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Abstract

Ecosystems tend to fluctuate around stable equilibria in response to internal dynamics
and environmental factors. Occasionally, they enter an unstable tipping region and col-
lapse into an alternative stable state. Our understanding of how ecological communities
vary over time and respond to perturbations depends on our ability to quantify and pre-
dict these dynamics. However, the scarcity of long, dense time series data poses a severe
bottleneck for characterising community dynamics using existing methods. We overcome
this limitation by combining information across multiple short time series using Bayesian
inference. By decomposing dynamics into deterministic and stochastic components using
Gaussian process priors, we predict stable and tipping regions along the community land-
scape and quantify resilience while addressing uncertainty. After validation with simulated
and real ecological time series, we use the model to question common assumptions underly-
ing classical potential analysis and re-evaluate the stability of previously proposed “tipping
elements" in the human gut microbiota.
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1 INTRODUCTION

Ecological communities are subject to stochastic dispersal, birth, and death processes (Harris et
al., 2015), and incessant external perturbations caused by environmental fluctuations. Moreover,
interactions between community members (Gonze et al., 2017) or ecological memory (Khalighi et
al., 2022) can generate complex dynamics (Fujita et al., 2023; Gonze et al., 2018; Konopka, 2009),
such as sudden shifts between alternative stable states characterised by different community
compositions. Such multistable dynamics have been reported in diverse ecosystems ranging from
freshwater plankton communities (Scheffer, 2020) to human gut microbiota (Hartman et al.,
2009; Lahti et al., 2014; Sommer et al., 2017). Attempts have been made to disentangle these
different ecological processes from time series (Faust et al., 2018). However, the dynamics of
ecological communities are notoriously difficult to model as soon as the community size exceeds
a few species. This is especially true of microbial communities, due to the diversity and lability of
interspecific interactions (Konopka, 2009). Thus, mechanistic models often fail to predict state
shifts or to quantify key dynamical properties such as stability and resilience (Bestelmeyer et al.,
2011; Faust et al., 2015).
An alternative approach is to characterise the system’s fluctuations statistically while making
minimal assumptions about the underlying processes (Arani et al., 2021). This has been used
to detect early warnings from time series (Laitinen et al., 2021; Scheffer et al., 2009) and to
understand how systems change over time (Raulo et al., 2023). A popular approach is to assume
that the dynamics are well characterised by a stationary probability density. This approach has
been applied to various complex systems such as climate data (Garcia et al., 2017; Livina et
al., 2010) and more recently microbial communities (Costea et al., 2018; Shetty et al., 2017).
However, an important shortcoming in these approaches is that they usually conflate the number
of modes in the probability density with the number of stable states; they do not account for the
possibility that the intensity of fluctuations may vary with the system’s state (M. S. Arani et al.,
2024). Even more crucially, the application of such models in ecology has thus far either relied
on long and dense time series to characterise the dynamics, or made the simplifying assumption
that it could be recovered from the stationary density without access to time series data (Costea
et al., 2018; Lahti et al., 2014; Livina et al., 2010; Shetty et al., 2017). Yet, even though the
availability of time series data is quickly increasing in ecology, the vast majority remain short and
sparse due to practical or ethical constraints in sample collection - often no more than a few time
points per sampling unit (Lahti et al., 2014; Moreno-Indias et al., 2021).
In order to overcome these limitations, we propose a flexible probabilistic model to reconstruct
complex system dynamics from multiple short time series. We show how the model can be
used to detect a system’s stable and tipping regions, quantify multistability and resilience, and
address uncertainty. We validate the model with simulated and real data. Finally, we highlight
shortcomings in the currently popular techniques for the analysis of community stability and we
use our approach to re-examine the stability properties of microbial taxa previously proposed
to exhibit bistability: the so-called tipping elements of the human gut microbiota (Lahti et al.,
2014).
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2 METHODS

FIGURE 1 The stability landscape and key concepts. (a) A hypothetical bistable system with two stable states of
low and high abundance, separated by an intermediate tipping point (dashed orange line). The dynamics can be
described as movement along the stability landscape (upper plot) where at any given time, the system is likely to
be found in either the less resilient state (blue) or the more resilient state (red, with a deeper valley) and less likely
to be found in the unstable, middle tipping region. The drift function (lower plot) is the negative gradient of the
stability landscape; its roots provide the location of the stable states and unstable tipping point of the stability
landscape. (b) Movement along the landscape is subject to stochastic perturbations whose intensity may vary with
abundance and is described by the diffusion function. (c) A hypothetical long and continuous series of observation
from the system defined in (a,b) as assumed by most existing methods for dynamics characterization. (d) A
collection of short time series with the same underlying dynamics as in (c) more typical of the data encountered,
for instance, in human gut microbiota research. (e) Short, independently sampled time series cover the range of
possible measurements in a system more efficiently than a long, continuous time series of the same total length.
Both curves show the average agreement with the ground truth stationary density over 50 independent simulations
(see Methods). Two example densities calculated from the points highlighted in yellow are shown (in blue and
grey) compared to the true stationary density of the process from which they were simulated (dashed black line,
see also Video V1).
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2.1 Modelling approach

Our approach is based on the classical representation of ecological dynamics as movement along
a stability landscape, also called potential landscape, caused by stochastic fluctuations (Fig.
1a, b) (Arani et al., 2021; Walker et al., 2004). The landscape is a function of the system
state, quantified by an indicator variable such as the abundance of a key species, or a higher-
level aggregate such as diversity or biomass. Univariate summaries are useful because stability
landscapes are generally not well defined in multivariate systems (Rodriguez-Sanchez et al., 2020).
Local minima represent stable equilibria, or “stable states". Local maxima represent unstable
“tipping points", which mark the boundary between alternative basins of attraction (note that
“tipping point" may also refer to a change in the landscape itself in other fields (Van Nes et al.,
2016). A lake may, for instance, exhibit distinct states of low and high cyanobacteria abundance,
and fluctuate around one of the stable points until a large enough perturbation pushes the system
across the tipping point, triggering a transition to the other state (Fig. 1a,b) (Carpenter et al.,
2020).
The stability landscape representation assumes that all observations follow the same stationary
dynamics. The dynamics can then be decomposed into a deterministic and a stochastic com-
ponent, using a stochastic process model in which they are quantified by the drift and diffusion
functions, respectively (Fig. 1a, b) (Sura and Barsugli, 2002). Drift is the negative derivative
of the stability landscape and encodes the shape of the landscape (Fig. 1a). The diffusion en-
codes the intensity of stochastic fluctuations as a function of system state (Fig. 1b). Classical
approaches to inferring this decomposition assume a specific shape for the drift and diffusion.
This entails strong assumptions on the landscape shape, the number of possible stable states
and fluctuation intensity along the landscape (Livina et al., 2010). Alternatively, non-parametric
models allow for a more flexible characterization. However, existing inference methods for these
models rely on computing the moments of the trajectory within bins of time points; this relies on
long and dense times series that are often not available (Arani et al., 2021; Garcia et al., 2017).
In contrast, we propose here a non-parametric approach based on Bayesian inference that allows
us to leverage the collections of short time series common in ecological research.
Our approach builds on two key ideas. First, we guide the model with flexible Gaussian Process
priors for drift and diffusion (Methods), which were recently applied in microbiota research in
other contexts (Gerber, 2014; Lloyd-Price et al., 2017). Second, assuming that all samples
follow the same stationary dynamics, a collection of short, independently sampled time series can
actually cover the state space more efficiently than a single long time series, as consecutive time
steps often exhibit strong dependencies (Fig. 1c-e, Video V1). As a result, our approach can use
remarkably fewer observations than the commonly used alternative techniques.

2.2 Probabilistic model

Our approach employs a drift-diffusion stochastic differential equation model, which assumes
that the stationary dynamics can be decomposed into deterministic and stochastic components
(Kloeden et al., 1992). We assume an underlying stochastic differential equation for the process,
where the dynamics follow a deterministic drift function but are perturbed from this path by a
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stochastic diffusion function. The mathematical representation of this is given by the Langevin
equation (Rinn et al., 2016)

dx(t) = f(x(t))dt +
√

g(x(t))dW (t), (1)

where x(t) is the process being modelled at time t, f is the drift, g/2 is the diffusion, and W is
the Wiener process, i.e. white Gaussian noise. Following the Euler-Maruyama scheme, which we
know to be convergent (Kloeden et al., 2012), we can discretise equation 1 so that

∆x ≃ f(xn)∆t +
√

g(xn)∆W, (2)

where ∆W = Wn+1 − Wn is normally distributed according to N (0,
√

t). This step also enforces
the assumption of Markovianity in the model. Since the first term is deterministic, we can equally
think of ∆x as being normally distributed:

∆x ∼ N
(

f(xn)∆t,
√

g(xn) · ∆t
)

. (3)

Equation 3 acts as the likelihood in our Bayesian framework.

2.3 Gaussian processes

Since these data tend to be very noisy, and stochastic differential equations are governed by
two functions whose forms are unknown, they pose a problem for parametric models. Gaussian
processes act as non-parametric priors in that they do not assume any particular underlying
functional form. Instead, they are entirely characterised by their mean and covariance functions,
capable of encoding properties such as smoothness and periodicity. They are also powerful in
the sense that we can use them for predictive inference: we can query the function’s value at
points where we do not have observations. We use them in our model to learn the drift and
diffusion functions. Their main downfall is that they scale as O(n3), where n is the number of
observations, and, as a result, they are not ideal for large datasets (more than a few hundred
points). They act as priors over functions, and are denoted

ϕ(x) ∼ GP(m(x), K(x, x′)), (4)

where ϕ(x) = (ϕ(x1), ϕ(x2), ...ϕ(xD)) is the vector of the function ϕ : RD → R, D ∈ N,
evaluated at each of the observations xi in x ∈ RD, m(x) denotes the mean function evaluated
over all observations, and K(x, x′) is the covariance between all possible observation pairs. The
process is called Gaussian because it defines a multivariate normal distribution for any set of
points x ∈ RD. We set the mean function to zero.
The Gaussian process kernel K is a positive semi-definite function that holds the majority of our
prior beliefs about the function we want to model. We set the kernel for drift prior to be the sum
of an exponentiated quadratic kernel and a linear kernel, that is:

5



Kf (x, x′) = σ2
qexp

(
− 1

2l2 (x − x′)2
)

+ σ2
b + σ2

l (x − c)(x′ − c). (5)

The σq, σb and σl terms in equation 5 are variance parameters, l is the length scale, and c is
a centring parameter. The exponentiated quadratic kernel (first term in equation 5) leads to
functions with the desirable property of infinite differentiability. The linear kernel (second and
third terms in equation 5) will cause the drift, in a region where there is no data point, to tend
towards a line with a slope close to what it had in the adjacent region with data. Its inclusion
aids in producing the desired end behaviour: instead of going toward zero, we want the drift
to approach plus or minus infinity, which is required if we are to obtain stationary dynamics.
The diffusion on the other hand only benefits from the properties of the exponentiated quadratic
kernel since we cannot say anything a priori about its end behaviour. The one quality we do
require that the diffusion have, however, is non-negativity. It is not straightforward to enforce
this in the Gaussian process prior itself. In order to constrain the model, we use the following
sampling statement for equation 3:

∆x ∼ N
(

f(xn)∆t,
√

exp(ĝ(xn)) · ∆t
)

, (6)

where exp(ĝ(xn)) = g(xn). In practice, we set a Gaussian process prior on ĝ(xn) rather than
g(xn), and then transform it back to the actual quantity of interest g(xn).

2.4 Model inference

We base model inference on a number of assumptions. We are concerned here with datasets
that comprise several short times series that come from different but related sampling units,
such as different study participants in the case of human gut microbiota. To pool information
between limited data, we assume that they represent different realisations from the same (or
similar) underlying dynamics, and model them jointly. We assume that the first two moments
of the stochastic differential equation, the drift and the diffusion, are sufficient in describing the
dynamics. In addition, we assume that the time series are stationary, Markovian, and that the
data takes sufficiently small time steps to minimise the error attributed by the Euler-Maruyama
discretisation.
We set standard Inverse-Gamma(2, 2) priors on all variance parameters and Inverse-Gamma(5,
5) priors on length scale parameters. Inverse-gamma distributions work well for these parameters
because they heavily suppress values close to zero but have tails that stretch to slightly larger
values. In terms of the length scale parameters, this allows for both curvy, high frequency
functions, and practically linear, low frequency functions, depending on the data. This behaviour
is desirable in both the drift and diffusion functions. If the system is bimodal but not bistable, a
flexible diffusion prior is needed. Conversely, if it is bistable, a flexible drift prior is needed. The
linear and exponentiated quadratic kernels’ variance priors are the same because, in some cases,
they are given equal weight. In the case of a bistable drift, the exponentiated quadratic kernel’s
learned variance should have a greater influence. On the other hand, in the case of a unistable
drift, the linear kernel’s variance should take the dominant role.
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We performed Bayesian inference using the probabilistic programming language Stan, which uses
Hamiltonian Markov chain Monte Carlo. We evaluated the convergence of the model using the
statistics available in Stan, namely, the Rhat and n_eff values. In all cases, we used 4 chains
with 2,000 iterations per chain.

2.5 Characteristic time scale

The time series need to be sufficiently dense to satisfy our modelling assumptions. To assess this,
we introduce a time scale that can be calculated from any time series data, provided it can be
assumed to follow approximately stationary dynamics. We define this time scale as the apparent
time needed to traverse the observed range d of the data through stochastic fluctuations. We
expressed this condition as

√
⟨∆x2/∆t⟩ · ∆t = d, where ⟨∆x2/∆t⟩ is the average of (x(t+∆t)−

x(t))2/∆t over the time series, which yields tc = d2/⟨∆x2/∆t⟩. We expressed all time steps
used in this paper as a fraction of this time scale. In the context of our model, ⟨∆x2/∆t⟩ can be
seen as an approximation for ⟨g(x)⟩ since g(x) = lim∆t→0

1
∆t
E[(x(t + ∆t) − x(t))2] (Friedrich

et al., 2011).

2.6 Derived quantities

For our purposes, the quantities of interest that can be derived directly from the drift and diffusion
functions are the stationary density, stability landscape, multistability, and exit time.
The stationary density tells us how likely we are to find the system in a given state. Given the
drift and diffusion (1), it is possible to derive the stationary distribution via (Iacus and Yoshida,
2018)

π(x) ∝ 1
g(x)exp

{
2

∫ x

x0

f(y)
g(y) dy

}
, (7)

where x0 is any point in the state space of x and the constant of proportionality is the normal-
isation factor. The effective potential equivalently summarises the stationary state and is given
by:

Ueff(x) = −log π(x). (8)

The stability landscape is related to the drift via the transformation (Iacus, 2010):

U(x) = −
∫ x

x0
f(y)dy (9)

and reflects the underlying stability of the system.
The multistability posterior reflects the model’s confidence in the number of stable states under-
pinning the dynamics (Fig. 3d,j and Fig. 4c,d). The minimum number of stable states is one,
and the posterior probabilities of the number states supported by the model sum to 100 %. When
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calculating this quantity, we looked at the roots of the posterior drift draws with positive slopes
(tipping points) and negative slopes (stable points). In order to obtain a stationary solution, we
required that the number of stable equilibria be one more than the number of tipping points in
the system. Any draws that did not meet this requirement were excluded from the calculation
since classifying their stability would be ambiguous. For each of the remaining draws, we could
calculate the posterior of the multistability of the system by counting the number of roots with
a negative slope.
Finally, the mean exit time can be determined by solving the second order ordinary differential
equation:

f(x)∂T (x)
∂x

+ g(x)
2

∂2T (x)
∂x2 = −1, (10)

where T (x) is the exit time (Arani et al., 2021). In order to solve (10), we need to impose three
boundary conditions: the slope must tend to zero as the state variable approaches ±∞ and the
exit time must be zero at the tipping point. We achieved this using a custom finite difference
method to numerically approximate the solution.

2.7 Exit time uncertainty estimation

After running the model and obtaining posteriors for the drift and diffusion functions, we can
calculate the exit time posterior by computing (10) over each of the posterior draws. The resulting
exit time posterior draws can have vastly different tipping point locations which makes it hard to
visualise. In order to quantify the uncertainty, we pruned the posterior draws to retain only those
draws that had the same tipping point (up to the discretisation step) as the posterior means of
the drift and diffusion. Then, starting from the draws with the smallest exit time values and
working up, we calculate the lower 60% and 40% credible intervals. In this way, we avoid the
draws with extremely large values which would be captured with standard credible intervals and
we obtain good lower bound estimates on the exit time for a given tipping point.

2.8 Simulation model

The model was tested on the well-studied stochastic process called the cusp catastrophe model.
All of its dynamical properties such as its drift, diffusion, stationary density, and so on have
analytical forms for comparison (Iacus, 2010). Not only do we know the ground truth, but the
model allowed us to test a wide range of drift topologies including those that lead to unistable,
bistable, and skewed stationary densities. Those that we expect to find in real data are not limited
to any specific case. In particular, it is a stochastic process of the form

dx(t) = r(α + β(x(t) − λ) − (x(t) − λ)3)dt +
√

ϵdW (t), (11)

where α, β, λ ∈ R, and r, ϵ > 0 are the free cusp parameters.
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Short time series are generated by drawing a starting value from the stationary density of the
cusp model which is analytically known using inverse transform sampling. We then evolve the
system using equation 11 and the Euler-Maruyama approximation scheme with time steps of 0.01
in order to obtain a convergent simulation. These high resolution time series are then subsetted
to the desired time step that is larger than the 0.01 resolution. This process was repeated for
each short time series.
For the bimodal, unistable case, we used custom drift and diffusion functions and evolved them
according to the Euler-Maruyama scheme, sampling the starting points from the approximate
stationary density in the same fashion as before. We chose the drift and diffusion as:

f(x) =

exp(−0.08x) − 0.95 x ≤ 0
−0.5x2 + 0.05 x > 0

and g(x) = 0.844 · exp[−(2x − 0.6)2]. (12)

2.9 Short time series

In order to demonstrate the efficacy of short time series in covering the state space of a system,
we simulated 50 independent short and long time series from the cusp model (above), each with
the same total simulation time of 250. Applying an expanding window approach to these time
series starting from a total simulation time of 1 and increasing by increments of 1, we calculated
the Kullback-Leibler divergence between the ground truth stationary density of the system and the
density approximated from the data histograms. We then normalised the results and subtracted
them from 1 to obtain our agreement measure (Fig. 1e, Video V1). In general, the histograms
generated from the short time series converged much more rapidly than those of the long time
series. In multistable systems, sampling times must be on the order of the characteristic time
scale of the system (see above, characteristic time scale) to observe the alternative stable states
of the system in continuous time series. Independently sampled short time series, on the other
hand, are likely to sample all stable states on any timescale.

2.10 Gut microbiota profiling

We retrieved a targeted subset of previously collected human gut microbiota profiling data from
the HITChip Atlas database maintained at the Wageningen University and Research Center (Ku-
maraswamy et al., 2024; Lahti et al., 2014). In summary, DNA from faecal samples was extracted
via the repeated bead beating (RBB) method and hybridised on the short oligos on the HITChip
microarray (Rajilić-Stojanović et al., 2009), which has been designed to quantify the relative
abundance of 130 genus-level groups that collectively capture the majority of the human gut
microbiota variation. This array-based profiling technique provides an alternative to the current
sequencing-based profiling techniques with high reproducibility (Rajilić-Stojanović et al., 2009).
To work with compositional data, we applied the standard centred log-ratio transformation (CLR)
(Gloor et al., 2017). We excluded individuals with reported health issues, severe obesity, antibi-
otic use, and interventions, obtaining data from altogether 128 adults who had data from two or
more time points. For the drift-diffusion model (Methods), we additionally excluded time steps
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of more than 45 days, leaving 39 subjects for dynamical analysis (Fig. 4a,b); this corresponds to
a time step of 0.02 · tc (Fig. 3f, see "Characteristic time scale" above). We analysed the 63 most
prevalent genus-level groups showing at least 20% prevalence.

3 RESULTS

FIGURE 2 Disentangling modality and stability. (a,d) Usual cases where the bimodality of the data histogram
coincides with the bistability of the underlying process: (a) the unistable landscape gives rise to a unimodal
histogram and (d) the bistable landscape to a bimodal one. This is the case as long as the diffusion function
(green curves) is relatively constant. (b,c) This congruency breaks in the presence of more complicated diffusion
functions: with the illustrated diffusion functions, (b) the bistable potential gives rise to a unimodal histogram
and (c) the unistable potential to a bimodal one.

3.1 Stability and modality

Multistability in ecological systems can arise for instance from interactions between community
members (Gonze et al., 2017) or ecological memory (Khalighi et al., 2022). Whereas identifying
multistability is important for the prediction and manipulation of ecological systems, this has
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proven to be challenging in practice. Multistable systems spend most of the time fluctuating
around their stable points: this is reflected in the density of observations, which tend to be
clustered around stable points. Accordingly, the “effective potential" obtained from the stationary
distribution of observations is often used as an approximation for the stability landscape. For
instance, the so-called “potential analysis" considers bimodal stationary density as diagnostic for
bistable dynamics (Livina et al., 2010). More generally, multimodality in the stationary density has
frequently been treated interchangeably with multistability in the ecological literature (Dakos and
Kéfi, 2022; Lahti et al., 2014; Livina et al., 2010). However, this assumption can be misleading
as, in general, the distribution of observations does not carry enough information to identify
multistability. The deterministic and stochastic components of the dynamics may indeed interact
to yield non-trivial stationary densities (Fig. 2).
The modes of the observed data can be used to infer stability when the diffusion is approxi-
mately constant, that is, when the intensity of fluctuations does not depend on the system state
(Fig. 2a,d). However, when stochastic fluctuations are wider close to the stable state than
away from it, a unistable system may generate bimodal observations (Fig. 2c). We term this
scenario diffusion-driven bimodality, in contrast to the more classic drift-driven bimodality (Fig.
S1). Diffusion-driven bimodality may be expected in ecological systems if, for instance, growth
rates and competition increase around the system equilibrium, thus accelerating the dynamics.
Increasing fluctuation intensity close to the stable states may similarly conceal a bistable dynamics
behind unimodal observations (Fig. 2b).
Hence, the influence of stochasticity cannot be reliably detected by merely examining the static
observation frequencies. Access to time series makes it possible to disentangle the stochastic
and deterministic components in more general scenarios. Our approach is flexible enough to
accommodate many different forms of drift and diffusion, including the skewed and multistable
stability landscapes characteristic of microbial communities (Lahti et al., 2014). Although the role
of stochasticity on the shape of stationary densities has been widely ignored until recently (Dakos
and Kéfi, 2022), the importance of distinguishing between modality and stability in complex
systems is being increasingly recognised in the literature (Arani, Carpenter, and van Nes, 2024;
Arani, van Nes, et al., 2024; M. S. Arani et al., 2024). We emphasise here non-constant diffusion
as a key driver for the incongruency between stability and modality, but this phenomenon could
also be attributed to other dynamical properties, such as non-normality or the presence of memory
in the distribution of stochastic fluctuations (M. S. Arani et al., 2024). Our approach could
possibly be extended to account for these additional factors.
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FIGURE 3 Inferring system dynamics and multistability. (a,g) Short time series (5 points each) simulated from
(a) a bistable stochastic process (cusp model), and (g) a unistable process. The known tipping point of the
bistable process is represented by a dashed orange line. (b,h) Histograms of the short time series in (a,g).
(c,e,i,k) posterior estimates for the (c,i) drift and (e,k) diffusion functions, including the 50% (indigo and red,
respectively) and 95% (cyan and salmon, respectively) credible intervals, and the ground truths (dashed black
lines). Black and white points on the posterior mean of the drift function indicate stable modes and the tipping
point, respectively. The posterior distribution of the tipping point - the tipping region - is summarized by its
mean and 95% credible interval in the upper margin of (c). (d,j) Posterior probability of the number of stable
states. (f,l) Each cell represents the true positive rate of detecting the stability of the underlying process in 100
independent simulations of 2-point time series, varying the number of time series (i.e., half the number of points)
and the sampling time step defined as a fraction of the time scale tc of the process. Multistability inference is
most accurate for intermediate sampling time steps, and generally improves with larger sample size.

3.2 Model assessment

We analysed model performance based on the well-established cusp simulation model (Zeeman
and Barrett, 1979), which is capable of generating a variety of uni- and bistable dynamics via a
third-order polynomial drift and constant diffusion (Fig. 3a-f). We also generated bimodal but
unistable dynamics with non-constant diffusion using a custom stochastic differential equation
(Fig. 3g-l, equation 12 in Methods). In both cases, we simulated short time series and then
reconstructed the drift and diffusion functions using our modelling approach. The true drift
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function and tipping and stable point locations retrieved by our model fell nearly entirely within
the 95% posterior credible intervals (Fig. 3c,i). The diffusion generally followed the ground truth
but exhibited larger deviations (Fig. 3e,k). More specifically, the diffusion follows the trend already
reported in Arani et al. 2021 (Arani et al., 2021): drift-diffusion models tend to underestimate the
diffusion in the vicinity of stable points and overestimate it near the tipping point. A low level of
fluctuations around stable points can be described either by a strong deterministic component or a
weak stochastic one, and distinguishing between these is challenging from sparse data. Similarly,
around the tipping point, a high level of fluctuations may be either attributed to a weak drift or
a strong diffusion.
The two key factors affecting the performance of the model are the number of short time series
and their density, quantified by the time step between two consecutive points (Fig. 3f, l). In
general, more and denser time series improved inference. Indeed, shorter time steps are in better
agreement with our discretisation approximation (see equation 2 in Methods). Nevertheless,
inference accuracy dropped again for time steps that were too short to sample the state space
efficiently, given the small number of time points per time series we consider (here, only two).
We expressed the time step between two points as a fraction of the characteristic time scale of
the dynamics tc (see Methods). We found that bistability can be detected with 72% to 89%
reliability (proportion of true positive across 100 independent simulations) with as few as 50 time
series with two points each for constant simulated diffusion, provided that the time step is on the
order of 0.1tc or 0.01tc (Fig. 3f). Bistability inference is therefore robust to sparse data using
our approach. Furthermore, if the time step is in the favourable range of about 0.01tc and there
are at least 100 short time series, the drift and diffusion estimates are sufficiently accurate to
permit the reliable inference of secondary quantities such as stationary densities and stable state
resilience, as we describe in the next sections. Finally, inference of unistability is generally robust
from short and sparse time series even when the data exhibit bimodal observation densities (Fig.
3l).

3.3 Lake Mendota data

To illustrate our approach, we re-analysed the phycocyanin level time series data from Lake Men-
dota (Wisconsin, USA), a one-year dense time series of measurements made every few minutes
over the year 2011 (Carpenter et al., 2020). Phycocyanin level is a proxy for Cyanobacteria
abundance and used as a descriptor of the ecological state of the lake. Arani et al. (2021) (Arani
et al., 2021) estimated the drift and diffusion for this data set using a non-parametric model,
where they calculated the moments of the stochastic differential equation given in equation 1 (see
Methods, probabilistic model) using a single time series consisting of 6 × 104 equally-spaced data
points (dt ≈ 2.5 mins). In order to compare our approach to theirs, we selected 10 short time
series (equally-spaced with dt = 12 days between time series, thus avoiding the non-Markovianity
issues raised in Arani et al.) of five equally-spaced time points each (dt = 10 mins between
adjacent points). We then showed that the same dynamics can be reconstructed based on these
50 observations extracted from the same data, that is, using three orders of magnitude fewer
data points (Fig. S2a,b).
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FIGURE 4 Reanalysis of human gut microbiota stability. (a,b) 39 short and dense time series of the abundance
of (a) Prevotella melaninogenica et rel. and (b) Dialister (each collected from a different subject, with 2-6 time
points) on which we ran our model, subsetted from the 128 original time series shown in (e) as described in
Methods. The empirical histograms are shown in the upper plots, and the range of abundance variation for each
subject in the lower plots. In (a), the black horizontal bar summarizes the posterior distribution of the tipping point
location identified by the model (most probable location with 50% and 95% credible intervals). (c,d) Posterior
probabilities for the number of stable states. (e) Ordination representing the overall community similarity (PCoA,
Bray-Curtis index) between 358 human gut microbiota samples from 128 time series, including the subset of 39
dense time series shown in (a,b). Dark and light blue points indicate the high and low abundance stable states
of Prevotella melaninogenica et rel. identified by our model, respectively. The arrows represent the paths of
individual subjects through time. Pink lines indicate transitions across the tipping point identified by our model.

3.4 Tipping elements

Recent population studies characterised the community landscape of cross-sectional variation
in gut microbiota composition between individuals (Costea et al., 2018). Characterising the
stability landscape has been more challenging due to the scarcity of population-level time series
data and suitable methods applicable to limited time series. Our model is addressing this gap.
We have previously reported evidence for the bistability of certain sub-communities of the human
gut microbiota, the so-called tipping elements (Lahti et al., 2014). This analysis was based on
taxonomic profiling of 1,006 western adults, of which 78 had multiple time points (Lahti et al.,
2014). We extended this by retrieving additional data for altogether 128 adults with short time
series of 2-6 time points each (see Methods (Kumaraswamy et al., 2024; Lahti et al., 2014)).
In order to respect the Euler-Maruyama approximation used in our approach, we included in the
final model only those 39 time series that had sufficiently small time steps (lower than 0.02tc,
Fig. 4a,b, Methods).
Our drift-diffusion model identified bistability in 5 genus-level groups (out of the 63 groups with
highest prevalence; see Methods): Bifidobacterium, Eubacterium biforme, Prevotella oralis et
rel., Prevotella melaninogenica et rel., and Uncultured Mollicutes (Fig. 4a,c and Fig. S3). The
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two stable states of Prevotella melaninogenica appear to be strong ecosystem-level drivers as
their positions are clearly visible in the landscape of community-level variation across individuals
(first two PCoA axes, Fig. 4e). The previously reported tipping elements Bacteroides fragilis
et rel., Dialister, and Uncultured Clostridiales were deemed unistable by our model, despite
bimodal abundances and in contrast to the evidence for bistability originally reported using a
cruder approach on a subset of the same data (Lahti et al., 2014) (Fig. 4b,d and Fig. S4).
Moreover, our probabilistic model quantifies uncertainty, which is essential in natural systems
where stochasticity and measurement errors make it virtually impossible to determine the number
of stable points with full confidence, or determine exact tipping point locations. In such cases,
these uncertainties should be presented as an integral part of the results. In particular, the tipping
region, the interval with an elevated probability for state shifts, may be more useful to report
than a tipping point.

FIGURE 5 Predicted exit time. (a) Exit times predicted as a function of abundance, calculated from the simulated
short time series shown in Fig. 3a. The dashed black line represents the known ground truth. (b) Exit times
predicted for the Prevotella melaninogenica et rel. data of Fig. 4a. In (a) and (b), the posterior distributions are
computed conditionally on the the location of the tipping point, and are represented by their mean (dark purple
line) and their 40% and 60% lower credible intervals (dark and light purple regions, which are bounded by the
posterior draw with the smallest exit time value).

3.5 Resilience and exit times

Resilience quantifies the system’s tendency to remain in its current state in the face of pertur-
bations (Nolting and Abbott, 2016). Recently, Arani et al. (2021) (Arani et al., 2021) proposed
the expected exit time as a new measure of resilience under continuous stochastic perturbations.
This metric quantifies how long the system is expected to remain in its current stable state given
its observed fluctuation regime (Scheffer et al., 2015). Conveniently, the exit time can be di-
rectly derived from the inferred drift and diffusion functions (Scheffer et al., 2015). The explicit
incorporation of stochastic variation sets this measure apart from other measures of resilience.
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However, the original formulation relied on long and dense time series and the exit time itself is
sensitive to small differences in the drift, diffusion, and tipping point estimates. Here, we pro-
vide a probabilistic estimate of exit time, which accounts for the uncertainty arising from limited
observations (see Methods). Our approach could reliably estimate the exit time as a function of
system state from the same simulated short time series as in Fig. 3a (Fig. 5a). Furthermore, the
estimated exit times for the bistable Prevotella melaninogenica et rel. are in line with the time
scales observed in the data (Fig. 5b, Fig. S5). However, the calculation of the exit time and its
uncertainty are sensitive to the ratio between drift and diffusion and to the tipping point location.
When the diffusion is low compared to the drift, the dynamics become strongly deterministic and
the exit time may rise dramatically as a result. One avenue for future development is to bound
the exit time by better incorporating it into the Bayesian model through a prior distribution that
would limit the space of possible functions. Designing such a prior using Gaussian Processes is
not trivial, however, as it needs to verify three boundary conditions imposed by the definition of
the exit time (Lange-Hegermann, 2021) (see Methods).

4 DISCUSSION

Observed population frequencies have been commonly used to characterise alternative states in
ecological communities and other complex systems (Costea et al., 2018; Livina et al., 2010).
Recent studies used this approach, for instance, to identify bistability in human gut microbiota
(Lahti et al., 2014) and climatology (Livina et al., 2010) in the absence of time series data.
Despite the recent popularity of this approach, analyses based on times series can provide a
more trustworthy and complete view of the stability landscape, indicating how, depending on the
community state, the community fluctuates around the stable state or tends to drift towards more
stable configurations of community composition. However, quantifying the stability landscape
with scarce time series data remains challenging in many real applications.
We introduced a flexible method for reconstructing the stability landscape from limited obser-
vations. Our model quantifies changes in the drift and diffusion along the landscape, which
permits the description of essential dynamical properties. Validation with real and simulated
data demonstrate that the model can reliably locate stable equilibria and tipping regions, detect
multistability using three orders of magnitude fewer points than other recent approaches (Arani
et al., 2021), and estimate exit times. Related versatile models have been used to model thermal
fluctuations in small particles in fluids (Atzberger, 2011), consumer behaviour (Krajbich et al.,
2012), stocks (Braumann, 2019), and decision outcomes in neuroscience (Feltgen and Daunizeau,
2021). Whereas Gaussian Process regularisation has been leveraged to model financial and cli-
matic data (e.g. (Garcia et al., 2017)), to our knowledge such models have not been developed
yet in microbial ecology.
While our work demonstrates the utility of the probabilistic approach and joint analysis of multiple
time series, one of the key limitations is the assumption that all observed short time series follow
similar underlying dynamics; this limiting assumption could be relaxed by hierarchical extensions
that incorporate individual deviations. Moreover, our model assumes that the overall dynamics
does not change over time. Thus, changes in the stability landscape (Van Nes et al., 2016)
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or higher-order effects such as ecological memory (Khalighi et al., 2022) might set additional
challenges. Time-varying models, or models where the landscape shape is governed by a covariate,
could be a way forward. However, their added computational complexity is a key limitation for
Gaussian Processes in large datasets with many time points. Finally, our results show that the
inference of derived quantities such as the exit time may be particularly sensitive in regions of the
state space where data is scarce.
This work addresses a timely challenge in areas such as human microbiota research, where long
and dense time series are not commonly available and the system presents a mixture of overlapping
and often poorly described processes. It also provides new insights into the modelling of complex
ecosystem dynamics. In particular, the probabilistic approach extends the point-wise concepts of
stable and tipping points to broader stable and tipping regions. This can naturally accommodate
the uncertainty and fluctuations that are characteristic of many real systems (Arani et al., 2021).
Our non-parametric approach does not require information on the underlying mechanisms, and is
as such potentially applicable to a broad range of complex systems beyond ecological applications.
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Figure S1 An alternative representation of the distinction between modality and stability. The drift function
quantifies the stability landscape but diffusion plays a key role in the type of data we observe. (a) Unistable
drift with approximately constant diffusion can generate unimodal stationary densities. (b) Unistable drift and
non-constant diffusion can generate “diffusion-driven" bimodal stationary densities. (c) Bistable drift with highly
variable diffusion can generate unimodal stationary densities. (d) Bistable drift, combined with approximately
constant diffusion generates “drift-driven" bimodal stationary densities.
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Figure S2 Re-analysis of Lake Mendota data with fewer time points. (a) A recent study on Lake Mendota (Arani
et al., 2021) used 60,000 equally spaced time points (left). We selected a small subset of 50 time points evenly
distributed over the data range to simulate collection of short and sparse time series (right); the vertical pink lines
represent these 10 short time series of 5 points. The dashed orange line the tipping point inferred by our model.
(b) With only 50 time points, the drift function result from Arani et el. (2021) (dashed brown line) fell within
the 95% credible interval of our model using three orders of magnitude fewer time points (5×101 compared to
6×104). Shown in the upper margin is the tipping region. (c) Corresponding multistability posterior. Our Bayesian
formulation provides 98% support for bistability in this ecosystem, in line with previous results. This outlines the
model’s ability to accurately identify stability characteristics including the locations of the stable modes with very
few time points. Nevertheless, the stability of the diffusion estimate greatly decreases (not shown).
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Figure S3 Five taxa in the HITChip data set that show evidence of bistability. Each time series (upper row)
consists of 2-6 time points for 39 subjects (total of 127 points). The posterior drift outputs with 50% and 95%
credible intervals enveloping the means, including the stable modes (black points), tipping points (white circle)
(middle row), and tipping regions in the top margins with their own means and 50% and 95% credible intervals
(top whisker plots). Corresponding multistability posteriors (bottom row).
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Figure S4 The six taxa identified as tipping elements in Lahti et al. (2014). Each time series (upper row)
consists of 2-6 time points for 39 subjects (total of 127 points). The posterior drift outputs with 50% and 95%
credible intervals enveloping the means, including the stable modes (black points), tipping points (white circle)
(middle row), and tipping regions in the top margins with their own means and 50% and 95% credible intervals.
Corresponding multistability posteriors (bottom row).
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Figure S5 Transition time scales present in the gut microbiota. The time series from the 128 healthy adult subjects
(2-6 time points each, 358 in total) across all time steps in the HITChip data set for Prevotella melaninogenica
et rel. (upper). A zoomed-in version of Fig. 5b. Grey points represent short time series that started at the given
state value and did not transition within the given time and red points represent those that did. This shows that
the exit time as a function of the abundance is on the same order of magnitude as the transition time scales
obtained from directly from the data
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