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Abstract

We extend the formalism of Conjectural Variations games to Stackelberg games
involving multiple leaders and a single follower. To solve these nonconvex games,
a common assumption is that the leaders compute their strategies having perfect
knowledge of the follower’s best response. However, in practice, the leaders may
have little to no knowledge about the other players’ reactions. To deal with this
lack of knowledge, we assume that each leader can form conjectures about the other
players’ best responses, and update its strategy relying on these conjectures. Our
contributions are twofold: (i) On the theoretical side, we introduce the concept of
Conjectural Stackelberg Equilibrium – keeping our formalism conjecture agnostic –
with Stackelberg Equilibrium being a refinement of it. (ii) On the algorithmic side,
we introduce a two-stage algorithm with guarantees of convergence, which allows
the leaders to first learn conjectures on a training data set, and then update their
strategies. Theoretical results are illustrated numerically.

1 Introduction

Game theory has been used in many fields to model and understand the outcomes of situations
involving strategic agents in competition Başar & Olsder (1998). In this paper, we focus on bridging
the gap between Stackelberg games, involving hierarchical decision making, and Conjectural Varia-
tions (CVs) games by introducing Conjectural variations Stackelberg Equilibrium (CSE) as a broad
solution concept that encompasses Stackelberg Equilibrium (SE) as a refinement.

Conjectures in Games. CV games are characterized by conjectures, which are functions used by
players to model their adversaries’ reactions to their own action Figuières et al. (2004). Conjectures
are especially relevant in a context of bounded rationality Simon (1955), where each player chooses
its action based on its subjective perception of the other players’ behaviors. CV games have been
introduced in the context of duopolies Bresnahan (1981); Friedman & Mezzetti (2002); Perry (1982),
considering classical Bertrand and Cournot equilibrium models. A new stream has appeared with
the works of Calderone et al. (2023); Chasnov et al. (2019) who rely on variational analysis and
dynamic system theory to provide generic interpretations of conjectural games. CV games have
not been extensively applied in real-world problems, though some applications can be found in the
context of electricity markets Díaz et al. (2010); Chen et al. (2021).

Stackelberg Games. We consider non-cooperative games involving a finite set of leaders at the
upper level which compute their strategies based on their anticipations of the best response of the
follower, which reacts rationally to the leaders’ strategies. Some cornerstone theoretical contribu-
tions have emerged on the analysis of multi-leader single follower (MLSF) Stackelberg games Sherali
(1984); Leyffer & Munson (2010), but algorithmic contributions in this area remain scarce. Applica-
tions of MLSF Stackelberg games can be found in jamming problems Zhang et al. (2018), strategic
bidding in deregulated markets Morri et al. (2024), security and privacy games Gan et al. (2018).

Linking Conjectural and Stackelberg Games. Most approaches in the literature consider
leaders which have the ability to anticipate the best response of the follower. In reality, leaders
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rely on conjectures to compute their adversaries’ best responses. However, the use of conjectures in
Stackelberg games has not been extensively studied. Close works are related to dynamic conjectural
games for duopolies Figuières et al. (2004) and reverse Stackelberg games Groot et al. (2012) where
the leaders announce their strategies as functions of the follower’s action. CV Equilibrium (CVE) has
been introduced in Olsder (2009) as a relevant solution concept to cope with incomplete information
and implicit cooperation, as well as a shorthand for dynamic interactions. In Rubinstein & Wolinsky
(1994), specific focus is put on the design of conjectures leading to a Nash Equilibrium. Conjectures
can also be linked to models of bounded rationality, in place of prospect theory Kahneman & Tversky
(1979); Fochesato et al. (2025), which requires to use complex subdifferential approaches to solve
nonconvex nonsmooth games.

Learning in Games with Hierarchical Structure. There are two main approaches: either
applying learning techniques to games, or using game theory to develop new learning algorithm.
In our paper, we focus on the first class, leaving the possibility of future extensions in the second
class. Learning in Stackelberg games is considered as a challenge. In this direction, Fiez et al.
(2020) makes a significant contribution by developing a gradient-based learning rule for the leader,
while the follower employs a best-response strategy. In the same vein, many algorithms involving a
double-loop structure are proposed in the literature to compute stationary solutions Grontas et al.
(2024). Single-loop stochastic algorithm has recently been proposed to tackle bilevel optimization
problems Hong et al. (2023), allowing fast convergence rates. On the conjectural variations game
side, Wellman & Hu (1998) propose learning dynamic rules for two player conjectural games. A
similar idea is extended by Chasnov et al. (2019), considering gradient-based learning methods for
anticipating the adversary’s reaction in general conjectural games.

Contributions. We introduce CSE as a new solution concept to analyze Stackelberg games in-
volving conjectures from the leaders on their adversaries’ best responses. The distance between CV
and Stackelberg game outcomes is upper bounded, and conditions on conjectures to reach a SE
are identified. Then, we propose a two-stage algorithm to learn a CSE and provide convergence
guarantees. Finally, the theoretical results are illustrated numerically.

Structure. In Sec. 2 we introduce the main concepts of CV Games and MLSF Stackelberg Games,
to then provide a definition for the novel class of Conjectural Stackelberg games and its equilibria.
We then analyses CS Games in Sec. 3, relating them to standard Stackelberg Games. In Sec. 4 we
introduce the COSTAL algorithm, with its proof of convergence, and in Sec. 5 we provide numerical
results obtained on multi player games.

1.1 Notations

We consider a set N def= {1, . . . , N} of N agents, each with strategy xi ∈ Rmi , mi ∈ N⋆, with
m

def=
∑

i mi, and objective function fi : Rm → R. We define Xi ⊆ Rmi as the feasibility set of
player i. We introduce X−i

def=
∏

j ̸=i Xj as the product of the feasibility sets of all the players in N
except i, and X def=

∏
i∈N Xi as the joint feasibility set. We denote x

def= (xi)i∈N as the collective
strategy of all the players. Throughout the paper ∇ will stand for the total derivative, ∇i the partial
derivative w.r.t. xi and ∇−i refers to all the terms (∇j)j∈N \{i}. For second-order derivatives we
use the notation: ∇i,j or ∇2

i , while we let D be the gradient. Finally, ∥ · ∥ stands for the L2 norm.

2 Conjectural Stackelberg Games

In CV games, each player builds conjectures about the other players’ best responses. Two scenarios
are considered in the literature. In the first scenario, each player i ∈ N assumes that the other players
react homogeneously to its strategy thus giving rise to the modified objective function fi(xi, x̄), ∀i ∈
N where x̄

def=
∑

j∈N \{i} xj . In the second scenario, player i relies on its decision variable xi to form
conjectures

γj
i : Xi → Xj , ∀j ∈ N \ {i}.
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The first scenario is the one discussed the most in the literature, since it can be simplified as a two-
player game, and is easy to analyze. We instead focus on the second scenario which has more interest
from a practical point of view. Before defining our game, we explicit our standing assumptions.
Assumptions 1. We consider the following assumptions for the game:

1. fi(·) ∈ Cd, ∀i ∈ N , with d ≥ 2;

2. fi(·), ∀i ∈ N is M1−Lipschitz and convex;

3. The set Xi is compact and convex.

We now present some standard definitions from the CV game literature.
Definition 1 (Conjectural Variations (CV) Game Başar & Olsder (1998)). Given a set N of players,
each with decision variables xi ∈ Xi ⊆ Rmi and objective function fi(xi, x−i), we define a conjecture
as the function γj

i : Xi → Xj , ∀j ∈ N \ {i}. A conjecture variations (CV) game is defined as:

∀i ∈ N , min
xi

{fi(xi, x̃−i) | x̃−i = (γj
i (xi))j∈N \{i}}. (1)

The outcome of CV games can be analyzed relying on CVE. We let {γj
i (xi)}j∈N \{i}, i∈N be the

stack of all the players’ conjectures.
Definition 2 (Conjectural Variations Equilibrium Figuières et al. (2004)). Given the conjectures
{γj

i (xi)}j∈N \{i}, i∈N , the collective strategy xc def= (xc
i )i is a Conjectural Variations equilibrium

(CVE) if xc is a solution of the optimization problem

∀ i ∈ N , min
xi

{fi(xi, x̃−i) | x̃−i = (γj
i (xi))j ̸=i}. (2)

Definition 2 may generate a multiplicity of solutions, since it is always possible to find a set of
conjectures for any given point such that it becomes a CVE Figuières et al. (2004). Thus, the
concept of consistency has been introduced as a refinement of a CVE.
Definition 3 (Consistent Conjectural Variations Equilibrium Bresnahan (1981)). Given the con-
jectures {γj

i (xi)}j∈N \{i}, i∈N , the collective strategy xc def= (xc
i )i forms a Consistent Conjectural

Variations Equilibrium (CCVE) if

1. xc is a CVE for the conjectures γj
i (xi), ∀j ∈ N \ {i}, ∀i ∈ N ;

2. There exists ϵ > 0 such that ∇γj
i (xi) = ∇ix

c
j(x−j),∀ xi ∈ Xi such that ∥xc

i − xi∥ < ϵ, ∀i, j ∈
N , i ̸= j;

where xi(x−i) denotes player i’s best-response strategy.

The existence of CCVE is not easy to establish Figuières et al. (2004). For instance, duopolies with
quadratic marginal costs may not allow for polynomial or symmetric analytic consistent conjectures.
Similarly, Calderone et al. (2023) show that for quadratic games with affine conjectures, the existence
of CCVE boils down to finding solutions to coupled asymmetric Riccati equations. Positive results
for the existence require, in general, specific settings; such results exist, e.g., for specific cases of
Cournot’s duopoly and voluntary contributions to a public good Figuières et al. (2004), and in
electricity markets where uniqueness is also considered Liu et al. (2007).

2.1 Multi-Leader Single-Follower Stackelberg Games

We consider Stackelberg games involving a set N of leaders and a single follower. The N leaders
act simultaneously, anticipating the reaction of the follower; then the follower replies after having
observed the decision variables of all the leaders. We formally define a Stackelberg game as follows:
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Leader 1 Leader N

Conj: γ1 Conj: γN

Follower

x1 xN

· · ·

· · ·

Figure 1: Schematic representation of a Conjectural Stackelberg Game.

Definition 4 (Multi-Leader Single-Follower Stackelberg Game). Consider a set N of leaders and a
follower, with respective decision variables xi ∈ Xi ⊆ Rmi , ∀i ∈ N , and y ∈ Y ⊆ Rmy , and objective
functions: fi(xi, x−i, y), ∀i ∈ N , and g(x, y). The Stackelberg game can be described as follows:

∀i ∈ N , min
xi∈Xi,y∈Y

fi(xi, x−i, y), (3a)

s.t. y ∈ argmin
y∈Y

g(x, y). (3b)

Assumptions 2. We need additional assumptions on the follower’s problem:

1. The follower has a unique solution once x ∈ X is fixed;

2. The follower’s best response, y(x), is M2−Lipschitz;

3. g(·) ∈ Cd′ with d′ ≥ 2.

We can see how the hierarchy introduced in Definition 4 already implicitly uses the concept of conjec-
tures: the leaders need to act before the follower, meaning that they have to use an approximation,
or a conjecture, in place of the actual strategy of the follower. If we extend the anticipation to
all players, meaning that the leaders have conjectures about the follower’s strategy and also about
the other leaders, we obtain a new class of games, that we call Conjectural Stackelberg Games.
Considering Definitions 1 and 4, a Conjectural Stackelberg Game can be formalized as follows:

∀i ∈ N , min
xi∈Xi

fi

(
xi, (γj

i (xi))j ̸=i, γy
i (xi)

)
, (4a)

min
y∈Y

g(x, y). (4b)

In Figure 1, we represent schematically the structure of these games. The N leaders receive
feedback from their conjectures and update their strategies based on that information; then the
follower optimizes its strategy after having observed the leaders’ strategies. Following the literature
on conjectural games, we introduce the novel concept of Conjectural Stackelberg Equilibrium (CSE):
Definition 5 (Conjectural Stackelberg Equilibrium). Given the conjectures
{{γj

i (xi)}j∈N \{i}, γy
i (xi)}i∈N , (x∗, y∗) is a Conjectural Stackelberg Equilibrium (CSE) if it is

a solution of Eqs. (4).

Notice that Definition 5 does not consider the notion of consistency. Following the same steps as for
standard conjectural games, we define requirements for CSE to be consistent:
Proposition 1 (Consistency for CSE). Given the conjectures {{γj

i (xi)}j∈N \{i}, γy
i (xi)}i∈N , a CSE

(x∗, y∗) is a Consistent CSE (CCSE) if

1. There exists ϵL > 0 such that ∇γj
i (xi) = ∇ix

c
j(x−j),∀ xi ∈ Xi; ||x∗

i − xi|| < ϵL, ∀i, j ∈
N , i ̸= j;

2. There exists ϵF > 0 such that ∇γy
i (xi) = ∇iy(x), ∀ xi ∈ Xi, ||x∗

i − xi|| < ϵF , ∀i ∈ N and
∀y ∈ Y, ||y∗ − y|| < ϵF .
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The set of CCSEs is a superset of the set of Stackelberg Equilibria (SE), since if the conjectures
coincide with the best responses, the game outcome coincides with a SE.

Differential Equilibrium Definition Given conjectures {{γj
i (xi)}j∈N \{i}, γy

i (xi)}i∈N , we define
first and second-order conditions for an equilibrium (x∗, y∗) to be a CSE

∇fi

(
x∗

i , (γj
i (x∗

i ))j ̸=i, γy
i (x∗

i )
)

= 0,

∇2fi

(
x∗

i , (γj
i (x∗

i ))j ̸=i, γy
i (x∗

i )
)

> 0, ∀i ∈ N ,

and ∇yg(x∗, y∗) = 0, ∇2
y g(x∗, y∗) > 0. Notice that under Assumptions 1 and 2, this definition is

equivalent to Definition 5.

2.2 Form of the Conjectures

Our approach is conjecture-agnostic since we do not impose any priors on the form for the conjectures.
Assumptions 3. The conjecture functions γj

i (·), ∀i, j ∈ N , i ̸= j are twice differentiable.

Some possible forms for these functions, that we will consider throughout the paper are the following:

• Affine conjectures: γj
i (xi) = aixi + bi, for ai, bi ∈ R;

• Polynomial conjectures: γj
i (xi) =

∑G
g=0 ci,gxg

i , for ci,g ∈ R;

• Neural networks: γj
i (xi) = Φj

i (xi), where Φj
i is the architecture for the network used.

3 Game Analysis

We can now proceed with a theoretical analysis of the game, comparing CV and Stackelberg
games. We equip X and Y with distances dX and dY respectively. For xs, xc ∈ X × Y we de-
fine d(xs, xc) def= || (dX (x∗, xγ), dY(y∗(x∗), γy(xγ))) || as the distance of the projections of xs, xc on
X and Y respectively.

3.1 Bounding the Objective Functions

Proposition 2 (Objective Function Bound). Suppose Assumptions 1-3 hold. Consider a SE xs def=
(x∗, y∗(x∗)) and a CSE xc def= (xγ , γy(xγ)), then the distance between the objective function of any
leader i ∈ N at a SE and at a CSE is upper bounded:

∥fi(x∗, y∗(x∗)) − fi(xγ , y∗(xγ))∥ ≤ RdX (x∗, xγ), (5)

with R
def= M1

√
1 + M2

2 .

Proof. Let xc correspond to the decision variable obtained at equilibrium by the leaders considering
its conjecture, but evaluated with the actual follower’s response y∗(xγ). Using the assumption of
Lipschitz continuity of fi from Assumption 1, we obtain:

∥fi(xs) − fi(xc)∥ ≤ M1d(xs, xc), (6)

which is a first bound for the distance between the objective functions evaluated in xs and xc. If we
explicit the right-hand side of Eq. (6), we obtain

d(xs, xc) =
√

dX (x∗, xγ)2 + dY(y∗(x∗), y∗(xγ))2.
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The second term, considering the distance between the follower’s best responses, can be developed
further using the Lipschitz continuity of the follower’s best response from Assumption 2:

dY(y∗(x∗), y∗(xγ)) ≤ M2dX (x∗, xγ). (7)

Combining Eq. (6) and Eq. (7) concludes the proof.

3.2 Reaching a Stackelberg Equilibrium

The previous result linked a Stackelberg Equilibrium with a Conjectural Stackelberg Equilibrium,
now instead we derive connections between a Stackelberg Equilibrium and a Consistent Conjectural
Stackelberg Equilibrium. Using the differential equilibrium definition from Section 2, we write
explicitly the full gradient of leader i considering either a SE or a CCSE. First, in xs = (x∗, y∗), we
get:

∇fi(xs) = ∇ifi(xs) + ∇−ifi(xs)∇ix
∗
−i

+ ∇yfi(xs)∇iy
∗.

(8)

Second, in a CCSE, in xc = (xγ
i , γ−i

i (xγ
i ), γy

i (xγ
i )), and using γ−i

i (xi) = (γj
i (xi))j ̸=i, we get:

∇fi(xc) = ∇ifi(xc) + ∇−ifi(xc)∇iγ
−i
i (xγ

i )
+ ∇yfi(xc)∇iγ

y
i (xγ

i ).
(9)

We note that Eq. (8) and Eq. (9) are equal if

∇ifi(xs) − ∇ifi(xc) = 0,

∇−ifi(xs)∇ix
∗
−i − ∇−ifi(xc)∇iγ

−i
i (xγ

i ) = 0,

∇yfi(xs)∇iy
∗ − ∇yfi(xc)∇iγ

y
i (xγ

i ) = 0.

Since in a CCSE the variations of the conjectures must be equal to the real best-response variations,
we can focus on the terms related to the derivatives of the objective function. Considering the
derivative w.r.t. variable i we can rewrite the term ∇ifi(xs) − ∇ifi(xc) as: ∇i(fi(xs) − fi(xc)), and
given Assumptions 1 for fi, using the Mean Value Theorem we obtain:

∇i[fi(xs) − fi(xc)] = ∇i[Dfi((1 − τ)xc + τxs)(xs − xc)⊤] (11)

with τ ∈ [0, 1]. We set h
def= (1 − τ)xc + τxs, then expanding the right-hand side of Eq. (11) we

obtain the following term:

∇i[fi(xs) − fi(xc)] =∇2
i fi(h)(xγ

i − x∗
i )

+∇−i,ifi(h)(γ−i
i − x∗

−i)
+∇y,ifi(h)(γy

i − y∗),
(12)

and with the same procedure we equivalently obtain similar terms for the derivatives w.r.t. −i and
y:

∇−i[fi(xs) − fi(xc)] =∇i,−ifi(h)(xγ
i − x∗

i )
+∇2

−ifi(h)(γ−i
i − x∗

−i)
+∇y,−ifi(h)(γy

i − y∗),
(13)

∇y[fi(xs) − fi(xc)] =∇i,yfi(h)(xγ
i − x∗

i )
+∇−i,yfi(h)(γ−i

i − x∗
−i)

+∇2
yfi(h)(γy

i − y∗).
(14)

Comparing Eqs. (12) - (14) we obtain the following link between SE and CCSE:
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Proposition 3 (Existence of Conjectures). Given a SE x⋆, if each player’s best response is differ-
entiable, then we can always find a set of conjectures to reach x⋆.

Proof. It suffices to choose the best responses as the conjectures.

We can further analyze Eqs. (12) - (14) from the point of view of the objective functions, obtaining
two interesting cases:

1. Linear Objective Functions: Given linear objectives functions for the leaders fi(x, y) =
aixi +

∑
j ̸=i bi,jxj + ciy, we observe that all the second-order derivatives in Eqs. (12) - (14)

vanish, meaning that SE and CCSE coincide. This means that the full derivative of the
conjectural game for leader i becomes:

∇ifi(x, y) = ai +
∑
j ̸=i

bi,j∇iγ
j
i (xγ

i ) + ci∇iγ
y
i (xγ

i ),

which coincides with the SE definition, given the conditions of Proposition 1 on the conjec-
tures.

2. Quadratic Objective Functions: Consider quadratic objective functions such as:
fi(x, y) = zAiz⊤, where z = (x, y) and Ai is the coefficients matrix for leader i, with
dimensions (m + my) × (m + my). In Eqs. (12) - (14) all the second derivatives become con-
stant terms, i.e., the term ∇2

i fi(m) becomes Ai
i,i, the term ∇y,ifi(m) becomes Ai

i,y, where
the subscripts i, j are the row and column indexes of the matrix A. This implies that the
difference between the equilibria depends solely on how close the conjectures at a CCSE are
to the other players’ best responses at a SE.

Note that the conjecture parameters are generally not known and need to be learned. To that
purpose, we propose a two-stage algorithm in the next section.

4 The COSTAL Algorithm

In our two-stage algorithm, we first train the leaders’ conjecture models, and then let the players
play the Stackelberg game relying on the learned conjectures.

4.1 Training Conjectures

Before the game is played, a training phase takes place during which the leaders collect data about
the other players. This can be seen as a similar process to cheap talk Farrell (1995), or Generative
Adversarial Networks Farnia & Ozdaglar (2020), where a pre-trained discriminator is used. At each
step of the training phase we sample uniformly a different decision variable for each leaders, then
the best response for each player is computed, considering the randomly sampled variables and
adding noise: ∀i ∈ N , x̃i = x∗

i (x−i, y) + ξ with ξ ∼ N (0, σ). The tuples (xi, x̃j), ∀j ∈ N \ {i}, and
(xi, ỹ), ∀i ∈ N , where ỹ is the noisy follower’s reaction to the strategy of the leaders, are stored in
datasets (Dj

i )i,j and (Dy
i )i. This process is repeated T times, creating for each player a dataset of

size T for every other player in the game. The next step is then to update the conjectures to learn
the other players’ behaviors over these data streams using stochastic gradient descent with batch
size |B|, and with a quadratic loss defined as follows:

Lj
i (γj

i ) def= 1
|B|

∑
b∈B⊂Dj

i

(
xb

j − γj
i (xb

i )
)2

, ∀i, j ∈ N , j ̸= i.

The algorithm to learn the players’ conjectures is described in Algorithm 1. In the sampling part
(lines 3-7), the operations scale as T · N , thus it is linear in the number of agents. In the training
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Algorithm 1 Pseudo-code for training the conjectures.
1: Input: σ, T, |B|
2: for t ∈ [0, T ] do
3: Sample xt ∈ X , yt ∈ Y, ξ ∼ N (0, σ)
4: Compute ỹ(xt) = y∗(xt) + ξ
5: for i ∈ N do
6: Sample ξ ∼ N (0, σ)
7: Compute x̃i(xt

−i, yt) = x∗
i (xt

−i, yt) + ξ
8: end for
9: for i ∈ N do

10: Save (xt
i, ỹ) in Dy

i

11: for j ∈ N , j ̸= i do
12: Save (xt

i, x̃j) in Dj
i

13: end for
14: end for
15: end for
16: Train the conjectures on the data sets Dj

i , Dy
i , ∀i, j ∈ N

17: Output: trained conjectures γj
i , γy

i , ∀i, j ∈ N

Algorithm 2 Pseudo-code for learning a Conjectural Stackelberg Equilibrium.

1: Input: T, η, {γj
i , γy

i , ∀i, j ∈ N }, {fi(·), ∀i ∈ N }
2: Initialize x0 ∈ X
3: for t ∈ [0, T ] do
4: for i ∈ N do
5: Compute Di = ∇ifi

6: Compute D−i = ∇−ifi∇iγ
−i
i

7: Compute Dy = ∇yfi∇iγ
y
i

8: xt+1
i = xt

i − η(Di + D−i + Dy)
9: end for

10: end for
11: Output: Final strategies {xT

i ∀i ∈ N }, y∗(xT )

part, we have to train N · (N − 1) conjecture functions, thus it scales quadratically with the number
of agents. Notice that this part could be run in parallel for each agent (or by groups of agents), if
N becomes large.

4.2 Learning Conjectural Stackelberg Equilibria

The leaders participating in the Stackelberg game update their strategies through gradient descent.
Considering the continuous counterpart of our system, the players update their strategies as follows:

ẋi = −∇fi(xi, x−i, y), ∀ i ∈ N , (15a)
ẏ = −∇yg(x, y). (15b)

The main issue with this formulation is that, since all the leaders are coupled, computing the full
gradient for each of them is not feasible. For the settings we consider, the presence of conjectures
helps at rewriting this system in a simpler way. Substituting the conjectures in the objective function
of leader i, fi, we obtain fi(xi, (γj

i (xi))j ̸=i, γy
i (xi)), which depends only on xi. We define f̃i(xi)

def=
fi(xi, (γj

i (xi))j ̸=i, γy
i (xi)), with f̃i the conjectured objective function. Eqs. (15) can then be rewritten

8



as follows:

ẋi = −∇if̃i(xi), ∀ i ∈ N , (16a)
ẏ = −∇yg(x, y). (16b)

We now explicit ∇if̃i:

∇if̃i(xi) =∇ifi(xi, γ−i
i , γy

i ) + ∇−ifi(xi, γ−i
i , γy

i )∇iγ
−i
i

+∇yfi(xi, γ−i, γy
i )∇iγ

y
i .

(17)

The key feature of Eq. (17) is that it is easily obtained once the conjectures are given. Furthermore,
a convergence guarantee for the system described in Eqs. (16) can be obtained following Fiez et al.
(2020) and Borkar (2008). Specifically, we can write the discrete version of this update rule for
leader i:

xt+1
i = xt

i − ηt(∇if̃i(xt
i) + ζt

i ), (18)

where we also consider the noise ζ deriving from the fact that the leader has access to an unbiased
estimate of the gradient. This allows us to use well-known results from stochastic approximation
theory Borkar (2008), from which we also state the following assumptions:
Assumptions 4 ( (Borkar, 2008, Sec. 2.1, Assumptions A1-A2-A3) ). For all leader i ∈ N , ∇if̃i is
Lipschitz continuous and ∥∇if̃i∥ < +∞, {ζt

i } is a martingale difference sequence, and the gradient
step sizes are chosen such that

∑
t ηt = ∞,

∑
t(ηt)2 < +∞.

Theorem 1. Suppose Assumptions 4 hold, then {(xt
i)i}t converges almost surely to a local CSE

(xγ
i )i of Eqs. (16).

Proof. We consider the differential CSE (xγ , yγ), given the set of conjectures {(γj
i (xi))j ̸=i, γy

i (xi); i ∈
N }. From the differential version of Definition 5, we know that for any leader i, ∇if̃i(xγ

i ) = 0 and
∇2

i f̃i(xγ
i ) > 0, meaning that it is a stable point for the differential equation: ẋi = −∇if̃i(xi). The

discrete update xt+1
i = xt

i − ηt(∇if̃i(xt
i) + ζt

i ) is then a stochastic approximation of the continuous
process, tracking the ODE asymptotically. Given the assumptions we described in the statement of
the theorem and using (Borkar, 2008, Theorem 2, Corollary 4), the discrete sequence of each leader
i converges almost surely to a compact internally chain transitive set of the ODE. This is a a closed
compact set A ⊂ Xi such that: for any trajectory xi(t) with xi(0) ∈ A, x(t) ∈ A ∀t ≥ 0; and for any
xa, xb ∈ A, ϵ > 0, T > 0, there exists n ≥ 1 and xa = x0, x1, · · · , xn = xb such that the trajectory of
the ODE starting at xl, 0 ≥ l > n, reaches the ϵ-neighbourhood of xl+1 after a time ≥ T . Finally,
since any stable attractor of the dynamic has to satisfy ∇2

i f̃i > 0 for all leaders Strogatz (2015), and
the followers always replies with the best response, by definition the only internally chain transitive
sets are CSEs. We can then conclude that the algorithm using Eq. (18) converges a.s. to a CSE of
Eqs. (16).

In Algorithm 2 we report the structure of the algorithm in pseudo-code. Notice that the update of
the strategy of player i (lines 5-8), obtained from Eq. (17), only depends on variables of player i.
This means that the loop over all the players N could be run in parallel instead than sequentially,
speeding up COSTAL for large number of agents. Furthermore, this update does not even need to be
run on the same machine, allowing full decentralization for the leaders. Note that COSTAL may never
reach a global solution of Eqs. (15). There exist integrated approaches based on the reformulation of
the Stackelberg games as an equivalent mathematical program with constraints Dempe & Zemkoho
(2020) to compute global solutions, but they do not allow to account for the learning capabilities
of the players. Further, reaching a global equilibrium can be expensive form a computational point
of view, thus focusing on a local equilibrium might be preferable. In addition, from a system point
of view, the adjustments of the players’ strategies are usually small, meaning that it makes sense
to study local solutions Zheng et al. (2021). From Bubeck (2015), we know that the convergence
rate of the gradient descent given a smooth function, which we already require in Assumptions 4, is
O(1/T ). Note that the loop over agents in Algorithm 2 (lines 4-9) includes an inner loop (line 6),
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(c) Evolution of the objective of
leader 1.

Figure 2: Results of the simulation for the game "Leader’s Dilemma" with K = −1.5, we report
only the results for one leader as the game is symmetric. The labels in the plots refer to which type
of conjecture is used: NN stands for neural network, with the number referring to the size of the
hidden layer; for the quadratic conjecture, just ‘quadratic’ refers to γ = x2, while ‘quadratic_11’ is
γ = x2 + x.

which runs over the N − 1 remaining agents. This entails that the operations for each gradient step
scale as O(N2). On the other hand, we mentioned that the gradient update can be run in parallel
for all agents, bringing back the scaling to a linear behavior.

5 Experiments

We present numerical results for the COSTAL algorithm applied to two stylized games; for both games,
we report additional data and a full script to reproduce the experiments in the Appendix. We focus
on comparing the learned strategies with known equilibria, to check whether a CSE could benefit
the players of the game, and if so, with which conjectures. In particular we compare our algorithm
against a naive gradient descent update, with full access to the other players’ variables, described
by:

xt+1
i = xt

i − η∇ifi(xt
i, xt

−i, yt), ∀t. (19)

We will refer to this benchmark algorithm in the next sections as GD. Note that this method is not
decentralized and cannot be run in parallel, as every update needs all the players’ variables.

5.1 Leader’s Dilemma

We consider here a Stackelberg game where two leaders should try to cooperate by getting close to
a target set by the follower. The objective function for the leaders are:

fi(xi, xj , y) = −(xi − y)2 − K
(

1 − e−(xj−y)2
)

, ∀i ∈ {1, 2}, (20)

and for the follower:

g(x, y) =
(

x1 + x2

2 − y

)2
. (21)

The leaders maximize their objective function, while the follower minimizes it, all variables are in
the action space [−2, 2] and K < −1. It is easy to prove that the strategy x1 = x2 for the leaders
is a saddle point, thus they could obtain better payoffs by staying far from the target. In Fig. 2a
we check convergence speed of the algorithm: the leaders’ gradient converges to 0 rather quickly
for each class of conjectures, as we expected from our theoretical analysis. Furthermore, in Fig. 2c
we plot the leaders’ objective function at equilibrium: we can see that the GD stays trapped in the
saddle point, the two leaders stay in the same position, obtaining 0 as reward; the COSTAL algorithm
with the different conjectures instead, finds stable solutions that guarantee a reward larger than 0,
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beating the GD. Finally, in Fig. 2b, we plot the final solutions reached in each case. We infer that
the conjectures allow the leaders to find an equilibrium which is at a distance from the target set
by the follower, while the GD method cannot.

5.2 Revisiting Olsder’s Paradox

For our second experiment we take a game described in Olsder (2009) (players are maximizing).
The game considers two players with action space [0, +∞] and with objective functions:

f1(x1, x2) = (x1 − 84)(−12.5x1 + 21x2 + 756),

f2(x1, x2) = (x2 − 50)(25x1 − 50x2 + 560).

This game can be interpreted as a paradox because it leads to a CCE with affine conjectures, which
is more efficient than the NE and the SE (with player 1 as leader, and player 2 as follower) solutions
of the game. This result is counter-intuitive, because it means that being bounded rational can be
more profitable for the players and more efficient for a system point of view than being fully rational.
The numerical results are reported in Tab. 1, where we also highlight the social welfare optimum
for the game, which is reached by maximizing the sum of the objective functions. For the numerical
simulations, we consider two settings: simultaneous play (N at the front of the name in the graphs)
and Stackelberg play (S), with player 1 using the algorithm as the leader, while player 2 replies with
the best response. In Fig. 3 we report the values reached by the objective function of player 1 and
2 respectively. We can see how using the COSTAL algorithm produces results that always beat the
NE, and for player 1 in the simultaneous case we even achieve a better result than the SE. The
CCE is far more profitable for the players and more efficient than the NE and the SE. However,
this result needs to be mitigated in practice, because a large amount of information is needed to
compute a CCE: relying on Proposition 1, player 1 would need to have access to player 2’s objective
function, together with its first and second-order derivatives. However, it is worth noticing that
COSTAL enables to reach CSE without any information exchange among the players, achieving better
performance (players’ objective values, efficiency) than the NE and the SE. Furthermore, under the
hierarchical play setting, we can observe that Proposition 2 holds: both players’ objective functions
are upper bounded by the SE.

Solution x1 x2 f1 f2

CCE 164.4 81 32320.8 19220
SE 138.04 65.11 21411.6 11415.8
NE 123.98 61.6 19979.8 6722.13

SWO 300.04 150.98 38141.2 56548.7

Table 1: Values at CCE, SE, NE and SWO for the Olsder’s game.

6 Conclusions

In this work we presented a new class of games, called Conjectural Stackelberg Games, aimed at
bridging the gap between the use of conjectures and Stackelberg games. In particular we formalized
how leaders may model opposite players’ behavior. To characterize the game we also propose an
equilibrium definition, using the notion of consistency, first introduced in Conjectural Variations
Games. As a first effort to study these new games, we compare the Conjectural Stackelberg Equi-
librium with the standard Stackelberg Equilibrium for multiple settings. We also want to stress the
fact that we kept our whole formalism conjecture-agnostic, meaning that we do not assume a specific
form for the conjecture functions, which is in stark contrast with the existing literature. Finally, we
develop a multi agent learning algorithm (COSTAL) that can be used by the players of Conjectural
Games to update their conjectures and their strategy. We also provide a proof of convergence for
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Figure 3: Final value of the objective function of both players of the Olsder’s Paradox.

said algorithm. We believe Conjectural Stackelberg Games could be a useful and interesting class
of games to study further, both on the theoretical side, obtaining more results regarding their rela-
tion with Nash and Stackelberg equilibria; but also on the algorithmic side, using their structure to
develop game-theory informed learning algorithm.
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Appendix

We report here further data regarding the simulation discussed in the main paper, focusing on the
trajectories of the players during the learning of their strategy and the convergence speed, which we
can show empirically looking at the gradient at each step of the algorithm.

A full script to run all the experiments can be found at this link.
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Leader’s Dilemma For this game we already reported the gradient evolution and objective evo-
lution for leader 1 in the main paper, so we show here in Fig. 4a and Fig. 4b the same plots but
for leader 2, and is clearly visible the gradient quickly goes to 0 and the the results obtained by the
COSTAL algorithm are superior to that of the basic GD approach. Furthermore, in Fig. 5 we report
the evolution of the strategies of the two leaders, where the different results between our algorithm
and the gradient descent method are even more distinct. Finally, in Fig. 6 we report a comparison
between the co-evolution of the two leaders and the Stackelberg equilibria of the game. In partic-
ular this game has a continuum of equilibria, between which the line x1 = x2 is not stable and it
also achieves a lower reward than x2 = x1 ± 2

√
log |K|. We can see that the GD method converge

to the unstable point, while the equilibria reached by the conjectures are not on the Stackelberg
Equilibria line, even though some are getting close. Once more this highlights the fact that the
COSTAL algorithm converges to a stable equilibrium that is different from the standard notions of
Nash/Stackelberg.
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(a) Evolution of the gradient of leader 2.
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(b) Evolution of the objective function of leader 2.

Figure 4: Gradient and objective evolution of leader 2 in the Leader’s Dilemma game.
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(a) Evolution of the strategy of leader 1.
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(b) Evolution of the strategy of leader 2.

Figure 5: Plots of the evolution of the strategies of the players of the Leader’s Dilemma game.

Revisiting Olsder’s Paradox. We report a similar analysis also for the second game. In Fig. 7
we can see once again how the strategies of the players converge very quickly, in this case also for the
GD update. As before we show also the convergence of the gradients in Fig. 8, where we stress that in
the two plots we are only showing the first 500 iterations, to highlight the fact that the gradient does
go to 0 extremely quickly in this game. Furthermore, we also report in Fig. 9, the evolution of the
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Figure 6: Comparison between the evolution of the strategies of the two leaders and the Stackelberg
Equilibria of the Leader’s Dilemma game

objective functions, comparing them with the value assumed in the different equilibria. Once again
we can observe how quickly these functions converge to a stable point, without changing throughout
the rest of the simulation.

0 500 1000 1500 2000 2500
Iteration

116

118

120

122

124

126

128

130

132

Pl
ay

er
 1

 S
tra

te
gy

N_NN_20
S_NN_20
N_GD
S_GD

(a) Evolution of the strategy of player 1.
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(b) Evolution of the strategy of player 2.

Figure 7: Strategies of the two players throughout the simulation.
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(a) Evolution of the gradient of player 1.
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(b) Evolution of the gradient of player 2.

Figure 8: Gradients of the two players throughout the simulation.
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(a) Evolution of the objective function of player 1.
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(b) Evolution of the objective function of player 2.

Figure 9: Objective functions of the two players throughout the simulation.
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