A. Iosup, Opendc 2.0: Conve-
nient modeling and simulation of emerging technologies in cloud
datacenters, in: Proc. of the 21st IEEE/ACM International Sympo-
sium on Cluster, Cloud and Internet Computing (CCGrid), 2021,
pp. 455–464. doi:10.1109/CCGrid51090.2021.00055.

[37] G. Keller, M. Tighe, H. Lutfiyya, M. Bauer, DCSim: A data centre
simulation tool, in: Proc. of the IFIP/IEEE International Sympo-
sium on Integrated Network Management, 2013, pp. 1090–1091.

[38] X. Li, X. Jiang, P. Huang, K. Ye, DartCSim: An enhanced user-
friendly cloud simulation system based on CloudSim with better
performance, in: Proc. of the 2nd IEEE International Conference
on Cloud Computing and Intelligence Systems, Vol. 01, 2012, pp.
392–396. doi:10.1109/CCIS.2012.6664434.

[39] S. Sotiriadis, N. Bessis, N. Antonopoulos, A. Anjum, SimIC: De-
signing a New Inter-cloud Simulation Platform for Integrating
Large-Scale Resource Management, in: Proc. of the 27th IEEE
International Conference on Advanced Information Networking
and Applications (AINA), 2013, pp. 90–97. doi:10.1109/AINA.
2013.123.

[40] S. Sotiriadis, N. Bessis, N. Antonopoulos, Towards Inter-cloud
Simulation Performance Analysis: Exploring Service-Oriented
Benchmarks of Clouds in SimIC, in: Proc. of the 27th Interna-
tional Conference on Advanced Information Networking and Ap-
plications Workshops, 2013, pp. 765–771. doi:10.1109/WAINA.
2013.196.

[41] Y. Shi, X. Jiang, K. Ye, An Energy-Efficient Scheme for Cloud Re-
source Provisioning Based on CloudSim, in: Proc. of the IEEE In-
ternational Conference on Cluster Computing, 2011, pp. 595–599.
doi:10.1109/CLUSTER.2011.63.

[42] L. Bobelin, A. Legrand, D. A. G. Márquez, P. Navarro, M. Quinson,
F. Suter, C. Thiery, Scalable Multi-Purpose Network Representa-
tion for Large Scale Distributed System Simulation, in: Proceed-
ings of the 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, 2012, pp. 220–227. doi:10.1109/
CCGrid.2012.31.

[43] M. Quinson, C. Rosa, C. Thiery, Parallel Simulation of Peer-to-Peer
Systems, in: Proceedings of the 2012 12th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, 2012,
pp. 668—-675.

[44] R. Jhala, R. Majumdar, Software model checking, ACM Comput.
Surv. 41 (4) (2009). doi:10.1145/1592434.1592438.

[45] M. Laurent, E. Saillard, M. Quinson, The MPI Bugs Initiative: a
Framework for MPI Verification Tools Evaluation, in: Proc. of
the 5th IEEE/ACM International Workshop on Software Correct-
ness for HPC Applications (Correctness), 2021, pp. 1–9. doi:

16

https://doi.org/10.1109/ICPADS.2015.67
https://doi.org/10.1109/ICPADS.2015.67
https://doi.org/10.29196/jubpas.v27i1.2232
https://doi.org/10.29196/jubpas.v27i1.2232
https://theses.hal.science/tel-01248109v2/document
https://theses.hal.science/tel-01248109v2/document
https://theses.hal.science/tel-01248109v2/document
https://theses.hal.science/tel-01248109v2/document
https://theses.hal.science/tel-01248109v2/document
https://doi.org/10.1109/CLUSTER.2019.8891011
https://doi.org/10.1109/CLUSTER.2019.8891011
https://simgrid.org/usages.html
https://simgrid.org/usages.html
https://doi.org/10.1109/UCC.2014.11
https://doi.org/10.1109/UCC.2014.11
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1007/978-3-642-12331-3_2
https://doi.org/10.1007/978-3-030-12842-5_2
https://doi.org/10.1007/978-3-030-12842-5_2
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2063384.2063454
https://doi.org/10.1109/MICRO.2018.00045
https://doi.org/10.1109/ISPA.2012.131
https://doi.org/10.1109/GLOCOM.2010.5683561
https://doi.org/10.1109/GLOCOM.2010.5683561
https://doi.org/10.1145/84537.84545
https://doi.org/10.1109/PADS.2000.847144
https://doi.org/10.1109/HPCSim.2011.5999835
https://doi.org/10.1109/HPCSim.2011.5999835
https://doi.org/10.1093/comjnl/bxr069
https://raw.githubusercontent.com/sstsimulator/sst-macro/refs/heads/master/manual-sstmacro-14.1.pdf
https://raw.githubusercontent.com/sstsimulator/sst-macro/refs/heads/master/manual-sstmacro-14.1.pdf
https://raw.githubusercontent.com/sstsimulator/sst-macro/refs/heads/master/manual-sstmacro-14.1.pdf
https://doi.org/10.1002/cpe.710
https://doi.org/https://doi.org/10.1016/j.proeng.2012.06.412
https://doi.org/https://doi.org/10.1016/j.proeng.2012.06.412
https://doi.org/10.1109/ICCR56254.2022.9996018
https://doi.org/https://doi.org/10.1016/j.simpat.2015.05.009
https://doi.org/https://doi.org/10.1016/j.simpat.2015.05.009
https://doi.org/10.1007/978-3-642-21878-1_38
https://doi.org/10.1007/978-3-642-21878-1_38
https://doi.org/10.1109/CCGrid51090.2021.00055
https://doi.org/10.1109/CCIS.2012.6664434
https://doi.org/10.1109/AINA.2013.123
https://doi.org/10.1109/AINA.2013.123
https://doi.org/10.1109/WAINA.2013.196
https://doi.org/10.1109/WAINA.2013.196
https://doi.org/10.1109/CLUSTER.2011.63
https://doi.org/10.1109/CCGrid.2012.31
https://doi.org/10.1109/CCGrid.2012.31
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1109/Correctness54621.2021.00008

10.1109/Correctness54621.2021.00008.
[46] G. Cooperman, M. Quinson, Sthread: In-Vivo Model Check-

ing of Multithreaded Programs, The Art, Science, and En-
gineering of Programming 4 (3) (2020). doi:10.22152/
programming-journal.org/2020/4/13.

[47] B. Camus, A.-C. Orgerie, M. Quinson, Co-simulation of FMUs
and Distributed Applications with SimGrid, in: Proceefings of the
ACM SIGSIM Conference on Principles of Advanced Discrete Sim-
ulation, 2018, pp. 145–156. doi:10.1145/3200921.3200932.

[48] L. Stanisic, S. Thibault, A. Legrand, B. Videau, J.-F. Méhaut, Faith-
ful Performance Prediction of a Dynamic Task-Based Runtime
System for Heterogeneous Multi-Core Architectures, Concurrency
and Computation: Practice and Experience 27 (16) (2015) 4075–
4090. doi:https://doi.org/10.1002/cpe.3555.

[49] C. Courageux-Sudan, L. Guegan, A.-C. Orgerie, M. Quinson, A
Flow-Level Wi-Fi Model for Large Scale Network Simulation, in:
Proceedings of the International Conference on Modeling, Analy-
sis and Simulation of Wireless and Mobile Systems, 2022. doi:
10.1145/3551659.3559022.

[50] Message Passing Interface Forum, MPI: A message-passing in-
terface standard version 4.0, https://www.mpi-forum.org/
docs/mpi-4.0/mpi40-report.pdf (Jun. 2021).

[51] P.-N. Clauss, M. Stillwell, S. Genaud, F. Suter, H. Casanova,
M. Quinson, Single Node On-Line Simulation of MPI Applications
with SMPI, in: Proceedings of the 25th IEEE International Paral-
lel and Distributed Processing Symposium, 2011. doi:10.1109/
IPDPS.2011.69.

[52] SimGrid “Frankenstein" example simulator, https://github.
com/henricasanova/simgrid_frankenstein (2024).

[53] H. Casanova, R. Ferreira da Silva, R. Tanaka, S. Pandey, G. Jeth-
wani, S. Albrecht, J. Oeth, F. Suter, Developing Accurate and Scal-
able Simulators of Production Workflow Management Systems
with WRENCH, Future Generation Computer Systems 112 (2020)
162–175. doi:10.1016/j.future.2020.05.030.

[54] P.-F. Dutot, M. Mercier, M. Poquet, O. Richard, Batsim: a Realis-
tic Language-Independent Resources and Jobs Management Sys-
tems Simulator, in: Proceedings of the 20th Workshop on Job
Scheduling Strategies for Parallel Processing, 2016. doi:10.
1007/978-3-319-61756-5_10.

[55] T. Özden, T. Beringer, A. Mazaheri, H. M. Fard, F. Wolf, ElastiSim:
A Batch-System Simulator for Malleable Workloads, in: Proceed-
ings of the 51st International Conference on Parallel Processing,
2023. doi:10.1145/3545008.3545046.

[56] ECP Proxy Apps, https://proxyapps.exascaleproject.
org/ecp-proxy-apps-suite/ (2023).

[57] Y. Zheng, P. Marguinaud, Simulation of the Performance and Scal-
ability of Message Passing Interface (MPI) Communications of At-
mospheric Models Running on Exascale Supercomputers, Geo-
scientific Model Development 11 (8) (2018) 3409–3426. doi:10.
5194/gmd-11-3409-2018.

[58] SMPI Proxy Apps, https://framagit.org/simgrid/
SMPI-proxy-apps (2023).

[59] OpenMPI Test Suite, https://github.com/open-mpi/
mpi-test-suite (2023).

[60] Intel®MPI Benchmarks, https://github.com/intel/
mpi-benchmarks (2023).

[61] J. Emmanuel, M. Moy, L. Henrio, G. Pichon, S4BXI: the MPI-
ready Portals 4 Simulator, in: Proceedings of the 29th IEEE In-
ternational Symposium on the Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems, 2021, pp. 1–8.
doi:10.1109/MASCOTS53633.2021.9614285.

[62] B. Barrett, R. B. Brightwell, R. Grant, K. Pedretti, K. Wheeler,
K. D. Underwood, R. Riesen, A. B. Maccabe, T. Hudson, S. Hem-
mert, The Portals 4.1 Network Programming Interface, Tech. Rep.
SAND2017-3825, Sandia National Laboratory, Albuquerque, NM
(Apr. 2017). doi:10.2172/1365498.

[63] L. E. Ratcliff, W. Dawson, G. Fisicaro, D. Caliste, S. Mohr, A. De-
gomme, B. Videau, V. Cristiglio, M. Stella, M. D’Alessandro,
S. Goedecker, T. Nakajima, T. Deutsch, L. Genovese, Flexibilities of
Wavelets as a Computational Basis Set for Large-Scale Electronic
Structure Calculations, The Journal of Chemical Physics 152 (19)

(2020) 194110. doi:10.1063/5.0004792.
[64] F. Affinito, U. Alekseeva, C. Cavazzoni, A. Degomme, P. D.

Delugas, A. Ferretti, A. Garcia, A. Kozhevnikov, P. Ordejón,
N. Spallanzani, Second Report on Code Profiling and Bottleneck
Identification, Deliverable d4.3, European Centre of Excellence in
materials modelling, simulations and design (2018).
URL https://www.max-centre.eu/sites/default/
files/D4.3%20Second%20report%20on%20code%
20profiling%20and%20bottleneck%20identification.
pdf

[65] C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier, StarPU: A
Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures, CCPE - Concurrency and Computation: Practice
and Experience, Special Issue: Euro-Par 2009 23 (2011) 187–198.
doi:10.1002/cpe.1631.

[66] SimGrid “Coordinator-Worker flashback" benchmark simulator,
https://github.com/simgrid/coordinator_worker_
flashback (2024).

[67] J. McDonald, M. Horzela, F. Suter, H. Casanova, Automated Cal-
ibration of Parallel and Distributed Computing Simulators: A
Case Study, in: Proc. of the 25th IEEE International Workshop
on Parallel and Distributed Scientific and Engineering Computing
(PDSEC), 2024.

[68] The ns-3 App Store, https://www.nsnam.org/docs/
contributing/html/external.html (2024).

17

https://doi.org/10.1109/Correctness54621.2021.00008
https://doi.org/10.22152/programming-journal.org/2020/4/13
https://doi.org/10.22152/programming-journal.org/2020/4/13
https://doi.org/10.1145/3200921.3200932
https://doi.org/https://doi.org/10.1002/cpe.3555
https://doi.org/10.1145/3551659.3559022
https://doi.org/10.1145/3551659.3559022
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://doi.org/10.1109/IPDPS.2011.69
https://doi.org/10.1109/IPDPS.2011.69
https://github.com/henricasanova/simgrid_frankenstein
https://github.com/henricasanova/simgrid_frankenstein
https://doi.org/10.1016/j.future.2020.05.030
https://doi.org/10.1007/978-3-319-61756-5_10
https://doi.org/10.1007/978-3-319-61756-5_10
https://doi.org/10.1145/3545008.3545046
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://proxyapps.exascaleproject.org/ecp-proxy-apps-suite/
https://doi.org/10.5194/gmd-11-3409-2018
https://doi.org/10.5194/gmd-11-3409-2018
https://framagit.org/simgrid/SMPI-proxy-apps
https://framagit.org/simgrid/SMPI-proxy-apps
https://github.com/open-mpi/mpi-test-suite
https://github.com/open-mpi/mpi-test-suite
https://github.com/intel/mpi-benchmarks
https://github.com/intel/mpi-benchmarks
https://doi.org/10.1109/MASCOTS53633.2021.9614285
https://doi.org/10.2172/1365498
https://doi.org/10.1063/5.0004792
https://www.max-centre.eu/sites/default/files/D4.3%20Second%20report%20on%20code%20profiling%20and%20bottleneck%20identification.pdf
https://www.max-centre.eu/sites/default/files/D4.3%20Second%20report%20on%20code%20profiling%20and%20bottleneck%20identification.pdf
https://www.max-centre.eu/sites/default/files/D4.3%20Second%20report%20on%20code%20profiling%20and%20bottleneck%20identification.pdf
https://www.max-centre.eu/sites/default/files/D4.3%20Second%20report%20on%20code%20profiling%20and%20bottleneck%20identification.pdf
https://www.max-centre.eu/sites/default/files/D4.3%20Second%20report%20on%20code%20profiling%20and%20bottleneck%20identification.pdf
https://www.max-centre.eu/sites/default/files/D4.3%20Second%20report%20on%20code%20profiling%20and%20bottleneck%20identification.pdf
https://doi.org/10.1002/cpe.1631
https://github.com/simgrid/coordinator_worker_flashback
https://github.com/simgrid/coordinator_worker_flashback
https://www.nsnam.org/docs/contributing/html/external.html
https://www.nsnam.org/docs/contributing/html/external.html

	Introduction
	Related work
	Fundamental simulation abstractions
	Resources
	Activities
	Activity abstraction
	Activity simulation

	Actors
	Actor abstraction
	Actor simulation
	Model checking ability

	Extension mechanisms
	Rich and unified resources
	Plugins
	Advanced modeling mechanisms

	Better usability via composite abstractions and programming models
	Composite platforms
	Composite network routes
	Composite activities
	Composite programming models

	Impact on simulation practice
	Distributed cyberinfrastructure simulation
	Resources and jobs management systems simulation
	HPC runtimes and applications

	Impact on scalability
	Conclusion

