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Abstract 
 
This paper considers the problem of autonomous navigation in an agricultural field. It 
proposes a localization and mapping framework based on semantic place classification 
and key location estimation, which together build a hybrid topological map. The 
approach has been assessed through off-line data, recorded in real conditions, on diverse 
fields, at different seasons. The results have shown the interest of the approach, which 
allows: (i) simple and easy-to-update map to be obtained; (ii) the use of artificial 
landmarks to be avoided, thus (iii) autonomy of agricultural robots to be improved. 
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Introduction 
 
In the last twenty years, an important number of robots have been developed to help in 
daily tasks (Royakkers & van Est, 2015), including the management and care of crops. 
The development of research prototypes and commercial robots for agriculture has been 
recently growing (Ampatzidis et al., 2017). Their autonomy has also been improved, 
reducing the need for human intervention. Many of these developments focus on 
solving the problem of navigation within the cultivated areas of a farm, known as fields, 
where two main approaches stand (Bechar & Vigneault, 2016): GNSS-based navigation 
and sensor-based navigation. The first one gives the robot information about the path to 
be followed, although a precise map prior operation is required, commonly obtained 
through the use of Real-Time Kinematic GNSS (RTK-GNSS). Despite its advantages, 
some drawbacks can be identified: (i) its high cost, (ii) the need for up-to-date maps, 
and (iii) its vulnerability in certain areas (GNSS-denied zones). Sensor-based navigation 
relies on proximity sensors, such as cameras or LIDARs, for avoiding obstacles and 
following crop rows (Durand-Petiteville et al., 2018). And, although this topic has been 
deeply addressed in recent years, it still requires a prior knowledge of the beginning and 
end of the rows to ensure robust navigation. This crucial information is generally 
provided by the farmer, making most of the solutions specific to the considered field. 
Although some proposals have tackled this situation, there is still a need for general 
navigation strategies, less dependent on (i) human intervention, (ii) absolute 
localization, and (iii) controlled environment, allowing long-range navigation to be 
achieved. 
This problem is at the core of this paper, motivated to improve the autonomy of Oz, a 
commercial weeding robot developed by Naïo Technologies (Anon., 2018), that 
requires the use of artificial landmarks for row boundary identification. Thus, this paper 
presents a localization and mapping framework that takes advantage of the particular 
structure of the field to extract natural landmarks for precise and autonomous 
navigation. The framework presented consists of a perception system (LIDAR and RGB 
camera) that acquires and labels the information, which then is analysed by a semantic 



classifier to extract natural features. The perception system and the semantic classifier 
are accompanied by a map update process. 
A field is generally structured by a sequence of rows connected through two headlands. 
This allows the working environment to be divided into a limited number of places, 
which are related to each other by specific rules. This type of problem can be described 
by a topological map, a commonly used strategy in in-door navigation to estimate the 
state (position and orientation) of a robot in a partitioned and semi-structured 
environment (Thrun & Bücken, 1996). In this sense, the framework presented includes a 
general modelling of the field expressed throughout a topological map. The semantic 
classifier benefits from this model to compare the acquired information and thus 
estimate the area where the robotic system is currently located, and the exact points 
where the transitions occur. Both elements together build a hybrid topological map. 
Some advantages can be highlighted for this type of map: (i) it captures the environment 
connectivity, while limiting the use of metric information; (ii) the map is ‘lighter’ and 
easier to update; (iii) absolute localization sensors and previous mapping are no longer 
necessary; and (iv) artificial landmarks are no longer required. 
 
Related Work 
 
Currently, there are numerous companies that offer diverse mapping services, from 
delimiting the farm zones, to obtaining in detail several vegetation and soil indices. The 
mapping task is primarily done by the use of UAVs, satellite images or manually. Most 
solutions use dedicated software to analyze the data, and mainly rely on RTK-GNSS. 
Moreover, most of the maps that are created in these solutions use the contour of the 
field given by an external source or acquired with their own system, and generate the 
path that the tractor driver should follow for optimal operation. These are called full 
coverage maps, and are independently created of the seeded crop. Most of the maps that 
could be available via this kind of service might provide some information to support 
mobile robotic systems to autonomously navigate on a farm, such as seeder-extracted 
maps. However, the acquired data needs to be manually processed to be adapted for: (i) 
a specific robotic system, (ii) a specific task, and (iii) a specific environment. 
One alternative to absolute mapping is the fusion of proximity sensors (i.e. LIDAR) 
with odometry and/or camera systems, which has been a broad subject of research. Most 
of the developed works seek to solve the problem of row following, and only some of 
them address the detection of the beginning and end of the crop row. Normally, artificial 
landmarks are installed for the detection of these limits (Zhang et al., 2014). Although it 
is a suitable solution for perennial crops, manual work is required for their installation 
and removal in non-perennial crops. This restrains the autonomous capabilities of 
robotic systems. An alternative is using the information already provided by the natural 
environment, through the semantic extraction of key elements and an adequate 
modeling of the working environment. Related to this subject, a specific work has 
aroused interest, where semantic classification of the meaning of a field is proposed 
(Weiss & Biber, 2010). They have used a particle filter to determine the probability 
distribution of the robot state in the different locations where it is applied. It should be 
noted that in this approach (i) there are no limits on the meaning of open field, (ii) the 
row-start and row-end areas are not specific points, and (iii) it is not clear the difference 
between row-start and row-end areas, which hinders its use to accurately define the 
transition between the row and the open field. 



 
Figure 1. The proposed field model. a) The semantic field place partitioning. 

b) Topological representation of the workspaces. c) Key location types. 
 
The field model 
 
In general, a field is a cultivated area consisting of one type of crop, planted in parallel 
and at a relatively constant distance between them. A field can be divided into four 
places, named: headland, lane, alley, and gate (see Figure 1.a). The headland is where 
the robot switches between lanes or alleys, or exits the field. The alley and lane 
represents the cultivated area, although the alley corresponds to the lateral boundaries. 
Both could include more than one inter-row space. Moreover, their width corresponds to 
the width of the tool. Finally, the gate allows the robot to enter/quit the field.  
These places represent the possible robot states (see Figure 1.b), i.e. a semantic 
representation of the localization of the robot in the field. A fifth state called ‘unknown’ 
has been included to handle the uncertainties when sensory data is not conclusive. At 
this step, the proposed topological map only allows the system to instantaneously 
distinguish in which type of place (state) the robot is present, but it is not able to predict 
future states or where transitions are located. This kind of map may not bring a 
sufficient accuracy to efficiently control the tools. Therefore, a metric map is included 
by estimating the exact coordinates of the transitions, called key locations (see Figure 
1.c). The key locations are represented by points  𝑝�𝑥𝑝,𝑦𝑝, 𝑧𝑝, �⃗�� ∈ ℝ3, where �⃗� is a 
unit vector that defines the orientation of  𝑝, related to  𝐹𝑓 = �𝑂𝑓, �⃗�𝑓 , �⃗�𝑓 , 𝑧𝑓�.  𝐹𝑓  is the 
field coordinate frame located at the gate. A temporary reference frame  𝐹𝑙 =
(𝑂𝑙, �⃗�𝑙, �⃗�𝑙 , 𝑧𝑙), related to  𝐹𝑓, serves to keep the perception system information 
referenced close to the last key location identified. Then, 𝐹𝑙   is relocated whenever a 
state transition is detected. This procedure allows the drift caused by the odometry to be 
minimized, with the drawback that the previous key locations lose validity within  𝐹𝑓. 
On the other hand, in the map update process, the key locations can be referenced to a 
global reference frame. The fusion of the semantic identification and the estimation of 
the key locations builds the hybrid topological map. 
 
Algorithm for semantic localization and mapping 
 
Perception system: data acquisition and labelling 
Figure 2 presents the algorithm developed. The algorithm looks for valid key locations 
by analysing the distribution of the crops, encompassed in clusters of laser point. The 
type of crop is the sole required configuration input, and the laser points are labelled 
depending on if they belong to that crop (see Figure 2.b). This allows the alleys to be 
identified. The laser points are placed in the same reference frame as the camera. Then, 
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the points that are within the positive detection are labelled (see Figure 2.b). Since the 
labelling process requires certain computational load, several epochs of laser data are 
labelled from a single camera image. The labelled points are referenced into 𝐹𝑙  which is 
relocated each time the algorithm is initialized. Then, the points are clustered based on 
DBSCAN (density-based spatial clustering of application with noise). 
Each cluster represents a crop row, or part of one, given that gaps can be found (see 
Figure 2.c). The clusters are kept stored until the system detects a change in the state. 
Therefore, every time new data is acquired, the stored clusters are updated. When a 
change in state is detected, the process is restarted, i.e. the clusters are discarded and a 
new   𝐹𝑙 is defined. This procedure provides enough information to enrich the detection 
process of the key locations, even if the robot localization system is noisy. 
For laser points labelling, an object identifier based on a classical convolutional neural 
network (CNN) called YOLOv3 (Redmon & Farhadi, 2016) has been developed. It has 
been trained to identify an important variety of market garden crops. The training was 
performed using approximately 14,000 examples (4/5 of the data for training, and 1/5 
for testing). The samples were extracted from the on-board camera of the Oz robot, 
performing real operations, in different seasons, farms, light conditions, etc. (crops and 
number of samples: green lettuce: 8,258; red lettuce: 1,808; cabbages: 1,301; 
leeks/onions: 1,444; rapeseed: 1,135). Each sample was annotated by a hand-drawn 
bounding box and each annotation consists of an image where only the desired crop 
appears. To evaluate the selected network and the ability to correctly classify the crops, 
a comparative study has been performed with RetinaNet – Resnet152 (Lin et al., 2017), 
another common network for object classification, which was also been trained with the 
same data. Similar performances have been obtained on both networks, in terms of 
average precision (AP) and mean average precision (MAP). A threshold of about 0.5 of 
the intersection over union (IoU) was used for performance analysis. Nevertheless, 
YOLOv3 offers better results in terms of performance P (on a CPU and a GPU), which 
allows it to be implemented on the Oz robot without installing any extra or expensive 
hardware. Table 1 presents results in terms of detection capacity and processing time. 
 

 
Figure 2. Algorithm for semantic localization and mapping. a) Logical scheme for state 

estimation and key location estimation. b) Laser points labelling based on crop 
detection. c) Laser points clusterization and key location estimation. 

c) Clusterization 

b) Camera view 
Key location “exit” 

Robot pose 

a) Logical diagram of the algorithm developed 

If no enough data

(2) Semantic
classifier

Initialization Data
acquisition

Point cloud
labelling

Filtered points
clusterization

Rows
identification

Key location
estimation

Transition
detected

Map
updating

Guidance
control

(1) Perception
system

(3) Map updater

Current state
estimation

Cluster A Cluster B 



Table 1. Comparison of two CNNs trained for crop detection. Detection is considered 
true positive (TP) if the IoU between ground truth and detection is greater than 50%. 
 

CNN       AP-.50               MAP-.50     P [ms] 
Cabbage & 

Broccoli 
Rape-
seed 

Green 
lettuce 

Red 
lettuce 

Onion
/Leek 

 i7 
6600U 

GTX 
1080 

YOLOv3 0.871 0.676 0.966 0.957 0.499 0.794 1,460.7 56.9 
RetinaNet 0.86 0.73 0.966 0.958 0.488 0.8 6,124.8 72.4 
 
Semantic identification and key location estimation 
For this work, only the identification of the headland (n=H), lane (n=L) and alley (n=A) 
are considered. For the two situations (see Figure 3), left and right points are estimated, 
placing them at a distance d of the nearest cluster. If both points are located, a key 
location is set at the midpoint between both (lane_end). Non-valid key locations are 
discarded, and only those that are more likely to represent the state transitions are 
maintained. They are named valid key locations, and are classified as entry (t=En) or 
exit (t=Ex). Two sorts of indices are calculated: 𝑘𝑘𝑦_𝑖𝑖𝑥_𝑡, corresponding to a 
correlation between the same types of valid key location, and 𝑎𝑎𝑎𝑎𝑘_𝑖𝑖𝑥_𝑡, 
corresponding to the correlation between the robot orientation and the last valid key 
location. For every state studied, an index 𝑐_𝑖𝑖𝑥_𝑎 is calculated, given by (1) and (2): 
 

⎩
⎪
⎨

⎪
⎧𝑐_𝑖𝑖𝑥_𝐻 = 𝑘𝑘𝑘_𝑖𝑖𝑖_𝐸𝐸

𝑎𝐸𝑎𝑙𝑘_𝑖𝑖𝑖_𝐸𝐸
× 𝑐𝑎𝑐𝑐𝑡𝑘𝑐_𝑖𝑖𝑥

𝑐_𝑖𝑖𝑥_𝐴 = 𝑎𝐸𝑎𝑙𝑘_𝑖𝑖𝑖_𝐸𝑖
𝑐𝑙𝑐𝑐𝑐𝑘𝑐_𝑖𝑖𝑖

× 𝑎𝑎𝑎𝑘𝑦_𝑖𝑖𝑥

𝑐_𝑖𝑖𝑥_𝐿 = 𝑎𝐸𝑎𝑙𝑘_𝑖𝑖𝑖_𝐸𝑖
𝑐𝑙𝑐𝑐𝑐𝑘𝑐_𝑖𝑖𝑖

× 𝑎𝑎𝑎𝑘_𝑖𝑖𝑥

,     

𝑖𝑖 𝑙𝑙𝑖𝑙 ∪ 𝑟𝑖𝑟𝑙ℎ
𝑎𝑙𝑙𝑙𝑎_𝑖𝑖𝑖 =0
𝑙𝑎𝑙𝑙_𝑖𝑖𝑖=1

𝑙𝑙𝑒𝑙
𝑎𝑙𝑙𝑙𝑎_𝑖𝑖𝑖 =1
𝑙𝑎𝑙𝑙_𝑖𝑖𝑖 =0

    (1) 

𝑐𝑎𝑐𝑐𝑡𝑘𝑐_𝑖𝑖𝑥 =  𝑎𝑎𝑐(𝐵𝑖𝑖𝑐𝑐 − 𝐹𝑖𝑖𝑐𝑐)/𝑘𝑐𝑐_𝑖𝑖𝑐(𝐹𝐹,𝐵𝐹)   (2) 
 

Equation (2) expresses how misaligned the robot is with respect to the nearest cluster, 
calculated by projecting a forward FR and backward BR points, and the nearby cluster 
points are located, designated as FC and BC respectively (see Figure 3.a). Then, the 
orthogonal distances (𝐵𝑖𝑖𝑐𝑐,𝐹𝑖𝑖𝑐𝑐) between the projected points and the cluster are 
calculated, where euc_dis represents the Euclidean distance between two points. These 
indices give an idea of how probable the robot is located in the topological map. Also, 
the state estimation is improved by taking into account the possible transitions allowed 
and the previous estimation. For this, a simplification of the state transition probability 
given a motion presented in Weiss & Biber (2010) is used, since the representation of 
the environment and the relationship between the different states is similar. 
 

 
Figure 3. Example of key location extraction. a) a_index points definition (L = 1 m). 
b) Looking for exit. c) Looking for entry (d = 0.1 m). d) Example of Oz maneuvers. 
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Figure 4.Correlation index 𝑐_𝑖𝑖𝑥_𝑎 for each state studied (dataset B1). 

 
Guidance control and map update 
Given the current state estimation and the valid key location, the navigation strategy can 
be adjusted to meet the current objective provided by the topological map and the 
general mission. The identification of the valid key location allows the exact coordinate 
where a state transition occurs to be predicted. This also allows the work within the 
field to be performed with greater efficiency and precision. The navigation strategy then 
relies on the search of possible lane candidates that require to be treated (traversed). 
Therefore, each time a state transition is identified, the last valid key location is stored 
into the metric map, referenced to 𝐹𝑓 (see Figure 1.a). This is only possible if a global 
localization system is available (i.e. GNSS), even if the uncertainty of this measurement 
is bigger than the distance between two nearest key locations. This map can be used to 
give the robotic system an idea of the necessary orientation to find a specific node 
within the hybrid topological map. Although, once close to that location, the approach 
presented should be used for precise navigation. 
 
Results and discussion 
 
The approach proposed has been tested and validated off-line with seven diverse dataset 
extracted from the Oz robot, recorded in real working conditions. Each dataset contains 
a set of asynchronous raw images, as well as the laser point-cloud referenced with the 
odometry of the robot. Five were collected in the same farm, on two different days, for 
two different types of crop (cabbage and broccoli). The remaining set was obtained for 
different seasons in a field of leeks located in a greenhouse. Thus, these data have been 
acquired during various real situations: high changes in lighting conditions (different 
time of day), different crops, different locations, etc. Figure 4 shows the correlation 
indices 𝑐_𝑖𝑖𝑥_𝑎 for one of the passes (a broccoli field consisting of four crop rows with 
a length of about 50 m). The maxima of the indices are used to estimate the state, 
including previous estimation and transitions allowed. Figure 5 presents the state 
estimation based on 𝑐_𝑖𝑖𝑥_𝑎 and compared it with the ground truth. 
 

 
Figure 5. State estimation based on only the correlation index (continuous line) and on 

the previous estimation and transitions allowed (dotted line). Dataset B1. 



 
Figure 6. Odometry of the robot and GNSS with key locations estimated for dataset B1. 
 
To define the ground truth, the positions of the artificial landmarks (red sticks) required 
by the Oz robot to navigate are used. It must be noted that, in some cases, these marks 
might not exactly be placed on the last crop, inducing a small error. In addition, every 
time the robot enters a lane, it performed a maneuver composed of several forward and 
backward movements (between five and seven, see Figure 3.c). Thus, in some cases, the 
perception system successively gets in and out of the lane, which generates false 
positive detections (see red circles on Figure 5). Indeed, this approach assumes forward 
motion only (there is no information about the motion direction). Despite these 
perturbations, the system is able to works properly. Along with the semantic robot 
localization, the key locations are also estimated. Figure 6 shows the odometry of the 
robot and the valid key locations for entry and exit. For the purpose of comparing the 
results, the valid key locations are also referenced with the GNSS sensor on-board the 
Oz robot, which may allow creating a map of the field to be used in the future. This map 
will not guarantee accurate and safe navigation given the GNSS accuracy limitations (± 
0.6 m of positioning error), but in conjunction with the semantic localization in the 
topological map, the navigation strategy through the entire farm should be possible. 
Table 2 presents the analysis of the detection success rate (DSR), in addition to the 
mean distance error (MDE) between the detected key locations and the ground truth. 
Moreover, the orthogonal distance error (Orth_E) is analysed to identify if a key 
location was estimated in a different lane. Even with the error introduced in the 
definition of the ground truth, the results obtained are encouraging, demonstrating that it 
is possible to locate the rows boundaries without the use of artificial landmarks. 
 
Table 2. State estimation and key locations results, for dataset: B for broccoli; C for 
cabbage; and L for leeks. For every key location type, a MSE of its position as well as 
the orthogonal projection error (Orth_E) are calculated compared with the ground truth. 
 

Set MDE [m] 
Entry       Exit       Mean 

Orth_E [m] 
Entry       Exit        Mean 

Transitions 
Entry Exit DSR 

B1 0.36 0.151 0.256 0.083 0.038 0.06 4 4 0.829 
B2 0.829 0.533 0.681 0.3 0.187 0.244 4 4 0.875 
C1 0.478 0.473 0.475 0.006 0.115 0.089 3 4 0.86 
C2 0.655 1.153 0.904 0.052 0.137 0.095 3 4 0.923 
C3 0.647 0.275 0.461 0.334 0.089 0.212 3 4 0.804 
L1 0.921 0.868 0.895 0.148 0.458 0.301 8 7 0.805 
L2 0.062 0.343 0.203 0.037 0.038 0.034 2 2 0.637 

GNSS 



Conclusions 
 
This paper considers the problem of autonomous navigation through an agricultural 
field. First, a model of the field is introduced to integrate it into a hybrid topological 
map. This map is part of the localization and mapping framework presented. This 
approach introduces an alternative for absolute localization or the use of artificial 
landmarks, which are not always reliable systems for navigation. The approach 
presented benefits from the structure of the field to identify indistinguishable 
characteristics that allows the instantaneous robotic pose to be estimated. Moreover, the 
hybrid attribute of the map also makes possible the state transitions to be predicted. This 
approach has been validated using off-line data, recorded in real working conditions, 
from diverse fields with different crops. The results have demonstrated the efficiency 
and the interest of the approach proposed, paving the way for low-cost and long-range 
navigation in agricultural environments. 
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