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Abstract

This work focuses on the control of a camera mounted on a differential drive robot

via a VPC (Visual Predictive Control) scheme. First, an exact model of the visual

feature prediction is presented for this robotic system. Next, relying on the equivalent

command vector concept, a parallel implementation on a GPU (Graphics Processing

Unit) of the computation of the cost function and its gradient is presented. Finally,

results show that the proposed approach is more accurate than the ones classically used

and can be up to six times faster than CPU-based (Central Processing Unit) one for

large prediction horizons and numerous visual features. It then becomes possible to

implement a VPC controller running sufficiently fast to perform a navigation tasks,

while guaranteeing the closed-loop stability by relying on large prediction horizons.

Keywords: Mobile Robot, Visual Servoing, Model Predictive Control, Parallel

Implementation

1. Introduction

IBVS (Image-Based Visual Servoing), a sub-division of visual servoing, aims at

controlling the motion of a camera mounted on a robotic system. To do so, the control

law is designed in the image space and relies on the minimization of an error between

the values of some visual features computed in the current image and their values of5

reference, corresponding to the task to achieve [1]. Thus, there is no need to estimate
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the robot localization in a global frame and it is sufficient to track the visual features

in the image. This method is usually chosen for its reactivity, the lack of localization,

and its large stability margins [1]. However, the camera pose not being taken into

account by the control law, the trajectory is entirely dependent of the number and types10

of visual features used to define the task (points, lines, moments, etc [1]). It is then

difficult to provide any guarantee regarding the camera pose during the servoing in

order to avoid collisions or occultations. Moreover, the evolution of the visual features

in the image and the camera trajectory can be incompatible and induce a failure of

IBVS. For example, it is well known that a classical IBVS controller cannot achieve a15

pure rotation around a set of point visual features [1]. Among the many advanced IBVS

schemes developed over the last two decades [1], the VPC (Visual Predictive Control)

approach [2] seems one of the most relevant to tackle these theoretical challenges.

VPC is the fusion between IBVS and NMPC (Nonlinear Model Predictive Control)

[3]. It consists of a NMPC scheme where, similarly to IBVS, the camera pose is defined20

in the image space by a set of visual features. Thus, the task to achieve is classically

defined by a cost function, which is the sum over a prediction horizon of the differ-

ence between the predicted and desired states. Next, a set of constraints dealing with

the specific features of the task is added to the NMPC scheme. Finally, a numerical

solver minimizing the cost function while taking into account the constraints is used25

to compute the command. The obtained control scheme thus combines the advantages

of IBVS, i.e., reactivity, absence of metric localization, and large stability margins [1],

with the ones of NMPC, i.e., ability to explicitly deal with constraints such as feature

visibility, collision with obstacles, or control inputs boundaries. For this reason, the

interest for VPC-based controllers has grown and several schemes were designed to30

control different robotic systems (see Table 1): a camera mounted on a robotic arm

[4][5][6][7][8], a flying camera [9], a differential robot [10] a car-like robot[11], an

underwater robotic vehicle [12] or a continuum robot [13]. In addition to this first

difference, the mentioned works stand out on several points. For example, the choice

of the visual features: VPC schemes generally rely on points to define the system35

state in the image space, with the exception of [4] where image moments are used to

increase the robustness of the control algorithm. Another difference concerns the pre-
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Table 1: Summaries of works related to VPC
Robot Visual features Prediction model Constraints Stability

[4] Robotic arm Moments IM-FOA Inputs, Joints, Visibility -

[5] Robotic arm Points LPVS Inputs, Joints, Visibility Liapunov stability

[6] Robotic arm Points SOM Inputs, Joints, Visibility -

[7] Robotic arm Points IM-FOA Inputs, Visibility -

[8] Robotic arm Points IM-FOA Inputs -

[9] Flying camera Points IM-FOA Inputs, Visibility Terminal constrained set

[10] Differential robot Points IM-FOA Inputs, Visibility -

[11] Car-like robot Points IM-FOA Inputs, Accelerations -

[12] Underwater robot Points IM-FOA Inputs, Visibility -

[13] Continuum robot Points IM-FOA Inputs, Visibility -

IM-FOA: interaction matrix-based first-order approximation LPVS: linear parameter-varying system SOM: second-order model

diction models, which are generally obtained by integrating using the Euler’s method

a first order system based on the interaction matrix [7][12][13]. Two works propose

a different approach: (i) in [5] the robotic arm is represented by a linear parameter-40

varying system in order to obtain a model independent of the visual feature depth and

(ii) in [6] the authors use a second order model allowing to integrate the visual fea-

tures acceleration to obtain better and smoother 2D and 3D trajectories. Regarding the

minimization problem resolution, most of the works rely on Quadratic Programming

or Interior Point Algorithm whereas the authors of [10] propose to use a primal-dual45

neural network. Concerning the constraints, the majority of the mentioned works use

them to bound the control inputs (limits of the actuators) and the state variables (visual

features visibility)[7] [12][13]. However, there exists a couple of more advanced uses.

For example, [9] tightens the constraints to take into account the state uncertainties,

allowing to obtain more robust controllers. The feasibility problem, and therefor the50

stability one, is a last example of such differences between the previously mentioned

works. Among them, only [9] partially addresses this problem by adding a zero termi-

nal equality constraint, whereas it is a key issue when designing a controller. As shown

by this overview of some of the most recent works related to VPC, the coupling of

IBVS with MPC (Model Predictive Control) requires to address several issues: design55

of a sufficiently accurate and robust prediction model in the image space, design of
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constraints dealing efficiently with the system and environment specificity, design of

an optimal problem guaranteeing the closed-loop stability, and selection or design of

a numerical solver computing within an acceptable time a local or global solution for

convex or non-convex problems. While the mentioned works take into account only60

one or two of these issues at a time, we propose to rely on a VPC scheme simultane-

ously dealing with obstacles, closed-loop stability and non-convex sets in the context

of a navigation task. We then introduce an approach for a parallel implementation of

the VPC scheme, leading to an efficient resolution of the optimization problem. It thus

becomes possible to safely navigate in a cluttered environment, while guaranteeing the65

closed-loop stability.

The proposed work differs from both NMPC-based and VPC-based approaches.

Indeed, NMPC-based approaches dedicated to navigation propose to track a path or

trajectory calculated before the navigation [14]. Such approaches require a model of

the environment prior to the start and are not suited to deal with unknown obstacles dis-70

covered along the navigation. In this work and similarly to [10], the navigation problem

is setup such as the reference is defined in the image space and corresponds to a unique

pose in the Cartesian space. The trajectory described by the robot thus results from the

optimization problem solved at each iteration and whose constraints are modified on-

line based on the newly acquired data. Concerning the VPC-based control strategies,75

in addition to tackling simultaneously several of the previously mentioned difficul-

ties ( stability, obstacle avoidance leading to non-convex sets and resolution time), we

consider a navigation problem where the camera has to perform large displacements,

which is not the case of the above cited works. These latter consider relatively small

camera displacements with a short prediction horizon, and boundaries constraints lead-80

ing to convex state and inputs sets. For such cases, VPC schemes without any explicit

stability guarantees are usually sufficient to achieve the task. On the contrary, for the

scenario considered in this paper, large prediction horizons and non-convex sets, it is

mandatory to explicitly address the stability issue to guarantee the navigation success.

To do so, let us first recall that nominal NMPC schemes, and therefore VPC, only85

guarantee a stable closed-loop when considering an infinite prediction horizon [15].

For solutions relying on a finite prediction horizon, which is the case for all the men-
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tioned works, two main classes of approach are identified to guarantee stability. The

first one enforces stability by adding a zero terminal equality constraint which forces

the last predicted state to be equal to the desired one [16, 17]. If the solution to the90

optimal problem respects this constraint, the problem is then feasible and it is guar-

anteed that the trajectory leads to the desired state [18]. The second one relies on the

quasi-infinite horizon method [19], which consists in adding a terminal penalty term to

the cost function and a terminal region constraint. Both are determined off-line such

that the modified cost function gives an upper bound on the infinite horizon cost and95

guarantees a decrease in the cost function. This second class of solution does not seem

to be appropriate to the navigation problem. Indeed, the obstacles are detected during

the navigation and the constraints related to obstacle avoidance might be updated at

every iteration. It is then impossible to determine a terminal region at the beginning of

the navigation. Moreover, the quasi-infinite horizon method requires that there exists a100

known control law, local to the terminal region, that stabilizes the system and satisfies

the constraints. Again, it is impossible to prove the existence of such a local control

law without knowing the constraints in the terminal region.

Therefor, in this work, the stability is guaranteed by adding a zero terminal equal-

ity constraint. For such an approach, the size of the feasibility set, set for which there105

exists a trajectory reaching the goal while dealing with the constraints, depends on

both the length of the prediction horizon and the boundaries of the control inputs. The

latter depending on the physical limits of the actuators, it might be necessary to use

a large prediction horizon to guarantee the stability. However, large prediction hori-

zons increases the computational burden to obtain the cost function and its gradient.110

Indeed, they require to compute several thousand times the predicted visual features

in a serial fashion, each predicted state depending on the previous one. To overcome

this issue, we propose to rely on a GPU (Graphics Processing Unit) to execute some

parts of the optimization process. The use of GPU in the field of trajectory optimiza-

tion was investigated and has led to algorithm-level parallelism and instruction-level115

parallelism. With the first approach the underlying algorithm is modified to create

more opportunities for simultaneous execution of instructions. Several multiple shoot-

ing methods were designed to parallelize an SQP (Sequential Quadratic Programming)
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algorithm [20] or an iLQR (iterative Linear Quadratic Regulator) one [21] [22]. The

second approach consists in implementing in a parallel fashion some of the operations120

performed by the algorithm, which does not change the theoretical properties of the

algorithm. For example, in [23] the predicted states of a linear system are computed in

a parallel fashion for a MPC navigation problem. In this paper the main contribution

consists in investigating a parallel implementation of the predictive function for a VPC

scheme. While it was straightforward in [23] to parallelize a linear kinematic system,125

the visual features case is more challenging due to the presence of non-linearities in

the recursive prediction scheme. To overcome this issue, it is proposed to compute in-

dependently each predicted image directly from the last measured one. In other words,

the predictions relying on kinematic models, we need a command directly linking any

predicted camera state to the current one. To solve this problem, we present the equiv-130

alent control vectors allowing to compute such a command. It then becomes possible

to implement on a GPU the computation of the cost function and its gradient and, thus

to rely on large prediction horizons to guarantee the stability even for large displace-

ments, such as the ones in the navigation tasks. Moreover, the proposed approach is

compatible with the GPU implementation of the SQP or iLQR algorithms to further135

reduce the computation time.

The paper is organized as follows. In section II, the system model is described.

Next, the visual features and several prediction models are detailed. Section IV focuses

on the VPC scheme and different constraints that can be added to the problem. Section

V is dedicated to the parallel implementation on GPU. Finally, section VI presents140

results comparing the proposed model and its implementation to classical approaches.

2. System modeling

In this work, a pinhole camera is controlled via a VPC scheme. To model the sys-

tem, an orthonormal frame Fc(Oc,xc,yc, zc) represents the camera. The camera pose

χc is expressed in the world frame Fo(O,xo,yo, zo). Finally, the camera kinematic

screw ΓFc

Oc/Fo
, calculated at point Oc with respect to F0 and expressed in Fc, can be
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Figure 1: System model

decomposed as follows:

ΓFc

Oc/Fo
= Γ =

[
V Fc
xc

V Fc
yc

V Fc
zc

ΩFc
xc

ΩFc
yc

ΩFc
zc

]T
(1)

where V Fc
xc

, V Fc
yc

and V Fc
zc

are respectively the linear velocities along xc, yc and zc

expressed in Fc. Following the same idea, ΩFc
xc

, ΩFc
yc

and ΩFc
zc

are respectively the

angular velocities along xc, yc and zc expressed in Fc.145

The camera is embedded on a differential robot equipped with a pan-platform. Let

define Fr(Or,xr,yr, zr) the robot frame and Fp(Op,xp,yp, zp) the platform frame

(see Figure 1). Let θr be the direction of the robot with respect to xo, θp the direction of

the pan-platform with respect to xr,Op the pan-platform center of rotation and ∆rp the

distance between the robot reference point Or and Op. Moreover, with xr and yr the

coordinates of the pointOr in Fo, we define the mobile base state as χr = [xr, yr, θr]
T .

The control input is given by Q = [υ, ωr, ωp]
T , where υ and ωr are the mobile base

linear and angular velocities, and ωp is the pan-platform angular velocity with respect

to Fr. Thus, it is possible to obtain the following kinematic model for the mobile base:


ẋr

ẏr

θ̇r

 =


υ cos(θr)

υ sin(θr)

ωr

 (2)

The camera being embedded on a differential robot equipped with a pan-platform,

it only has three degrees of freedom. For this reason, with xc and yc the coordinates of

7



the point Oc in Fo and θc = θr + θp, we define a reduced camera state such as:

χ̄c = [xc, yc, θc]
T (3)

The corresponding reduced kinematic screw is then given by:

Γ
Fc

Oc/Fo
= Γ =

[
V Fc
yc
, V Fc

zc
,ΩFc

xc

]T
=


ẋc

ẏc

θ̇c

 =


υ cos(θr)− ωr∆rp sin(θr)

υ sin(θr) + ωr∆rp cos(θr)

ωr + ωp

 (4)

3. The visual features and the prediction models

camera focal length

optical axis
im

a
g
e
 p

la
n
e

Figure 2: Perspective camera model

A VPC scheme relies on a landmark to control a camera with a focal length f (see

Figure 2. We assume that this landmark can be characterized by Nv interest points

which are extracted by an image processing. Therefore, the visual data are represented

by a 2Nv dimensional vector S. A point pj , whose coordinates in the camera frame are150

given by (xj , yj , zj), is represented by a point Pj whose coordinates are Sj = (Xj , Yj)

in the image plane, with j ∈ [1, ..., Nv] (see Figure 2).

In a VPC scheme, the state is given by the visual feature vector S. With a predictive

control scheme, it is mandatory to establish a model computing the future states. Here,

we present three models to predict the evolution of the visual features. The two first155

ones are extracted from the literature [2] whereas the third one is specifically computed

for a differential robot.
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3.1. Global model

The global prediction model consists in de-projecting a point from the initial image

to the initial camera frame (R2 → R3), computes its coordinates in the prediction

camera frame (R3 → R3), and finally projects this point in the prediction image (R3 →

R2). By defining the projection matrix Hi/c and the homogeneous matrix Hc(t1)/c(t2)

between two camera poses at instants t1 and t2 such as:
Xj

Yj

zj

1

 =


f/zj 0 0 0

0 f/zj 0 0

0 0 1 0

0 0 0 1




xj

yj

zj

1

 = Hi/c


xj

yj

zj

1

 (5)

Hc(t1)/c(t2) =

 Rc(t1)/c(t2) Tc(t1)/c(t2)

01×3 1

 (6)

where Rc(t1)/c(t2) and Tc(t1)/c(t2) are respectively a 3× 3 rotation matrix and a 3× 1

translation vector between Fc(t1) and Fc(t2), we obtain the global prediction model:

Pj(t2) = Hi/c(t2)H
−1
c(t1)/c(t2)H

−1
i/c(t1)Pj(t1) (7)

3.2. Local model

It relies on the mapping between the visual features evolution and the camera kine-

matic screw via the interaction matrix, classically given for a point Pj by [1]:

Ji =

 −f
zj

0
Xj

zj

XjYj

f −(f +
X2

j

f ) Yj

0 −f
zj

Yj

zj
(f +

X2
j

f )
−XjYj

f Xj

 (8)

The local model is thus given by the integration between the current instant and the

prediction one of the following equation:

Ṡj = JiΓ (9)

3.3. 3 DOF local model160

In this paper, it is proposed to predict the visual features using a local model in the

case of a 3 DOF camera. In other words, Equation 9 is modified to include the robotic
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system carrying the camera. Let define the robot Jacobian by [24]:

Jr =


− sin(θp) ∆rp cos(θp) + cx cx

cos(θp) ∆rp sin(θp)− cy −cy
0 −1 −1

 (10)

where cx and cy are the coordinates of Oc along axes xp and yp (see Figure 2), and the

reduced interaction matrix, i.e., for a 3 DOF camera, by:

Ji =

 Xj

zj

XjYj

f −(f +
X2

j

f )

Yj

zj
(f +

X2
j

f )
−XjYj

f

 (11)

It is then possible to rewrite Equation 9 such as:

Ṡj = JiΓ = JiJrQ (12)

The robot is a sampled system whose inputs evolve at each instant t = kTs, where Ts

is the sampling time. By assuming that the inputs Q(t1) are constant during the two

instants t1 and t2 = t1 + Ts, it is then possible to solve (12) between t1 and t2. After

some computations (see [25]), we obtain:

Xj(t2) =
zj(t1)Xj(t1)

zj(t2)

Yj(t2) = f
zj(t2)

{
C1 cos(A)− C2 sin(A) + ∆rp sin(θp(t2)) + υ(t1)

ωr(t1) cos(θp(t2))− cy
}

zj(t2) = C1 sin(A) + C2 cos(A)−∆rp cos(θp(t2)) + υ(t1)
ωr(t1) sin(θp(t2))− cx

(13)

where:

A =
(
ωr(t1) + ωp(t1)

)
Ts

C1 =
Yj(t1)zj(t1)

f −∆rp sin(θp(t1))− υ(t1)
ωr(t1) cos(θp(t1)) + cy

C2 = zj(t1) + ∆rp cos(θp(t1))− υ(t1)
ωr(t1) sin(θp(t1)) + cx

Unlike the two other ones, this model is a closed-form expression. It can be used

to predict exactly the coordinates of the visual features. Moreover, it does not require

any advanced/complex operation, offering a low computational cost.

Remark: The three models rely on the z coordinate of the visual features. Thus,

to accurately predict the values of the visual features, it is mandatory to estimate it or165

to measure it with a sensor such as a 3D camera. Using a constant value, which is

widely used in classical IBVS [1], might lead to large prediction errors, especially for

the navigation problem where the value of z has large variations.
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4. Visual Predictive Control

In this section, we first recall the VPC framework and the main parameters im-170

pacting the controller behavior. Then, we present constraints that could be taken into

account either to guarantee the stability of the closed-loop system or the safety of the

robot.

4.1. The VPC Scheme

A VPC scheme consists in coupling NMPC with IBVS. On the one hand, similarly

to NMPC, it consists of computing an optimal control sequence Q
∗
(.) that minimizes

a cost function JNp over a prediction horizon of Np steps while taking into account

a set of user-defined constraints C(Q∗(.)). The optimal control sequence is of length

Nc, which represents the control horizon. In other words, the N th
c first predictions are

computed using independent control inputs, while the remaining ones are all obtained

using a unique control input equals to Q∗(Nc). On the other hand, similarly to IBVS,

the task to achieve is defined as an error in the image space. To do so, we define

S as the state vector containing the coordinates of Nv visual features and S∗ as the

desired state. In this work, we use points as visual features, and in this particular

case S = [X1, Y1, ..., Xj , Yj , .., XNv , YNv ]T . Finally, the cost function to minimize is

defined as the sum of the quadratic error between the visual feature coordinates vector

Ŝ(.) predicted over the horizon Np and the desired ones S∗. Note that the proposed

cost function is the one traditionally used for VPC schemes, but it does not represent

the only choice. The optimal problem is then defined as follows:

Q
∗
(.) = min

Q(.)

(
JNp(S(k),Q(.))

)
(14)

with

JNp
(S(k),Q(.)) =

k+Np∑
p=k+1

[Ŝ(p)− S∗]T [Ŝ(p)− S∗] (15)

subject to

Ŝ(k + 1) = f(Ŝ(k),Q(k)) (16a)

Ŝ(k) = S(k) (16b)

C(Q
∗
(.)) ≤ 0 (16c)

11



where Q(.) = [Q(k), ...,Q(k + Np − 1)]. The prediction function f(Ŝ(k),Q(k)) in175

Equation 16a corresponds to the prediction model given in Equation 13. Moreover,

the predicted visual features rely on the last measured ones, as stated by Equation 16b.

Finally, Equation 16c is used to include the constraints in the optimization problem.

Some of the constraints that could be included are presented in the following sections.

Remark 1: Solving Equation 14 leads to the optimal sequence Q
∗
(.). As it is usually180

done, only the first element Q
∗
(1) is applied to the system. At the next iteration, the

minimization problem is restarted, and a new Q
∗
(.) is computed. This loop is repeated

until the task is achieved.

Remark 2: Numerical solvers require an initial value for the vector to optimize. In this

work, the results of the previous optimization are used as the initial guess of the current185

one.

4.2. The Zero Terminal Equality Constraint

In this work, the stability of the VPC scheme relying on a finite prediction horizon

is achieved by adding a zero terminal equality constraint. It is defined as the error

between the prediction of the visual features Ŝ(k + Np) obtained at the end of the

prediction horizon, and the desired ones S∗.

||Ŝ(k +Np)− S∗|| = 0 (17)

An equality constraint being almost impossible to achieve, we use the following in-

equality constraint:

||Ŝ(k +Np)− S∗|| − δtc ≤ 0 (18)

where δtc is a user defined threshold sufficiently small to impact the optimization pro-

cess similarly to the equality while offering an efficient implementation of the con-

straint.190

The respect of this constraint leads to a computed trajectory connecting the current

state to the desired one. It is then possible to guarantee the recursive feasability of the

problem and thus to obtain the closed-loop stability [18]. If the solver cannot compute

a Q
∗
(.) that fulfills this constraint, then the prediction horizon is too short and/or the

12



constraints on the control inputs are too restrictive to reach the goal [3]. This issue is195

addressed in the following section.

Remark 3: Despite being a classical solution to guarantee the closed-loop stability of

NMPC schemes, the works related to VPC studied during the literature review do not

propose to include a terminal constraint. Instead, authors usually weight the last pre-

dicted value based on the distance to the desired one. This method helps the solver to200

converge towards an optimal solution but it does not guarantee the closed-loop stability.

Remark 4: The terminal constraint does not provide an absolute guarantee of the task

realization. Indeed, in the case the predictions are strongly erroneous, the system can-

not converge towards the real values of the desired states.

4.3. The Input Constraints205

The constraints applied to the control input vector are usually in the form of bound-

aries. They allow to take into account the physical limits of the actuators and are ex-

pressed as inequality constraints:

Q(i)−Qu

Ql −Q(i)

 ≤ 0 (19)

where i ∈ [1, ..., Nc], and Ql and Qu are respectively the lower and upper boundaries

corresponding to the actuators limits. Thus, the command applied to the robot, respects210

the actuators boundaries.

4.4. The Obstacle Avoidance Constraints

To perform a safe navigation, constraints can be used to avoid collision with the

obstacles in the vicinity of the robot. Traditionally, the avoidance is obtained by guar-

anteeing a minimal distance between one or several points of the obstacles and the

centroid of the robot for each predicted state. When considering small displacements

between two states, this approach is sufficient to avoid collisions. In this work, it is

proposed to only consider static, non-occulting1, and circle-shaped obstacles. Each of

1Small enough for the camera to perceive the target from any configuration.
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the No obstacles present in the scene is defined by xom , yom , rom , with xom , yom the

coordinates of the center, rom the radius, and m ∈ [1, ..., No]. The collision risk is

managed thanks to the following constraint:

δs −
√

(x̂(k)− xo1)
2

+ (ŷ(k)− yo1)
2

...

δs −
√

(x̂(k +Np)− xo1)
2

+ (ŷ(k +Np)− yo1)
2

δs −
√(

x̂(k)− xoNo

)2
+
(
ŷ(k)− yoNo

)2
...

δs −
√(

x̂(k +Np)− xoNo

)2
+
(
ŷ(k +Np)− yoNo

)2


≤ 0 (20)

with δs = ds + rom + rr, where rr represents the mobile base radius and ds the safety

distance around an obstacle. The predicted positions of the mobile base x̂(.) and ŷ(.)

are obtained by integrating Equation 2.215

Remark 5: In this work, we consider one of the simplest form of the obstacle avoid-

ance problem. Indeed, we use circle-shaped obstacles and the challenges related to their

detection are not taken into account. However, adding obstacle avoidance constraints

has a large impact on the problem. Indeed, unlike constraints such as command bound-

aries or camera field of view limits, it transforms the initial convex feasible set into a220

non-convex feasible set. In such a case, it becomes then necessary to use large val-

ues for Nc, which increases the complexity of the problem and the computation time

necessary to solve it.

5. Parallel implementation

5.1. Parallelization of the problem225

The implementation of a VPC scheme relies on a solver, which computes Q
∗
(.)

in an iterative fashion. To do so, at each iteration it is necessary to compute a large

number of times the value of the cost function given in Equation 15 and its gradient

(depending on the used solver). Rewriting Equation 15 such as:

JNp
(S(k),Q(.)) =

Nv∑
j=1

k+Np∑
p=k+1

Jj|p (21)
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where Jj|p = [Ŝj(p) − S∗j ]
T [Ŝj(p) − S∗j ], it clearly appears that the computation of

JNp
(S(k),Q(.)) contains two for loops. The length of the first one depends on the

number Nv of visual features whereas the second one depends on the number Np of

predictive steps. Thus, the number of iterations required to compute the cost function

can be large for a mobile robot. Indeed, we usually use more features than the min-230

imum required number to obtain a controller robust to occultations and to deal with

tracking issues. Moreover, to guarantee the feasibility of the predictive scheme and

respect the terminal constraint, the number of prediction steps has to be sufficiently

large. Thus, one of the challenges to address in order to control a robot with a VPC

scheme consists in efficiently implementing the computation of the cost function for235

large values of Nv and Np. To deal with this challenge, we propose to design a parallel

algorithm computing the cost function and its gradient. The challenge consists then

in breaking the two for loops to make possible the computation of each element Jj|p

independently.

First, the visual features being independent from each other, it is straightforward240

to split the calculation of the sequence of predicted values for each feature into Nv

threads. Regarding the second loop, the prediction of the visual features being an iter-

ative process (see Equation 13), it is currently impossible to compute each prediction

individually.

To design a parallel implementation of the predictions, it is proposed to determine

how an image at tk can be directly linked to an image at tp > tk, without relying on the

intermediate images at tk+1, ..., tp−1. It consists in determining the smallest sequence

of control inputs allowing to reach the camera state χc(p) starting from the state χc(k).

To do so, it is first required to study the controllability of the corresponding nonlinear

discrete system χc(k + 1) = g(χc(k),Q(k)) where g(χc(k),Q(k)) is obtained by

analytically solving equation (4) between tk and tk+1. Its expression is given by:

g :


xc(k + 1) = xc(k) + 2υ(k)

ωr(k) sin(η1) cos(η2) + 2∆rp sin(η1) sin(η2)

yc(k + 1) = yc(k)− 2υ(k)
ωr(k) sin(η1) sin(η2) + 2∆rp sin(η1) cos(η2)

θc(k + 1) = θc(k) + (ωr(k) + ωp(k))Ts

 (22)

with η1 = ωr(k)Ts

2 and η2 = 2θr(k)+ωr(k)Ts

2 and when ωr 6= 0 (the problem is straight-
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forward if ω = 0). According to [26], such a system is controllable in nc steps if the

following matrix Mc is full rank.

Mc =



∂g(χc(nc−1),Q(nc−1))
∂Q(nc−1)

∂g(χc(nc−1),Q(nc−1))
∂χc(nc−1)

∂g(χc(nc−2),Q(nc−2))
∂Q(nc−2)

...

∂g(χc(nc−1),Q(nc−1))
∂χc(nc−1) ... ∂g(χc(1),Q(1))

∂χc(1)
∂g(χc(0),Q(0))

∂Q(0)



T

(23)

For nc = 1, i.e., the camera is controllable in one step, we obtain:

Mc =
∂g(χc(0),Q(0))

∂Q(0)
(24)

After some computation, we obtain:

Mc =


2

ωr(0) sin(η1) cos(η2) ξ1 0

2
ωr(0) sin(η1) sin(η2) ξ2 0

0 Ts Ts

 (25)

where

ξ1 = −2υ(0)

ω2
r(0)

sin(η1) cos(η2) +
υ(0)

ωr(0)
Ts cos(η1 + η2)−∆rpTs sin(η1 + η2)

ξ2 = −2υ(0)

ω2
r(0)

sin(η1) sin(η2) +
υ(0)

ωr(0)
Ts sin(η1 + η2) + ∆rpTs cos(η1 + η2)

In order to evaluate the rank of the matrix, we compute the determinant:

det(Mc) =
υ(0)

ωr(0)
Ts sin(η1) + ∆rpTs cos(η1) (26)

The determinant in Equation 26 being non-null for tan(η1) 6= ∆rpωr(0)
υ(0) , Mc is full245

rank for nc = 1. Thus, it exists a constant control input vector Q̃tk|tp , named equiv-

alent control vector, allowing to reach the camera state at tp from the one at tk in one

step. This equivalent control vector allows to link two images without the need of

intermediate ones as it is illustrated in Figure 3.

Finally, it remains to establish the equations allowing to compute each element

of the equivalent control vector Q̃tk|tp . The system being controllable in one step,

Q̃tk|tp can be obtained by re-arranging the system given in Equation 22. Thus, defining
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Figure 3: Example of equivalent control vectors

∆xc
= xc(p)− xc(k) and ∆yc = yc(p)− yc(k), we obtain:

υ̃ =

√
ω̃2
r

(
∆2

xc
+∆2

yc

4 sin2(ηC1)
−∆2

rp

)
ω̃r = 2

Ts
arctan (γ)

ω̃p = 1
Ts

[θp(p)− θp(k) + θr(p)− θr(k) + ω̃rTs]

(27)

with γ = − ∆xc sin(θr(k))+∆yc cos(θr(k))
2∆rp+∆xc cos(θr(k))+∆yc sin(θr(k)) . By using the formulas given in Equa-250

tion 27, it is now possible to obtain the equivalent control vector Q̃tk|tp = [υ̃, ω̃r, ω̃p]
T

linking the image at instant tp from the image at tk. 2

5.2. Implementation on GPU

The computation of each element Jj|p of Equation 21 being independent, we now

focus on the parallel implementation allowing to calculate a cost function for a given255

sequence of control inputs Q(.) = [Q(k), . . . ,Q(k+Np−1)] over a prediction horizon

of Np steps (see Figure 4). The computation of the cost function on a GPU is divided

into three steps.

• First, the sequence of equivalent control vectors [Q̃tk|tk+1, . . . , Q̃tk|tk+Np
] are

computed on the CPU using the formulas given in Equation 27.260

• Next, Nv × Np threads are launched on the GPU to calculate each Jj|p. Each

2It should be noted that the robot trajectory in the world frame computed with Q̃tk|tp is not the same as

the one calculated with the sequence [Q(k), ...,Q(k +Np − 1)].
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thread performs the prediction of the visual features using Equation 13 and cal-

culate the difference with the reference values.

• Finally, the cost function JNp is obtained by summing the terms Jj|p using (Nv×

Np)/2 threads and a classical parallel sum algorithm.265
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C
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C
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{G
P
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Figure 4: Left: Parallel computation of the cost function - Right: Parallel computation of the gradient

Among the solvers that can be used to minimize the cost function given in Equa-

tion 15, some require to provide the gradient of the cost function with respect to the

sequence of control inputs [Q(k), . . . ,Q(k + Np − 1)]. Due to the iterative nature of

the prediction process, it is challenging to provide an analytic expression of the gradi-

ent. It is then proposed to numerically compute the gradient. To do so, it is possible to270

rely on the parallel implementation designed for the cost function.

The control input sequence Q(.) being of dimension 3Np, the gradient dimension

is also 3Np. To compute each ∇g , the gth component of the gradient where g ∈

[1, ..., 3Np], a small variation δQ is added to the gth component of the control input

sequence Q. We obtain 3Np modified control input sequences denoted Q
g
(.). They275
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are the input parameters of the parallel algorithm presented on the right side of Figure

4, and which is a slightly modified version of the previous algorithm.

• First, 3Np equivalent command vectors sequences are calculated using formulas

given in Equation 27.

• Next, 3N2
pNv parameters Jgj|p are computed thanks to Equation 13.280

• The Jgj|p are summed to obtain the 3Np elements JgNp
.

• Finally, each ∇g is calculated using:

∇g =
JgNp
− JNp

δg
(28)

Thus, thanks to the equivalent control vectors, the cost function and its gradient

can be calculated using a parallel implementation. It should then be possible to con-

sider a large number of visual features and prediction steps while maintaining a low

computational cost.285

6. Results

In this section, we present results obtained in simulation showing the relevance and

the efficiency of the proposed approach. To do so, a program simulating the hardware

and software flowcharts presented respectively in Figures 5 and 6 was developed us-

ing the C++ and CUDA languages. In Figure 6, the Initialize Command, Cost290

Function, Terminal Constraint, and Obstacle Constraint blocks were

implemented relying on the methods presented in Sections 4 and 5. The Move Robot

block simulates the robot displacement using the equations presented in Section 2. The

Image Processing block simulates an image processing algorithm computing the

coordinates in the image frame of four points characterizing the landmark of interest.295

To do so, we rely on the perspective camera model and on the global model presented

in Section 3. The last block, the Point Cloud Processing one, simulates the

process of data provided by a 2D laser rangefinder. It provides the coordinates in the

robot frame of a set of points belonging to the obstacle’s surface visible to the sen-

sor. Finally, the solvers used in this work are part of the NLopt nonlinear-optimization300
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package. This implementation was tested on an Intel Core i7-8750H CPU running at

2.20GHz and a NVidia GeForce GTX 1060 GPU.

Camera Motors
Controller

Laser
Range nder

CPU

GPU Motors &
Encoders

Computer

Figure 5: Hardware flowchart
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NO
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Figure 6: Software flowchart

6.1. Comparison of the models

In section 3, it was shown that we can rely on five models to predict the visual

features for a 3 DOF camera3: the local model solved with the Euler method, the local305

model solved with Runge-Kutta (RK) method, the global model solved with the Euler

method, the global model solved with RK method, and finally the local model for a 3

DOF camera presented in section 3.3. In this first part, we investigate the accuracy of

the prediction models and their sensitivity to the sampling time and visual feature depth

without taking into account the computation time. To do so, the following scenario is310

considered: the robot initial pose is xr = 0, yr = 0.5, θr = 0 and θp = 0, the desired

camera pose is xc = 5.1, yc = 0, θc = 0, and finally the landmark of interest is

made of four points whose xyz coordinates are [6, 0.5, 1.5], [6,−0.5, 1.5], [6, 0.5, 0.5],

and [6,−0.5, 0.5]. Moreover, three cases are considered: case #1 where Ts = 0.2s

3When a 6 DOF model is used, the non-available velocities are considered null.
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and |υ| < 1m/s, case #2 where Ts = 0.2s and |υ| < 0.5m/s, and case #3 where315

Ts = 0.1s and |υ| < 1m/s. The robot is controlled via a VPC scheme relying on the

exact measures and data, and this represents the ground truth for the comparison. At

each iteration, Q
∗
(.) is used to predict the visual feature for each model. The quadratic

error between the predictions and the ground truth over the prediction horizon is saved

for each model. Finally, in Figure 7, we provide the sum of the errors over the whole320

servoing.
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Figure 7: Total error of prediction for five models

In the first three groups of bars in Figure 7, the depth of the visual features is per-

fectly known. For such a case, the 3 DOF local model presented in this work perfectly

predicts the visual features. The other model predictions are within a reasonable error

margin, except the local model solved with the Euler method whose predictions are325

strongly erroneous. The 3 DOF local model being the exact closed-loop equation of

the feature prediction, this result was predictable. Moreover, it is neither affected by

the value of the sampling time Ts nor the linear velocity υ. On the contrary, the other

models are sensitive to these values. Indeed, when Ts or υ are getting larger, the camera

displacement between two sampling instants is larger, increasing the errors introduced330

by the linearizations included in these methods.

In the last three groups of bars in Figure 7, a zero-centered Gaussian noise with an

amplitude of 10% of the real value is added to the depth to simulate a value measured
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by a 3D camera or estimated via a non-linear observer. For the three cases, the 3 DOF

local model is the most accurate. The other models offer similar performances for the335

cases #2 and #3, but are significantly less accurate for the first case. Once again, it is

shown that the performances downgrade when the camera displacement between two

sampling times increases.

Thus, for a 3 DOF camera mounted on a differential robot, it seems relevant to rely

on the model presented in this work. Indeed, it is the most accurate model and the340

less sensitive one to the sampling time parameter and to the error on the visual features

depth. Moreover, it is a closed-form model not requiring any advanced computation,

and it allows a parallel implementation as presented in section 5.

6.2. Examples of navigation via VPC

In this second set of results, we present a scenario highlighting the need for large345

values of prediction horizon in order to achieve navigation tasks. In this example, the

robot has to drive the camera from its initial pose χ̄c(0) = [0, 0, 0]T to the desired

one χ̄∗c = [2, 0.5, 0]T while dealing with two non-occulting obstacles and the follow-

ing command boundaries: 0 ≤ υ ≤ 0.4m/s, −0.1rad/s ≤ ωr ≤ 0.1rad/s, and

−0.1rad/s ≤ ωp ≤ 0.1rad/s. To do so, three different lengths for the prediction and350

control horizons are considered: Np = Nc = 10, Np = Nc = 40, and Np = Nc = 50.

The results are presented in Figure 8, where the robot and the camera are represented

in dark blue, while the path executed by the mobile base is a plain orange line. The

predicted path of the camera is represented by a dashed orange line and the predicted

position of the camera by blue crosses. The desired camera pose is symbolized by a red355

triangle and the landmark is represented by red points. The obstacles are represented

by a plain green circle and the safety boundary by a pointed green circle. In the figures

representing the visual features evolution, green dots are the initial values, red dots the

final values, and blue ones are the desired values.

For the first test with Np = Nc = 10, the predicted trajectory at the initial state360

does not reach the desired camera pose (Figure 8(a)). Indeed, the number of prediction

steps is too small for the given command boundaries. The last predicted state not

being in the vicinity of the desired one, the stability of the closed-loop controller is
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(a) Np = 10 - Initial state (b) Np = 10 - Final state (c) Np = 10 - Visual features

(d) Np = 40 - Initial state (e) Np = 40 - Final state (f) Np = 40 - Visual features

(g) Np = 50 - Initial state (h) Np = 50 - Final state (i) Np = 50 - Visual features

Figure 8: Three examples of navigation via VPC with Np = Nc = 10 (a-c), Np = Nc = 40 (d-f), and

Np = Nc = 50 (g-i)
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thus not guaranteed and the navigation might fail. As it can be seen in Figure 8(b),

this is what happens in this test. In the vicinity of the first obstacle, the robot reaches365

a local minima and stops without completing the task. Indeed, the visual features

do not reach their desired values (Figure 8(c)). In the second test, we significantly

increase the length of the prediction and control horizons by setting upNp = Nc = 40.

Despite a longer predicted trajectory, the final predicted state still does not lie in the

vicinity of the camera desired state (Figure 8(d)). The stability is not guaranteed and370

the robot one more time does not manage to complete the task. Indeed, it reaches a

local minima next to the second obstacle (Figure 8(e)) and the visual features do not

converge towards their reference values (Figure 8(f)). Finally, we use Np = Nc = 50.

For this configuration, the number of prediction steps is large enough to compute a

trajectory whose last state lies in the vicinity of the desired camera pose (Figure 8(g).375

The problem is thus feasible and the closed-loop stability is guaranteed. As it can be

seen in Figures 8(h) and 8(i), the robot manages to drive the camera to its desired state,

making thus the visual features converging towards their reference values.

In these examples, the robot has to drive less than 3 meters while dealing with

obstacles, and it is already necessary to use at least 50 prediction steps to guarantee the380

system stability. It highlights then the need for large values of the prediction horizon

in order to navigate using VPC schemes. However, large prediction horizons lead to

large computation times, making this approach not eligible for an implementation on a

robot. This is why it was mandatory to develop a new approach reducing the impact of

the prediction horizon on the solving of the optimal problem.385

6.3. Parallel implementation

In this last part, we measure the time necessary to solve the optimal problem. We

only consider the 3 DOF local model and we use a scenario similar to the one described

in 6.1. The computation time is measured for several configurations: Np is equal to 10,

20, 30 or 40 and Nv is equal to 4, 8 or 16. Finally, five solvers are used to solve the390

optimal problem: i) the Nelder-Mead simplex algorithm, ii) the Sequential Quadratic

Programming (SQP) algorithm with CPU implementation, iii) the Conservative Con-

vex Separable Approximation (CCSA) algorithm using with CPU implementation, iv)
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the SQP algorithm with GPU implementation, and v) the CCSA with GPU implemen-

tation. The Nelder-Mead simplex algorithm is the only solver among the selected ones395

that does not require to provide a value for the gradient. These nonlinear solvers were

selected for their abilities to deal with nonlinear (in)equality constraints. Also, using

different solvers can show the approach efficiency despite the selected solver.

In Figure 9, the processing times for the different solvers and configurations are

given. First, it can be seen that providing an implementation of the gradient speeds400

up the minimization. Indeed, the processing times obtained with the Nelder-Mead

simplex algorithm are always significantly larger than the ones obtained with the SQP

and CCSA algorithms implemented on a CPU. Second, when comparing the CPU and

GPU implementations for the SQP and CCSA algorithms, we note that for small values

of Np and Nv the processing times are similar. On the other hand, for larger values,405

the processing times obtained with a CPU implementation are significantly larger than

the ones obtained with a GPU implementation. Thus, the computation on GPU seems

relevant mostly for large values of Np and Nv , such as when performing a navigation

task. Computing one Jj|p on a GPU being slower than on a CPU, it is usually relevant

to rely on the GPU implementation for large numbers of parallel threads. In the present410

case, Np ×Nv = 120 seems to be the threshold to switch from CPU to GPU. Indeed,

in Figure 9, for Np = 30 and Nv = 4, the processing times of the last four solvers are

similar.
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7. Conclusion

In this paper, the control of a differential robot equipped with a camera via a VPC415

scheme has been tackled. We first have presented a prediction model of the visual

features for the specific robotic system (3 DOF camera). This model is the analytic

solution to the prediction problem. As such, it offers an exact and efficient way to

predict the visual features. Next, a parallel implementation of the calculation of the

cost function and its gradient has been presented. It relies on the equivalent command420

vectors that allow to break a for loop computation into independent threads. Thus, it

is possible to minimize the cost function in less than 150 ms when using a prediction

horizon of 40 steps and 16 visual features (worst case in our tests). However, when the

number of prediction steps is small, the GPU implementation does not seem relevant

to decrease the optimization time.425

This represents a first step towards the use of VPC controllers to perform naviga-

tion tasks, while guaranteeing the closed-loop stability by relying on large prediction

horizons. However, the results were obtained for the specific case of a 3 DOF camera.

It would then be interesting to generalize the approach to a 6 DOF camera in order to

be able to use for any kind of robotic system. Moreover, other processes could benefit430

from the equivalent vectors in order to reduce their computation time. For example, the

constraints to avoid collisions with obstacles or to avoid that the visual features leave

the field of view require a large amount of computation. Implementing these processes

in a parallel fashion would allow to rely on a VPC controller in a complex and chal-

lenging environment. Finally, in order to further reduce the total optimization time, it435

would interesting to couple this instruction-level approach with algorithm-level ones,

such as the iLQR algorithm [22] or the Model Predictive Path Integral controller [7]
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[19] H. Chen, F. Allgöwer, A quasi-infinite horizon nonlinear model predictive control

scheme with guaranteed stability, Automatica 34 (10) (1998) 1205–1217.

[20] D. Kouzoupis, R. Quirynen, B. Houska, M. Diehl, A block based aladin scheme

for highly parallelizable direct optimal control, in: 2016 American Control Con-495

ference (ACC), IEEE, 2016, pp. 1124–1129.

28
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