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A B S T R A C T

Combining renewable energy planning and biodiversity conservation is urgently needed to address the inter
connected climate change and biodiversity loss crisis and meet the United Nation’s Sustainable Development 
Goals 7,13, and 15. However, in many countries such as France, current strategies to limit the negative effects of 
renewable energy on biodiversity still hold major limitations during the planning process that could be overcome 
with modeling approaches. Here we propose a new modeling-based framework which aims to determine po
tential threats posed by projects to biodiversity. By capitalizing on large-scale standardized citizen science 
biodiversity data to create biodiversity benchmarks, this approach aims to better inform the Ecological Impact 
Assessment (EIA) process at different stages pre- and post-project construction. We demonstrate the practical 
application of the framework using bats and onshore wind energy development in France as a case study. We 
reveal that current approaches in renewable energy planning in France failed to identify sites of biodiversity 
significance with >90 % of wind turbines approved for construction to be placed in sites of high significance for 
bats. The risks posed by future wind turbines to bats concern all taxa (all protected in the EU), including species 
with higher collision risks. We highlight how the proposed modeling-based framework could contribute to a 
more objective evaluation of pre- and post-construction impacts on biodiversity and become a prevalent 
component of the EIA process. Its implementation could promote a more biodiversity-friendly approach to 
renewable energy planning, aligning with the Global Biodiversity Framework’s target of halting biodiversity loss 
by 2030.

1. Introduction

It is now well recognized that climate change and biodiversity loss 
are fundamentally intertwined and that both crises should be addressed 
collectively [1–3]. Climate change mitigation measures in the energy 
sector such as the development of renewable energy sources may 
negatively impact biodiversity [4–6]. The urgent need of moving away 
from fossil fuel to carbon-free energy production for reducing global CO2 
emission therefore sometimes conflicts with the overreaching global 
goal of halting and reversing biodiversity loss [7]. This has been referred 
to as the “green-green dilemma” [6] and is well illustrated by the 
challenges posed to bats by wind turbine [8]. The negative impacts of 

onshore wind turbines on bats are well documented and include both 
fatalities for individuals attracted to the turbines [9] and losses of 
habitat use for those avoiding them [10,11]. A promising approach to 
solve this dilemma is to carefully plan the implementation of renewable 
energy facilities as well as mitigation measures for potential impacts on 
local biodiversity [12]. For instance, mitigation strategies such as 
curtailment of turbine operation [13] have proved to be effective in 
reducing bat fatalities at wind turbines in North America [14]. In many 
countries worldwide (e.g. EU countries, USA, Canada, Australia, Brazil, 
etc.) renewable energy projects such as wind turbine installations fall 
within the mitigation hierarchy. This is a decision-making framework 
for mitigating ecological impacts by sequentially avoiding, reducing, 
and, as a last resort, offsetting potential impacts, with the aim of 
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achieving no net loss of biodiversity [15,16]. By identifying and evalu
ating the potential impacts of a project on biodiversity and proposing 
ways to avoid, mitigate or offset these impacts, the ecological impact 
assessment (EIA) represents a cornerstone of the mitigation hierarchy 
[17].

In the European Union, the Directive 2011/92/EU outlines the pro
cess of EIA which ensures that projects that are likely to have significant 
impacts on biodiversity are assessed prior to their authorization. In brief, 
following the screening and scoping stages this typically includes (i) a 
pre-selection of potential sites based on spatialization and mapping of 
the impacts, (ii) field-based ecological surveys of protected species and 
habitats (Habitats Directive 92/43/EEC and Birds Directive 79/409/ 
EEC) on the pre-selected sites to document the EIA, and (iii) an impact 
analysis in which potential impacts and their strength are identified and 
quantified and mitigation measures are proposed. In some cases, such as 
in wind turbine project development, the EIA process extends beyond 
construction to include post-construction impact assessments, which 
evaluate the accuracy of predicted impacts and the effectiveness of the 
mitigation measures implemented. However, while the EIA process is 
regulatory, it holds major limitations that can lead to serious errors 
during decision-making processes [18]. For instance, the identification 
of potential sites using spatialization and mapping tools most often rely 
on incomplete (e.g. data collected with inadequate sampling effort) and 
biased biodiversity data (including taxonomic, temporal and spatial 
biases). While regulatory field-based ecological surveys allow to 
ground-check this first assessment, their implementations are far from 
being optimal [18]. These surveys are constrained by financial resources 
which limit the sampling effort allocated [19,20]. Furthermore, the 
evaluation of a site’s biodiversity significance can be hindered by the 
limitations of external references, which frequently depend on hetero
geneous and non-standardized data. Overall, the whole EIA process 
crucially suffers through its different stages from the lack of standardi
zation for biodiversity data interpretation and contextualization, 
resulting in subjective evaluation of pre- and post-construction impacts 
[21,22].

One potential solution to overcome these last issues that are 
currently inherent to EIA is to create biodiversity benchmarks [22] that 
can be defined at different spatial (from local to national and interna
tional levels) and temporal (dynamic over time) scales. To achieve this, 
large-scale ecological models of how species distributions and abun
dances vary over space and time (i.e. abundance-based species distri
bution models) could represent an effective tool. Species distribution 
models are well-established in the scientific literature [23,24] and have 
already proved to be of great asset for assessing the effectiveness of the 
EIA procedure [25,26] and guiding conservation planning [27–30]. 
Nevertheless, building reliable biodiversity benchmarks using species 
distribution models requires a large amount of biodiversity data 
collected in a standardized way through space and time. Although there 
are extensive databases available containing big biodiversity data (e.g. 
Global Biodiversity Information Facility database), a considerable 
amount of the data in these databases is obtained opportunistically with 
unknown collection processes, and is subject to observer’s bias, pro
ducing biases such as over-sampling of flagship species, favorable areas 

or habitats [31,32]. These biases are difficult to correct or involve 
complex analysis [33,34], and together with the lack of sampling effort 
quantification make the data unsuitable for the intended purpose. In 
contrast, standardized biodiversity monitoring schemes – especially 
those that are intended to detect large-scale spatiotemporal trends of 
abundance and distribution – could be an important source of 
high-quality data on species abundance. These schemes have been 
developed in many countries worldwide and for many taxa, including 
insects (e.g. van Swaay et al. [35]), birds (e.g.Gregory et al. [36]) and 
mammals (e.g. Van der Meij et al. [37]). They have the advantage of 
being based on standardized protocols with a fixed sampling effort and 
allows for comparison among sites without relying on assumptions 
about observer site or species preferences or adjusting for varying 
sampling efforts [38]. Depending on their goals, these monitoring 
schemes aim to represent the current national distribution of habitats 
and biogeographic context. While financial and logistic constraints may 
sometimes limit their coverage, biodiversity monitoring schemes that 
are based on citizen science and adhering to standardized protocols have 
the potential to provide extensive, standardized biodiversity data [39,
40].

While biodiversity benchmarks derived from modeling approaches 
hold significant potential to address many limitations in the EIA, there is 
currently no modeling framework that demonstrates their practical 
application or evaluates their effectiveness using empirical data. Such 
modeling framework is crucially needed to guide stakeholders navi
gating the green-green dilemma – especially with bats and wind turbines 
– and minimizing conflicts between Sustainable Development Goals set 
by the United Nations in 2015, namely SDG 7: ‘affordable and clean 
energy’ and SDG 13: ‘climate action’ with SDG 15: ‘life on land’ [41]. 
Here, the aim of the study was to demonstrate how biodiversity 
benchmarks derived from large-scale standardized citizen science 
biodiversity monitoring programs could be used to inform 
decision-making processes at various stages of the mitigation hierarchy 
process. We developed an applied modeling-based framework to (i) 
determine prior to field-based ecological surveys whether projects pro
posed for development are in areas of biodiversity conservation signif
icance and (ii) evaluate post construction whether the project complies 
with the mitigation hierarchy framework. The modeling framework is 
illustrated in Fig. 1 and includes five main steps: (i) identifying 
large-scale citizen-science programs and determining relevant pre
dictors (e.g. environmental and bioclimatic variables) known to shape 
the spatial distribution of the target species potentially occurring in the 
study area; (ii) modeling species abundance using biodiversity data from 
large-scale citizen science programs in relation to previously identified 
relevant predictors; (iii) predicting species abundance at random points 
to build a standardized benchmark of species abundance; (iv) predicting 
species abundance at the proposed/built sites and comparing the pre
diction to the standardized benchmark of species abundance to evaluate 
potential risks posed by the proposed/built projects; (v) identifying sites 
of potential biodiversity significance threatened by the proposed/built 
projects.

We developed and tested the modeling framework using bats and 
onshore wind energy development in France as a case study. France 
represents an ideal case study as (i) it is one of the largest wind energy 
contributors in the EU and experiencing a rapid acceleration in wind 
turbine installations, and (ii) it holds the largest national-scale stan
dardized citizen-science bat monitoring program in Europe. According 
to the mitigation hierarchy established in the Article 6 of the EU Habitats 
Directive 92/43/EEC, we predicted that wind turbines approved by local 
environmental planning authorities for construction (i.e. projects that 
have undergone an EIA) would be localized in areas of low bat activity 
levels for all taxa and especially for taxa with higher collision risks. 
Building on more than two decades of research into the impacts of wind 
turbines on bats and strategies to mitigate them, we provide through this 
case study a concrete illustration on how the modeling framework can 
be applied in EIA to inform the decision-making process. This 

Abbreviations

BFC Bourgogne-Franche-Comté region
BPL: Bretagne & Pays de la Loire regions
EIA Ecological Impact Assessment
EU European Union
NRMSE Normalized Root Mean Square Error
RF Random Forest
SDG Sustainable Development Goal
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framework is of relevance globally and could be applied to other taxa (e. 
g. birds), other types of renewable energy infrastructures (e.g. solar 
farms), and other countries.

2. Material and methods

2.1. Study areas

The case study focused on two areas in France with contrasting past 
and current wind farms development, namely the region Bourgogne- 
Franche-Comté (BFC, eastern France, 47◦12′ N, 4◦57′ E, 47,783 km2, 
altitude: 52 to 1495 m a.s.l.) and the regions Bretagne and Pays de la 
Loire (BPL, western France, 48◦12’ N, 2◦55 W, 59,290 km2, altitude: 
0–416 m a.s.l.). The BFC region is mainly covered by forests (36 %) and 
grassland (32 %) while two-thirds of the BPL area consist of agricultural 
lands – with 36 % of arable lands and 31 % of grassland. By mid-2020, a 
total of 388 and 1105 wind turbines were operational in BFC and BPL, 
respectively, and 233 and 766 were approved by local environmental 
planning authorities for construction in BFC and BPL, respectively.

2.2. Modeling framework for assessing potential ecological impact: case 
study with bats and wind turbines

2.2.1. Step 1a: using large-scale database and evaluation of their 
representativeness

We used data from the French national-scale citizen-science bat 
monitoring program “Vigie-Chiro” [42]. We retrieved bat activity data 
from surveys conducted between 2015 and 2020 following the station
ary points protocol (see Refs. [43–45] for more details). In brief, trained 
volunteers acoustically sampled bats during at least one full night (from 
30 min before sunset to 30 min after sunrise) when weather conditions 
were optimal for bats to forage. Volunteers surveyed either specific sites 
or randomly selected ones within a systematic 2-km square grid. 
Although volunteers could select their recording devices for bat sam
pling, trigger settings were standardized among recorders to minimize 
heterogeneity in detectability. Species identification was conducted 
using Tadarida software [46]. Tadarida automatically detects and ex
tracts sound parameters of recorded echolocation calls within a 5-sec file 
(i.e. a bat pass) and classifies them into bat taxa with an associated 
confidence index. We followed the method proposed by Barré et al. [47] 
to account for potential automated identification errors, i.e. we used the 
confidence index to retain two separate datasets: (i) one dataset of bat 
passes with maximum error risk tolerance of 10 %; and (ii) another 
dataset of bat passes with maximum error risk tolerance of 50 %. The 

Fig. 1. Conceptual modeling-based framework proposed to be implemented within the ecological impact assessment process.
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first threshold is cautious, aiming to minimize false positives, while the 
second one is less conservative, allowing for a larger amount of data to 
be retained. Bat activity per night corresponded to the sum of bat passes 
recorded.

We restricted our selection to sites (i) sampled between May and 
October (i.e. period of highest bat activity), (ii) with microphones placed 
at <5 m height, (iii) located away (>200 m) from known roosts, and (iv) 
at lower altitude (<800 m a.s.l.) to avoid excessive heterogeneity due to 
mountainous environmental characteristics. In total, 711 sites corre
sponding to 1186 detector-nights and 643 sites corresponding to 880 
detector-nights were retained in BPL and BFC, respectively [48]. 
Although the sites sampled are nationally representative [44], they were 
chosen through a participatory process, which may result in spatial 
distribution heterogeneities at the local or regional level. A preliminary 
step was to evaluate the potential impact of this heterogeneity on 
representativeness and to develop appropriate strategies to address any 
spatial structure issues. Regarding the representativeness, the amount of 
major land-cover classes around the sampling sites was representative of 
the two study areas, except for BFC where deciduous forests were 
slightly over-sampled [48]. Similarly, gradients of environmental vari
ables and anthropogenic pressures around the sampling sites matched 
the gradients observed within the two study areas. Furthermore, there 
was no confounding effect between the habitat type surveyed and the 
detector type used [48]. Because sampling sites (especially in BPL) were 
clustered, we developed in step 2 (see section 2.2.3) models using the 
full dataset and models using a subset of the dataset containing only sites 
that were located >500 m away from each other to account for potential 
spatial structure issues. We conducted the analysis on 12 bat species or 
species groups (due to current challenges in species identification using 
acoustic monitoring) recorded in the two study areas. A summary of the 
bat data used in the modeling is reported in Table 1.

2.2.2. Step 1b: determining relevant predictors
We collected 40 predictor variables that are relevant for predicting 

bat activity in human-modified landscapes [49–52]. These variables 
were contiguously available at high resolution for the two study areas 
and include (i) two topographic predictors (altitude and slope), (ii) eight 
environmental and land-uses variables (the proportion and Euclidean 
distance to deciduous forests and linear small woody features, the 
density of rivers and distance to the nearest freshwater body, the edge 
density and Shannon’s diversity index of major land-cover classes), (iii) 
11 predictors related to anthropogenic stressors (artificial night-time 
light brightness, amount and distance to urban areas and croplands, 
the density and distance to major roads and operational wind turbines, 
human population density, quietness suitability index), and (iv) 19 
bioclimatic predictors. For BPL which is bordered by the Atlantic Ocean, 
we also derived the distance to the coastline. Predictor type, source, 
temporal coverage and resolution are presented in Table 2.

Bats are mobile taxa that respond to environmental variables and 
anthropogenic stressors across spatial scales, from local to landscape 
levels [49]. We therefore implemented a multi-scale approach and 
derived area-based variables across ten spatial scales. We used ArcGIS 
Desktop v10 (ESRI, Redlands, CA, USA) to create ten buffers of 0.05, 
0.10, 0.25, 0.50, 1.00, 2.00, 3.00, 4.00, 5.00, and 10.00 km radius 
around each sampling site. The large scales were selected considering 
the mean and maximum daily foraging movement of European bat 
species [53] whereas the small ones allow us to have a fine-scale 
description of the near environment of the sampling sites. The density 
of operational wind turbines was calculated for the six largest spatial 
scales only as most sites (>75 %) were located >1 km away from wind 
farms. Given the recent increases in wind turbines installation between 
2015 and 2020 in France, we considered the two predictors related to 
wind turbines as dynamic [54], i.e. we calculated the density and dis
tance to wind turbines of a given site using only wind turbines that were 
operational at the time of the bat survey.

2.2.3. Step 2: modeling species abundance
We used Random Forest (RF; [58]) implemented in the R package 

randomForest [59] to model bat activity in relation to topographic, 
environmental, anthropogenic and bioclimatic predictors variables in 
each study area (BFC and BPL). RF models were parameterized with the 
recommended default values (ntrees = 500, cutoff = 1/k = 1/3). We 
added temperature at night, Julian day and the site coordinates in the 
final list of predictors to consider spatiotemporal variation in bat ac
tivity. We used participant ID and site ID as strata to account for the 
stratified structure of the citizen-science data. While RF can operate with 
large numbers of variables and is largely insensitive to multicollinearity, 
it is recommended to proceed to variable selection to improve overall 
model performance [60]. We therefore conducted a variable selection 
procedure using the package vsurf [61] and retained the smaller set of 
variables sufficient for prediction purposes. In this process, predictor 
variables were assessed for their individual impact on model perfor
mance and the resulting list of selected predictors was refined by elim
inating redundancy. Final models that included the selected variables 
explained higher variance (here referred to as a measure of how well the 
out-of-bag predictions capture the variability of the target variables in 
the training set) than full models [48] and were therefore retained to 
proceed to model performance evaluation and prediction. We assessed 
model performance using the Normalized Root Mean Square Error sta
tistic (NRMSE) derived from a fivefold cross-validation procedure. 
NRMSE measures the divergence of the predictions generated by the 
models (using a training set) from observations of a test set. We iterated 
500 times the fivefold cross-validations to calculate NRMSE, with a 
training set consisting of 80 % of the observations randomly selected at 
each iteration and a testing set corresponding to the remaining 20 % 
observations. We provide an Overview, Data, Model, Assessment and 

Table 1 
Summary of percentage of occurrence and mean bat activity per night across sites of the 12 bat taxa studied in the two study areas. Values are given considering an 
identification of bat passes with a maximum error risk tolerance of 50 %.

Taxa Abbreviation Bourgogne-Franche-Comté (N = 643) Bretagne - Pays de la Loire (N = 711)

% of occurrence Mean bat activity % of occurrence Mean bat activity

Barbastella barbastellus B.bar 68 12 74 17
Eptesicus serotinus E.ser 78 45 65 18
Myotis nattereri M.nat 65 7 68 14
Myotis spp. (excluding M. nattereri) Myo.spp 84 73 78 50
Nyctalus leisleri N.lei 72 21 52 7
N. noctula N.noc 40 6 21 10
Pipistrellus pipistrellus P.pip 99 709 100 786
P. nathusii/kuhlii P.natkuh 79 82 95 176
P. pygmaeus/Miniopterus schreibersii P.pygM.sch 33 3 23 1
Plecotus spp. Plec.spp 39 2 63 5
Rhinolophus ferrumequinum R.fer 23 2 28 6
R. hipposideros R.hip 47 5 29 8
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Prediction [62] in Froidevaux [48].
Using citizen-generated acoustic data to model bat activity comes 

with some challenges that need to be addressed during the modeling 
process. First, we accounted for uncertainties in bat identification by 
modeling bat activity using two separate datasets (hereafter referred to 
as “acoustic datasets”) having different error risk tolerance thresholds in 
acoustic identification (10 vs 50 %) [47]. Second, because some 
Vigie-Chiro sites were spatially clustered (especially in BPL) - thus 
potentially leading to an overestimation of model performance - we also 
ran the final models using two datasets (hereafter referred to as “spatial 
datasets”) that included either all the sites or only spatially independent 
ones, i.e. a subset of the full dataset containing only sites that were 
located >500 m away from each other (NBPL = 473, NBFC = 546).

2.2.4. Step 3: building a standardized benchmark of species abundance
We built a bat activity benchmark for each study area in three steps. 

First, within each area, we randomly selected the same number of 
random points as there were wind turbines approved for construction (i. 
e. 233 in BFC and 766 in BPL). We employed a random stratified 
approach: random points were located (i) within a 50 km radius from 
wind turbines approved for construction, for encompassing areas with 
similar environmental and bioclimatic conditions, (ii) > 150 m from 
each other (with >98 % of points located >500 m); and (iii) outside 
urban and protected areas because wind turbines sitting in such area is 
not permitted. We were not able to exclude other restricted areas (e.g. 
zones of aeronautical easements) as GIS layers were not publicly avail
able. Second, we used the final RF models to predict species-specific bat 
activity at these random points. Third, we built the bat activity bench
mark using the ordered value of bat activity predicted at random points. 
We used percentile threshold [22,63] with the following five categories: 
(i) low activity: 0-25th percentiles; (ii) medium-low: 25-50th percen
tiles, (iii) medium-high: 50-75th percentiles, (iv) high: 75-98th per
centiles, and (v) extremely high: 98-100th percentiles.

2.2.5. Steps 4 and 5: predicting species abundance and assessing potential 
risks posed by wind turbines to bats

To provide a concrete illustration through this case study on how the 
final steps of the modeling-based framework can be applied in EIA to 
inform the decision-making process, we assessed whether wind turbines 
approved by local environmental planning authorities for construction 
(i.e. projects that have undergone an EIA) were in areas of low bat ac
tivity levels. We expected that the approved wind turbines would be 
sited away from important foraging and commuting habitats for bats 
since bats are strictly protected in the European Union (Habitats 
Directive of the European Union 92/43/EEC) and are considered in the 
mitigation hierarchy process during wind turbines planning since 
several years in France. We used the final RF models developed in step 2 
to predict species-specific bat activity at the wind turbines approved for 

Table 2 
List of the predictors with their source and their temporal coverage and reso
lution (when applicable) included in the models.

Predictor Source Temporal 
coverage

Resolution

Altitude (m a.s.l.) IGN BD Alti 
https://geoservices.ign.fr 
/bdalti

2020 75 m

Slope (◦) IGN BD Alti 
https://geoservices.ign.fr 
/bdalti

2020 75 m

% of deciduous 
forests

CES OSO land cover data 
https://osr-cesbio.ups-tlse. 
fr/~oso/

2018 10 m

Dist. to deciduous 
forests (m)

CES OSO land cover data 
https://osr-cesbio.ups-tlse. 
fr/~oso/,

2018 10 m

% Linear small 
woody features

Copernicus 
https://land.copernicus. 
eu/pan-european/high 
-resolution-layers 
/small-woody-features

2014–2016 5 m

Dist. to linear small 
woody features 
(m)

Copernicus 
https://land.copernicus. 
eu/pan-european/high 
-resolution-layers 
/small-woody-features

2014–2016 5 m

Density of rivers 
(m/ha)

Eaufrance BD Carthage 
https://www.data.gouv.fr/ 
fr/datasets/cours-de 
au-metropole-2017-bd 
-carthage

2017 vector

Dist. to freshwater 
body (m)

Eaufrance BD Carthage 
https://www.data.gouv.fr/ 
fr/datasets/plans-de 
au-metropole-2017-bd 
-carthage

2017 vector

Edge density of 
major land-cover 
classesa

CES OSO land cover data 
https://osr-cesbio.ups-tlse. 
fr/~oso/

2018 10 m

Shannon’s diversity 
index of major 
land-cover 
classesa

CES OSO land cover data 
https://osr-cesbio.ups-tlse. 
fr/~oso/

2018 10 m

Artificial night-time 
light brightness

NOAA https://ngdc.noaa. 
gov/eog/viirs/download_d 
nb_composites.html

2016 350 m

% of urban areas CES OSO land cover data 
https://osr-cesbio.ups-tlse. 
fr/~oso/

2018 10 m

Dist. to urban areas 
(m)

CES OSO land cover data 
https://osr-cesbio.ups-tlse. 
fr/~oso/

2018 10 m

% of croplands CES OSO land cover data 
https://osr-cesbio.ups-tlse. 
fr/~oso/

2018 10 m

Dist. to croplands 
(m)

CES OSO land cover data 
https://osr-cesbio.ups-tlse. 
fr/~oso/

2018 10 m

Density of major 
roads (m/ha)

IGN Route 500 
https://geoservices.ign.fr 
/route500

2020 vector

Dist. to major roads 
(m)

IGN Route 500 https: 
//geoservices.ign.fr 
/route500

2000–2020 vector

Density of 
operational wind 
turbines (no/ha)

Bretagne: https://geobreta 
gne.fr/mapfishapp/
Pays de la Loire: https 
://www.sigloire.fr/
Bourgogne-Franche- 
Comté: https://cartes. 
ternum-bfc.fr/

2000–2020 vector

Dist. to operational 
wind turbines (m)

Bretagne: https://geobreta 
gne.fr/mapfishapp/
Pays de la Loire: https 
://www.sigloire.fr/
Bourgogne-Franche- 

2000–2020 vector

Table 2 (continued )

Predictor Source Temporal 
coverage 

Resolution

Comté: https://cartes. 
ternum-bfc.fr/

Human population 
density (no/km2)

GHSL 
https://ghsl.jrc.ec.europa. 
eu/ghs_pop.php

2015 250 m

Quietness 
suitability index

EEA 
https://www.eea.europa. 
eu/data-and-maps/figure 
s/quietness-suitabilit 
y-index-qsi-2/quiet_areas_ 
suitability_qsi.eps

2016 100 m

Bioclimatic 
variables

CHELSEA database v1.2 
Karger et al. [55], Karger 
et al. [56]

1979–2013. 30 arc sec 
(~1 km)

a Calculated in R with landscapemetrics package [57].
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https://geoservices.ign.fr/bdalti
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https://www.data.gouv.fr/fr/datasets/plans-deau-metropole-2017-bd-carthage
https://www.data.gouv.fr/fr/datasets/plans-deau-metropole-2017-bd-carthage
https://www.data.gouv.fr/fr/datasets/plans-deau-metropole-2017-bd-carthage
https://osr-cesbio.ups-tlse.fr/%7Eoso/
https://osr-cesbio.ups-tlse.fr/%7Eoso/
https://osr-cesbio.ups-tlse.fr/%7Eoso/
https://osr-cesbio.ups-tlse.fr/%7Eoso/
https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
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https://osr-cesbio.ups-tlse.fr/%7Eoso/
https://osr-cesbio.ups-tlse.fr/%7Eoso/
https://osr-cesbio.ups-tlse.fr/%7Eoso/
https://osr-cesbio.ups-tlse.fr/%7Eoso/
https://geoservices.ign.fr/route500
https://geoservices.ign.fr/route500
https://geoservices.ign.fr/route500
https://geoservices.ign.fr/route500
https://geoservices.ign.fr/route500
https://geobretagne.fr/mapfishapp/
https://geobretagne.fr/mapfishapp/
https://www.sigloire.fr/
https://www.sigloire.fr/
https://cartes.ternum-bfc.fr/
https://cartes.ternum-bfc.fr/
https://geobretagne.fr/mapfishapp/
https://geobretagne.fr/mapfishapp/
https://www.sigloire.fr/
https://www.sigloire.fr/
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https://ghsl.jrc.ec.europa.eu/ghs_pop.php
https://ghsl.jrc.ec.europa.eu/ghs_pop.php
https://www.eea.europa.eu/data-and-maps/figures/quietness-suitability-index-qsi-2/quiet_areas_suitability_qsi.eps
https://www.eea.europa.eu/data-and-maps/figures/quietness-suitability-index-qsi-2/quiet_areas_suitability_qsi.eps
https://www.eea.europa.eu/data-and-maps/figures/quietness-suitability-index-qsi-2/quiet_areas_suitability_qsi.eps
https://www.eea.europa.eu/data-and-maps/figures/quietness-suitability-index-qsi-2/quiet_areas_suitability_qsi.eps
https://www.eea.europa.eu/data-and-maps/figures/quietness-suitability-index-qsi-2/quiet_areas_suitability_qsi.eps


construction by local environmental planning authorities. These pre
dictions were then compared to the standardized benchmarks of bat 
activity, established in step 3, for each taxon at the regional level. This 
comparison allowed us to quantify potential risks that the approved 
wind turbines posed to bats.

We finally evaluated species-specific patterns in risks posed by wind 
turbines to bats as the type of impacts of wind turbines on bats are 
largely species-specific, with mortality events by collision mainly 
affecting high-flying species [64]. We tested whether future wind tur
bines planned for areas with high bat activity would primarily affect bat 
species with low collision risks, as expected if the mitigation hierarchy 
effectively avoids direct impacts. To evaluate this, we independently 
calculated the proportion of wind turbines that would be built in areas 
with high and extremely high bat activity levels for each species. Then, 
we tested the relationship between the proportion obtained for each 
species in relation to their collision susceptibility index (in a logarithmic 
scale to the base two due to the large spread of values) using beta 
regression models [65]. Collision susceptibility index was obtained from 
Roemer et al. [64]. Models were checked using the performance package 
[66].

3. Results and discussion

3.1. Overview of random forest models

The modeling-based framework was developed and tested using 12 
bat taxa which were monitored through the French national-scale 

citizen-science bat monitoring program “Vigie-Chiro” in two distinct 
areas in France – Bourgogne-Franche-Comté (BFC) and Bretagne-Pays de 
la Loire (BPL). We built 96 RF models, i.e. one per taxa and per area and 
considering (i) two separate acoustic datasets having different error risk 
tolerance thresholds in acoustic identification (10 vs 50 %), and (ii) two 
spatial datasets that included either all the sites or only spatially inde
pendent ones (full vs subset dataset). The predictive performances of 
random forest models were overall satisfying with most NRMSE values 
below 20 % [67], even though predictive performance varied to some 
extent with respect to species, area and spatial dataset, as shown in 
Fig. 2. Given the overall predictive performance of the RF models 
developed and for sake of clarity and concision, results of subsequent 
analyses are only reported for the 50 % full dataset.

The variable selection procedure (step 2) led to different combina
tions of predictor variables for the 12 taxa in the two study areas. These 
combinations are reported in Fig. 3. The top ranked predictors retained 
in >25 % of models included climate variables, quietness suitability 
index and amount of cropland at different spatial scales, distance to 
water, and Julian day. Other key predictors included the amount of 
deciduous forest, small woody features, urban areas as well as river 
density at several spatial scales, and distance to cropland and wind 
turbine. Overall, environmental variables retained in the final models fit 
with our expectations regarding bat ecology and their responses to 
anthropogenic stressors [50]. For instance, the results are in line with 
Azam et al. [68] who demonstrated that the amount of cropland in the 
landscape was the main factor negatively affecting four common bat 
species in France. Similarly, several studies demonstrated that proximity 

Fig. 2. Boxplot of Normalized Root Mean Square Error statistic derived from a fivefold cross-validation procedure iterated 500 times to assess predictive performance 
of the random forest models. The boxplots display the interquartile range box (top line = 75 % of the data ≤ this value; middle line = median; lower line = 25 % of 
the data ≤ this value) and the lower and upper whiskers (minimum and maximum data points). Lower NRMSE values indicate higher performance, and the dashed 
line represents the 20 % threshold. NRMSE were calculated for each final random forest, i.e. one per taxa and per area (BFC: Bourgogne-Franche-Comté, BPL: 
Bretagne-Pays de la Loire) and considering two acoustic datasets (10 vs 50 % maximum error risk tolerance) and two spatial datasets (full vs subset dataset with 
spatially independent sites). See Table 1 for full species names.
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to resources such as freshwater sites is a key driver of bat activity 
[69–71]. The variable selection process also emphasized the importance 
of considering the quietness suitability index when modeling bat ac
tivity, which is consistent with increasing field-based evidence 
regarding the effects of anthropogenic noise on bats [72,73]. In addition 
to noise, quietness suitability index may encompass other urban-related 
stressors (e.g. major road density, artificial night-time light brightness, 
impervious surface) making it a crucial predictor to consider when 
modeling bat activity.

The reliable predictive performance of models, along with consistent 
species responses corroborating findings in the literature, reinforce the 
notion that citizen science-based biodiversity monitoring schemes 
adhering to standardized protocols could provide high-quality big data 
[39,40]. The use of standardized acoustic data collected through the 
national-scale citizen-science bat monitoring program Vigie-Chiro in 
combination with high-resolution climatic and environmental variables 
has proved to be valuable for modeling bat activity. The development of 
such models would not have been possible with other sources of data 
since standardized abundance/activity data on bats are scarce or not 
centralized and often limited in spatiotemporal extent, thus hampering 
large-scale modeling studies. Scaling up the Vigie-Chiro program to a 
European level through collaboration with other bat citizen science 
initiatives (e.g. Barlow et al. [74] and Torre et al. [75]) could improve 
large-scale bat biodiversity analysis and advance research on the 
ecological impacts of renewable energies across the continent. Never
theless, combining data from acoustic, capture and roost monitoring 
programs would be required to adequately model the abundance of 
species that are difficult to detect acoustically. Furthermore, we 
acknowledge several limitations associated to the use of citizen science 
data as they can be subject to spatiotemporal and observer biases [40]. 
Although the use of passive acoustic methods together with algorithms 
for species identification may prevent from observer bias, they could 
also lead to some uncertainty in species identity. Here, we scrutinized 

for any potential spatiotemporal and species-related bias before building 
the models and accounted for by modeling different subsets of the 
dataset and by including key predictors into the models (see sections 
2.2.1 and 2.2.3). Finally, while RF models performed relatively well to 
model bat species activity, predictions beyond the topographic, envi
ronmental, and climatic conditions of the training data are likely to be 
unreliable [24]. This could pose challenges in scaling the modeling 
framework to broader geographic extents.

3.2. Failure in current mitigation hierarchy process highlights the crucial 
need of adopting a modeling-based approach

The comparison of predicted species-specific bat activity at the wind 
turbines approved by local environmental planning authorities for 
construction (step 4) to the standardized benchmark of bat activity (step 
3) highlighted that a considerable proportion of wind turbines will be 
placed in areas with high or extremely high bat activity levels, as 
illustrated in Fig. 4a. While this proportion varies among species, we 
found that only less than 10 % of wind turbines will be placed in areas 
where no high or extremely high bat activity levels of any taxon is ex
pected. On the other side of the spectrum, more than 25 % of wind 
turbines will be in areas of high and extremely high activity for one-third 
of the bat assemblage. When investigating in more detail species-specific 
pattern, we found no significant relationship (BFC: P = 0.19, estimate ±
SE = − 0.06 ± 0.05; BPL: P = 0.34, estimate ± SE = − 0.04 ± 0.05; re
lationships displayed in Fig. 4b) between the percentage of wind tur
bines in areas of high and extremely high activity and the collision 
susceptibility index of the taxa that will be affected by the wind turbines. 
In other words, wind turbines will be built in areas where even species 
with higher collision risks are expected to be very active. For Nyctalus 
spp. which are the most sensitive species to collision, activity recorded at 
ground level correlates with bat activity at nacelle height [64], and we 
can assume that higher activity of high-flying species leads to higher 

Fig. 3. Summary of the variables retained in the final random forests built for 12 bat taxa in two study areas (BFC: Bourgogne-Franche-Comté, BPL: Bretagne-Pays de 
la Loire). The presence of a dot at the intersection between a given variable and a given species means that the variable was retained in the final random forest model 
built for that species. The color of the dots indicates the two study areas (gray: BFC, blue: BPL). The dot size corresponds to the number of retained spatial scales for 
environmental variables and the number of selected climate variables for the climate variable. See Table 1 for full species names. (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of this article.)
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fatalities, as demonstrated in Germany [76] and North America [77]. 
This could potentially threaten bat population viability if no mitigation 
measures are implemented [78]. If the current mitigation hierarchy 
process was truly effective in avoiding the direct impacts of wind tur
bines on bats, we would have expected to observe a much lower pro
portion of wind turbines located in areas of high or extremely high bat 
activity for species with higher collision risks. Thus, the results corrob
orate those of Lintott et al. [18] who provided empirical evidence that 
ecological impact assessments fail to reduce risk of bat casualties at wind 
farms in the United Kingdom. Nevertheless, we acknowledge that in
formation regarding the presence of curtailment – i.e. a reduction 
measure consisting of operational restriction of the turbines during high 
bat activity – were not provided. In addition, the more subtle effect of 
habitat loss due to wind turbine avoidance by some bat species [10,11] 
were not considered in the analysis due to the lack of consideration of 
this type of impact in past and current EIA process [79], even though 
avoidance behaviour has been documented in many taxa [80].

Given failures in the current mitigation process, this study case 
demonstrates the crucial need of adopting a modeling-based approach to 
derive robust biodiversity benchmarks and guide planning authorities in 
their decision-making processes. We represent the potential contribu
tions and adding values of integrating the proposed modeling-based 
framework in the ecological impact assessment process in Fig. 5. More 
specifically, the whole modeling-based framework could be imple
mented as a toolbox for stakeholders (e.g. ecological consultants, envi
ronmental planning authorities) to help assisting during spatialization 
and mapping of the impacts prior to regulatory ecological ground sur
veys and determining whether the projects proposed for development 
are in area of biodiversity conservation significance. This approach 
could also help identifying infrastructures already sited in areas of 
predicted high species abundance and advise on targeted post- 
construction surveys and the implementation of mitigation measures 
for poor-sited ones [81]. For instance, if not already in place, wind 
turbine curtailment strategies should be implemented at high-risk sites. 

Fig. 4. Potential risks posed to bats by wind turbines approved by local environmental planning authorities for construction in the two study areas (BFC: Bourgogne- 
Franche-Comté, BPL: Bretagne-Pays de la Loire). (a) Stacked bar plots depicting the percentage of wind turbines that will be placed in areas of low, medium-low, 
medium-high, high, and extremely high levels of activity for each bat species. (b) Relationship between the percentage of wind turbines with high and extremely high 
bat activity and the collision susceptibility index (on a logarithm scale to the base 2) of the taxa that will be affected by the wind turbines. See Table 1 for full 
species names.
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Conventional curtailment based on a unique combination of wind and 
temperature thresholds are commonly used and can show significant yet 
varying effectiveness [14]. More recent and sophisticated methods 
based on predictive algorithms or real-time bat monitoring offer the best 
approach moving forward [82–84].

This approach is intended to be complementary, not substitutional, 
of the current EIA stages during renewable energy infrastructure plan
ning. Indeed, regulatory field-based ecological surveys are crucial for 
capturing site-specific variations in species abundance driven by the 
unique characteristics of a given area. Yet, they are often constrained by 
financial and logistical limitations, resulting in limited temporal and 
spatial coverage. The modeling-based approach proposed could there
fore complement these surveys as it incorporates data collected over 
larger areas and longer time periods. Taken together, they could provide 
a more complete assessment of the potential risks posed to bats by wind 
turbines.

In light of the ongoing debate on whether important conservation 
areas are effective proxies for predicting the impact of renewable energy 
expansion on biodiversity [41,85,86], the proposed modeling-based 
framework is well-suited to identify areas of biodiversity significance 
both inside and outside these priority conservation areas. Finally, future 
research should aim to include various taxa affected by wind turbines (e. 
g., birds, bats, insects) within a unified modeling framework to provide 
stakeholders with a holistic view of potential ecological impacts of such 
infrastructure.

3.3. Towards contemporary, dynamic, and multi-season biodiversity 
benchmarks

The method described for determining biodiversity benchmarks is 
similar to the contemporary reference state approach outlined in 
McNellie et al. [87]. This approach offers the advantages of (i) reeval
uating and adjusting the biodiversity benchmarks when additional data 
become available, and (ii) adapting the benchmarks in a context of rapid 
biodiversity change [88] caused by climate and land-use changes 
[89–91]. For instance, benchmarks of bat activity levels in Europe 
should be dynamic to better consider spatial and demographic responses 
of bats to global changes at a continental scale [92,93]. Nevertheless, we 

acknowledge that this approach only aids in spatially identifying sites of 
potential biodiversity significance based on current data without 
considering any past impacts. There is a trade-off between adapting the 
benchmarks due to rapid biodiversity change in the Anthropocene and 
accounting for issues related to shifting baseline syndrome [94]. This 
trade-off should be considered on a case-by-case basis depending on the 
targeted species and areas, as well as data availability. For instance, we 
suggest refraining from using dynamic biodiversity benchmarks in 
highly anthropogenic areas, especially for species exhibiting rapid 
ecological or behavioral responses to anthropogenic activities.

Biodiversity benchmarks should also account for seasonal changes in 
species distribution and abundance which reflect key life-history events 
and seasonal species responses to climatic and environmental factors in 
both migratory and non-migratory species [95–97]. Given the 
increasing amount of within-year temporal biodiversity data in biodi
versity monitoring programs and the increasing availability of climatic 
and environmental layers at high spatiotemporal scales [98], building 
robust multi-season biodiversity benchmarks will soon become an 
achievable target.

3. Conclusions

We demonstrated how biodiversity benchmarks modeled from large- 
scale standardized citizen science biodiversity monitoring programs can 
identify sites of potential biodiversity significance threatened by 
renewable energy projects. While using bats and wind turbines as a case 
study, we developed a modeling-based framework applicable to other 
species and energy infrastructures such as solar farms, hydropower 
plants, and power lines. Our findings revealed that fewer than 10 % of 
wind turbines approved in France would be placed in low-significance 
sites for bats, exposing shortcomings in the current mitigation hierar
chy process. The risks posed by wind turbines affect all bat taxa, 
including species with higher collision risks.

Adopting a modeling-based approach within the EIA process seems 
crucial to better assess project impacts and comply with the mitigation 
hierarchy framework with the ambition of no-net-loss to biodiversity. In 
addition to assisting in spatialization and mapping of the impacts of pre- 
regulatory ecological ground surveys, the modeling-based approach 

Fig. 5. Potential contributions and adding values (in red) of integrating the proposed modeling-based framework in the ecological impact assessment process. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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enables the standardization of interpreting and contextualizing biodi
versity data. Thus, it contributes to a more objective evaluation of im
pacts, ultimately leading to biodiversity-friendly renewable energy 
planning aligned with the world-leading target to halt biodiversity 
decline by 2030 [99,100]. By fostering biodiversity-friendly planning, 
this approach could also help resolve the green-green dilemma by 
addressing conflicts between SDGs 7 (affordable and clean energy), 13 
(climate action), and 15 (life on land). We therefore urge policy shifts 
toward mandatory inclusion of biodiversity modeling in the EIA process.
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communes. Symbioses 2015:1–4.

[43] Dubos N, et al. Going beyond species richness and abundance: robustness of 
community specialisation measures in short acoustic surveys. Biodivers Conserv 
2021;30:343–63.

[44] Mariton L, et al. Even low light pollution levels affect the spatial distribution and 
timing of activity of a “light tolerant” bat species. Environmental Pollution 2022; 
305:119267.

J.S.P. Froidevaux et al.                                                                                                                                                                                                                        Renewable and Sustainable Energy Reviews 211 (2025) 115323 

10 

https://doi.org/10.5281/zenodo.14226137
https://doi.org/10.5281/zenodo.14226137
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref1
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref1
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref2
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref2
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref3
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref3
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref4
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref4
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref5
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref5
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref6
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref7
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref7
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref8
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref8
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref9
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref9
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref9
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref10
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref10
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref11
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref11
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref11
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref12
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref12
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref13
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref13
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref14
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref14
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref14
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref15
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref15
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref16
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref16
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref17
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref17
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref18
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref18
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref19
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref19
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref19
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref20
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref20
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref21
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref21
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref21
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref22
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref22
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref23
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref23
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref24
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref24
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref25
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref25
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref26
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref26
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref26
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref27
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref27
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref28
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref28
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref29
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref29
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref30
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref30
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref30
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref31
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref31
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref31
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref32
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref32
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref33
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref33
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref34
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref34
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref35
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref35
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref36
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref36
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref37
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref37
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref37
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref38
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref38
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref39
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref39
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref40
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref40
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref41
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref41
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref42
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref42
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref43
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref43
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref43
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref44
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref44
http://refhub.elsevier.com/S1364-0321(24)01049-9/sref44


[45] Mariton L, et al. Characterising diel activity patterns to design conservation 
measures: case study of European bat species. Biol Conserv 2023;277:109852.

[46] Bas Y, et al. Tadarida: a toolbox for animal detection on acoustic recordings. 
J Open Res Software 2017;5(6).
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