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Naouel Zerrouk1,2, Franck Augé2 & Anna Niarakis 1,3,4

Rheumatoid arthritis is a complex disease marked by joint pain, stiffness, swelling, and chronic
synovitis, arising from the dysregulated interaction between synoviocytes and immune cells. Its
unclear etiology makes finding a cure challenging. The concept of digital twins, used in engineering,
can beapplied to healthcare to improvediagnosis and treatment for complex diseases like rheumatoid
arthritis. In this work, we pave the path towards a digital twin of the arthritic joint by building a large,
modular biochemical reaction map of intra- and intercellular interactions. This network, featuring over
1000 biomolecules, is then converted to one of the largest executable Boolean models for biological
systems todate. Validated throughexistingknowledgeandgeneexpressiondata, ourmodel is used to
explore current treatments and identify new therapeutic targets for rheumatoid arthritis.

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune
disease whose causal mechanisms are still not fully understood. RA
pathogenesis involves genetic, epigenetic, and environmental factors.
Deregulated activation of multiple pathways leads to cartilage degra-
dation and chronic inflammation of the synovial tissue1. The inflam-
matory cascade leads to joint hyperplasia, cartilage damage, and bone
destruction. This pathogenic behaviour cannot be associated with a
single cell type and results from cellular communication between resi-
dent cells and cells from the innate and adaptive immune system. Cell-
cell communication determines numerous aspects of the disease’s
pathophysiology and can activate or downregulate specific synovial cell
populations. It also regulates inflammation, autoimmunity, and
articular destruction in the joints by initiating cascades of signalling
pathways, further resulting in the expression of proinflammatory
molecules and matrix remodelling enzymes. Such cascades trigger dis-
ease phenotypes like angiogenesis, cartilage matrix degradation,
inflammation, and synovial hyperplasia2.

Due to this complexity, there is currently no cure forRA.Theproposed
treatments seek to relieve disease symptoms and improve survival3. How-
ever, these therapies have been associated with several adverse effects, and a
substantial proportion of RA patients are non-responders4,5. This results in
patient suffering and increased healthcare costs. Therefore, a better
understanding of cellular communication and the intracellular cascades
involved in the disease pathogenesis could help elucidate themode of action
(MoA) of current RA drugs and identify new therapeutic options.

Extensive efforts have been undertaken to generate comprehensive
datasets to deepen our understanding of the molecular and clinical com-
plexities of RA6. The RA-MAP Consortium, for instance, aims to enhance
disease management by investigating clinical and biological predictors of
treatment response through extensivemulti-omics phenotyping7. Jiang et al.
and Yim et al., on the other hand, integrate genomics with transcriptomics
and chromatin accessibility features of RA synovium to characterize the
genetic regulation landscape on gene expression and the regulatory
mechanisms mediating predisposition to arthritic diseases8,9. Additionally,
Tsuchiya et al.10 performed integrative analyses of mRNA expression, his-
tone modifications, three-dimensional genome architecture and genetic
variations that yielded potential therapeutic targets associated with genetic
risk of RA. Using clinical data combined with radiographic, ultrasound and
serological factors, researchers were also able to identify predictors of RA
flares after reaching persistent remission11,12.

To effectivelymanage and interpret the vast amounts ofdata generated,
we need efficient approaches to ingest this knowledge and tailor it to indi-
vidual patients. An engineering concept known as “digital twins” has been
used to analyse and improve complex but deterministic systems like cities
and aeroplanes. The goal is to computationally simulate those systems so
that theymay be developed and testedmore rapidly and affordably than in a
real-world environment. The digital twin concept can be translated to
patients in order to take a step towards personalised healthcare and improve
diagnostics and treatment of complex diseases such as RA13. This analogy in
medicine has gained several successful applications in the field14. However,
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because biological systems are not deterministic by nature and there is no
gold standard in the field, their development is still relatively new and
presents significant challenges. One possible approach for tackling a task of
this magnitude is to transform our system of interest into a deterministic
model by (1) building anetworkmodel of all themolecular, phenotypic, and
environmental aspects that are pertinent to the disease mechanisms, (2)
validating its behaviour, and (3) personalising the network in order to
consider altered interactions that differ between patients with the same
diagnosis. These personalised networks could be treated computationally
with thousands of different medications to find the best one and treat the
patient with this medication. They could predict disease trajectories,
allowing diagnosis before the onset of severe symptoms. They could be used
tooptimise the timingof suggestedmedical care and to investigate the effects
of potential treatments in a patient-tailored manner. They could also help
identify biomarkers or elucidate drug mechanisms of action15.

A first step toward building an RA digital twin has been made by
developing a mechanistic blueprint for RA, the RA Atlas. It recapitulates
existing knowledge related to the intracellular interactions involved in the
disease’s pathogenesis in a cell-type and disease-specific manner. The RA
Atlas includes, at the time we developed this methodology, four molecular
interaction maps specific to the synovial macrophages (including the M1
and M2 phenotypes), synovial fibroblasts and CD4+ T helper 1 (Th1)
subtype16. However, these cell populations are isolated in the Atlas and do
not communicate with each other. Furthermore, these maps are static and
cannot be used to generate hypotheses or predictions regarding the system’s
behaviour under different perturbations.

Computational modelling is a powerful tool for understanding the
emergent features and behaviours of the complex biological systems
described in disease maps. Boolean formalism is the most suitable among
themodelling techniquesavailable for large-scale biological systems. Indeed,
Booleanmodelling does not include kinetic parameters that can be difficult
to determine in most systems but can use literature and high-throughput
technologies to retrieve qualitative data on individual components and
interactions17,18. However, building and analysing large-scale Boolean
models is challenging and computationally demanding19. In this direction,
an efficient computational framework has been published by N. Zerrouk
et al.20 to build, analyse and validate the behaviours of large-scale Boolean
models. This framework usesmolecular interactionmaps as a starting point
to automatically infer their corresponding executable Boolean models via
the CaSQ tool21. The generated Boolean models are analysed in a syn-
chronous scheme using a new BMA tool22 version deployed to a high-
performance computing cluster. The framework identifies all the existing
attractors of the models using parallel computing and then tests their
coherence against gene expression datasets and prior knowledge. The fra-
mework has successfully been applied to generate and validate the RA M1
and M2 macrophage models using their corresponding maps in the RA-
Atlas16.

This work presents our efforts to create a modular, multi-cellular vir-
tual twin of the arthritic joint, as described in Fig. 1. First, we build a multi-
cellularmapby connecting theRAcell-specificmapspresent in theRAAtlas
with bidirectional intercellular interactions identified using literature,
database mining, and omics data. Then, we use the resulting multi-cellular
map as an entry point to the computational framework described in
ref. 20 for the high-throughput combinatorial analyses of large-scale Boo-
lean models. We validate the RA multi-cellular model using prior knowl-
edge anddisease- and cell-specific transcriptomic data. The validatedmodel
is then used to shed light on the MoA of current RA treatments and to
identify new therapeutic intervention points and drug combinations in RA
via single- and double-knockout in silico simulations.

Results
Construction of the RAmulti-cellular map
The RA multi-cellular map includes the four cell-specific molecular inter-
action maps of the RA-Atlas connected via 118 intercellular interactions

(Fig. 2). The multi-cellular map comprises 2232 components that interact
with one another via 1461 reactions.

Supplementary Tables 1–3 summarise the filtered bidirectional inter-
cellular interactions that connect theRAmacrophage, theRAfibroblast, and
the RA Th1 cells. Each interaction is associated with diverse resources used
to identify it: published literature in PubMed, the internal database of
CellPhoneDB and the various pairs of omics datasets used to infer it.

Generation of the RA cell-specific Boolean models
The generation and calibration of the RAM1 and M2macrophage models
are described in N. Zerrouk et al., 202420. The resulting calibrated states of
these models are used in the following analysis.

This section applies the same methodology to build cell-specific Boo-
lean models describing the RA fibroblast and the RA Th1.We used CaSQ21

to convert the updated RA cell-specific maps to Boolean models. We first
focused on regulating the cell-specific phenotypes represented in these
models. Table 1 describes the cell-specific phenotypes for each model and
the number of nodes and inputs upstream of these phenotypes. The nodes
not involved in regulating the phenotypes of interest were not considered,
and the inputs regulating these nodes were fixed at one, the default value
in BMA22.

Computation of all the possible attractors of the RA cell-
specific models
Given the high number of inputs in themodels, we reduced the list of input
combinations by fixing the values of the differentially expressed ones.
Overexpressed inputs in RA were fixed at one, and under-expressed inputs
in RAwere fixed at zero. Based on the information in Supplementary Table
4, 53 out of 73 input states were fixed in the RA fibroblast model. The
number of input combinationswas then equal to 220.Weused theBMA tool
deployed to amachinewith 96 single-coreCPUs and 768GBofRAMto run
the attractors’ search. All the resulting attractors were steady states andwere
kept for further analysis.

Regarding the CD4+Th1 model, 16 out of 28 inputs were fixed
according to the information displayed in Supplementary Table 5. The
number of input combinations was then equal to 212. All the corresponding
attractors were steady states.

Validation of the cell-specific models’ behaviour
First, we filtered the steady states according to the values of their cell-specific
phenotypes. These phenotypes’ biologically coherent Boolean values were
extracted from the literature in disease- and cell-specificmanners. In the RA
fibroblastmodel, the state of the cell-specific phenotypes should reflect their
resistance to apoptosis and excessive proliferation in RA synovium (apop-
tosis phenotype should be OFF, and proliferation phenotype should be ON
in the model)23. They also describe the fibroblast’s ability to migrate to
adjacent joint structures contributing to cartilage destruction24–26 (migration
phenotype should be ON in the model). All RA fibroblast model’s steady
states passed through this filtering step.

In the RA CD4+Th1 model, the state of the cell-specific phenotypes
should describe the increased ability of this cell type to migrate and extra-
vasate from blood vessels to the inflamed RA joint (migration phenotype
should be ON in the model)27. They also show their increased apoptosis
resistance (apoptosis phenotype should be OFF in the model) and their
hyperactivation and impaired proliferation in RA (proliferation phenotype
should be ON in the model)28. One thousand twenty-four steady states
passed through this filtering step in the RA CD4+Th1 model.

For each cell-specificmodel, we identified their differentially expressed
molecules (see Methods section) and calculated similarity scores between
these lists of differentially expressed molecules (Supplementary Tables
4 and 5) and their matching nodes in each filtered steady state. Steady states
with the highest similarity score in each model were selected, and their
average vectors were calculated. The resulting mean vectors represent the
calibrated state of the RA cell-specific models.
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Regarding the RA fibroblast model, 4096 steady states had the highest
similarity score, and their average vector was calculated. In the resulting
vector, 254 nodes were fixed at zero or one, while 21 were not fixed (Sup-
plementary Table 6). This model’s state can reproduce 99% of the experi-
mentally observed discretized values.

Regarding the RA Th1 model, 128 steady states had the highest simi-
larity score. In their resultingmeanvector, 109outof 120nodeswerefixed at
zero or one. Eleven nodes were not fixed (Supplementary Table 7). This
model’s state can reproduce 100% of the observed discretized values.

Generation and calibration of the RAmulti-cellular model
First, we used CaSQ to convert the RA multi-cellular interaction map to a
Boolean model. It consists of 1104 nodes, including 240 inputs and 1845
interactions. To calibrate the resulting multi-cellular model, we first com-
bined the cell-specific models’ calibrated states (including the M1 and M2
macrophages’ states that we obtained fromN. Zerrouk et al., 202420) via the
addition of intercellular interaction present in the multi-cellular model.

Adding these interactions allowed us to fix additional nodes in the resulting
multi-cellular model. Indeed, among the 240 inputs present in the multi-
cellular model, 141 were already fixed in the RA cell-specific models’ cali-
bration and combination. We used information from literature and gene
expression datasets to fix more inputs. Based on the information in Sup-
plementary Table 8, 78 additional inputs were fixed. The total number of
fixed inputs was equal to 219. The 21 remaining inputs were not associated
with a permanent Boolean value. The total number of input combinations
was then equal to 221.We used the BMA tool deployed to amachine with 96
single-core CPUs and 768 GB of RAM to run the attractors’ search. All the
resulting attractors were steady states and were kept for further analysis.

We calculated the similarity score between the list of differentially
expressedmolecules (Supplementary Table 8) and their matching nodes in
each steady state. Steady stateswith the highest similarity scorewere selected
to calculate their mean vectors. The resulting mean vector represents the
calibrated state of the RAmulti-cellular model. Thirty-two thousand seven
hundred sixty-eight steady states had the highest similarity score. In their

Fig. 1 | Building amodularmulti-cellular virtual twin of the arthritic joint.RA is a
complex disease with no curative treatment. The proposed therapies help mitigate
inflammation, alleviate pain, and decrease disability associated with RA. Further-
more, these therapies have been associated with several adverse effects, and a sub-
stantial proportion of RA patients are non-responders. In this regard, we propose to
translate the digital twin concept to RA patients through the construction of a

modular multi-cellular model of the arthritic joint. The model is built and validated
using literature, database mining, and omics data, and includes four cell-types
namely, the M1 and M2 macrophages, the fibroblast, and the CD4+ Th1. The
resulting model is used to perform in silico simulations and to identify new ther-
apeutic intervention points and drug combinations for RA.
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mean vector, 1076 out of 1104 nodes were fixed at zero or one, while 28 of
them were not fixed (Supplementary Table 9). This multi-cellular model’s
state can reproduce98,8%of the observedBoolean valuesused to calibrate it.

Testing the effects of therapeutic targets’ single knockouts on
the RAmulti-cellular model
To identify potential therapeutic targets in the RAmulti-cellular model, we
perform an exhaustive search using the Therapeutic Target Database
(TTD)29.We only focus on inhibiting the drug target to simulate knockouts
in themodel.We screen the targets based on theModeOfAction (MOA) of
their associated drugs and only keep the ones that can be targeted by at least
one inhibitor (1643 targets).

Among the 1643 potential therapeutic targets present in TTD, 194
were identified in our RA multi-cellular model (Supplementary Table 10).
Wemimic the effect of these 194 potential therapeutic targets using in silico
knockout simulations. We use the calibrated state of the RA multi-cellular
model as initial simulation conditions (Supplementary Table 9). The
models’ phenotype states after the target knockouts are compared to their
corresponding calibrated states. Table 2 summarises the identified

therapeutic targets and their effects on themodel’s phenotypes, while Table
3 describes the identified targets.

To visualize the simulation results, we imported ourmodel in an SBML
qual format in the Cell Collective platform30,31. The platform allows the
simulationof loss/gain of functions of user-definednodes.Aswe can see it in
Figs. 3 and 4, each point in the graphs provided by the platform represents
the number of logical time steps in which the displayed node is active over a
user-defined number of time steps called sliding window (e.g. if the sliding
window is 100, and the node is active in 20 steps over the last 100 steps, the
activity level displayed at that point on the graph will be 20%). The simu-
lations were conducted with a synchronous update mode, a simulation
speed of one, and a sliding window of 50, observing the model’s behaviour
over 100 steps (Fig. 5).

N. Zerrouk et al.20 showed that GSK3β inhibition induced the M2
macrophage model’s proliferation while suppressing the apoptosis pheno-
type. GSK3β is involved in the expression of multiple glycolytic genes. These
results are in accordancewithAlivernini et al., 2020’s findings32 regarding the
lower expression of glycolytic pathways in macrophage populations from
healthy donors and remission RA compared to the ones from active RA.

Fig. 2 | The RA multi-cellular map in CellDesigner. a The RA multi-cellular map
consists of four cell-specific maps: M1 macrophage (blue square), fibroblast (green
square), M2 macrophage (orange square), and Th1 cell (yellow square). Arrows
represent bidirectional intercellular interactions, colour-coded according to the

source cell type. b A close-up view of the fibroblast cell-specific map shows cellular
compartments that illustrate signal transduction from the extracellular space to
phenotype regulation.
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N. Zerrouk et al.20 also showed that NF-κB inhibition induced the M1
macrophage model’s death and inhibited the M1 macrophage model’s
growth, and that ERK1 inhibition suppressed the proliferationphenotype in
the inflammatory macrophage model.

The simulations we performed on themulti-cellular model reinforce
these results by showing that GSK3βKOdid not affect the other cell types
present in themodel, thatNF-κBandERK1 inhibitions suppressed theM1
macrophage differentiation into osteoclasts (Fig. 3a) as well and that NF-
κB KO perturbed the behaviour of other cell-type in the synovium
(Table 2).

CAV1KOinduced the apoptosis phenotypeof theRAfibroblastswhile
suppressing their proliferation and migration phenotypes (Fig. 3b). AKT2
KO, on the other hand, inhibited their proliferation and migration phe-
notypes while preserving their ability to resist apoptosis. CREB1 inhibition
led to suppressing the RA fibroblast’s proliferation phenotype but did not
affect their capacity tomigrate to other joints or resist apoptosis.Wecan also
see that fibroblast migration can be suppressed via NF-κB inhibition.

Regarding the Th1 subtype, two targets were identified: MTOR and
TBX21. The inhibition of these targets led to the suppression of Th1
excessive proliferation andmigration phenotypes and the activation of Th1
apoptosis (Fig. 3c). NF-κB KO, on the other hand, inhibited their pro-
liferation and migration phenotypes while preserving their ability to resist
apoptosis.

Potential therapeutic targets that perturb the general biological con-
dition of the RA joint were also identified. MIR221 inhibition led to the
suppression of the angiogenesis phenotype in the RA synovium (Fig. 3d),
and NF-κB inhibition suppressed the degradation of the extracellular
matrix.

Testing the effects of therapeutic targets’ double knockouts on
the RAmulti-cellular model
The targets were combined in pairs to investigate the potential synergistic
effect of the previously tested therapeutic targets. The RA multi-cellular
model was then used to predict the outcome of these double KOs.We used
the same initial conditions for themonodrug testing; then,we compared the
perturbed states with their corresponding calibrated state.

We generated a list of all the possible pairs (without repetition) of the
194 previously identified therapeutic targets. Eighteen thousand seven
hundred twenty-one drug combinations in total were tested.

Three synergistic pairs were identified, namely ERK1/NOTCH1,
JAK1/JAK2 and NF-κB /STAT3. Table 4 summarises the identified syner-
gistic pairs and their effects on the model’s phenotypes, while Table 5
describes the identified targets.

N. Zerrouk et al.20 already identified ERK1/NOTCH1 and JAK1/JAK2
as promising combinations to reestablish the RA M1/M2 ratio.

The simulationsweperformed further support these results and showa
more substantial impact of these double KOs at the multi-cellular level.
Indeed, both ERK1/Notch1 and JAK1/JAK2KOs lead to the suppression of
the M1 macrophage’s osteoclastogenesis, and JAK1/JAK2 double KO
inhibits the inflammation in the RA synovium (Fig. 4a, b). T
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Table 1 | Overview of the RA cell-specific Boolean models

RA cell-
specific
model

Cell-specific
phenotypes

Number
of nodes

Number
of inputs

Number of
interactions

RA fibroblast Apoptosis,
Proliferation,
Migration

275 73 446

RACD4+ Th1 Apoptosis,
Proliferation,
Migration

120 28 155

The first column indicates the cell-type of interest. The second column displays the associated cell-
specific phenotypes for eachmodel. The third, fourth and fifth columns indicate the number nodes,
inputs and interactions that are upstream of the cell-specific phenotypes, respectively.
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Table 3 | Description of the therapeutic targets perturbing the RA phenotypes in the RA multi-cellular model

Successful targets Target type Associated disease(s) Drugswith the highest status

CAV1 Literature-reported
target

/ /

AKT2 Literature-reported
target

/ Akt inhibitor VIII (Investigative)

CREB1 Literature-reported
target

/ /

NF-κB Successful target Irritable bowel syndrome, Rheumatoid arthritis, Choreiform disorder, Lupus
erythematosus, Multiple sclerosis…

Sulfasalazine (Approved)

TBX21 Literature-reported
target

/ /

MTOR Successful target Arteries/arterioles disorder, Chronic myelomonocytic leukaemia, Hydrocephalus,
Multiple myeloma, Renal cell carcinoma

Everolimus (Approved)

ERK1 Clinical trial target Melanoma, Pancreatic cancer, Cancer, Arteries/arterioles disorder, Mature T-cell
lymphoma

BVD-523 (Phase 2)

GSK3β Clinical trial target Myotonic disorder, Acute myeloid leukaemia, Osteosarcoma, Fragile X
chromosome, Myeloproliferative neoplasm

Tideglusib (Phase 2/3)

MIR221 Literature-reported
target

/ /

The target types are based on the TTDdatabase’s categories and go from successful targets to literature-reported targets. The drugs displayed in this table were also extracted from the TTD database and
were selected based on their highest status.

Fig. 3 | Single knockout simulations of the therapeutic targets that perturb the
multi-cellular model’s phenotypes. Simulations were performed using the Cell
Collective platform30. Each point in the graphs represents the activity level of the
displayed node. It is calculated as the number of logical time steps in which the
displayed node is active over a user-defined number of time steps. aNF-κB knockout
in the calibrated RAmodel induces theM1macrophage’s apoptosis, inhibits theM1
macrophage’s growth and differentiation into osteoclasts, and suppresses the

degradation of the extracellular matrix. b CAV1 knockout in the calibrated RA
model induces the apoptosis of the RA fibroblasts while suppressing their pro-
liferation and migration. c TBX21 knockout in the calibrated RA model leads to the
suppression of Th1 proliferation and migration and to the activation of the Th1
apoptosis. dMIR221 knockout in the calibrated RAmodel leads to the inhibition of
the angiogenesis phenotype.
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A new pair that acts synergistically in our model was also identified.
The combination of NF-κB and STAT3 KOs inhibits the differentiation of
the osteoclast precursor cells in the RA synovium (Fig. 4c, d).

Discussion
Digital twin is an emerging technology that builds on the convergence of
computer science, mathematics, and artificial intelligence. Its exponential
development is supported by the rapid growth of communication and
sensor technologies, extensive data analysis, virtual reality, the Internet of
things, and simulation technologies33.

Digital twin implementation in healthcare has the potential to advance
biomedical research with applications for personalised medicine, pharma-
ceutical development, and clinical trials34. Current tangible implementa-
tions of digital twins canbe found inprecision cardiology35, type 1diabetes36,
cancer37, and epidemic outbreaks38. In these applications, researchers
combine several cutting-edge technologies, including mathematical
modelling.

This work initiates the development of a virtual twin of the arthritic
joint, first by constructing a comprehensive large-scale map that depicts
both the intra- and intercellular interactions involved in RA pathogenesis.
Themap incorporates the four cell-specificmaps of theRAAtlas, describing
the synovial fibroblast, M1 and M2 macrophages, and CD4+Th1 cell-
types. Furthermore, it integrates bidirectional cellular communication
between these cell types, providing a detailed multi-cellular representation
of the RA synovium. The map is modular, allowing for future expansion
with additional cell-specific maps.

To explore the emergent behaviour of the system, we employed the
Boolean formalism. Boolean models can handle large-scale systems and do
not require quantitative parameters. We used the map tomodel translation
framework and the tool CaSQdescribed inAghamiri et al., 2020 to translate
themulti-cellularmap to a fully executable, large-scaleBooleanmodel20. The
dynamic behaviour of the RAmulti-cellular model was tested against prior
knowledge to assess its capacity to reproduceknownbiologicalmechanisms.
The RAmulti-cellular model is significantly larger in scale compared to the
two macrophage models tested in Zerrouk et al., 2024, demonstrating the
scalability of the proposed computational framework.

The model was then used to study the mechanism of action of current
RA treatments and identify new potential therapeutic targets and drug
combinations. In silico simulations on the calibrated RA multi-cellular
model identified AKT2 as a potential target for inhibiting RA fibroblast
proliferation andmigrationphenotypes. Several studies support the concept
of AKT2 inhibition for therapeutic intervention in RA. They showed that
blocking the AKT pathway inhibits RA progression39. They also demon-
strated that in vitro siRNA-mediated down-regulation of AKT2
significantly prevented cell proliferation and migration of human RA
fibroblasts40,41.

Caveolin 1 (CAV1) was also highlighted as a potential target for
inducing apoptosis and inhibiting proliferation and migration in RA
fibroblasts. Studies support this prediction by showing that in vitro silencing
ofCAV1 inRAdrastically reduces cell proliferation andpromotes apoptosis
in human RA fibroblasts. On the other hand, enforced expression of CAV1
in RA fibroblasts restores cell proliferation and attenuates apoptosis42.

Fig. 4 | Double knockout simulations of the drug target combinations that
perturb themulti-cellular model’s phenotypes. Simulations were performed using
the Cell Collective platform30. Each point in the graphs represents the activity level of
the displayed node. It is calculated as the number of logical time steps in which the
displayed node is active over a user-defined number of time steps. a Simulation with

JAK1 and JAK2 active in the model. The Inflammation phenotype is active.
b Simulation with JAK1 and JAK2 inactive in the model. The inflammation phe-
notype gets inhibited. c Simulation with NF-κB and STAT3 active in the model. The
Osteoclastogenesis phenotype is active. d Simulation with NF-κB and STAT3
inactive in the model. The Osteoclastogenesis phenotype gets inhibited.
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CAV1was also demonstrated to drive resistance to apoptosis in a large-scale
Boolean model describing the RA synovial fibroblasts43.

Simulations of CREB1 KO in the model led to inhibiting the pro-
liferation phenotype in the RA fibroblasts while maintaining their capacity
to resist apoptosis. This inhibitory effect was demonstrated in an experi-
mental study where in vitro suppression of CREB activity downregulates
aberrant synovial cell functions in patients with RA via suppressing the RA
synovial fibroblast proliferation44. CREB1’s effect on cellular proliferation
was highlighted in in silico simulations on a published large-scale Boolean
model of RA fibroblasts43. These results further highlight AKT2, CREB1,
and CAV1 as promising targets for downregulating hyperactive fibroblasts
in the rheumatic joint.

Knocking out NF-κB in the multi-cellular model inhibited the differ-
entiation of the M1 macrophages into osteoclasts. It also affected other cell
types via the suppression of migration in RA fibroblasts, proliferation, and
migration in the RA Th1 subtype, and degradation of the extracellular
matrix in the joint. These results are supported by experimental evidence.
Indeed, researchers have demonstrated that inhibiting NF-κB signalling
blocks the expression of several Matrix MetalloProteinases (MMPs), which
are responsible for destroying the extracellular matrix and the articular
cartilage in RA45. Blockade of MMPs’ expression suppresses RA synovial
fibroblast migration and invasion46. The critical importance of NF-κB in
bone turnover has also been highlighted experimentally. It was shown that
inhibition ofNF-κBwas a practical approach to inhibit osteoclast formation
and bone resorptive activity and displayed anti-inflammatory and anti-
osteolytic benefits47. In addition, several studies have described the role of
NF-κB in Th1 differentiation. They showed that Th1 responses were sig-
nificantly impaired, and IFN-gproductionwas abrogateddue todiminished
NF-κB activation48.

Moreover, the RA multi-cellular model identified two potential ther-
apeutic targets to downregulate the RACD4+ Th1:MTOR andTBX21 (or
T-bet). Studies showed that CD4+ cells from T-bet-/- mice are skewed
toward an anti-inflammatory Th2 differentiation via the expression of high
levels of GATA-3. This GATA-3’s gain of function after TBX21 depletion
was also highlighted in the KO simulations we performed on the RAmulti-

cellular model. Hence, regulation of the T-bet/GATA-3 ratio can reduce
inflammatory damage to RA cells, and the mechanism behind it may be
related to regulating the Th1/Th2 ratio of RA cells through T-bet
depletion49.

MTOR, on the otherhand, has also been found toplay essential roles in
Th1 cell development. It was found that CD4+ T cells deficient in MTOR
failed to differentiate into effector Th1 cells50. In RA, mTOR inhibition has
also shown efficacy in reducing joint inflammation in animal models of
arthritis51 and in patients with RA52.

Our results also showed that JAK1/JAK2 double KO suppressed the
chronic inflammation of the RA synovium and the differentiation of
macrophages to osteoclasts. Baricitinib, an oral JAK inhibitor selective for
JAK1 and JAK2, is approved by the Food and Drug Administration (FDA)
for treating RA53. It prevents the activation of STAT pathways, decreasing
systemic inflammation and the progression of bone destruction associated
with RA54.

MIR221 was revealed as a potential target to downregulate angiogen-
esis. Studies support this finding and demonstrate that MIR221 can
downregulate THBS1, which acts as an anti-angiogenic factor on endo-
thelial cells55. Thus, inhibiting MIR221 would restore THBS1 expression,
which, in RA, was found to help restore tissue homoeostasis during reso-
lution of inflammation56.

Lastly, the RA multi-cellular model identified a potential new syner-
gistic pair of therapeutic targets via double KOs simulations. NF-κB and
STAT3 double KO inhibited the differentiation of osteoclast precursor cells
in the RA multi-cellular model. Osteoclastogenesis strictly depends upon
support from accessory cells, which supply cytokines required for osteoclast
differentiation57. CSF1, RANKL,TNF-α and IL-6 have been found to induce
the differentiation of osteoclasts and bone resorption activity in RA
patients58. STAT3 and NF-κB are essential transcription factors for the
expression of these osteoclastogenic factors’ expression59–61. Therefore, tar-
geting STAT3 and NF-κB could be a promising strategy to inhibit bone
erosion in RA.

In this work we select cell types and subpopulations based on (a) data
availability, (b) interest of cell-cell communication, (c) feasibility of the

Fig. 5 | Example of the In silico simulation workflow of the RA multi-cellular
model using the Simulation tool of the Cell Collective platform30. The Simulation
Control panel indicates the parameters used to conduct the experiment with the
initial state being the calibrated state of the model. The External Components panel
shows the input nodes present in the model. Their state is set according to their
Boolean values in the calibrated state of the model (0% for zero, 100% for one). The

Internal Components panel indicates the nodes that are not inputs in themodel. The
figure illustrates the in silico KO of CAV1 which is set as mutated with loss of
function. TheActivityNetwork panel in themiddle shows the changes in the states of
the model’s nodes throughout the experiment. Red nodes indicate inactivity, while
green nodes indicate activity. The Simulation Graph illustrates the activity level of
the displayed nodes.
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simulations in regard to the size of the model. We had to overcome several
technical difficulties, scalability issues, computational power, simulation
parallelization and face the lack of publicly available and accessible data that
could be integrated into thiswork.Ourmodel is far fromcomplete, but it is a
very important milestone, from both a computational and biological/
pathological aspect. Indeed, theRAmulti-cellularmap andmodel presented
in this work are the largest curated representations of the RA synovium to
date. Models and networks for RA have been previously proposed but are
either large-scale networks inferredusing gene expressiondata62–64, and thus
more noisy thanmanually curated ones; or computationalmodels based on
differential equations65,66. However, these quantitativemodels are limited in
size and cannot be used to describe entire cellular pathways in detail.
Recently published large-scale Boolean models for RA challenge the size
limitation, however, they remain of smaller scale than the RAmulti-cellular
model; and only focus on the active role of fibroblasts and macrophages
without considering cell-cell communication20,43,67.

Building a successful digital twin for RA necessitates a diverse range of
data types, each contributing unique insights tomodel the complexity of the
disease. Integration of additional multi-omics data, including genomics,
proteomics, andmetabolomics, combinedwith demographic data (sex, age)
and clinical data (symptoms, disease progression, treatment responses)
would further enhance themodel’s accuracy.Wealsowish to expand theRA
multi-cellular map and model with molecular interaction maps of addi-
tional cell types such as B cells, endothelial cells, osteoblasts, and osteoclasts
and enrich existing cell-specificmapswith relevantmetabolic pathways.We
also aimat refiningourmodels to represent thephenotypicdiversity of some
of the cell types of interest, especially fibroblasts, but also representingmore
intermediate states of macrophages. Our model building approach is quite
modular and can be expanded with the addition of more cell types and
sub-types.

The next steps of this work include personalizing the RA template
model for individual patients. Contextualizing themulti-cellularmodelwith
patient data would enable the creation of patient-specific digital twins
capable of replicating crucial features unique to each individual. Ideally, a
digital twin for RA should factor in patient-specific customization para-
meters, and treat a live feed of data. However, significant gaps remain,
particularly in longitudinal multi-omics data that capture individual
variability in disease mechanisms and treatment responses. There are also
important challenges regarding the feasibility of a fully connected RAdigital
twin with real-time updating. Addressing these gaps requires collaborative
efforts to generate high-resolution, longitudinal datasets and innovative
technologies to better characterize and monitor RA joint dynamics, as well
as the systemic, pathophysiologicalmanifestations of the disease. Therefore,
implementing the RA multi-cellular model in a computational ecosystem
designed to process data from sensors and imaging technologies, via AI
algorithms, along with physiological measurements, could revolutionize
personalized care of RA patients, and enable clinicians to test hundreds of
different scenarios in a short amount of time.

Methods
General workflow for constructing and calibrating the RAmulti-
cellular model
Figure 6 illustrates theworkflowwe developed to construct and calibrate the
RA multi-cellular model.

Identification of cell-cell interactions using literature and
database mining
We used Causaly68 to uncover intercellular relationships in published lit-
erature. Causaly is a biomedical discovery research tool that uses advanced
artificial intelligence, machine-reading literature across millions of aca-
demic publications, and distils the evidence into a knowledge graph.

We also used PubMed to retrieve cell-cell communication between the
cell types of interest. Relevant keywords and key sentences like ‘M1 mac-
rophage fibroblast interactions in rheumatoid arthritis’, ‘macrophage Th1
activation in RA’, and ‘M2macrophage Th1 inhibition in RA’ amongmany

others were used to filter the literature abstracts and studies in PubMed.
Additionally, peer-reviewed articles concerning RA and their bibliography
were searched, and information was mined.

We also used the CellPhoneDB database69, a publicly available repo-
sitory of manually curated receptors, ligands, and their interactions, to
identify the intercellular interactions occurring through ligands and
receptors expressed by the four cell types represented in the RA-Atlas.

Identification of cell-cell interactions using omics data
We used transcriptomic data to identify cell-cell interactions via the dedi-
cated tools ICELLNET70 and DiSiR71. ICELLNET integrates an extensive
database of manually curated ligand-receptor interactions collected from
the literature and public databases. ICELLNET contains fewer interactions
than existing databases but is very specific and exhaustive for cytokine
interactions that play a critical role in RA development. DiSiR uses a user-
defined putative list of ligand-receptor interactions. To run DiSiR, we used
the ICELLNET database as a putative list of ligand-receptor interactions,
some at the subunit level.

To cover both outward and inward communication between the four
cell types of interest, we selected three single-cell RNA-seq datasets. Detailed
descriptions of these datasets are available in the Datasets section. Table 6
summarises the pairs of gene expression datasets that we used to infer cell-
cell communication between RAmacrophages, RA fibroblast cell types and
RA CD4+ Th1 cells.

Synovial samples of such cell types are scarce and unavailable within
the same dataset. The SDY998 dataset was the only one containing synovial
fibroblasts, synovial T cells and synovial monocytes coming from RA
patients. Therefore, we combined cells that come from different experi-
mental designs. We used ComBat72 to reduce the resulting batch effect.
Selected and processed datasets were then utilised to run both ICELLNET
and DiSiR tools, first with “Cell source 1” and then with “Cell source 2” as
sending cells. Only interactions with statistically significant p-values (FDR
threshold equal to 0.05) identified using DiSiR and ICELLNET were kept.

We also filtered the interactions and only kept the ones identified with
at least two different pairs of datasets or two different approaches (literature
mining- and omics databases).

Construction of the RAmulti-cellular map in CellDesigner
The previously filtered cell-cell interactions were used to connect the RA
cell-specific molecular interaction maps of the RA Atlas16. These maps are
built in the Systems Biology Markup Language (SBML) format73 using
CellDesigner74 and are compliant with the Systems Biology Graphical
Notation (SBGN)75. They cover cell-specific signalling pathways, gene
regulations, molecular processes and phenotypes involved in RA’s patho-
genesis. Biomolecules and reactions in thesemaps aremanually curated and
extensively annotated through PubMed IDs, DOI, GEO and KEGG iden-
tifiers, following MIRIAM (Minimum Information Required In The
Annotation of Models) standards76.

We used CellDesigner, a diagram editor tool for gene-regulatory and
biochemical networks, which links interacting ligands and receptors.
Ligands produced by the sending cell are transported via Transport arrows
to the extracellular space of the receiving cell. The ligandwill then bind to its
corresponding receptor and forma ligand/receptor complex that can induce
signal transduction in the cytoplasm of the receiving cell. When cell-cell
interactions occur through cell-cell contact, Heterodimer Complex Asso-
ciation is used instead inCellDesigner to bind transmembrane proteinswith
their corresponding receptors.

Generation and calibration of the RA cell-specific models
An efficient computational framework for analysing, calibrating, and vali-
dating large-scale Boolean models has recently been published20. In this
framework, molecular interaction maps built in CellDesigner XML format
are converted to executable Boolean models using the CaSQ tool21. A new
BMA tool22 version is then deployed on a high-performance computing
cluster to identify all the models’ attractors. Attractors depend on the
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external stimuli the model receives from its environment. These stimuli are
modelled as inputs (i.e. nodes with no upstream regulation). They are not
associatedwith any logical rule in themodel; therefore, their values are user-
defined. For the identification of all the attractors of the model, all the
possible combinations of input valuesare generated, and the attractor search
is performed for each input combination. These attractors are filtered to
keep only the steady states. Differentially expressed biomolecules in the
models are identified and converted to a binary vector of experimentally
observed Boolean values to filter the resulting steady states further. After
that, similarity scores are computed to describe the ability of the filtered
steady states to reproduce the experimentally observed values. The steady
states with the highest score are selected; their average vector represents the

calibratedmodel’s state. This framework has already been applied to the RA
M1 and M2 macrophage maps of the RA-Atlas. The associated results are
described in the original publication and are used in our work20.

In this section, we apply N. Zerrouk et al.‘s methodology to the
remaining cell-specific maps of the Atlas, namely the RA fibroblast and the
RATh1maps. Phenotypes are particular nodes in thesemaps. FollowingN.
Zerrouk et al.‘s work, we divided them into two categories. The first one
corresponds tocell-specificphenotypes.Theydescribe the cellular outcomes
of each cell type of interest, like proliferation and apoptosis. The second
category is not specific to a particular cell type. It corresponds to the RA
joint’s cellular signals and biological conditions like inflammation, angio-
genesis, and matrix degradation. We also updated the maps by looking for

Fig. 6 | Workflow for the construction and calibration of the RA multi-
cellular model. We used literature and database mining via several tools, like
Causaly68 andCellphoneDB69, as well as keyword searches in PubMed, to retrieve the
intercellular interactions already identified in the published literature. We also
integrated omics datasets via ICELLNET70 and DiSiR71 to identify statistically sig-
nificant interactions observed in these datasets.We filtered the retrieved interactions
to cross-validate the results and only keep the most reliable ones. We used those
filtered interactions to connect the RA cell-specificmaps and generate the RAmulti-
cellular map. The resulting map in CellDesigner XML format is converted to an
executable Booleanmodel using theCaSQ tool21. TheBMA tool22 is then deployed on
a high-performance computing cluster to identify all the model’s attractors. These

attractors are filtered to keep only the steady states. Next, the filtered steady states are
validated: Differentially expressed biomolecules in the model are identified using
literature mining and transcriptomic data analysis. The identified biomolecule
expressions are discretised and converted to a binary vector of experimentally
observed Boolean values. After that, similarity scores are computed to describe the
ability of the filtered steady states to reproduce the experimentally observed values.
The steady states with the highest score are selected; their average vector represents
the calibratedmodel’s state. The calibratedmulti-cellularmodel is used to perform in
silico simulations and identify potential new therapeutic targets and drug combi-
nations, and to propose potential drug repurposing.
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duplicates, removing them whenever they were found and correcting the
signalling pathways accordingly.

We first focused on regulating the cell-specific phenotypes. As the
second phenotype category describes the RA joint’s biological conditions
and is influenced by several cell types, its regulation will be tested and
validatedwhen calibrating the RAmulti-cellularmodel.We used the export
option in CaSQ via the argument -u to identify all the nodes upstream of
these phenotypes. The nodes not regulating the phenotypes of interest were
not considered at this point.

Given the high number of inputs in the inferred Boolean models, we
deployed BMA in a machine with 96 single-core CPUs and 768 GBs to
compensate for the lack of computational power. We identified all the
models’ attractors and only kept the steady states. We validated their
behaviours using literature mining and gene expression datasets analysis.
We extracted information from published literature regarding the differ-
ential expression of the models’ components. We curated the extracted
information to keep it specific to both RA disease and the relevant cell type.
We also integrated RA cell-specific gene expression datasets (see Datasets
section). We discretised the differentially expressed molecules’ expressions:
molecules that were overexpressed were linked to the value 1, whereas
molecules that were under-expressed were linked to the value 0. Supple-
mentary Tables 4 and 5 list these differentially expressed molecules in each
cell-specific model and their observed Boolean values in the literature and/
or gene expression datasets. The average vector over the steady states with
the highest score defines the calibrated state of the models.

Generation and calibration of the RAmulti-cellular model
We used CaSQ to convert the RA multi-cellular interaction map to a
Boolean model. To calibrate the resulting multi-cellular model, we first
combined the cell-specificmodels’ calibrated states (including the calibrated
states of theRAM1andM2macrophagemodels thatwe retrieved from20 via
the addition of intercellular interactions present in themulti-cellularmodel.
Then,weapplied theprevious framework to the remainingpart of themulti-
cellular model that is not upstream of the cell-specific phenotypes and that
was not analysed during the cell-specific models’ calibration.

We used the BMA tool deployed to a machine with 96 single-core
CPUs and 768 GB of RAM to run the attractors’ search and filter out the
cycles. To calibrate the entirety of the multi-cellular model, we extracted
information from published literature regarding the differential expression
of these remaining biomolecules. We curated the extracted information to
keep it specific to both RA disease and the relevant cell type. We also
integrated additionalDEGs from the same gene expression datasetswe used
for the cell-specificmodels’ calibration. SupplementaryTable 8describes the
additional differentially expressed biomolecules identified in omics datasets

and literaturepresenting this remainingpart of themulti-cellularmodel.We
calculated the similarity score between the list of differentially expressed
molecules and their matching nodes in each steady state. Steady states with
the highest similarity score were selected to calculate their mean vectors.

Datasets
Regarding the RAmacrophage cell type, we used the GSE97779 dataset77. It
is a publicly available microarray dataset from the GEO database78. The
dataset contains nine RA synovial macrophage samples from nine patients
and five peripheral bloodmonocyte-derivedmacrophage samples from five
healthydonors. In thiswork,we reused thenormalised gene expressions and
the list of differentially expressed genes (DEGs) between RA and healthy
control samples provided in the RA-Atlas publication16. We also used
E_MTAB_832232, an RNA-seq single-cell dataset publicly available in the
ArrayExpress database79. It contains synovial samples coming from five
treatment-naïve RA, six treatment-resistant RA, six in sustained remission
and four patients with UPA (Early undifferentiated arthritis). Four healthy
donor synovial tissues were included as control. The macrophage popula-
tion was identified using FACS sorting. Quality control of the dataset
involved removing cells with less than 500 expressed genes and removing
weakly expressed genes. In this work, we normalised gene expressions using
Seurat’sNormalizeData function.We only used the gene expressionmatrix
of the five treatment naïve RA patients (5815 macrophage cells).

Regarding the RA fibroblast cell type, we used the GSE109449 dataset80.
It is a single-cell (sc) RNA-seq dataset in the GEO database. It contains 384
freshly isolated synovial fibroblasts in two RA and two osteoarthritis (OA)
patients. In this work, we reused the normalised gene expressions and the list
of DEGs between RA and healthy control samples provided in the RA-Atlas
publication. SDY99881 is a single-cell RNA-seq dataset from the Immport
database82 containing 19 samples fromRApatients and two synovial samples
fromOApatients, including four cell types: 1142 B cells, 1844fibroblasts, 750
monocytes, and 1529 T cells. In this work, we used the gene expression of the
CD4+Th1 cluster and the list of DEGs between the RATh1 cluster and RA
naive CD4+T cells provided in the RA-Atlas publication.

Data availability
The datasets GSE97779 and GSE109449, available through the NCBI GEO
database, were utilized in this work. Additionally, the E_MTAB_8322
dataset fromArrayExpress database and the SDY998dataset from ImmPort
database were also used. The RA multi-cellular model is available in the
BioModels repository under the identifier MODEL2408030001. For an
optimal visual exploration of themaps, all cell-specificmaps are available as
online interactivemaps on the standalone web serverMINERVA at https://
ramap.uni.lu/minerva/.

Code availability
Scripts andfiles generated are available at https://github.com/Sanofi-Public/
Large_Scale_Multicellular_Modelling_For_RA.
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