
HAL Id: hal-04908634
https://hal.science/hal-04908634v1

Preprint submitted on 23 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Subquadratic Algorithm for Computing the
L1-distance between Two Terrains

Pankaj K. Agarwal, Boris Aronov, Guillaume Moroz

To cite this version:
Pankaj K. Agarwal, Boris Aronov, Guillaume Moroz. A Subquadratic Algorithm for Computing the
L1-distance between Two Terrains. 2025. �hal-04908634�

https://hal.science/hal-04908634v1
https://hal.archives-ouvertes.fr

A Subquadratic Algorithm for Computing the L1-distance
between Two Terrains

Pankaj K. Agarwal1 Boris Aronov2 Guillaume Moroz3

1Department of Computer Science, Duke University, USA
2Department of Computer Science and Engineering, Tandon School of Engineering, New York

University, Brooklyn
3Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

January 23, 2025

Abstract

We study the problem of computing the L1-distance between two piecewise-linear bivariate
functions f and g, defined over a common bounded domain M ⊂ R2, that is, computing the
quantity ∥f − g∥1 =

∫
M|f(x, y)− g(x, y)| dx dy. If f and g are defined by linear interpolation

over triangulations Tf and Tg, respectively, of M with a total of n triangles, we show that
∥f − g∥1 can be computed in Õ(n(ω+1)/2) time, where Θ(nω) is the time required to multiply
two n × n matrices and Õ notation hides polylogarithmic factors; this bound holds for the
currently best known value of ω, which is approximately 2.37. The previously best known
algorithm for computing ∥f − g∥1 takes Θ(n2) time in the worst case.

More generally, if the complexity of the overlay of Tf and Tg is κ, then the runtime of
our algorithm is Õ(κ(ω−1)/2n(3−ω)/2).

1 Introduction

Combining tools from computational geometry and computer algebra has led to new results that
defy intuitive lower bounds. For example, using algebraic tools, it is possible to compute the
centroid of the vertices in an arrangement of n lines in the plane in O(n log2 n) operations, without
computing the Θ(n2) vertices [5]. One notable algebraic tool used for this problem is an algorithm
to evaluate efficiently a univariate polynomial on multiple points [11]. This tool was used to speed
up, among others, the computation of Shapley values in the plane [8]; the location of points among
wireless transmitters [6]; and the computation of the L2-distance between two piecewise-linear
bivariate functions f and g, see below for the definition [13].

Bivariate functions over a planar domain appear naturally in geographical information systems,
under the name of terrains, where they are used to model actual geographic terrains, such as eleva-
tion in a hilly area, and more generally to represent two-dimensional datasets, such as precipitation,
air pollution, population density, or quantities of wine production. One way of approximating such
a function is to triangulate the underlying domain and define a linear function over each triangle,
resulting in a piecewise-linear function, often referred to as a triangulated irregular network. In this
paper, we design an efficient algorithm for computing the L1-distance between two piecewise-linear
function, defined below, by combining tools from computational geometry and computer algebra.

1

Problem statement. Let M be a bounded polygonal region of R2, and let f, g : M → R
be two piecewise-linear functions defined over their common domain M. Each of f, g is associated
with a triangulation of M, denoted by Tf ,Tg, respectively, and f (resp., g) is defined to be linear
over each triangle of Tf (resp., Tg). Let n be the total number of vertices in the two triangulations.
For any integer p > 0, we define the Lp-distance between f and g to be

∥f − g∥p =
(∫

M
|f − g| dx dy

)1/p

. (1)

The goal in this paper is to compute ∥f − g∥1.
We will work in the Real RAM model [15], where inputs and intermediate values are real

numbers and algebraic operations and comparisons can be performed in constant time, but modulus
or rounding to integers operations are not allowed. We assume that the coefficients of the piecewise
linear functions f and g and the coordinates of the triangles in Tf and Tg are real numbers.

Related work. Piecewise-linear functions and triangulated irregular networks are common
objects in computational geometry and geometric information systems, and the problem of com-
paring two terrains defined over the same domain has been addressed in previous work [2, 13]. One
focus of that work was on identifying a linear dependence between two functions or terrains. Agar-
wal et al. [2] studied the problem of computing the minimal distance σp(f, g) = mins,t∥sf + t−g∥p
for p = 1,∞. They showed that σ∞(f, g) can be computed in Õ(n4/3) time (as stated in the
abstract, Õ notation hides polylogarithmic factors), and that an (1 + ε)-approximation of σ1(f, g)
can be computed in O(n/ε) time if Tf and Tg are identical. However if Tf and Tg are different,
the runtime of their algorithm is O(κ/ε), where κ is the complexity of the overlay of the two
triangulations; κ = Θ(n2) in the worst case.

Moroz and Aronov [13] showed that even for unaligned triangulations, ∥f−g∥2 and σ2(f, g) can
be computed in O(n log4 n log log n) time. This bound also applies to computing the L2p-distance,
where p is a constant positive integer. Unfortunately, these approaches do not extend to computing
σ1(f, g) or ∥f − g∥1 in subquadratic time in the general case. One notable obstacle is that the
L1-distance involves the absolute value function, which is not algebraic.

One key algebraic tool used in [13] to speed up the computation of ∥f −g∥2 is the evaluation of
a univariate polynomial of degree n on n points in Õ(n) operations. In the Real RAM model, such
fast univariate multipoint evaluation algorithms have been known since 1972 [11]. For bivariate
polynomials, it is only more recently, in 2004, that subquadratic bounds were found for their
evaluation on multiple points [14]. The problem of bounding the number of operations to evaluate
a multivariate polynomial on multiple points is still an active area of research, with recent results
improving the best known bounds [16].

Our results. The main result of the paper is a subquadratic algorithm for computing ∥f−g∥1.
Its runtime depends on ω, the standard matrix multiplication constant, which is known to be less
than 2.371552 [17] and conjectured by some to be 2. The bound in the following theorem holds if
(ω + 1)/2 > 8/5.

Theorem 1. Let f and g be two bivariate functions defined by linear interpolation over triangu-
lations Tf and Tg, respectively, over a common (bounded) domain M with a total of n triangles,
then ∥f − g∥1 can be computed in Õ(n(ω+1)/2) time, where Θ(nω) is the time required to multiply
two n × n matrices; currently the best known value of ω is around 2.37. If the complexity of the
overlay of Tf and Tg is κ, then ∥f − g∥1 can be computed in Õ(κ(ω−1)/2n(3−ω)/2) operations.

2

This result is based on three main ideas: we first show that the problem can be reduced
to computing a double sums of rational functions, where the denominators depend only on two
variables of the outer sum (Section 2). Those sums are defined over pairs of geometric objects that
satisfy specific algebraic inequalities. Next, we use geometric cuttings to obtain a sign-invariant
biclique decomposition of those pairs of geometric objects (Section 3). Finally, we extend the fast
multipoint polynomial evaluation (Section 4) to evaluate those sums efficiently.

Very recently, we have become aware of a preprint improving the bound on fast multipoint
polynomial evaluation [16]. This seems to improve the bound of Theorem 1 to O(n8/5+ε) for any
ε > 0. We discuss this (possible) improvement at the end of this paper.

2 Reduction to Multi-point Evaluation

In this section, we first express the desired quantity ∥f − g∥1 as a sum of integrals associated with
vertices of the overlay of Tf and Tg (in Section 2.1) and ultimately as a sum of low-degree rational
expressions of the parameters of f and g (in Section 2.2).

Without loss of generality, we can rotate the (x, y)-coordinate system such that none of the
edges of Tf and Tg is parallel to the vertical line x = 0. Moreover, for two triangles T1 ∈ Tf and
T2 ∈ Tg, let π1 be the plane in R3 supporting the triangle f(T1), and π2 be the plane supporting
the triangle g(T2). If π1 and π2 are not parallel, for clarity of presentation, and with no loss of
generality, we assume that their intersection line crosses the vertical plane x = 0.

2.1 Reduction to overlay vertices

Let Vf ,Ef (resp., Vg,Eg) be the set of vertices and edges of Tf (resp., Tg); Ef and Eg do not include
edges contained in the boundary of M. Let Σ be the overlay of Tf and Tg, a convex subdivision in
R2 that is a refinement of both Tf and Tg. Let V (resp., C) be the set of vertices (resp., bounded
cells) of Σ, and let X ⊆ Ef × Eg be the family of pairs of segments that intersect. Following the
same argument as in [13, Corollary 4], ∥f − g∥1 can expressed as

∥f − g∥1 =
∑
v∈V

∑
τ∈C:∂τ∋v

F (v, τ, hτ), (2)

where the function F (v, τ, hτ) is defined as follows. Let e1, e2 be the two edges of τ incident on v,
let ℓi be the line supporting ei for i = 1, 2, and let fτ (resp. gτ) be the linear function of f (resp.
g) over τ . By our assumption, v lies to the right of the y-axis. Let △(v) be the triangle defined by
the y-axis and the lines ℓ1, ℓ2 (lying to the right of the y-axis), let hτ (x, y) = |fτ (x, y)− gτ (x, y)|,
let δ(v, τ) ∈ {−1,+1} be −1 if τ lies above or below both ℓ1 and ℓ2, and +1 if it lies between
them. See Figure 1. Then

F (v, τ, hτ) = δ(v, τ)

∫
△(v)

hτ (x, y)dxdy. (3)

A vertex in Σ is either an original vertex of a Tf or Tg or an intersection point of an edge of Tf

with an edge of Tg. We can rewrite (2) as:

∥f − g∥1 =
∑

v∈Vf∪Vg

∑
τ∈C:∂τ∋v

F (v, τ, hτ) +
∑

(e1,e2)∈X

∑
τ∈C:∂τ∋e1∩e2

F (e1 ∩ e2, τ, hτ), (4)

3

v

τ

ℓ1

ℓ2

△(v)

Figure 1: A typical triangle △(v) associated with vertex v = ℓ1 ∩ ℓ2 in h0 (adapted from [13])

By preprocessing Tf and Tg for planar point-location queries, the cells of C incident on the vertices
of Vf ∪ Vg can be computed in a total time of O(n log n), and thus the first term in (4) can be
computed in O(n log n) time; see [13] for details. We thus focus on computing the second term,
which we denote by Φ(Ef ,Eg).

For an intersecting pair of edges (e1, e2) ∈ X, the vertex e1 ∩ e2 ∈ V is incident on four cells of
Σ, and thus it contributes to four terms in Φ(Ef ,Eg). Each of these terms has the following form:
Let f11, f12 (resp. g21, g22) be the linear functions of f (resp. g) over the triangles lying above and
below e1 (resp. e2) respectively. For i, j ∈ {1, 2}, define hij(x, y) = |f1i(x, y)− g2j(x, y)|, 1(i = j)
to be 1 if i = j and 0 otherwise, and

Fij(e1, e2) = (−1)1(i=j)

∫
△(e1∩e2)

hij(x, y)dxdy;

in words, Fij(e1, e2) is the signed volume between the graphs of f1i and g2j over △(e1 ∩ e2). Using
these definitions, for a pair (e1, e2) ∈ X, we can write∑

τ∈C:∂τ∋e1∩e2

F (e1 ∩ e2, τ, hτ) =
∑

i,j∈{1,2}

Fij(e1, e2) (5)

and thus
Φ(Ef ,Eg) =

∑
i,j∈{1,2}

∑
(e1,e2)∈X

Fij(e1, e2). (6)

In the next subsection we show that each Fij can be written as the sum of at most five rational
functions of constant degree each.

2.2 Reduction to a sum of rational expressions

We now reexamine the integrals that appear in the previous section and express them as sums of
low-degree rational functions, with appropriate signs. We first focus on a single function Fij(e1, e2).

Let h0 be the halfplane defined by z = 0 and x ≥ 0. Let f(x, y) = a1x + b1y + c1 and
g(x, y) = a2x+b2y+c2 be two linear functions in x, y. By abuse of notation, we let e1(x) = α1x+y1
and e2(x) = α2x + y2 be the two linear functions in x extending the edges e1 and e2. Let h1 and

4

e1

h↓
1

h↓
2

e2

A

B

C

T

h0

Figure 2: A typical triangle T = △ABC in h0

h2 be the two halfplanes in R3 defined by z = f(x, y), y ≤ e1(x) and z = g(x, y), y ≥ e2(x)
respectively. Below we consider such pairs (h1, h2) that the intersection of the projections h↓

1 of h1

and h↓
2 of h2 to h0 is the triangle T = △ABC defined as the set of points (x, y) with x ≥ 0 and

e2(x) ≤ y ≤ e1(x); refer to Figure 2.
The goal of this section is to prove that the volume between h1 and h2 over T is a sum of rational

expression in the parameters of h1 and h2, whose exact form depends on the sign variables δA, δB, δC
(i.e., values ±1), indicating whether h1 is above (+1) or below (−1) h2 at the corresponding vertex
of T .

More precisely, the halfplane h1 is contained in the plane π1 defined by z = f(x, y) and bounded
by the edge e↑1, while h2 is contained in π2 defined by z = g(x, y) and bounded by e↑2 such that:

h1

∣∣∣∣∣∣∣∣
π1 : z = a1x+ b1y + c1

e↑1 :

 t
y1 + α1t
z1 + β1t

 h2

∣∣∣∣∣∣∣∣
π2 : z = a2x+ b2y + c2

e↑2 :

 t
y2 + α2t
z2 + β2t

 (7)

Moreover, since e↑1 ⊂ π1 and e↑2 ⊂ π2, the following relations hold:{
z1 = b1y1 + c1

β1 = a1 + b1α1

{
z2 = b2y2 + c2

β2 = a2 + b2α2

(8)

After the same preprocessing as in [13], we can assume that y1 > y2, α1 < α2, so that the
projection of the edges intersect at x = y1−y2

α2−α1
> 0. Thus, on the xy-plane, the triangle T has three

vertices A,B,C:

A

∣∣∣∣ 0
y1

B

∣∣∣∣ 0
y2

C

∣∣∣∣ y1−y2
α2−α1

α2y1−α1y2
α2−α1

(9)

2.2.1 Explicit sign conditions

The explicit rational expressions for
∫
T
|f − g| will depend on the value of of δA, δB, δC , namely the

sign of the difference g − f above A, B, and C respectively. Combining eqs. (7), (8), and (9) and

5

using the assumption α2 > α1, we can explicitly expand the formula for δA, δB, and δC :

δA = sign(b2y1 + c2 − z1)

δB = sign(z2 − b1y2 − c1)

δC = sign

(
(z2 − z1)(α2 − α1) + (β2 − β1)(y1 − y2)

α2 − α1

)
(10)

= sign ((z2 − z1)(α2 − α1) + (β2 − β1)(y1 − y2))

= sign (γ2 − γ1 + β2y1 − z1α2 + β1y2 − z2α1)

where γi = ziαi − βiyi, and sign(x) = +1 if x ≥ 0 and −1 otherwise. Note that, after the
introduction of γi, the formula for δA, δB, δC are the signs of three bilinear expressions in the five
parameters αi, βi, yi, zi, γi describing each of the two halfplanes.

2.2.2 Explicit rational expressions

The volume
∫
T
|f − g| will be written as a weighted sum of three rational expressions. For that, we

introduce the intersection point D of the line e↑1 with the plane π2, the intersection point E of e↑2
and π1, and the intersection point F of the line DE with the vertical plane x = 0. These points
exist due to our general position assumptions, as soon as δA, δB and δC don’t all have the same
sign.

Let D↓, E↓, and F ↓ be projections of D, E, and F respectively to h0. Finally, the points
A1, B1, C1 are the points above A,B,C respectively, with z-coordinates f(xA, yA), f(xB, yB) and
f(xC , yC), and the points A2, B2, C2 are the points above A,B,C respectively, with z-coordinates
g(xA, yA), g(xB, yB) and g(xC , yC). Figures 3 and 4 illustrate those notations in different cases.

We will express the volume between h1 and h2 over T as a weighted sum of volumes of polytopes
spawned by C, D, and E respectively, toward the vertical plane x = 0. The following expressions
represent the signed volumes of the polytopes between the planes π1 and π2, above the triangles
T = △ABC, △AD↓F ↓, and △BE↓F ↓ respectively. More precisely, letting RC =

∫
T
(g − f),

RD =
∫
△AD↓F ↓(g − f) and RE =

∫
△BE↓F ↓(g − f), we have:

RC =
1

6
xC(yA − yB)

∑
X∈{A,B,C}

(g(xX , yX)− f(xX , yX)),

RD =
1

6
xD(yF − yA)(g(xA, yA)− f(xA, yA)), and (11)

RE =
1

6
xE(yF − yB)(g(xB, yB)− f(xB, yB)).

We now proceed to express RC , RD, and RE as fractions in the parameters of h1 and h2. In par-
ticular, we will show that the denominator of each fraction depends only on either two parameters
of h1, or two parameters of h2.

6

Rational representation of RC Using the formula for the signed volume RC in eq. (11), we
expand the evaluation of f and g at A,B,C to obtain

RC =
1

6
(y1 − y2)

y1 − y2
α2 − α1

(〈(
a1 − a2
b1 − b2

)
, A+B + C

〉
+ 3(c1 − c2)

)

=

(y1 − y2)
2

[
(α2 − α1)

[
(b1 − b2)(y1 + y2) + 3(c1 − c2)

]
+ (a1 − a2)(y1 − y2) + (b1 − b2)(α2y1 − α1y2)

]
6 (α1 − α2)

2 , (12)

so that RC is a rational expression with denominator (α2 − α1)
2.

Rational representation of RD and RE For quantities RD and RE, we need to compute the
coordinates of D, E, and F . Using eq. (7), the abscissa tD of D satisfies z1+β1tD = a2tD + b2y1+
b2α1tD + c2. A similar relation for the abscissa tE of E leads to

tD =
z1 − b2y1 − c2
b2α1 + a2 − β1

tE =
z2 − b1y2 − c1
b1α2 + a1 − β2

=
(b1 − b2)y1 + c1 − c2
(b2 − b1)α1 + a2 − a1

=
(b1 − b2)y2 + c1 − c2
(b2 − b1)α2 + a2 − a1

Moreover, F is at the intersection of h1, h2, and the vertical plane x = 0. In particular, its
coordinates are the solution of x = 0, z = b1y + c1 = b2y + c2, so we have

D

∣∣∣∣∣∣
tD

y1 + α1tD
z1 + β1tD

E

∣∣∣∣∣∣
tE

y2 + α2tE
z2 + β2tE

F

∣∣∣∣∣∣
0

c2−c1
b1−b2

b1c2−b2c1
b1−b2

(13)

Also, the points A1, A2, B1, B2 have coordinates

A1

∣∣∣∣∣∣
0
y1

b1y1 + c1

A2

∣∣∣∣∣∣
0
y1

b2y1 + c2

B1

∣∣∣∣∣∣
0
y2

b1y2 + c1

B2

∣∣∣∣∣∣
0
y2

b2y2 + c2

(14)

Finally, replacing the coordinates in eq. (11), this leads to:

RD =
1

6

(b1 − b2)y1 + c1 − c2
(b2 − b1)α1 + a2 − a1

(
c2 − c1
b1 − b2

− y1

)
(b2y1 + c2 − b1y1 − c1)

=
1

6

((b1 − b2)y1 + c1 − c2)
3

(b2 − b1)α1 + a2 − a1
(15)

and

RE =
1

6

(b1 − b2)y2 + c1 − c2
(b2 − b1)α2 + a2 − a1

(
c2 − c1
b1 − b2

− y2

)
(b2y2 + c2 − b1y2 − c1)

=
1

6

((b1 − b2)y2 + c1 − c2)
3

(b2 − b1)α2 + a2 − a1
. (16)

7

2.2.3 Case distinctions for the volume expression

Our goal is to provide a formula for the volume of the polyhedron between π1 and π2 above the
triangle ABC, as a linear combination of fractions where the denominators depend only on two
variables from the triangulation Tf or on two variables from Tg. This will allow us to use fast
multipoint evaluation algorithms for bivariate polynomials (see Section 4).

We will see that for the different cases of signs of δA, δB, δC , the volume above T can be
expressed as a weighted signed sum of RC , RD, and RE. We consider the cases where the vector
of signs (δA, δB, δC) is (+1,+1,+1), (+1,+1,−1), or (+1,−1,−1). The other cases are deduced
by symmetry.

When δA, δB, δC are positive: the halfplanes don’t meet above the triangle. In this
case, V+++(h1, h2) = RC , a rational expression with denominator (α2 − α1)

2. By symmetry, when
δA, δB, δC are −1, we have V−−−(h1, h2) = −RC .

When δA, δB are positive and δC is negative. Using the notation of Section 2.2.2, the vol-
ume between the planes over T in this case is the sum of the volumes vol(A1A2B2B1DE) and
vol(DEC2C1); refer to Figure 3. With δA, δB positive, and δC negative, the signed volume RC is
equal to vol(A1A2B1DE)− vol(DEC2C1). Thus, the volume V++− can be expressed as

V++−(h1, h2) = 2 vol(A1A2B2B1DE)−RC .

The volume of the polytope A1A2B2B1DE is computed as the difference of volumes of the two
simplices B1B2FE and A1A2FD. When δA and δB are positive, the y-coordinate of the point F
can be either (i) greater than yA, or (ii) less than yB.

In case (i), we have vol(A1A2B2B1DE) = vol(B1B2FE) − vol(A1A2FD). Moreover
vol(A1A2FD) = RD and vol(B1B2FE) = RE, so that vol(A1A2B2B1DE) = RE −RD.

In case (ii), we have vol(A1A2B2B1DE) = vol(A1A2FD) − vol(B1B2FE), vol(A1A2FD) =
−RD, and vol(B1B2FE) = −RE, so that once again vol(A1A2B2B1DE) = RE −RD.

Thus, in both cases, we have vol(A1A2B2B1DE) = RE −RD, and therefore

V++−(h1, h2) = 2RE − 2RD −RC .

Similarly, by symmetry, we have V−−+ = −2RE + 2RD +RC .

When δA is positive and δB, δC are negative. This case is illustrated in Figure 4. Using
the notation of the previous section the volume between the two halfplanes is the sum of volumes
of the polytopes A1A2FD and B1B2C2C1DF . First, with δA positive and δB, δC negative, the
signed volume RC is vol(A1A2FD) − vol(B1B2C2C1DF). Moreover, since δA is positive and δB
is negative, the y-coordinate of F is in the interval [yB, yA] and we have vol(A1A2FD) = −RD.
Thus, the volume V+−− can be expressed as

V+−−(h1, h2) = 2 vol(A1A2FD)−RC = −2RD −RC . (17)

By symmetry, we have V−++ = 2RD+RC . Moreover, the role of D and E are symmetric, and when
δA, δC are negative, and δB is positive, we have similarly V−+− = 2vol(B2B1FE)−RC = 2RE−RC

and V+−+ = −2RE +RC .

8

h0

h2

h1

A

B

C

B1

A2

B2

A1

D

E

F

C1

C2

Figure 3: Case where δC has a sign different from δA and δB

9

h0

h2

h1

A

B

C

B2

B1

A2

A1

F

D

C2

C1

Figure 4: Case where δA has a sign different from δB and δC

10

Gathering all the cases. Depending on the signs δA, δB, and δC , we have different formulas
for the volume between the planes over T . We can gather them all within one expression that is
bilinear in δA, δB, δC on one side, and RA, RB, RC on the other side.

Lemma 2. Assume that v1 = (a1, b1, c1, y1, α1) and v2 = (a2, b2, c2, y2, α2) are vectors of real
numbers such that y1 > y2 and α1 < α2. Let T ⊂ R2 be a triangular cell defined by the set of points
(x, y) such that x ≥ 0, y ≤ y1 + α1x, and y ≥ y2 + α2x. And let f and g be two linear functions
defined by f(x, y) = a1x+b1y+c1 and g(x, y) = a2x+b2y+c2. Then the volume

∫
(x,y)∈T |f−g| dx dy

can be expressed as:∫
(x,y)∈T

|f − g| dx dy = δC(RD −RE +RC)− δARD + δBRE

where δA, δB, δC, defined in eq. (10), depend on at most four entries of v1 and four entries of v2,
and:

RC(v1; v2) =
pC(v1; v2)

qC(α1;α2)
RD(v1; v2) =

pA(v1, v2)

qA(v1; (a2, b2))
RE(v1; v2) =

pB(v1, v2)

qB((a1, b1); v2)

are rational functions of constant degrees defined in eqs. (12), (15) and (16).

Remark. If instead of the assumptions y1 > y2 and α1 < α2, we have the assumptions y2 < y1
and α2 < α1, then the signed volume above the triangle ABC becomes −RC, and δC becomes −δC
since we factored out the sign of α2 −α1 in eq. (10). Without assumption on the order between α1

and α2, letting σ = sign(α2 − α1), the formula for the volume becomes:∫
(x,y)∈T

|f − g| dx dy = δCRC + δCσ(RD −RE)− δARD + δBRE .

Returning to expressing (6) as a sum of rational functions, recall that for j ∈ 1, 2,

Fij(e1, e2) = (−1)1(i=j)

[
δC(e

∗
1, e

∗
2)RC(e

∗
1, e

∗
2)

+ σ(e∗1, e
∗
2)δC(e

∗
1, e

∗
2)(RD(e

∗
1, e

∗
2)−RE(e

∗
1, e

∗
2))

− δA(e
∗
1, e

∗
2)RD(e

∗
1, e

∗
2) + δB(e

∗
1, e

∗
2)RE(e

∗
1, e

∗
2)

]
.

Since there are five terms in the above expression for Fij, eq. (6) can be expressed as follows:

Corollary 3. Let Ef ,Eg be the set of edges in Tf and Tg respectively, and X ⊆ Ef × Eg be the
intersecting pairs of segments. Then

Φ(Ef ,Eg) =
5∑

k=1

∑
i,j∈{1,2}

∑
(e1,e2)∈X

(−1)1(i=j)σijk(e
∗
1i, e

∗
2j) · ξijk(e∗1i, e∗2j) · Fijk(e

∗
1i, e

∗
2j), (18)

where σijk is either σ or the constant function 1, ξijk ∈ {±δA,±δB,±δC}, and Fijk ∈ {RC , RD, RE}.

11

3 Computing a Biclique Partition

Using Corollary 3, Φ(Ef ,Eg) can be computed in O(κ) time, where κ := |X| is the number of
intersecting pairs of edges in Ef × Eg, in a straightforward manner if we have the overlay Σ of Tf

and Tg at our disposal. In this section, we show how to “batch” the evaluations of Φijk, using
biclique partitions of X so that the total time spent is Õ(κ(ω−1)/2n(3−ω)/2). Recall that for an edge
ei ∈ Ef ∪Eg, e

∗
i1 (resp. e

∗
i2) is the point in R5 corresponding to the linear function over the triangle

lying below (resp. above) the line supporting ei. We describe the algorithm for computing

ΦC(Ef ,Eg) =
∑

(e∗1,e
∗
2)∈X

σ(e1, e2)δC(e
∗
11, e

∗
22)RC(e

∗
11, e

∗
22).

The other terms (those invoving RD and RE) can be evaluated in an analogous manner. For
simplicity, we use e∗i to denote e∗i1 (resp. e∗i2) if ei is a segment of Ef (resp. Eg). We compute the
desired biclique partition of X in two stages. The first stage is similar to that described in [13],
but the second stage is more involved and relies on geometric cuttings [9, 3].

First stage. As in Chazelle et al. [10] (see also [13]), we compute, in time O(n log2 n), a
biclique partition B = {(R1, B1), . . . , (Rs, Bs)} of X such that

(i) for every k ≤ s, Rk ⊆ Ef and Bk ⊆ Eg and every segment in Rk intersects every segment in
Bk;

(ii) every segment in Rk has lower slope than that of every segment in Bk, or vice-versa;

(iii) for every intersecting pair (e1, e2) ∈ X, there exists exactly one k ≤ s with e1 ∈ Rk and
e2 ∈ Bk; and

(iv)
∑

k(|Rk|+ |Bk|) = O(n log2 n) and
∑

k|Rk| × |Bk| = κ.

For any 1 ≤ k ≤ s, σ(e∗1, e
∗
2) is the same for all (e1, e2) ∈ Rk × Bk, which we denote by σ(Rk, Bk).

Therefore, we express ΦC(Ef ,Eg) in terms of B as follows:

ΦC(Ef ,Eg) =
s∑

k=1

σ(Rk, Bk)
∑

(e1,e2)∈Rk×Bk

δC(e
∗
1, e

∗
1) ·RC(e

∗
1, e

∗
2). (19)

We fix a biclique (Rk, Bk) ∈ B. Without loss of generality, assume that σ(Rk, Bk) = 1. We describe
how to compute

ΦC(Rk, Bk) =
∑

(e1,e2)∈Rk×Bk

δC(e
∗
1, e

∗
2) ·RC(e

∗
1, e

∗
2).

Second stage. We thus have the following problem at hand. Let R ⊆ Ef and B ⊆ Eg

be two sets of segments in R2 such that every pair of segments in R × B intersects and the
slope of every segment in R is less than that of any segment in B; set m = |R| and n = |B|.
Without loss of generality assume that m ≤ n. We compute a sign-invariant (biclique) partition
Π = {(R1,B1), . . . , (Ru,Bu)} of R × B, as decsribed below, such that for all 1 ≤ k ≤ s, the value
of δC(e

∗
i , e

∗
j) is the same for all pairs (ei, ej) ∈ (Rk,Bk), which we denote by δC(Rk,Bk). Let

Π+ = {(Rk,Bk) | δ(Rk,Bk) = 1} and Π− = Π \ Π+. Then

ΦC(R,B) =
∑

(Rk,Bk)∈Π+

∑
(ei,ej)∈Rk×Bk

RC(e
∗
i , e

∗
j)−

∑
(Rk,Bk)∈Π−

∑
(ei,ej)∈Rk×Bk

RC(e
∗
i , e

∗
j) . (20)

12

We show below in Section 4 how ΦC(Rk,Bk) =
∑

(ei,ej)∈Rk×Bk
ΦC(e

∗
i , e

∗
j) can be computed efficiently.

It thus suffices to describe how we compute Π and to analyze the overall run time.
By eq. (10), δC is the sign function of a bilinear function P (φ,ψ), where φ (resp. ψ) is a

set of five variables representing the parameters yi, zi, αi, βi, γi corresponding to the edges ei of
R (resp. B) used in the definition of δC ; note that four of these parameters are independent and
γi = ziαi − βiyi depends on them. Abusing the notation slightly, we continue to represent an
edge ej ∈ R as a point e∗j in R5 with the new set of parameters. We also map ej to a hyperplane
ẽj in R5, where ẽj : P (e∗j ,ψ) = 0. Similarly, we map an edge ek ∈ B to a point e∗k ∈ R5 and a
hyperplane ẽk : P (φ, e∗k) = 0 in R5. For a subset A of R (or B), we define A∗ = {e∗j | ej ∈ A}
and Ã = {ẽj | ej ∈ A}. Our goal is to compute a partition Π of R × B such that for any pair

(Ri,Bi) ∈ Π, all points of B∗
i lie on the same side of all hyperplanes in R̃i, or equivalently all points

of R∗
i lie on the same side of all hyperplanes in B̃i.
Let H be a set of m hyperplanes in Rd, ∆ be a simplex, and χ be the number of vertices of

the arrangement A(H) of H inside ∆. For a parameter r > 1, a partition of ∆ into a family Ξ of
simplices, referred to as cells, is called a (1/r)-cutting of H within ∆ if every cell of Ξ is crossed
by at most m/r hyperplanes of H. (For r > m, cells of Ξ are not crossed by any hyperplane of H,
i.e., Ξ is a refinement of A(H).) The conflict list of a cell △ ∈ Ξ, denoted by H△, is the subset
of hyperplanes that cross △. It is well known that a (1/r)-cutting of H of size O(rd) along with
the conflict lists of all of its cells can be computed in O(mrd−1) time [9, 12]. For any point set
P ⊂ Rd, one can compute P ∩△ for every △ ∈ Ξ in additional O(|P | log r) time.

In our context, we compute the desired sign-invariant partition Π of R × B using geometric
cuttings in a round-robin manner as in [4, 12]. We choose r to be a sufficiently large constant,
see below. We assume that the input is balanced, i.e., n/2 ≤ m ≤ n. Otherwise (i.e. m < n/2),
we use the standard batching technique—we partition B into ℓ = ⌈n/m⌉ subsets B1, . . . ,Bℓ, each
of size between m and 2m, and compute the desired partition for each pair (R,Bj), 1 ≤ j ≤ ℓ,
independently.

Each round of the algorithm works in two stages. In the first stage, we map R to the set R̃ of
hyperplanes in R5 and compute a (1/r)-cutting Ξ of size O(r5). For each cell △ ∈ Ξ, let R̃△ ⊆ R̃

be the conflict list of △, let R̃+
△ (resp. R̃−

△) be the set of hyperplanes of R̃ that lie above (resp.,

below) △. Let R△,R
+
△,R

−
△ ⊆ R be the sets of segments correspondig to R̃△, R̃

+
△, R̃

−
△, respectively.

Let B∗
△ = B∗ ∩ △ and B△ = {ej | e∗j ∈ B∗

△}. Set m△ = |R△| and n△ = |B△|. If n△ ≥ n/r5 for
any cell △, we partition △ further into subcells each of which contains at most n/r5 points of B∗.
The number of cells even after this refinement is at most c0r

5 for some constant c0 > 0. For every
cell △ ∈ Ξi, we add (R+

△,B△) and (R−
△,B△) as bicliques to the partition Π. This completes the

description of the first stage. which takes O(mr4 + n log r) = O(n) since r = O(1) and m ≤ n.

In the second stage, for each cell △ ∈ Ξ, we map B△ to the set B̃△ of hyperplanes and compute

a (1/r) cutting Ξ△ of B̃△ of size O(r5). For a cell τ ∈ Ξ△, we define Bτ ,B
+
τ ,B

−
τ ,R△ as in the first

stage (but reversing the roles of R and B). If |Rτ | ≤ m/r6, then we split τ into subcells each of
which contains at most m/r6 points of Rτ . Let mτ = |Rτ | (after the refinement) and nτ = |Bτ |.
By construction, mτ ≤ m/r6 and nτ ≤ n△/r ≤ n/r6 for all τ ∈ Ξ△ and for all △ ∈ Ξ. For every
△ ∈ Ξ and τ ∈ Ξ△, we add (Rτ ,B

+
τ) and (Rτ ,B

−
τ) as bicliques to the partition Π.

For every cell τ of a second-stage cutting, we recursively compute a partition of (Rτ ,Bτ). The
recursion stops when min{|Rτ |, |Bτ |} < r, in which case we add each pair (ei, ej) ∈ Rτ × Bτ as a
singleton biclique to Π. This completes the description of computing Π. The correctness follows
using a standard argument, see, e.g. [3].

Finally, for each biclique (Rk,Bk) ∈ Π, we compute ΦC(Rk,Bk) using Corollary 7. This com-

13

pletes the description of the algorithm.

Analysis We now analyze the overall run time of the algorithm, including the time spent
in computing ΦC(Rk,Bk) for each clique (Rk,Bk) ∈ Π. First, we focus on the run time for the
balanced case. For notational simplcity, assume that |R| = |B| = n. Let T (n) be the total time
spent in computing the partition Π plus the time spent in computing ΦC(·, ·) for each biclique in
Π.

If n < n0, where n0 is a constant that depends on r, the algorithm takes O(1) time. Otherwise,
the algorithm spends O(n) time in the two stages of the first round to compute the cuttings, the
conflict lists, and the bicliques. Then it solves at most c1r

10 recursive problems, where c1 > 0 is
a constant independent of r, each of size at most n/r6. Furthermore, the first round generates
at most O(r10) bicliques, and by Corollary 7, computing ΦC for each biclique takes Õ(n(ω+1)/2).
Thus the total time spent in the first round in computing the bicliques and ΦC for all these is at
most c3n

(ω+1)/2 logc2 n, where c2 > 0 is a constant independent on r and c3 > 0 is a constant that
depends on r. Hence, we obtain the following recurrence for T (n):

T (n) ≤

{
c1r

10T (n/r6) + c3n
(ω+1)/2 logc2 n n ≥ n0,

c4 n < n0,
(21)

where c4 > 0 and n0 > 0 are constants that depend on r. Note that the recursive subproblems
may not be balanced but the total time spent in a round with subproblem size t ≥ n0 is still at
most c3t

(ω+1)/2 logc2 t, so the above recurrence holds.
Assuming r is chosen sufficiently large, the solution of the above recurrence is

T (n) ≤ Anα logc2 n, where α = max{5/3 + ε, (ω + 1)/2} (22)

for any constant ε > 0, where A is an appropriate constant that depends on r. Since the current
best known value of ω is roughly 2.37, we simply write the solution of the recurrence as T (n) =
Õ(n(ω+1)/2). We remark that the first term in the definition of α can be reduced to 8/5 + ε by
observing that points of R∗ ∪ B∗ lie on the surface γi = ziαi − βiyi and thus only O(r4 log r) cells
of Ξ (resp. Ξ△) contain a point of B (resp. R△) (see e.g. [7, 1]), and thus we recursively solve
O(r8 log2 r) subproblems, each of size at most n/r5, after the first round.

For general values of m and n with m ≤ n, the batching technique implies that the total time
spent in computing ΦC(R,B) is (1 + n/m) · Õ(m(ω+1)/2) = Õ(nm(ω−1)/2). For m > n, we flip the
roles of R and B, and the run time is Õ(mn(ω−1)/2). Hence, we obtain the following:

Lemma 4. For a biclique (Rk, Bk) in the biclique partition computed in the first stage, with

|Rk| = mk and |Bk| = nk, ΦC(Rk, Bk) can be computed in Õ(mkn
(ω−1)/2
k + nkm

(ω−1)/2
k) time.

To bound the total time spent in computing Φ(Ef ,Eg), we sum the bound in Lemma 4 over all
bicliques of B. Using Hölder’s inequality and property (iv) of the biclique partition B, we obtain
the following:

s∑
k=1

mkn
(ω−1)/2
k =

s∑
k=1

(mknk)
(ω−1)/2m

(3−ω)/2
k

≤
(s∑

k=1

mknk

)(ω−1)/2

·
(s∑

k=1

mk

)(3−ω)/2

= Õ(κ(ω−1)/2n(3−ω)/2),

14

which is Õ(n) for κ = n and Õ(n(ω+1)/2) for κ = n2. Similarly, we can argue that nkm
(ω−1)/2
k =

Õ(κ(ω−1)/2n(3−ω)/2). Adding the O(n log n) time spent in evaluating (4) at the vertices of Vf ∪ Vg,
the total time spent in computing ∥f − g∥1 is Õ(κ(ω−1)/2n(3−ω)/2). This proves Theorem 1.

4 Multipoint Evaluation of Bivariate Rational Functions

In this section, we show how computing the quantities ΦC(R,B) associated to each m× n biclique
R×B can be reduced to computing a double sum ofm rational functions 1

qi(x,y)
over n points pj. This

sum can then be evaluated using fast multipoint evaluation techniques for bivariate polynomials
([14]), based on fast modular composition ([18, Chapter 12, §12.2]). As in the previous section,
the other terms appearing in Φ(Ef ,Eg) can be computed in an analogous manner. We start with
a technical lemma on the fast multipoint evaluation of bivariate polynomials.

Lemma 5. Given n polynomials fi(x, y) of degree n and n2 points pj ∈ R2, it is possible to evaluate
all the fi(pj) in Õ(nω+1) arithmetic operations.

Proof. The main idea is to reduce this question to a problem of fast multipoint evaluation of
univariate polynomials.

First, we interpolate two polynomials g(x) and h(x) of degree n2, such that, for each root r of
h, the point (r, g(r)) is a point pi. More formally we require that

{p1, . . . , pn} = {(xi, g(xi)) | h(xi) = 0}.

(For clarity of presentation, we assume that all the coordinates xi are distinct; the general case
can be handled by introducing a generic shear transformation of the xy-plane at no asymptotic
cost; see [14, §6].) Polynomials g(x) and h(x) can be computed in Õ(n2) operations using fast
interpolation algorithms [18, Chapter 10.2].

Then, denoting by f̃j(x) the univariate polynomial fj(x, g(x)) mod h(x), note that fj(xi, yi) =

f̃j(xi) for all i. Hence, if we know the coefficients of f̃j, we can evaluate each f̃j at all xi in Õ(n2)

arithmetic operations, and all f̃j at all xi in Õ(n3) operations.

Finally, computing all the f̃j can be done in Õ(nω+1) arithmetic operations using Lemma 10(iii)
of [14], which can be seen as a variation of the fast composition algorithm 12.3 in [18, Chapter 12,
§12.2]. Thus, the final complexity is in Õ(nmax(3,ω+1)) = Õ(nω+1).

We can now deduce our corollaries for computing the sum of rational functions. First we start
with the case where the numerators are all 1.

Corollary 6. Given n constant-degree polynomials qi(x, y) and n points pj ∈ R2, the n sums∑
i

1
qi(pj)

for all 1 ≤ j ≤ n can be computed in Õ(n
ω+1
2) arithmetic operations.

Proof. First, partitioning the set of indices i into O(
√
n) subsets Iℓ of size O(

√
n), for each ℓ, there

exists a polynomial fℓ(x, y) of degree O(
√
n) such that

∑
i∈Iℓ

1
qi(x,y)

= fℓ(x,y)∏
i∈Iℓ

qi(x,y)
. Each fℓ can

be computed in Õ(n) arithmetic operations, using fast bivariate multiplication [18, §8.4]. Then,

using Lemma 5, we can evaluate all the O(
√
n) polynomials fℓ on all the n points pj in Õ(n

ω+1
2)

operations. With the same approach, we can expand the denominators and evaluate them on the
points pj in Õ(n

ω+1
2) operations.

Then we generalize this result to sums of general rational functions.

15

Corollary 7. For positive integers k, n, i, with i ≤ n, let fi and gi be polynomials of constant
degree in k and two variables, respectively. Let A ⊂ Rk contain at most n points. In the Real RAM
model, the sum

S =
∑

(a1,...,ak)∈A

∑
1≤i≤n

fi(a1, . . . , ak)

gi(a1, a2)

can be computed in Õ(n
ω+1
2) arithmetic operations.

Proof. Given k symbolic variables X1, . . . , Xk, all the polynomials fi(X1, . . . , Xk) can be written
as a weighted sum of s monomials Mj, where Mj = X

ej,1
1 · · ·Xej,k

k with (ej,1, . . . , ej,k) ∈ Nk. In
particular, each polynomial fi(X1, . . . , Xk) can be expanded as

ci,1M1 + · · ·+ ci,sMs .

According to Lemma 6, letting qi =
gi
ci,1

, we can compute for all the points in (a1, . . . , ak) ∈ A the

sums
∑n

i=1
1

qi(a1,a2)
in Õ(n

ω+1
2) operations. Since the number s of monomials is constant, we can

compute with the same complexity for all 1 ≤ j ≤ s and all points p = (a1, . . . , ak) ∈ A the sums :

Sp,j :=
n∑

i=1

ci,j
gi(a1, a2)

.

On the other hand, since s and the degrees of the fi are constant, we can directly compute all the
monomials Mj at all the points of A in O(n) operations. Using an additional number of operations
linear in n, this allows us to compute, for all the points in p ∈ A,

Sp :=
n∑

i=1

fi(a1, . . . , ak)

gi(a1, a2)
=

s∑
j=1

Sp,jMj(p) .

Finally, we get the desired result by summing the quantities Sp over all p ∈ A.

This concludes the description of the multipoint evaluation tools needed in Section 3 to complete
our algorithm.

5 Conclusion

A recent unpublished preprint improves the bound on multipoint evaluation for multivariate poly-
nomials. It shows that we could evaluate n(ω−1) bivariate polynomials of degree n2 on n2 points in
Õ(nω+1) operations [16, Theorem 3.8]. Compared to Lemma 5 derived from earlier work [14], this
allows us to evaluate more polynomials with the same number of operations. In turn, that would
improve Corollary 7, and the complexity to evaluate the sum of rational functions on a biclique of
size n×n would become Õ(n2−1/ω) instead of O(n(ω+1)/2), by summing over batches of n2/ω points.
With the current ω value, 2 − 1/ω is approximately 1.58, which is below 8/5. Thus the cost of
computing the biclique decomposition would become dominant, and the total cost of computing
∥f − g∥1 could be further improved to O(n8/5+ε), for any constant ε > 0.

16

References

[1] P. K. Agarwal. Simplex range searching and its variants: A review. In Journey through
Discrete Mathematics: A Tribute to Jiř́ı Matoušek, pages 1–30. Springer, Berlin, 2017.

[2] Pankaj K. Agarwal, Boris Aronov, Marc Van Kreveld, Maarten Löffler, and
Rodrigo I. Silveira. Computing correlation between piecewise-linear functions.
SIAM J. Comput., 42(5):1867–1887, 2013. URL: semanticscholar.org/paper/

bc51a9cc1639e635c4cdbb9fe421ec1c3dadf7b9, doi:10.1137/120900708.

[3] Pankaj K. Agarwal, Esther Ezra, and Micha Sharir. Semi-algebraic off-line range searching
and biclique partitions in the plane. In Wolfgang Mulzer and Jeff M. Phillips, editors, 40th In-
ternational Symposium on Computational Geometry, SoCG 2024, June 11-14, 2024, Athens,
Greece, pages 4:1–4:15, 2024.

[4] Pankaj K. Agarwal and Micha Sharir. The number of congruent simplices in a point set.
Discret. Comput. Geom., 28(2):123–150, 2002.

[5] Deepak Ajwani, Saurabh Ray, Raimund Seidel, and Hans Raj Tiwary. On computing the
centroid of the vertices of an arrangement and related problems. In Algorithms and data
structures. 10th international workshop, WADS 2007, Halifax, Canada, August 15–17, 2007.
Proceedings., pages 519–528. Berlin: Springer, 2007. doi:10.1007/978-3-540-73951-7_45.

[6] Boris Aronov and Matthew J. Katz. Batched point location in SINR diagrams via algebraic
tools. ACM Trans. Algorithms, 14(4), August 2018. doi:10.1145/3209678.

[7] Saugata Basu, Richard Pollak, and Marie-Françoise Roy. On the number of cells defined
by a family of polynomials on a variety. Mathematika, 43(1):120–126, 1996. doi:10.1112/

S0025579300011621.

[8] Sergio Cabello and Timothy M. Chan. Computing Shapley values in the plane. Discrete
Comput. Geom., 67(3):843–881, 2022. URL: drops.dagstuhl.de/opus/volltexte/2019/
10424/, doi:10.1007/s00454-021-00368-3.

[9] Bernard Chazelle. Cutting hyperplanes for divide-and-conquer. Discret. Comput. Geom.,
9:145–158, 1993. doi:10.1007/BF02189314.

[10] Bernard Chazelle, Herbert Edelsbrunner, Leonidas J. Guibas, and Micha Sharir. Algorithms
for bichromatic line-segment problems and polyhedral terrains. Algorithmica, pages 116–132,
1994.

[11] Charles M. Fiduccia. Polynomial evaluation via the division algorithm: The fast Fourier
transform revisited. Proc. 4th ann. ACM Symp. Theory Comput., Denver 1972, 88-93 (1972).,
1972.

[12] Jǐŕı Matoušek. Range searching with efficient hierarchical cuttings. Discrete & Computational
Geometry, 10(2):157–182, 1993.

[13] Guillaume Moroz and Boris Aronov. Computing the distance between piecewise-linear bivari-
ate functions. ACM Trans. Algorithms, 12(1), 2016.

17

semanticscholar.org/paper/bc51a9cc1639e635c4cdbb9fe421ec1c3dadf7b9
semanticscholar.org/paper/bc51a9cc1639e635c4cdbb9fe421ec1c3dadf7b9
https://doi.org/10.1137/120900708
https://doi.org/10.1007/978-3-540-73951-7_45
https://doi.org/10.1145/3209678
https://doi.org/10.1112/S0025579300011621
https://doi.org/10.1112/S0025579300011621
drops.dagstuhl.de/opus/volltexte/2019/10424/
drops.dagstuhl.de/opus/volltexte/2019/10424/
https://doi.org/10.1007/s00454-021-00368-3
https://doi.org/10.1007/BF02189314

[14] Michael Nüsken and Martin Ziegler. Fast multipoint evaluation of bivariate polynomials. In
Susanne Albers and Tomasz Radzik, editors, Algorithms – ESA 2004, pages 544–555, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[15] Franco P. Preparata and Michael Ian Shamos. Computational Geometry: An Introduction.
Springer, Berlin, 1985.

[16] Joris van der Hoeven and Grégoire Lecerf. Faster multi-point evaluation over any field. working
paper or preprint, November 2024. URL: https://hal.science/hal-04774026.

[17] Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds for
matrix multiplication: from alpha to omega. In David P. Woodruff, editor, Proceedings of the
2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA,
January 7-10, 2024, pages 3792–3835. SIAM, 2024. doi:10.1137/1.9781611977912.134.

[18] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press,
3rd edition, 2013.

18

https://hal.science/hal-04774026
https://doi.org/10.1137/1.9781611977912.134

	Introduction
	Reduction to Multi-point Evaluation
	Reduction to overlay vertices
	Reduction to a sum of rational expressions
	Explicit sign conditions
	Explicit rational expressions
	Case distinctions for the volume expression

	Computing a Biclique Partition
	Multipoint Evaluation of Bivariate Rational Functions
	Conclusion

