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SMALL-TIME LOCAL CONTROLLABILITY OF A KDV SYSTEM FOR ALL

CRITICAL LENGTHS

JINGRUI NIU, SHENGQUAN XIANG

Abstract. In this paper, we consider the small-time local controllability problem for the

KdV system on an interval with a Neumann boundary control. Rosier discovered in [Ros97]

that the linearized system is uncontrollable if and only if the length is critical, namely L =

2π
√

(k2 + kl + l2)/3 for some integers k and l.

Coron and Crépeau [CC04] proved that the nonlinear system is small-time locally controllable

even if the linearized system is not, provided that k = l is the only solution pair. Later, Cerpa

[Cer07], Cerpa and Crepeau [CC09] showed that the system is large-time locally controllable

for all critical lengths. Coron, Koenig and Nguyen [CKN24b] found that the system is not

small-time locally controllable if 2k + l ̸∈ 3N∗.

We demonstrate that if the critical length satisfies 2k+ l ∈ 3N∗ with k ̸= l, then the system is

not small-time locally controllable. This paper, together with the above results, gives a complete

answer to the longstanding open problem on the small-time local controllability of KdV on all

critical lengths since the pioneer work by Rosier [Ros97].
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1. Introduction

In this article, we are interested in the small-time local controllability property of the classical

controlled Korteweg–de Vries (KdV) model on an interval:
∂ty + ∂3

xy + ∂xy + y∂xy = 0, in (0, T )× (0, L),

y(t, 0) = y(t, L) = 0, in (0, T ),

∂xy(t, L) = u(t), in (0, T ),

y(0, ·) = y0(·), in (0, L),

(1.1)

where y is the state and u is the control.
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The KdV equation is an important nonlinear model that has been extensively studied in the

literature from various perspectives. The well-posedness problem has been extensively studied in

the literature, including the works [BS75,Bou93,Bou97,KPV93,KPV96,CKS+03,KVs19], and

among others. The stability of solitary wave of KdV is investigated in the works [MV03,MM01,

KVs22] along with the references therein. We refer the reader to the books [KTVs14,Tao06] for

an overview of recent mathematical advancements related to this equation.

1.1. An open problem. The equation (1.1) is among the most investigated models emphasiz-

ing nonlinear controls. Its control properties are strongly related to the interaction of the non-

linear term. Let us briefly review the existing results. We also refer to the surveys [RZ09,Cer14]

and the references therein.

In the pioneer paper [Ros97], Rosier introduced the so-called critical lengths set:

N := {2π
√

k2 + kl + l2

3
: k, l ∈ N∗}. (1.2)

Using spectral theory and complex analysis techniques, he proved that the linearized system is

controllable if and only if the length of the interval L ̸∈ N ,
∂ty + ∂3

xy + ∂xy = 0, in (0, T )× (0, L),

y(t, 0) = y(t, L) = 0, in (0, T ),

∂xy(t, L) = u(t), in (0, T ).

(1.3)

When L ∈ N and u = 0, the linear system (1.3) admits a family of time-periodic “traveling

wave” solutions eitλφλ(x), where (φλ, iλ) is an eigenfunction{
φ′′′
λ + φ′

λ + iλφλ = 0,

φλ(0) = φλ(L) = φ′
λ(0) = φ′

λ(L) = 0.
(1.4)

Notice that such an eigenfunction satisfies four boundary conditions. Indeed, each integer solu-

tion (k, l) of

L = 2π

√
k2 + kl + l2

3
, (1.5)

corresponds to such an eigenfunction. Thus there are only finitely many linearly independent

eigenfunctions of this form, and all these functions form a subspace of L2(0, L),

M := Span{φλ : φλ is defined in (1.4)} (1.6)

M is also called the unreachable subspace for the linear system (1.3). Since the solution of (1.3)

with initial state 0 and any control can never enter M . Meanwhile, there is a reachable subspace

H. The state space can be decomposed as L2(0, L) = M ⊕H.

When L ̸∈ N , the system (1) is small-time locally controllable thanks to the good property of

the linearized system. However, when L ∈ N , since the linear system is uncontrollable, it was

widely open whether the nonlinear system (1) is small-time locally controllable or not:

Open problem. Is the system (1.1) small-time locally controllable for all critical lengths?

This open problem has since garnered great attention. Over the past two decades, numer-

ous partial results have been established, yet this open problem continues to be revisited.

Notably, it has been highlighted many times in subsequent works, including [CC04, Remark
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4], [Cor07a, Open problem 8.8] [Cor07b, Open problem 10], [Cer07, Remark 1.7], [Mar18, Sec-

tion 7.2], [CKN24b, Open problem 1.6].

A significant step forward, yielding a somewhat unexpected result on this open problem, was

accomplished by Coron and Crépeau [CC04]. They considered the critical lengths such that

dimM = 1 and showed that even though the linearized system is uncontrollable the nonlinear

system is small-time locally controllable. They introduced the so-called power series expansion

method. Since then this method has become a powerful tool in the study of nonlinear control

problems and in the understanding of the above-mentioned open problem. Its idea is to search

a control u in the form:

u = εu1 + ε2u2 + ε3u3 + · · · .

The corresponding solution y to (1.1) can formally decompose as

y = εy1 + ε2y2 + ε3y3 + · · · .

And the nonlinear term y∂xy can be written into

y∂xy = ε2y1∂xy1 + ε3(y1∂xy2 + y2∂xy1) + · · · .

The first order term y1 is a solution of the linearized system (1.3) with u = u1. While the second

order term y2 satisfies the linear system with a source term:
∂ty2 + ∂3

xy2 + ∂xy2 = −y1∂xy1, in (0, T )× (0, L),

y2(t, 0) = y2(t, L) = 0, in (0, T ),

∂xy2(t, L) = u2(t), in (0, T ).

(1.7)

And continue to find equations for y3 and even higher order terms. Let the initial states y1|t=0 =

y2|t=0 = 0. The key ingredient is to find u1 and u2 such that the final states satisfy y1|t=T = 0

and the projection of y2|t=T on M is a given (nonzero) element in M . A key quantity associated

with this projection is the quantity QM . For any element φ ∈ M we define

QM (φ; y) :=

∫ ∞

0

∫ L

0
|y(t, x)|2e−iptφ′(x)dxdt, (1.8)

where p ∈ R.1

To tackle this open problem on more complicated situations, in [Cer07] Cerpa considered the

case when dimM = 2. Using the power series expansion method he proved a large-time local

controllability result. Later on, Cerpa and Crépeau proved large-time local controllability for

all critical lengths in [CC09]. In parallel, in the study of stabilization or asymptotic stability

problems of KdV systems, the dimension of unreachable subspace M also plays an important

role. We make a detailed description of these properties and how the dimension influence the

results in Section 2.1. Finally, we summarize some existing results in Table 1.

In all these results the critical lengths are naturally classified by “two classes”: 1) when the

dimension of M is even thus every pair (k, l) satisfying the algebraic equation (1.2) verifies

k ̸= l. In this circumstance, it suffices to perform a power series expansion to the second order

to obtain large-time local controllability, exponential stabilization, asymptotic stability without

control, and among other properties; 2) when the dimension of M is odd thus there exists k = l

1Here, we choose (φ, ip) to be an eigenmode in M corresponding to the stationary KdV operator.
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satisfying the algebraic equation (1.2). Now one needs to rely on a power series expansion up to

the third order to obtain the required properties. See Section 2.1 for more details and [CRX17]

for a nice description on this classification.

dimM 0 1 2 odd even

Small-time
controllability

[Ros97] [CC04]
Partial
result

[CKN24b]
Unkonwn

Partial
result

[CKN24b]

Large-time
controllability

[Ros97] [CC04] [Cer07] [CC09] [CC09]

Exponential
Stabilization

[CL14] Unknown [CRX17] Unknown [CRX17]

Asymptotic
stability

[PMVZ02]
[CCS15]
[Ngu21]

[TCSC18]
[Ngu21]

Unknown
Partial
result
[Ngu21]

Table 1. Existing results based on the parity of dim M

In 2020, another major step has been made by Coron–Koenig–Nguyen in [CKN24b] concerning

this challenging open problem. For the first time, they found a negative result on the small-time

local controllability of this classical model: the obstruction to small-time local controllability if

the critical length admits some pair satisfying 2k + l /∈ 3N∗. At least for technical reasons, this

result indicates that the case (k, l) = (2, 1) may be different from the case (k, l) = (4, 1).

Recently, the obstruction to small-time local controllability problem has garnered considerable

attention for both ODE and nonlinear PDEmodels. For NLS with interior control, Coron [Cor06]

and Beauchard–Morancey [BM14] used the iterated Lie bracket (see [Sus87] in finite-dimensional

cases) to find a direction which one could not move in a small time. Marbach proved a beautiful

result concerning the obstruction to small-time local controllability of a viscous Burgers equation

in [Mar18], where a coercive estimate is introduced to prove the obstruction. Later on a nonlinear

parabolic equation considered by Beauchard and Marbach [BM20] with interior controls. More

recently, this property is also considered in [BM24,BMP25,CKN24a,BDE20,Ngu23].

Finally, we note that substantial progress has been made on the controllability and stabi-

lization of KdV equations with various types of controls. For results on KdV equations with

internal controls, we refer, among others, to [CFPR15, RZ96, RZ06, LRZ10]. Regarding other

boundary-controlled KdV models, relevant works include but not limited to [CC13,GG08,KX21,

Ngu23,Ngu24,Ros04,Xia18,Xia19].

1.2. Statement of the result. In this paper, we consider the remaining case of the open

problem, where there exists (k, l) such that 2k + l ∈ 3N∗ and k ̸= l, and demonstrate the

following negative result.

Main Theorem. Let L ∈ N . Assume there exist different integers k, l satisfying 2k + l ∈ 3N∗

such that (1.5) holds. Then the system (1.1) is not small-time locally null-controllable with

controls in H
4
3 and initial and final datum in H4(0, L) ∩H1

0 (0, L).
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More precisely, there exist T0 > 0 and ε0 > 0 such that, for all δ > 0, there is y0 ∈ H4(0, L)∩
H1

0 (0, L) with ∥y0∥H4(0,L) < δ such that for all control u ∈ H
4
3 (0, T0) with ∥u∥

H
4
3 (0,T0)

< ε0 and

the compatible condition u(0) = y′0(L), we have

y(T0, ·) ̸≡ 0,

where y ∈ C
(
[0, T0];H

4(0, L)
)
∩L2

(
[0, T0];H

5(0, L)
)
is the unique solution of (1.1) with initial

state y0 and control u.

This result, together with [CC04] and [CKN24b], and the novel classification of critical sets

(see Definition 2.4 and Remark 2.3), gives a complete answer to the open problem of small-time

local controllability.

(1) Case L ∈ N 1. In this class the equation (1.5) only admits one solution, and this solution

is given by that is k = l. The dimension of the linearly uncontrollable subspace M is one.

Coron and Crepeau proved that the system is small-time locally controllable [CC04].

(2) Case L ∈ N 2. The equation only admits pairs from S2, namely 2k + l ̸∈ 3N∗. In this

class the dimension of M is even. But meanwhile, there are many critical lengths from

N 3 such that the dimension of M is also even.

Coron, Koenig and Nguyen’s result [CKN24b] shows that the system is not small-time

locally controllable. On the other hand, the system is large-time locally controllable due

to Cerpa [Cer07], Cerpa and Crepeau [CC09].

(3) Case L ∈ N 3. In this final class, the equation (1.5) must have solutions from S3 and

may also include a solution from S1; specifically, there exists a solution pair such that

2k + l ∈ 3N∗. And the dimension of M can be any integer that is strictly greater than

one. Consequently, the dynamical behavior of both the linear and nonlinear KdV systems

in this case is the most intricate.

According to [Cer07,CC09], the system is large-time locally controllable. Now, thanks to

our Main Theorem, we know that the system is not small-time locally controllable.

Remark 1.1. A key ingredient is on the application of a new classification of critical lengths,

derived from quantitative and asymptotic analysis for the eigenmodes of stationary KdV oper-

ators; see Section 2 for details. Thus, even within the situation when dim M = 2, where the

two-dimensional subspace M is generated by the same rotation process, the cases from N 2 and

N 3 display completely different behavior.

We believe this new criterion is fundamental to the critical lengths and is applicable in ad-

dressing various problems associated with the KdV systems (1.1), including issues of asymptotic

stability, controllability, and stabilization. Further discussion on these perspectives can be found

in Section 2.4. Moreover, our Main Theorem serves as a concrete illustration of its successful

application.

One shall mention that the spaces used in the main theorem and in [CKN24b] are higher

than L2(0, L). It would be interesting to extend these results to address the small-time local

controllability problem in the less regular spaces, or even in the L2 space. This may require an

even more refined understanding of how regularity influences controllability.

1.3. Strategy of the proof. Our proof primarily relies on the newly established classification

of critical lengths and the related spectral analysis. With this insight, we refine the power series
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expansion method and establish a trapping direction for the KdV system (1.1) to deduce the

obstruction result.

1.3.1. A novel classification of critical lengths: two types of eigenfunctions from the spectrum

point of view. As we have seen in the aforementioned papers, the study of KdV systems at

critical lengths, including controllability, stability, stabilization, etc., essentially relies on the

analysis on eigenmodes of the stationary KdV operator at critical lengths.

Assume that for some pair (k, l) there is L = 2π
√
(k2 + kl + l2)/3 ∈ N . We consider the

eigenfunctions of the operator given by (2.4), thus
φ′′′ + φ′ + iλφ = 0, in (0, L)

φ(0) = φ(L) = 0,

φ′(0) = φ′(L).

(1.9)

By the choice of L there is always a solution φ satisfying φ′(0) = φ′(L) = 0. We call such an

eigenfunction “Type 1”. Type 1 eigenfunctions are related to the controllability of the linear

system.

Surprisingly, we observe that if and only if 2k+l ∈ 3N∗, there exists another linear independent

eigenfunction φ̃ satisfying (1.9) with φ̃′(0) = φ̃′(L) ̸= 0, which is precisely given by φ̃ = φ′. This

eigenfunction is called of “Type 2”.

Rosier has extensively studied Type 1 eigenmodes and demonstrated that the unreachable

subspace M is generated by them. We notice that even though Type 2 eigenfunctions do not

belong to M , the control property of the nonlinear system is indirectly influenced by them; see,

for instance, the equation (1.8). We shall observe this influence in the present article when

considering the obstruction to small-time controllability of (1.1). Moreover, in a forthcoming

paper, we further demonstrate that Type 2 eigenfunctions can affect other properties such as

the stability and controllability of KdV equations.

Based on this key observation, we discover that when investigating control related problems,

the critical lengths should be distinguished by three classes according to the property of the

pairs (k, l) satisfying (1.2): k = l, 2k + l /∈ 3N∗, and 2k + l ∈ 3N∗ and k ̸= l. Different types of

pairs (k, l) may provide distinct behaviors concerning eigenvalues and eigenfunctions. This is to

be compared with the classification widely used in the previous works depending on the parity

of the dimension of M ; see for instance [CRX17] for a description of such a classification. See

Section 2.1–2.2 for details and effects on these old and new classifications.

k = l 2k + l ∈ 3N∗, k ̸= l 2k + l /∈ 3N∗

Eigenvalues zero (double) nonzero (double) nonzero (simple)

Eigenfunctions both Type 1 and 2 both Type 1 and 2 only Type 1

Small-time
controllability

Positive, [CC04] Negative, Main Thm Negative, [CKN24b]

Table 2. Different types of (k, l) s.t. L = 2π
√

k2+kl+l2

3 ∈ N
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1.3.2. A trapping direction. A major step is to construct a trapping direction Ψ(t, x), and prove

that the solution y to the KdV system (1.1) with initial condition y(0, ·) = εΨ(0, ·) and u = 0

satisfies:

∥y(t, ·)− εΨ(t, ·)∥L2(0,L) ≲ ε2, for t small enough. (1.10)

• A reduction approach. This reduction approach is raised by Coron-Koenig-Nguyen in

[CKN24b], which is inspired by the power series expansion method introduced by Coron-

Crépeau in [CC04]. Thus we reduce the procedure of establishing a trapping direction

by relating it to a quantitative coercive estimate of the quantity QM . The obstruction to

small-time controllability is linked with this trapping direction.

• The remaining case under the new classification is degenerate for the reduction approach.

Due to the appearance of Type 2 eigenmodes in the case 2k+l ∈ 3N∗ and the non-triviality

of eigenvalues, we cannot detect the non-vanishing leading term of QM in the same order

as in [CKN24b]. In this sense, we say the remaining case is technically degenerate. We

need to perform a more delicate analysis to recover the leading term at a higher order,

which is compatible with our classification.

• Higher-order asymptotic expansion. In this degenerate case, we point out that there are

some technical difficulties due to the appearance of Type 2 eigenmodes associated with

unreachable pairs 2k + l ∈ 3N∗. To handle these, we introduce a higher-order expansion

toolbox involving pseudodifferential operators, a quantitative embedding for compactly

supported functions, etc.

1.3.3. Obstruction to small-time controllability. The last step is based on a contradiction argu-

ment. Suppose that y(t, ·) ≡ 0 for t ≥ T , we derive the estimate (1.10) for the well-prepared

trapping direction Ψ. Therefore, at time T , y(T, ·) is sufficiently close to Ψ(T, ·), which implies

that y(T, ·) ̸= 0, which completes contradiction argument. This gives us the obstruction to

small-time controllability.

1.4. Organize of the article. The rest part of this paper is organized as follows.

Section 2 is devoted to introducing our new classification criteria on critical lengths. After

a review of previous literature in Section 2.1, we present the details of classification in Section

2.2, followed by its application to the characterization of the dimension of M in Section 2.3 and

further application in Section 2.4.

In Section 3, we prepare some useful elements necessary for the proof of Main Theorem,

including well-posedness and control formulation of KdV equations in Section 3.1 and Section

3.3, along with basic microlocal analysis elements in Section 3.2.

Section 4 is dedicated to constructing a trapping direction (with details in Section 4.4) and

proving the coercive property associated with this direction. More precisely, we give a brief idea

of proof in Section 4.1. Then we establish an asymptotic expansion for our key quantity QM in

Section 4.2 and prove the quantitative coercive proposition in Section 4.3.

Section 5 present the proof of Main Theorem based on a contradiction argument. We finish

this paper with four technical appendices.

2. A novel classification on critical lengths

The main contribution of this section is on the following key observation: even within the class

N2, where the two-dimensional subspace M is generated by the same rotation process, the cases
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2k + l ∈ 3N∗ and 2k + l /∈ 3N∗ exhibit fundamentally different behavior. This distinction arises

from various factors, including the presence of Type 2 eigenmodes of stationary KdV operators

at critical lengths and the limiting spectral analysis, which will be detailed in a forthcoming

paper. Furthermore, this difference has significant implications for both control and analysis

problems.

Based on this observation we propose a new classification criteria for critical lengths. Recall

that the widely used classification is based on the parity of dim M or the Type 1 eigenfunctions.

While our new classification scheme is based on the congruence relation modulo 3, i.e., whether

2k + l is an element of 3N∗ or not, and whether k = l or not.

This section is structured as follows. In Section 2.1, we outline the mathematical reason-

ing—specifically the rotation process—underlying the widely used existing classification and

provide a literature review based on this criterion. In Section 2.2, we introduce our proposed

classification rule. Section 2.3 focuses on a quantitative analysis of the dimension of the unreach-

able subspace M under the new classification. We believe this new criterion is fundamental and

applicable to a broad range of problems, which we summarize in Section 2.4.

2.1. Revisit the literature: the study based on the parity of dim M . Following the

pioneering work of [Ros97], extensive research has been conducted, yielding diverse results based

on the properties of the critical set N . As the dimension of the linearly unreachable subspace M

increases, the interaction between the linear and nonlinear components of the system becomes

more intricate. Notably, the set N comprises countably many critical lengths. A comprehensive

understanding of the system’s controllability, stabilization, and asymptotic stability necessitates

classifying the critical lengths and conducting a detailed analysis of each category.

Over the past two decades, as the understanding of the nonlinear system (1.1) has deep-

ened, the following classification and investigation criteria have been introduced. This rule is

essentially based on the parity of dimension M ; see for instance [CRX17, Introduction].

0. C := R+ \ N . Then M = {0}.
1. N1 :=

{
L ∈ N ; there exists one and only one ordered pair (k, l) satisfying (1.2) and one

has k = l
}
. Then the dimension of M is 1.

2. N2 :=
{
L ∈ N ; there exists one and only one ordered pair (k, l) satisfying (1.2) and one

has k > l
}
. Then the dimension of M is 2.

3. N3 :=
{
L ∈ N ; there exist n ⩾ 2 different ordered pairs (k, l) satisfying (1.2), and none

of them satisfies k = l
}
. Then the dimension of M is 2n.

4. N4 :=
{
L ∈ N ; there exist n ⩾ 2 different ordered pairs (k, l) satisfying (1.2), and one of

them satisfies k = l
}
. Then the dimension of M is 2n− 1.

These sets are disjoint and

R+ = C ∪ N1 ∪N2 ∪N3 ∪N4, N = N1 ∪N2 ∪N3 ∪N4. (2.1)

2.1.1. The controllability problem. First, Rosier solved the small-time local controllability prob-

lem of the nonlinear equation for L ∈ C. The first result on critical lengths dues to Coron and

Crépeau [CC04], they proved the small-time local controllability for L ∈ N1, namely L = 2kπ

and

̸ ∃(m,n) such that m2 + n2 +mn = 3k2 and m ̸= n. (2.2)
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More precisely, they consider the typical case that k = l = 1 thus L = 2π, where the linearly

unreachable subspace M = span{1 − cosx}. They observe that quantity QM is identically 0.

Recall its definition in (1.8).

QM (1− cosx; y) =

∫ T

0

∫ L

0
y(t, x)2 sinx dx dt ≡ 0,

provided that y is a solution to linearized KdV system satisfying y(0, x) = y(T, x) = 0. The

triviality of the quantityQM implies that the second order approximated system on y ∼ εy1+ε2y2

is still uncontrollable. Indeed, the projection of y2 on M does not change despite the nonlinear

interaction: 


∂ty1 + ∂3

xy1 + ∂xy1 = 0, in (0, T )× (0, L),

y1(t, 0) = y1(t, L) = 0, in (0, T ),

∂xy1(t, L) = u1(t), in (0, T ).
∂ty2 + ∂3

xy2 + ∂xy2 = −y1∂xy1, in (0, T )× (0, L),

y2(t, 0) = y2(t, L) = 0, in (0, T ),

∂xy2(t, L) = u2(t), in (0, T ).

(2.3)

Through a third-order power series expansion method, they arrive at both directions ±(1−cosx)

within any short time, which ensures the small-time local controllability.

Later on, Cerpa considered the case L ∈ N2 in [Cer07]. Following the idea in [CC04], he

proved a large-time local controllability result of (1.1) for dimM = 2. He also showed that

N2 contains infinitely many elements. In this circumstance, the behavior of the quantity QM

is more complex. Using complex analysis techniques Cerpa showed that it is not identically 0.

Thanks to this observation, he showed that the second order approximated system can arrive

at a certain direction φ0 ∈ M at any short time.

The large-time controllability is fulfilled by a rotation process. While the rotation from φ0 to

any direction eiptφ0 takes a time T ≥ π
p . More precisely, let us consider the case that k = 2, l = 1,

thus dimM = 2 and M = Span{φ1, φ2} with φ1+iφ2 being an eigenfunction associated with an

eigenvalue ip. Then one notice that the solution y to (1.1) projects on M verifies a rotation. This

φ1

φ2


d

dt
(y(t), φ1)L2(0,L) = −p(y(t), φ2)L2(0,L),

d

dt
(y(t), φ2)L2(0,L) = p(y(t), φ1)L2(0,L),

implies that 2π
p is a rotation period. Since the solution can reach the direction φ0 = αφ1 + βφ2

within a short time T0, the rotation process indicates that the solution can further reach all

states in M provided that the time period is larger than T0 +
2π
p .

This strategy based on the rotation process can not answer the open problem on small-time

controllability for dimM = 2. Because this process is so natural such that, since then people

do not further distinguish different L such that dimM = 2. For example (k, l) = (2, 1) and
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(k, l) = (4, 1) are treated in the same rotation method, and it was believed that there is no

essential difference between these two specific cases.

Following this rotation approach introduced in [Cer07] and the power series expansion method,

in [CC09] Cerpa-Crépeau gave a large-time local controllability result for (1.1) for L belongs

to N3 ∪ N4. In N3 the analysis is similar to [Cer07], and it suffices to benefit on the different

rotation vitesse of eigenfunctions to reach each direction in M . For example, assume that M is

of dimension four:

M = span{φ1, φ2, ϕ1, ϕ2}

Using the complex analysis argument, one can show that the state y can reach a certain direction

φ0 = αφ1 + βφ2 + γϕ1 + δϕ2. Now, using the fact that the angle velocity of φi is different from

the velocity of ϕj and the simple combination of linear/nonlinear solutions, the solution can

reach every state in M provided that the period is large enough to allow the prepared rotation.

The discussion for N4 is more involved. One has to combine the rotation process with the third

order expansion.

The breakthrough result on the small-time controllability is the one by Coron-Koenig-Nguyen

in 2020, published in [CKN24b]. They treated a part of the critical lengths belong to N2,N3

by adding another assumption: every pair (k, l) must satisfy 2k + l ̸≡ 0( mod 3). They proved

that small-time controllability cannot be achieved for these critical lengths.

They introduced an approach to reduce the problem to the non-triviality of a constant E,

which governs the leading order of non-vanishing term of QM ; see more details in Section 4.1.1.∫ ∞

0

∫ L

0
|y(t, x)|2e−iptφx(x)dxdt ∼ ∥u∥2

H− 2
3
(E +O(T )) .

The condition 2k + l /∈ 3N∗ is used to ensure that E ̸= 0. And in their paper, they made no

further comments on this condition.

2.1.2. The asymptotic stability problem. Now, we consider the stability of the linearized KdV

equation (1.3) and the nonlinear KdV equation (1.1) with control u = 0.

Following Hilbert Uniqueness Method and the observability inequality dues to Rosier [Ros97],

the linearized system is exponentially stable if and only if L ̸∈ N . Thus, the nonlinear system

is locally exponentially stable at non-critical lengths. For critical lengths, due to the existence

of M , the nonlinear system is not exponentially stable. What is the asymptotic stability of the

nonlinear system at critical lengths?

The answer also depends on the value of different critical lengths. In the literature people also

followed the existing classification criterion (2.1), where the dimension of M is also a useful index

to distinguish different kinds of critical lengths. In [CCS15], using the ideas of center manifolds,

the authors considered the case L ∈ N1 and proved a polynomial decay for KdV systems (1.1).

Then, similar results were proved for the case L = 2π
√

7
3 in [TCSC18], and the authors indicated

that they think the method is useful for all L ∈ N2. A more general result [Ngu21] reveals that

the asymptotic stability holds for KdV systems (1.1) at critical lengths in N2 ∪N3 that satisfies

another specific condition, where the author used the quasi-periodic function and, again, the

power series expansion method.
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2.1.3. The exponential stabilization problem. The analysis of critical sets based on the dimension

of M is also used in stabilization problems. When L ̸∈ N , the system is exponentially stable

thanks to the exponential stability of the linearized system. Then, it is further proved that with

the help of a well-designed feedback law, the system at non-critical lengths can become rapidly

stable (namely, the decay rate can be as fast as we want) [CL14]. Later on, for critical lengths in

N2 ∪N3, using power series expansion method, the exponential stabilization has been achieved

in [CRX17]. So far, the exponential stabilization in N1 ∪N4 is still open.

2.2. A novel classification of critical lengths. Our new classification scheme is based on

the congruence relation modulo 3. Our point of view is based on the spectral analysis of the

stationary KdV operator, namely, what are the different behaviors of the eigenmodes for the

stationary operator at different critical lengths.

AL : D(AL) ⊂ H3(0, L) → L2(0, L) (2.4)

φ 7→ −φ′′′ − φ′ (2.5)

with

D(AL) = {φ ∈ H3(0, L) : φ(0) = φ(L) = 0, φ′(0) = φ′(L)}.

It looks strange that we consider an operator that is not compatible with the linear equation

(1.3). But this operator shares the advantage of being skew-adjoint, and it turns out to be

a good operator for the study of nonlinear KdV problems and for the classification of critical

lengths.

2.2.1. Motivations. As illustrated in Section 1.1, we have observed markedly different behaviors

for both control and stability problems depending on whether L ∈ N or L /∈ N . Additionally,

at a critical length L ∈ N , the space L2(0, L) decomposes into H ⊕M . In the subspace H, the

linearized KdV equations exhibit both null controllability and exponential stability. Conversely,

in the subspace M , neither null controllability nor exponential stability is achieved due to the

existence of Type I eigenfunctions of the form (1.4).

What about the case when L is close to N ? From a limiting perspective, a good understanding

of lengths near critical values can provide valuable insights into the analysis of critical lengths.

Problem 2.1. Given T > 0 and L0 ∈ N , when L /∈ N approaches L0, can we define a similar

decomposition H(L)⊕M(L) such that different behaviors are observed in H(L) and M(L)? What

is the asymptotic description of this behavior? Furthermore, how does this behavior extend to

the nonlinear case?

Briefly, we would like to better understand how the unreachable subspace M is formulated.

We view this formation of M as a limiting process where M(L) → M(L0) as L → L0 ∈ N .

Moreover, based on that, we are able to give a quantitative description of the stability and

control problems related to KdV equations.

Recall that Rosier [Ros97] proved that for every L0 ∈ N there exists Type 1 eigenfunction of

the operator AL0 , namely the eigenfunction verifying φ′(0) = φ′(L0) = 0. We further observe

that only for critical lengths L0 such that the pair (k, l) satisfies 2k+ l ∈ 3N∗, the operator AL0

admits Type 2 eigenfunctions, that is the modes satisfying φ′(0) = φ′(L0) ̸= 0.

Heuristically speaking, the analysis for the operator AL with L sufficiently close to L0 can

be understand in a perturbative point of view. Due to the operator perturbation theory, the
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asymptotic analysis not only depends on Type 1 eigenfunctions but also relies on Type 2 eigen-

functions. We refer to Section 2.4 for more discussion on this limiting problem. In general,

depending on the value of (k, l) there are different behaviors of eigenvalues and eigenfunctions:

• Case k = l. The corresponding eigenvalue is zero, with multiplicity two. It has two

eigenfunctions, one of Type 1 and the other of Type 2.

• Case 2k + l /∈ 3N∗. The corresponding eigenvalue is nonzero, with multiplicity one. It

has only one eigenfunction, one of Type 1.

• Case 2k+ l ∈ 3N∗ and k ̸= l. The corresponding eigenvalue is nonzero, with multiplicity

two. It has two eigenfunctions, one of Type 1 and the other of Type 2.

In conclusion, when considering problems at critical lengths, the effective factor is not the

dimension of M but the unreachable pair (k, l), and one should consider (k, l) according to the

above-mentioned classes.

After resisting the papers [CC04,Cer07,CC09,CKN24b], combining with our classification on

pairs (k, l), we found that the remaining case for the Open Problem is 2k + l ∈ 3N∗, and this

case is degenerate from analytic viewpoint. We refer to more details in Section 4.1.2.

2.2.2. Classification criteria. Now, we are in a position to present our classification of the critical

sets. Define following index for L ∈ N

I(L) := 3(
L

2π
)2 ∈ N∗,∀L ∈ N . (2.6)

This motivates us to consider the following simple Diophantine Equation

a2 + ab+ b2 = n, (2.7)

or equivalently

k2 + kl + l2 = I(L), for L ∈ N . (2.8)

The solutions of the preceding algebraic equations lead to a description of dim M . For each

L ∈ N , the equation (2.8) may have multiple integer solutions. Inspired by the analysis of Type

1 and Type 2 eigenfunctions, we have the following natural classification for those solutions (k, l)

and we believe that pairs within the same class exhibit similar analytical and control properties.

Definition 2.2. Let L ∈ N . We define the following sets for the unreachable pairs (k, l):

S1(L) := {(k, l) solution of (2.8) : k = l},

S2(L) := {(k, l) solution of (2.8) : k ≡ l mod 3, k ̸= l}

S3(L) := {(k, l) solution of (2.8) : k ̸≡ l mod 3}.

One easily observe that

S3(L) ∩ S1(L) = S3(L) ∩ S2(L) = ∅.

Remark 2.3. Thus, for a given critical length, it either contains only pairs (k, l) from S3

or pairs from S1 ∪ S2. In the commonly used classification criterion, no distinction is made

between pairs from S2 and S3. This approach, based on the aforementioned rotation mechanism,

is effective for large-time local controllability problems. However, in practice, pairs from S2 and

S3 exhibit fundamentally different spectral behaviors. These differences can heavily affect more

delicate problems, such as small-time local controllability, asymptotic stability, and others.
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Based on the features of the integer pairs (k, l) solving (2.8), we classify the critical lengths

under three cases:

Definition 2.4. We have the following types of critical lengths,

N 1 := {L ∈ N : there exists only one pair (k, l) solving (2.8), which belongs to S1(L)},

N 2 := {L ∈ N : all solutions (k, l) of (2.8) belong to S3(L)}

N 3 := {L ∈ N : there exists pair (k, l) solving (2.8), which belongs to S2(L)}.

Clearly, these sets are disjoint and

N = N 1 ∪N 2 ∪N 3.2 (2.9)

The situation for critical lengths from N 3 is most complicated, since it may contain both pairs

from S1 and S2. While the other two classes only contain pairs from S1 or S2.

Example. For each case above, we could choose a model to catch a glimpse of its features. We

choose (k, l) = (1, 1) thus L = 2π as a model for N 1, (k, l) = (2, 1) thus L = 2π
√

7
3 for N 2, and

(k, l) = (4, 1) thus L = 2π
√
7 for N 3.

2.2.3. Type 1 and Type 2 eigenfunctions in different cases. Let L ∈ N . As noticed in [Ros97],

there exists a finite number of pairs {(km, lm)}Nm=1 ⊂ N∗ × N∗, with km ≥ lm such that L =

2π

√
k2m+kmlm+l2m

3 . We provide a brief description of the eigenmodes at the critical length in the

following proposition and one can find its proof in Appendix A.4.

Proposition 2.5. For a fixed critical length L ∈ N , let (km, lm) be an unreachable pair such

that

L = 2π

√
k2m + kmlm + l2m

3
.

Consider the eigenvalues of the operator A given by (2.4):{
φ′′′ + φ′ + iλmφ = 0, in (0, L),

φ(0) = φ(L) = φ′(0)− φ′(L) = 0,
(2.10)

with

λm := λm(km, lm) =
(2km + lm)(km − lm)(2lm + km)

3
√
3(k2m + kmlm + l2m)

3
2

. (2.11)

Then,

1. If (km, lm) ∈ S3(L), there exists a unique solution φm in the form:

φm(x) := −e
ix

√
3(2km+lm)

3

√
k2m+kmlm+l2m − km

lm
e
−ix

√
3(km+2lm)

3

√
k2m+kmlm+l2m +

km + lm
lm

e
ix

√
3(−km+lm)

3

√
k2m+kmlm+l2m . (2.12)

In particular, φ′
m(0) = φ′

m(L) = 0.

2. If (km, lm) ∈ S1(L) ∪ S2(L), or equivalently 2km + lm ∈ 3N∗, there are two solutions to

(2.10). One is φm defined in (2.12), while the other is in the following form:

φ̃m(x) := e
ix

√
3(2km+lm)

3

√
k2m+kmlm+l2m − e

−ix
√
3(km+2lm)

3

√
k2m+kmlm+l2m . (2.13)

2In abuse of the notations, we use Nj for the classes under the previous category, while N i for our new classifi-
cation.
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Additionally, φm and φ̃m are linearly independent, while

φ̃′
m(0) = φ̃′

m(L) =
i
√
3(km + lm)√

k2m + kmlm + l2m
̸= 0.

All solutions to (2.10) are the linear combination of φm and φ̃m.

We call φm defined in (2.12) the Type 1 eigenfunctions. As is mentioned in [Ros97, Remark

3.6], for L ∈ N , the eigenfunction φm can generate an unreachable state for linearized KdV

equations. We denote by N0 the number of Type 1 eigenfunctions, which is also the dimension

of the unreachable subspace.

Surprisingly, we notice the existence of another type of eigenfunctions φ̃m if 2km + lm ∈
3N∗ with nonvanishing Neumann boundary conditions. These solutions to (2.10) with nonzero

Neumann boundary conditions are referred to as Type 2 eigenfunctions. In summary,

Definition 2.6. Let L ∈ N and A be given by (2.4). Let (k, l) be an unreachable pair solving

(2.8) and λ = λ(k, l) be given by (2.11).

• We say φ is a Type 1 eigenfunction if{
φ′′′ + φ′ + iλφ = 0,

φ(0) = φ(L) = φ′(0) = φ′(L) = 0.

• We say φ̃ is a Type 2 eigenfunction if{
φ̃′′′ + φ̃′ + iλφ̃ = 0,

φ̃(0) = φ̃(L) = 0, φ̃′(0) = φ̃′(L) ̸= 0.

Remark 2.7. We emphasize that Type 1 eigenfunctions appear for all critical lengths. However,

Type 2 eigenfunctions only appear for L ∈ N 1 ∪ N 3. Equivalently, Type 2 eigenmodes exist if

there exists a pair (k, l) such that 2k + l ∈ 3N∗.

Corollary 2.8. Let (k, l) satisfy that 2k + l ∈ 3N∗ and L = 2π
√
(k2 + kl + l2)/3 and φ be a

Type 1 eigenfunction. Then, its derivative φ′ is automatically of Type 2.

Proof. It is easy to check that f = φ′ satisfies{
f ′′′ + f ′ + iλ(k, l)f = 0, in (0, L),

f(0) = f(L) = 0.

We only focus on its Neumann boundary conditions. Direct computations derive

φ′′(0) =
3k(k + l)

k2 + kl + l2
, φ′′(L) =

3e−i
2(2k+l)π

3 k(k + l)

k2 + kl + l2
.

Since 2k + l ∈ 3N∗, then e−i
2(2k+l)π

3 = 1, which implies that φ′′(0) = φ′′(L) ̸= 0. Then φ′ is of

Type 2. □

2.3. Characteristics of dimensions of unreachable subspaces. In this sequel, we prove

the following proposition.

Proposition 2.9. For any d ∈ N∗, there are infinitely many L0 ∈ N such that dim M = d.

This is a direct consequence of the following stronger and quantitative result. Although

this result is not our primary objective, it appears to be the first full characterization of the
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unreachable dimension N0 for all L0 ∈ N . Moreover, this full characterization is strongly linked

to our new classification criteria.

Proposition 2.10. For any n ∈ N, suppose that the decomposition of the positive integer n is

given by

n = 3αpβ1
1 · · · pβr

r qγ11 · · · qγss , α, βi, γj ∈ N. (2.14)

Here pi ≡ 1 (mod 3) and qj ≡ 2 (mod 3) are distinct prime integers. Let N(n) denote the

number of positive integer solutions to the equation (2.7) for (a, b) ∈ N∗ × N∗. In general, let

Z(n) denote the number of integer solutions to the equation (2.7). Thus, Z(n) and N(n) have

the following properties

1. If at least one of the γj’s in (2.14) is odd, then the equation (2.7) has no integer solutions,

i.e. Z(n) = 0;

2. If the γj’s in (2.14) are all even, then

Z(n) =

{
6(β1 + 1) · · · (βr + 1), r > 0

6, r = 0.

3. If the γj’s in (2.14) are all even, then

N(n) =

{
1
6Z(n), n is not a perfect square,
1
6Z(n)− 1, n is a perfect square.

Proof of Proposition 2.10. Let ω := e
2πi
3 = −1+

√
3i

2 and Z[ω] := {a + bω | a, b ∈ Z}. The norm

of a+ bω ∈ Z[ω] is defined as

N(a+ bω) := |a+ bω|2 = (a+ bω)(a+ bω̄) = a2 − ab+ b2.

Then for n ∈ N, the equation (2.7) a2 + ab + b2 = n, where a, b ∈ Z, is associated to the norm

relation N(a− bω) = n. We shall identify (a, b) with a− bω.

We apply the following well-known properties of Z[ω]. See the book [Cox13, §4.A] for details.

Lemma 2.11. Z[ω] has the following properties:

(1) Z[ω] is a unique factorization domain.

(2) The units in Z[ω] are {±1,±ω,±ω2} = {(−ω)k | k = 1, . . . 6}.
(3) Let p ∈ N be a prime integer.

• If p = 3, then p = −ω2(1− ω)2, where 1− ω is a prime and N(1− ω) = 3;

• If p ≡ 1 (mod 3), then p = πpπ̄p, where πp, π̄p are primes and N(πp) = N(π̄p) = p;

• If p ≡ 2 (mod 3), then p remains a prime in Z[ω], and N(p) = p2.

Moreover, every prime element in Z[ω] is a divisor of a unique prime integer p.

Armed with the preceding result, we are now in a position to prove the first two statements.

It’s reduced to find the number of a − bω ∈ Z[ω] with norm n. In view of the classification of

prime elements in Z[ω], the power of each qj in N(a− bω) must be even. And if all of the γj ’s

are even, then N(a− bω) = n if and only if

a− bω = (−ω)k ·
r∏

i=1

πui
pi π̄

βi−ui
pi ·

s∏
j=1

q
γj
2
j .

Here k = 1, . . . , 6 and each ui = 0, 1, . . . , βi. And the first two statements hold.
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We turn to the last statement. It can be verified that, if n is not a perfect square, then each

class contains exactly one solution a− bω with a, b > 0; and if n = m2, then this property still

holds for all classes but one:

{(−ω)km | k = 1, . . . , 6} = {±m,±mω,±(m+mω)},

which contains no positive integer solution. □

2.4. Further applications of this classification. We believe this new criterion is essential

and can be applied to a wide range of problems. In the sequel, we briefly comment on the further

perspectives where our new classification may be applicable.

2.4.1. Controllability and stability via a limiting process. As presented in Section 1.1, consider-

ing controllability and stability, researchers have noticed that there is a significant distinction

between the cases L /∈ N and L ∈ N . Let us take the linear KdV system (1.3) as an example.

• Null controllability holds for L /∈ N and there exists a constant C(T, L) > 0 such that

∥u∥L2(0,T ) ≤ C(T, L)∥y0∥L2(0,L).

However, for L ∈ N , there exists an unreachable subspace M defined as (1.6). A natural

expectation is that

C(T, L) → ∞, as L → N .

Unfortunately, the classical compactness-uniqueness method (see [Ros97]) can only ensure

the existence of this constant C(T, L). There is a lack of an estimate of the size of C(T, L)

and meanwhile the dependence of the parameter L is also unknown.

To track the dependence of L, we need to adapt the moment method involving the

eigenfunctions of AL (defined in (2.4)). Considering the eigenvalue problem:

ALφ(L) = iλ(L)φ(L), in (0, L).

We have to analyze the asymptotic behavior of each eigenmode (φ(L), iλ(L)) as L → N
to detect where the control cost blows up. At this stage, our new classification criteria

come into play. For L0 ∈ N 2, there are no Type 2 eigenfunctions. We need to track those

eigenmodes (φ(L), iλ(L)) such that

(φ(L), iλ(L)) → Type 1 eigenmodes, as L → L0.

As for L0 ∈ N 1 or L0 ∈ N 3, the asymptotic behaviors of (φ(L), iλ(L)) are rather com-

plicated due to the appearance of Type 2 eigenmodes. We will provide a detailed and

complete analysis in a forthcoming paper and as a consequence, we give a quantitative

estimate of the important constant C(T, L).

• When it comes to the stability problem, we refer to (1.3) with u ≡ 0. For L /∈ N , an

exponential stability holds

∥y(t)∥2L2(0,L) ≤ Ce−R(L)t∥y0∥2L2(0,L),∀t > 0 with a constant R(L) > 0,

while for L ∈ N , no stability is observed in M due to the existence of traveling waves

eitλφλ with φλ defined in (1.4). A natural expectation is

R(L) → 0, as L → N .
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Unfortunately, the existence of this constant R(L) is again ensured by a compactness-

uniqueness method. Applying Hilbert uniqueness method twice, we can transform this

stability problem into a controllability problem. Then the asymptotic behaviors of eigen-

modes (φ(L), iλ(L)) will play a significant role.

Remark 2.12. Now we change a point of view. By a rescaling process, we could write

AL = AL0 + (L− L0)RL,

with RL =
L2
0+L0L+L2

L3
0

AL0 −
L(L+L0)

L3
0

∂x. For L0 ∈ N , we can also see the previous discussion on

controllability/stability as a uniform controllability/stability problem for the following system
∂ty −AL0y − (L− L0)RLy = 0, in (0, T )× (0, L0),

y(t, 0) = y(t, L0) = 0, in (0, T ),

∂xy(t, L) = u(t), in (0, T ),

under the perturbation (L− L0)RL as L → L0.

2.4.2. Small-time local controllability and the open problem. We observe that the existing results

on small-time local controllability pertain to the cases N 1 [CC04] and N 2 [CKN24b]. The only

remaining case to be addressed is L ∈ N 3, which forms the primary objective of this paper.

2.4.3. Large-time local controllability. For L ∈ N2, Cerpa [Cer07] demonstrated that the system

is large-time locally controllable. As discussed, when the dimension of MM is 2, the critical length

can belong to either N 2 or N 3. We believe that by distinguishing between these two classes, it

may be possible to gain deeper insights into large-time local controllability, such as obtaining

more precise quantitative estimates. Likewise, this approach could lead to improvements in the

results of [CC09].

2.4.4. Exponential stabilization at critical legnths. The exponential stabilization in N2 ∩N3 de-

pends on the large-time local controllability property [CRX17]. Thus it is reasonable to consider

exponential stabilization under the new classification. We first consider the problem in N 2, then

in N 1 and N 3.

2.4.5. Asymptotic stability without control at critical lengths. We also aim to achieve more com-

prehensive and refined results concerning asymptotic stability. Currently, it remains an open

question whether the KdV system (1.1) exhibits polynomial decay when the dimension dimM

is odd and greater than 1. Even in the even-dimensional setting, where Nguyen established

polynomial decay [Ngu21], several cases remain unclear. In particular, it would be valuable to

determine whether the decay rates differ between the cases N 2 and N 3 (still in even-dimensional

setting). For the latter, the presence of Type 2 eigenmodes may introduce certain degeneracies,

potentially affecting the decay behavior.

3. Some preparations for the proof

For clarity and completeness, we present some useful elements necessary for subsequent proofs.

• Section 3.1 reviews classic and recent results on the well-posedness of both linear and

nonlinear KdV equations. We apply these well-posedness estimates in Section 5 to prove

the obstruction to small-time controllability.
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• In Section 3.2, we introduce fundamental concepts of microlocal analysis, focusing partic-

ularly on one-dimensional cases. These technical lemmas play a crucial role in deriving

the coercive estimate for QM , detailed in Proposition 4.1.

• In Section 3.3, we characterize controls that steer 0 to 0 and establish the asymptotic

expansion for the eigenvalues of stationary KdV operators. This analysis provides some

special functions and expansions, which will be utilized in the proof of Lemma 4.2.

3.1. Well-posedness of KdV systems. The following well-posedness results on both linear

and nonlinear KdV equations can be found in [CKN24b], which are useful in the proof of Main

Theorem. This subject has received extensive study over recent decades (see for example [BSZ03,

BSZ09,CRX17]). Additionally, studies on Kato smoothing effects, as detailed in [KX21,Ros97],

are also noteworthy.

Lemma 3.1. (The inhomogeneous linearized system, [CKN24b, Lemma 4.6]) Let h = (h1, h2, h3) ∈
H

1
3×H

1
3×L2(R+), f1 ∈ L1 ((0, T )× (0, L)), and f2 ∈ L1

(
(0, T );W 1,1(0, L)

)
satisfying f2(t, 0) =

f2(t, L) = 0. Assume that the function f = f1 + ∂xf2 belongs to L1(R+;L
2(0, L)). Let

y ∈ C
(
[0,+∞);L2(0, L)

)
∩ L2

loc

(
[0,+∞);H1(0, L)

)
be the unique solution of

∂ty + ∂3
xy + ∂xy = f in (0,+∞)× (0, L),

y(t, 0) = h1(t), y(t, L) = h2(t), ∂xy(t, L) = h3(t) in (0,+∞),

y(0, x) = 0, in (0, L).

(3.1)

Then

∥y∥L2((0,T )×(0,L)) ≤ CT

(
∥(h1, h2)∥L2(R+) + ∥h3∥

H− 1
3 (R)

+ ∥f∥L1(R+×(0,L))

)
,

and

∥y∥L2((0,T );H−1(0,L)) ≤ CT

(
∥(h1, h2)∥

H− 1
3 (R)

+ ∥h3∥
H− 2

3 (R)
+ ∥(f1, f2)∥L1(R+×(0,L))

)
.

In addition, if for some T1 ∈ (0, T ) there is h(t, ·) = 0 and f(t, ·) = 0 for t ≥ T1, then for any

δ > 0 and for t ∈ [T1 + δ, T ] there is

|∂ty(t, x)|+ |∂xy(t, x)| ≤ CT,T1,δ

(
∥(h1, h2)∥

H− 1
3 (R)

+ ∥h3∥
H− 2

3 (R)
+ ∥(f1, f2)∥L1(R+×(0,L))

)
.

In particular, concerning the controlled nonlinear KdV systems, we have the following

Lemma 3.2. (The nonlinear system, [CKN24b, Lemma 5.4], [BSZ03, Theorem 1.2]) There

exists constants ε0 > 0 and C > 0 such that for any y0 ∈ L2(0, L) and any u ∈ L2(R+)

satisfying

∥y0∥L2(0,L) + ∥u∥L2(R+) ≤ ε0,

the unique solution of
∂ty + ∂3

xy + ∂xy + y∂xy = 0 in (0,+∞)× (0, L),

y(t, 0) = y(t, L) = 0, ∂xy(t, L) = u(t) in (0,+∞),

y(0, ·) = y0
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belongs to C
(
[0,+∞);L2(0, L)

)
∩ L2

loc

(
[0,+∞);H1(0, L)

)
. Furthermore, it satisfies

∥y∥L2((0,T )×(0,L)) ≤ C
(
∥y0∥L2(0,L) + ∥u∥

H− 1
3 (R)

)
,

∥y∥L2((0,T );H1(0,L)) ≤ C
(
∥y0∥L2(0,L) + ∥u∥L2(R+)

)
,

∥y∥L2((0,T );H−1(0,L)) ≤ C
(
∥y0∥L2(0,L) + ∥u∥

H− 2
3 (R)

)
.

Remark 3.3. As observed in the preceding lemmas, we apply these results to linear and nonlinear

KdV equations with low regularity data. This approach differs from traditional studies of well-

posedness.

3.2. Basis elements in microlocal analysis. This section is devoted to presenting a few facts

about the microlocal analysis on 1−dimensional Euclidean spaces. For more details, we refer

to [Ler10,AG07,H0̈7] and its references. For the sake of completeness, we include the following

results here. We say a ∈ C∞(R2) is a symbol, belonging to Sm(R2), if there are constants

Ckl, k, l ∈ N such that a satisfies

|(∂k
x∂

l
ξa)(x, ξ)| ≤ Ckl⟨ξ⟩m−l, ⟨ξ⟩ = (1 + |ξ|2)

1
2 ,

For any a ∈ Sm(R2), we define a pseudodifferential operator a(x,Dx), with a convention Dx =
1
i ∂x, by the standard quantization as follows:

a(x,Dx)u(x) =
1

2π

∫
R

∫
R
ei(x−z)ξa (x, ξ)u(z) dξ dz,∀u ∈ S(R), (3.2)

As an operator, a(x,Dx) has the following properties:

Proposition 3.4. Let a(x,Dx), b(x,Dx) be the pseudodifferential operators defined in (3.2).

Then we have

1. [Ler10, Theorem 1.1.18]Let s,m ∈ R and a ∈ Sm(R2). Then, the operator a(x,Dx) is

bounded from Hs+m(R) to Hs(R).

2. [Ler10, Theorem 1.1.20]Let m1,m2 ∈ R and a ∈ Sm1 , b ∈ Sm2. Then a(x,Dx) ◦ b(x,Dx)

is also a pseudodifferential operator with a symbol c ∈ Sm1+m2 and we have the following

asymptotic expansion3, for ∀n ∈ N,

c =
∑
k≤n

1

k!
Dk

ξaD
k
xb+ rn(a, b),

with rn(a, b) ∈ Sm1+m2−n. In particular, for the commutator of two pseudodifferential

operators, we have [a(x,Dx), b(x,Dx)] = c̃(x,Dx), wehre

c̃ = DξaDxb−DξbDxa+ r2(a, b) ∈ Sm1+m2−1,

with r2(a, b) ∈ Sm1+m2−2.

For the convenience of the proof later, we present an estimate of a particular commutator.

We include the proof in Appendix A.1

Corollary 3.5. Let ϱ ∈ C∞
c (R) and supp(ϱ) ⊂ (−1, 1). Set ϱR := ϱ( ·

R). Then, for s > 0,

there exists a constant C > 0, which is independent of R, such that the commutator [⟨Dx⟩−s, ϱR]

3Note that Dk
ξaD

k
xb ∈ Sm1+m2−k.
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satisfies

∥[⟨Dx⟩−s, ϱR]∥L(H−s−1,L2) ≤
C

Rs+4
,

where ⟨Dx⟩−s = (1 +D2
x)

− s
2 .

Now we aim to present some basic lemmas on the Sobolev norms of compactly supported

distributions. One can find the general cases in [Ler10, Appendix 4.3.3].

Lemma 3.6. Let s1 > −1
2 and s1 > s2. There exists a constant C = C(s1, s2) > 0 such that

for all R > 0 and u ∈ Hs1 with supp(u) ⊂ [−R,R], we have

∥u∥Hs2 ≤ CF (R, s1, s2)∥u∥Hs1 ,

where

F (R, s1, s2) =


Rs1−s2 s2 > −1

2 ,

Rs1−s2(1 + ln 1
R)

1
2 s2 = −1

2 ,

Rs1+
1
2 (1 + ln 1

R)
1
2 s2 < −1

2 .

Its proof can be found in the Appendix A.2. And we emphasize that the constant C is

independent of R.

The next proposition is called Peetre’s inequality, which is an important tool in microlocal

analysis.

Proposition 3.7 (Peetre’s inequality). Let s ∈ R. For any ξ, η ∈ R, the following inequality

holds: (
1 + |ξ|2

1 + |η|2

)s

≤ 2|s|
(
1 + |ξ − η|2

)|s|
. (3.3)

3.3. Formulation of the controls steering 0 to 0 during time period (0, T ). As what is

done in [CKN24b, Section 2], we define the following quantities

Definition 3.8. For τ ∈ C, let (λj(τ))1≤j≤3 be the three solutions of (counting multiplicity)

λ3 + λ+ iτ = 0. (3.4)

Define

Q(τ) :=

3∑
j=1

(λj+1 − λj)e
λjL+λj+1L, P (τ) :=

3∑
j=1

λj(e
λj+2L − eλj+1L) (3.5)

and

Ξ(τ) := −(λ2 − λ1)(λ3 − λ2)(λ1 − λ3), (3.6)

where we adapted the convention that λj+3 = λj for j = 1, 2, 3.

For an appropriate function v defined on R+ × (0, L), we define its Fourier transform w.r.t

time as following: v̂ its Fourier transform 4 with respect to t,

v̂(τ, x) =
1√
2π

∫ +∞

0
v(t, x)e−iτtdt,∀τ ∈ C.

Lemma 3.9. ( [CKN24b, Lemma 2.4]) Let u ∈ L2(0,+∞) and let y be the unique solution of
∂ty + ∂3

xy + ∂xy = 0 in (0,+∞)× (0, L),

y(t, 0) = y(t, L) = 0, ∂xy(t, L) = u(t) in (0,+∞),

y(0, x) = 0 in (0, L).

(3.7)

4It coincides with the Fourier transform of the extension of v by 0 for t < 0.
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Then, outside of a discrete set τ ∈ R, there is

ŷ(τ, x) =
û

detQ

3∑
j=1

(eλj+2L − eλj+1L)eλjx, for a.e. x ∈ (0, L). (3.8)

and ∂xŷ(τ, 0) =
û(τ)P (τ)
detQ(τ) .

Recall that λj(τ) are solutions of

λ3
j + λj + iτ = 0.

For p ∈ R, we further define λ̃j(τ ; p) be solutions of

λ̃3
j + λ̃j − i(τ̄ − p) = 0.

Thanks to the equation (3.4) satisfied by the λj , one has the following asymptotic behavior

of λj concerning large positive τ :

Lemma 3.10. Let p ∈ R and τ in a small enough conic neighborhood of R+. Consider the

convention Re(λ1) < Re(λ2) < Re(λ3) and similarly for λ̃j. We have

λj = µjτ
1
3 − 1

3µj
τ−

1
3 +

1

81µ5
j

τ−
5
3 +O(τ−2), |τ | ≫ 1 (3.9)

λ̃j = µ̃j τ̄
1
3 − 1

3µ̃j
τ̄−

1
3 +

1

81µ̃5
j

τ̄−
5
3 +O(τ̄−2), |τ | ≫ 1, (3.10)

where µj and µ̃j are defined as (see Figure)

µj = e−
iπ
6
− 2ijπ

3 and µ̃j = e
iπ
6
+ 2ijπ

3 .

Here τ
1
3 denotes the cube root of τ with the real part positive.

μ1

μ2

μ3

μ
~

3μ
~

1

μ
~

2

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 1. Distribution of µj and µ̃j

Next lemma introduces two special functions, which can be found in [CKN24b, Page 1214].

Lemma 3.11. Let H(τ) := detQ(τ)
Ξ(τ) and G(τ) := P (τ)

Ξ(τ) (P , Q, and Ξ are defined in (3.5) and

(3.6)). Then G and H are entire functions. Moreover, let τ1, · · · , τk be the distinct common
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roots of G and H in C and

Γ(τ) :=

k∏
j=1

(τ − τj).

Then the following two functions are entire

G(τ) := G(τ)

Γ(τ)
,H(τ) :=

H(τ)

Γ(τ)

and G,H have no common roots.

As we observed in Lemma 3.9, G and H appear in the formula of the solution ŷ. This is a

direct consequence of the structure of KdV equations. We need all these special functions to be

entire functions because we want to apply the Palay-Wierner Theorem. Later in Section 4.3, we

will present how to use these entire functions to bound the quantity QM .

4. A trapping direction

As presented in Section 1.3, this section is devoted to constructing a trapping direction Ψ(t, x)

for the KdV system (1.1) for L ∈ N . This trapping direction Ψ satisfies the following equations:{
∂tΨ(t, x) + ∂3

xΨ(t, x) + ∂xΨ(t, x) = 0, in R+ × (0, L),

Ψ(t, 0) = Ψ(t, L) = ∂xΨ(t, 0) = ∂xΨ(t, L) = 0, in R+.
(4.1)

Furthermore, we prove a coercive property for this direction Ψ as follows

Proposition 4.1. There exist Ψ(t, x) and T∗ > 0 such that, for any u ∈ L2(0,+∞) with u(t) = 0

for t > T∗ and y(t, ·) = 0 for t > T∗ where y is the unique solution of the linearized KdV system

(3.7), we have ∫ ∞

0

∫ +∞

0
|y|2(t, x)∂xΨ(t, x)dxdt ≥ C∥u∥2H−1(R). (4.2)

Here we use the following definition for the negative Sobolev norm of u ∈ L2(R+):

∥u∥2Hs(R) :=

∫
R
|û(τ)|2(1 + τ2)s dτ, for s < 0, (4.3)

where û is the Fourier transform of the extension of u by 0 for t < 0.

4.1. Idea of the proof. As previously discussed in Section 1.3, our proof strategy combines

three key elements:

• The reduction approach, detailed further in Section 4.1.1;

• Applying our new classification of unreachable pairs (k, l) (defined in Definition 2.2), a

key observation is that the remaining case under our new classification is degenerate. In

Section 4.1.2, we address the influence and difficulties of a degenerate case.

• A higher order expansion scheme is introduced to establish a coercive estimate (4.2). We

refer to the details in Section 4.1.3.

As an application of the key concepts discussed above, we outline a three-step proof structure

in Section 4.1.4.

4.1.1. Reduction approach. We need to point out that this approach characterizes all possible

control u which steers 0 to 0 at time T for the linearized KdV system (3.7), which is based on

taking Fourier transform with respect to the time variable t of the solution y to (3.7).
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As is shown in the classical power series expansion method, we need to deal with a multiple

of the L2(0, L)-projection of the solution y(T, ·) into M , which is governed by the following

quantity

QM (φ) :=

∫ ∞

0

∫ L

0
|y(t, x)|2e−iptφ′(x)dxdt, (4.4)

where φ is a direction contained in M . This quantity is related to the quadratic order system

in the power series expansion of the nonlinear KdV equation, which plays a central role in the

controllability of the nonlinear KdV equations.

Roughly speaking, if QM = 0 for any φ ∈ M , we shall expect the small-time controllability

holds true (see [CC04] for example), while if on the contrary, QM ̸= 0 for some φ0 ∈ M , we

expect this leads to a failure of the small-time controllability. Moreover, we expect to construct

the obstruction to the small-time controllability based on this particular φ0.

As is observed in [CKN24b], once you see this QM as a Fourier transform with respect to the

time variable t, i.e.,

QM =

∫ L

0
Ft→p(|y|2(·, x)φ′(x)) dx.

Combined with a direct computation, the description of both high-frequency and low-frequency

parts will provide you with insights about the relationship between QM and the regularity level

of u, which is governed by a certain Sobolev norm of u.

At last, we finish this reduction approach by introducing the following quantity B:

B(τ, x) =

∑3
j=1(e

λj+1L − eλjL)eλj+2x∑3
j=1(λj+1 − λj)e−λj+2L

·
∑3

j=1(e
λ̃j+1L − eλ̃jL)eλ̃j+2x∑3

j=1(λ̃j+1 − λ̃j)e−λ̃j+2L
· φ′(x). (4.5)

By simple computation∫ L

0

∫ ∞

0
|y(t, x)|2φ′(x)e−ipt dt dx =

∫ L

0
φ′(x)ŷ ∗ ̂̄y(p, x) dx

=

∫ L

0
φ′(x)

∫
R
ŷ(τ, x)ŷ(τ − p, x) dτ dx.

Using the formula (3.8)

ŷ(τ, x) = û(τ)

∑3
j=1(e

λj+1L − eλjL)eλj+2x∑3
j=1(λj+1 − λj)e−λj+2L

,

we obtain

QM =

∫ L

0

∫ ∞

0
|y(t, x)|2φx(x)e

−ipt dtdx =

∫
R
û(τ)û(τ − p)

∫ L

0
B(τ, x) dx dτ.

Now the high-frequency analysis of QM is reduced to the asymptotic analysis of
∫ L
0 B(τ, x) dx

as τ → ∞. In summary, we conclude this reduction approach into three steps: (1)derive the

asymptotic analysis of
∫ L
0 B(τ, x) dx as τ → ∞; (2)Based on this asymptotic expansion, prove

a coercive property for QM ; (3)Construct the trapping direction using (1) and (2).

4.1.2. The remaining case under the new classification is degenerate. Revisiting the papers on

the positive result [CC04] and the negative result [CKN24b] of small-time controllability, we

noticed that these two cases coincide with types S1,S3 and the remained degenerate case is

of type S2. Another observation shows that S2 has similarities with both S1 and S3: the
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corresponding eigenvalues are pure imaginary but double. This new perspective motivates us to

consider this degenerate case S2 has a negative result of small-time controllability but with a

non-vanishing order much higher than the case S1.

We point out that a crucial feature of S2 is the appearance of Type 2 eigenfunctions. Let

φ be a Type 1 eigenfucntion. Then, φ′ will become a Type 2 eigenfunction automatically if

2k + l ∈ 3N∗. More precisely, we notice that QM (φ) can be seen as a projection on this Type

2 eigenfunction φ′, which implies that we need to detect a non-vanishing term at higher orders

than the non-degenerate case 2k+ l /∈ 3N∗, i.e. S3. The technical difficulties will be specified in

Section 4.1.3.

Even though the authors in [CKN24b] have established this reduction approach, they cannot

deal with all critical lengths. They ended up with cases where L = 2π
√

k2+kl+l2

3 and 2k+l /∈ 3N∗.

For other situations where 2k + l ∈ 3N∗, their asymptotic expansion for
∫ L
0 B(τ, x) dx, i.e.∫ L

0
B(τ, x) dx =

Ẽ

|τ |
4
3

+O(|τ |−
5
3 )

fails because Ẽ = 0 under the assumption 2k+l ∈ 3N∗. Thus, we see 2k+l ∈ 3N∗ as a degenerate

case.

In Section 2, we introduced a new perspective on classifying critical lengths by focusing on

unreachable pairs (k, l). It’s important to note that the nature of the unreachable space M is

heavily influenced by the characteristics of these pairs. A priori, it is essential to categorize

the features of KdV systems into three distinct types, although there are instances where these

types exhibit similar behaviors. Let’s take an example, for
∫ L
0 B(τ, x) dx,

∫ L

0
B(τ, x) dx =


0, (k, l) ∈ S1, in [CC04]
E
|τ |2 +O(|τ |−

7
3 ), (k, l) ∈ S2, see Section 4.2,

Ẽ

|τ |
4
3
+O(|τ |−

5
3 ) (k, l) ∈ S3, in [CKN24b].

while for the dimension of M ,

dimM

{
is odd, (k, l) ∈ S1,

is even, (k, l) ∈ S2 ∪ S3.

4.1.3. Higher-order expansion. As we explained in Section 4.1.1, we concentrate on the analysis

of the quantity
∫ L
0 B(τ, x) dx and QM . Precisely, we encounter two difficulties:

1. When considering the asymptotic behaviors of
∫ L
0 B(τ, x) dx, as we’ve previously dis-

cussed, due to the appearance of Type 2 eigenfunctions, the case S2 is degenerate and

requires us to perform a more delicate analysis to detect the non-vanishing term at higher

orders.

2. As for the coercive property ofQM , due to the higher non-vanishing order of
∫ L
0 B(τ, x) dx,

the regularity level is significantly lower than that in the case studied in [CKN24b]. This

analysis involves the non-local pseudodifferential operator (1 + |Dt|2)−
1
6 . Consequently,

direct application of the Plancherel Theorem or direct use of compact support is insuffi-

cient. Instead, advanced techniques in microlocal analysis and specific lemmas concerning

Sobolev norms on compactly supported functions are required.
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4.1.4. Outline of the section. Armed with the primary ideas of proof discussed above, we organize

our proof in the following three steps:

• Step 1: We first establish a new version of asymptotic expansion for
∫ L
0 B(τ, x) dx in

Lemma 4.2 of Section 4.2:∫ L

0
B(τ, x)dx =

E

|τ |2
+O(|τ |−

7
3 ) for τ ∈ R with large |τ | and E ̸= 0.

• Step 2: With the help of this asymptotic expansion, we derive a quantitative coercive

estimate of QM in Proposition 4.4 of Section 4.3:∫ ∞

0

∫ L

0
|y(t, x)|2e−iptφx(x)dxdt ≥ C∥u∥2H−1 .

• Step 3: Finally, equipped with good estimates on QM and B, we construct the trapping

direction Ψ in the classical way, see details in Section 4.4.

4.2. Asymptotic analysis of
∫ L
0 B(τ, x) dx. we study the high-frequency asymptotics in the

Fourier side (Lemma 4.2) and then back to the physical space estimates (Proposition 4.3). After

establishing these estimates, we are able to obtain a “well-prepared” direction Ψ associated with

its estimates (Corollary 4.4), which is crucial in the proof of our main theorem.

Let u ∈ L2(0,+∞) and denote y the corresponding solution of the linear KdV equation (3.7).

We assume that y0 = 0 and that y satisfies y(t, ·) = 0 in (0, L) for t ≥ T . We have, by Lemma

3.9, the formulation of y as follows:

Let λj(τ) for j = 1, 2, 3 be the three solutions of

λ3 + λ = −iτ for τ ∈ C.

Let η1, η2, η3 ∈ iR. Define

φ(x) =

3∑
j=1

(ηj+1 − ηj)e
ηj+2x for x ∈ [0, L]. (4.6)

It is easy to check that

φ(0) =

3∑
j=1

(ηj+1 − ηj) = 0 = φ(L), φ′(0) =

3∑
j=1

ηj+2(ηj+1 − ηj) = 0 = φ′(L)

In addition, we further assume that

eη1L = eη2L = eη3L = 1, (4.7)

which is equivalent to η1, η2, η3 ∈ 2πi
L Z. The definition of φ in (4.6) ensures that φ satisfies

the boundary condition of Type 1 eigenfunctions defined in (2.12) (See also [Cer07,CC09]). In

particular, if η3j + ηj + iλ = 0, with iλ is an eigenvalue defined in (2.10), then φ ∈ M is an

uncontrollable direction.

We are ready to establish the behavior of∫ L

0
B(τ, x)dx

for τ ∈ R with |τ | ≫ 1, which is one of the main ingredients for the analysis in this section.
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Lemma 4.2. Let p ∈ R, and let φ be defined by (4.6). Assume that ηj ̸= 0 and moreover,

eηjL = 1 and η3j + ηj + ip = 0, for j = 1, 2, 3. We have∫ L

0
B(τ, x)dx =

E

|τ |2
+O(|τ |−

7
3 ) for τ ∈ R with large |τ |,

where E is defined by

E =
1

27
p2L

3∑
j=1

ηj+1 − ηj
ηj+2

(4.8)

Proof. Without loss of generality, we are able to assume that τ is positive and large. Indeed, if

τ is large and negative, we define

F (τ, x) =

∑3
j=1(e

λj+1L − eλjL)eλj+2x∑3
j=1(λj+1 − λj)e−λj+2L

.

Then

B(τ, x) = F (τ, x)F (τ − p, x)φx(x).

By the definition of F , it is easy to check that F (−τ, x) = F (τ, x). Thus,

B(−τ, x) = F (τ, x)F (τ + p, x)φx(x). (4.9)

If we obtain the asymptotic behaviors for τ positive and large, then by (4.9), we obtain the

corresponding behavior for τ negative and large.

Now let us concentrate on the asymptotics for τ positive and large. Using Lemma 3.10, for

the denumerator of B(τ, x), we obtain the asymptotics as follows:

1∑3
j=1(λj+1 − λj)e−λj+2L

· 1∑3
j=1(λ̃j+1 − λ̃j)e−λ̃j+2L

=
eλ1Leλ̃1L

(λ3 − λ2)(λ̃3 − λ̃2)

(
1 +O

(
e−C|τ |

1
3

))
.

Then, we consider the numerator of B(τ, x). We define

f(τ, x) =
3∑

j=1

(eλj+1L − eλjL)eλj+2x, f̃(τ, x) =
3∑

j=1

(eλ̃j+1L − eλ̃jL)eλ̃j+2x,

We notice the main parts of f and f̃ are the following terms:

fm(τ, x) = −eλ3Leλ2x + eλ2Leλ3x + eλ3Leλ1x, f̃m(τ, x) = −eλ̃3Leλ̃2x + eλ̃2Leλ̃3x + eλ̃3Leλ̃1x.

Therefore, for the product of f and f̃ , we have∫ L

0
f(τ, x)f̃(τ, x)φx(x)dx =

∫ L

0
fm(τ, x)f̃m(τ, x)φx(x)dx+

∫ L

0
(f − fm)(τ, x)f̃m(τ, x)φx(x)dx

+

∫ L

0
fm(τ, x)(f̃ − f̃m)(τ, x)φx(x)dx+

∫ L

0
(f − fm)(τ, x)(f̃ − f̃m)(τ, x)φx(x)dx.

Using Lemma 3.10, we know the following three terms are negligible.∫ L

0
|(f − fm)(τ, x)f̃m(τ, x)φx(x)|dx+

∫ L

0
|(f − fm)(τ, x)(f̃ − f̃m)(τ, x)φx(x)|dx

+

∫ L

0
|fm(τ, x)(f̃ − f̃m)(τ, x)φx(x)|dx ≤ C|e(λ3+λ̃3)L|e−C|τ |

1
3 .
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It suffices to estimate the main part
∫ L
0 fm(x, τ)f̃m(x, τ)φx(x). By the definition of φ, we obtain∫ L

0
fm(x, τ)f̃m(x, τ)φx(x) =

∫ L

0
fm(x, τ)f̃m(x, τ)

 3∑
j=1

ηj+2(ηj+1 − ηj)e
ηj+2x

 dx.

We sort the terms of
∫ L
0 fm(x, τ)f̃m(x, τ)φx(x) into four groups.

• The first part, by (4.7) and Lemma 3.10,∫ L

0

(
−eλ3Leλ2xeλ̃2Leλ̃3x − eλ2Leλ3xeλ̃3Leλ̃2x + eλ2Leλ3xeλ̃2Leλ̃3x

)
×

 3∑
j=1

ηj+2(ηj+1 − ηj)e
ηj+2x

 dx = e(λ3+λ̃3+λ2+λ̃2)L

(
Z1(τ) +O

(
e−C|τ |

1
3

))
,

where

Z1(τ) :=

3∑
j=1

ηj+2(ηj+1 − ηj)

(
1

λ3 + λ̃3 + ηj+2

− 1

λ3 + λ̃2 + ηj+2

− 1

λ2 + λ̃3 + ηj+2

)
. (4.10)

• The second part is defined by∫ L

0

(
eλ3Leλ1xeλ̃3Leλ̃1x − eλ3Leλ1xeλ̃3Leλ̃2x − eλ3Leλ2xeλ̃3Leλ̃1x

)
×

 3∑
j=1

ηj+2(ηj+1 − ηj)e
ηj+2x

 dx = e(λ3+λ̃3)L

(
Z2(τ) +O(e−C|τ |

1
3 )

)
,

where

Z2(τ) :=
3∑

j=1

ηj+2(ηj+1 − ηj)

(
− 1

λ1 + λ̃1 + ηj+2

+
1

λ1 + λ̃2 + ηj+2

+
1

λ2 + λ̃1 + ηj+2

)
. (4.11)

• The third part is defined by∫ L

0
eλ3Leλ2xeλ̃3Leλ̃2x

 3∑
j=1

ηj+2(ηj+1 − ηj)e
ηj+2x

 dx = e(λ3+λ̃3)LZ3(τ),

where

Z3(τ) :=
(
eλ2L+λ̃2L − 1

) 3∑
j=1

ηj+2(ηj+1 − ηj)

λ2 + λ̃2 + ηj+2

. (4.12)

• The last part is defined by∫ L

0

(
eλ3Leλ1xeλ̃2Leλ̃3x + eλ2Leλ3xeλ̃3Leλ̃1x

) 3∑
j=1

ηj+2(ηj+1 − ηj)e
ηj+2x

 dx.

We estimate term by term. For the fourth part, it is easy to show that it is negligible, because

thanks to Lemma 3.10, we have∣∣∣∣∣∣
∫ L

0

(
eλ3Leλ1xeλ̃2Leλ̃3x + eλ2Leλ3xeλ̃3Leλ̃1x

) 3∑
j=1

ηj+2(ηj+1 − ηj)e
ηj+2x

 dx

∣∣∣∣∣∣ = |e(λ3+λ̃3)L|O(e−Cτ
1
3 ).
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Hence, we only pay attention to the first three parts. It suffices to derive the asymptotic

behaviors of Z1, Z2, and Z3. We begin with Z1 (defined in (4.10)). Since
∑3

j=1 ηj+2(ηj+1−ηj) =

0, we obtain:

Z1(τ) =
3∑

j=1

ηj+2(ηj+1 − ηj)

(
1

λ3 + λ̃3 + ηj+2

− 1

λ3 + λ̃3

)

+
3∑

j=1

ηj+2(ηj+1 − ηj)

(
− 1

λ3 + λ̃2 + ηj+2

+
1

λ3 + λ̃2

)

+
3∑

j=1

ηj+2(ηj+1 − ηj)

(
− 1

λ2 + λ̃3 + ηj+2

+
1

λ2 + λ̃3

)
.

At infinity, λ3 + λ̃3, λ3 + λ̃2, and λ2 + λ̃3 exhibit the same behavior. Without loss of generality,

we compute the asymptotic expansion for 1
λ3+λ̃3+ηj+2

− 1
λ3+λ̃3

.

Using Lemma 3.10, at the level O(τ−
5
3 ), we obtain

λ3 + λ̃3 = (µ3 + µ̃3)τ
1
3 −

(
1

3µ3
+

1

3µ̃3

)
τ−

1
3 +O(τ−

5
3 )

= (µ3 + µ̃3)τ
1
3

(
1− 1

3µ3µ̃3
τ−

2
3

)
+O(τ−

5
3 )

Therefore, we obtain the asymptotic expansion:

1

λ3 + λ̃3 + ηj+2

− 1

λ3 + λ̃3

=− ηj+2

(λ3 + λ̃3 + ηj+2)(λ3 + λ̃3)

=− ηj+2

(λ3 + λ̃3)2
1

(1 +
ηj+2

λ3+λ̃3
)

=− ηj+2

(λ3 + λ̃3)2
(1− ηj+2

λ3 + λ̃3

+
η2j+2

(λ3 + λ̃3)2
) +O(λ3 + λ̃3)

−5)

More precisely, we plug λ3+λ̃3 = (µ3+µ̃3)τ
1
3

(
1− 1

3µ3µ̃3
τ−

2
3

)
+O(τ−

5
3 ) into the above expression

1

λ3 + λ̃3 + ηj+2

− 1

λ3 + λ̃3

= I1 × I2 +O(τ−
5
3 ),

where

I1 := − ηj+2

(µ3 + µ̃3)2τ
2
3 (1− 1

3µ3µ̃3
τ−

2
3 )2

= O(τ−
2
3 ),

I2 := 1− ηj+2

(µ3 + µ̃3)τ
1
3 (1− 1

3µ3µ̃3
τ−

2
3 )

+
η2j+2

(µ3 + µ̃3)2τ
2
3 (1− 1

3µ3µ̃3
τ−

2
3 )2

= O(1).

Thus, it suffices to expand I1 until the order O(τ−
5
3 ):

I1 =
ηj+2(1 + 2 1

3µ3µ̃3
τ−

2
3 )

(µ3 + µ̃3)2τ
2
3

+O(τ−
5
3 ) = −

(
ηj+2τ

− 2
3

(µ3 + µ̃3)2
+

2ηj+2τ
− 4

3

3µ3µ̃3(µ3 + µ̃3)2

)
+O(τ−

5
3 ),

and I2 until the order O(τ−1):
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I2 = 1−
ηj+2(1 +

1
3µ3µ̃3

τ−
2
3 )

(µ3 + µ̃3)τ
1
3

+
η2j+2(1 + 2 1

3µ3µ̃3
τ−

2
3 )

(µ3 + µ̃3)2τ
2
3

+O(τ−
5
3 ) = 1− ηj+2τ

− 1
3

(µ3 + µ̃3)
+

η2j+2τ
− 2

3

(µ3 + µ̃3)2
+O(τ−1).

As a consequence, we deduce that

1

λ3 + λ̃3 + ηj+2

− 1

λ3 + λ̃3

=−
(

ηj+2

(µ3 + µ̃3)2
τ−

2
3 +

2ηj+2

3µ3µ̃3(µ3 + µ̃3)2
τ−

4
3

)(
1− ηj+2

(µ3 + µ̃3)
τ−

1
3 +

η2j+2

(µ3 + µ̃3)2
τ−

2
3

)
+O(τ−

5
3 )

=− ηj+2

(µ3 + µ̃3)2
τ−

2
3 +

η2j+2

(µ3 + µ̃3)3
τ−1 −

(
2ηj+2

3µ3µ̃3(µ3 + µ̃3)2
+

η3j+2

(µ3 + µ̃3)4

)
τ−

4
3 +O(τ−

5
3 ).

Therefore, we obtain

Z1(τ) =

3∑
j=1

η2j+2(ηj+1 − ηj)
(
C11τ

− 2
3 + C12ηj+2τ

−1 + (C13 + C14η
2
j+2)τ

− 4
3

)
+O(τ−

5
3 ),

where the coefficients C11, C12, C13 and C14 are defined via:

C11 :=− 1

(µ3 + µ̃3)2
+

1

(µ3 + µ̃2)2
+

1

(µ2 + µ̃3)2
= −1

3
+

−1 + i
√
3

6
+

−1− i
√
3

6
= −2

3

C12 :=
1

(µ3 + µ̃3)3
− 1

(µ3 + µ̃2)3
− 1

(µ2 + µ̃3)3
=

1

3
√
3
+

1

3
√
3
+

1

3
√
3
=

1√
3

C13 :=− 2

3µ3µ̃3(µ3 + µ̃3)2
+

2

3µ3µ̃2(µ3 + µ̃2)2
+

2

3µ2µ̃3(µ2 + µ̃3)2
= −2

9
+

2

9
+

2

9
=

2

9

C14 :=− 1

(µ3 + µ̃3)4
+

1

(µ3 + µ̃2)4
+

1

(µ2 + µ̃3)4
= −1

9
+

−1− i
√
3

18
+

−1 + i
√
3

18
= −2

9

We derive that

Z1(τ) = −2

3
τ−

2
3

3∑
j=1

η2j+2(ηj+1−ηj)+
1√
3
τ−1

3∑
j=1

η3j+2(ηj+1−ηj)−
2

9
τ−

4
3

3∑
j=1

η2j+2(η
2
j+2−1)(ηj+1−ηj)+O(τ−

5
3 ).

(4.13)

For Z2 (defined in (4.11)), thanks to
∑3

j=1 ηj+2(ηj+1 − ηj) = 0, we obtain

Z2(τ) =
3∑

j=1

ηj+2(ηj+1 − ηj)

(
− 1

λ1 + λ̃1 + ηj+2

+
1

λ1 + λ̃1

)

+
3∑

j=1

ηj+2(ηj+1 − ηj)

(
1

λ1 + λ̃2 + ηj+2

− 1

λ1 + λ̃2

)

+
3∑

j=1

ηj+2(ηj+1 − ηj)

(
1

λ2 + λ̃1 + ηj+2

− 1

λ2 + λ̃1

)
.

Following the same procedure, we derive that

Z2(τ) =
3∑

j=1

η2j+2(ηj+1 − ηj)
(
C21τ

− 2
3 + C22ηj+2τ

−1 + (C23 + C24η
2
j+2)τ

− 4
3

)
+O(τ−

5
3 ),
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where the coefficients C21, C22, C23 and C24 are defined via:

C21 :=
1

(µ1 + µ̃1)2
− 1

(µ1 + µ̃2)2
− 1

(µ2 + µ̃1)2
= −1

3
+

−1 + i
√
3

6
+

−1− i
√
3

6
= −2

3

C22 :=− 1

(µ1 + µ̃1)3
+

1

(µ1 + µ̃2)3
+

1

(µ2 + µ̃1)3
=

1

3
√
3
+

1

3
√
3
+

1

3
√
3
=

1√
3

C23 :=
2

3µ1µ̃1(µ1 + µ̃1)2
− 2

3µ1µ̃2(µ1 + µ̃2)2
− 2

3µ2µ̃1(µ2 + µ̃1)2
= −2

9
+

2

9
+

2

9
=

2

9

C24 :=
1

(µ1 + µ̃1)4
− 1

(µ1 + µ̃2)4
− 1

(µ2 + µ̃1)4
=

1

9
− −1− i

√
3

18
− −1 + i

√
3

18
= −2

9

Therefore, we obtain

Z2(τ) =
2

3
τ−

2
3

3∑
j=1

η2j+2(ηj+1−ηj)+
1√
3
τ−1

3∑
j=1

η3j+2(ηj+1−ηj)+
2

9
τ−

4
3

3∑
j=1

η2j+2(η
2
j+2−1)(ηj+1−ηj)+O(τ−

5
3 ).

(4.14)

We finally consider Z3(τ) given in (4.12). We have, by (3.4),

λ3
2 + λ̃3

2 + λ2 + λ̃2 = −iτ + i(τ − p) = −ip.

This yields

λ2 + λ̃2 = − ip

λ2
2 + λ̃2

2 − λ2λ̃2 + 1

From Lemma 3.10, we have

λ2 + λ̃2 = −1

3
ipτ−

2
3 +O(τ−1)

It follows that

3∑
j=1

ηj+2(ηj+1 − ηj)

λ2 + λ̃2 + ηj+2

=
3∑

j=1

ηj+2(ηj+1 − ηj)

−1
3 ipτ

− 2
3 + ηj+2

+O(τ−1)

=

3∑
j=1

(ηj+1 − ηj)

(
1 +

1

3

ipτ−
2
3

ηj+2

)
+O(τ−1)

=
1

3
ip

3∑
j=1

ηj+1 − ηj
ηj+2

τ−
2
3 +O(τ−1). (4.15)

and

e(λ+λ̃)L − 1 = e(−
1
3
ipτ−

2
3+O(τ−1))L − 1 = −1

3
ipLτ−

2
3 +O(τ−1).

We derive from (4.15) and Lemma 3.10 that

Z3(τ) =
1

3
ip

(
−1

3
ipLτ−

2
3 +O(τ−1)

) 3∑
j=1

ηj+1 − ηj
ηj+2

τ−
2
3+O(τ−1) =

1

9
p2Lτ−

4
3

3∑
j=1

ηj+1 − ηj
ηj+2

+O(τ−
5
3 ).

(4.16)

Moreover, thanks to η3j + ηj + ip = 0, we know that

3∑
j=1

η3j+2(ηj+1 − ηj) = −
3∑

j=1

(ηj+2 + ip)(ηj+1 − ηj) = 0.

Therefore, Z1(τ) + Z2(τ) = O(τ−
5
3 ).
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As a consequence, we derive that

|Z1(τ)|+ |Z2(τ)|+ |Z3(τ)| = O(τ−
4
3 ) for large positive τ .

Using Lemma 3.10, we have

(λ3 − λ2)(λ̃3 − λ̃2) = 3τ
2
3 (1 +O(τ−

1
3 )).

Then, combining (4.13), (4.14), and (4.16), we obtain∫ L

0
B(τ, x) dτ =

1

3τ
2
3

(
Z1(τ) + Z2(τ) + Z3(τ) +O(τ−

5
3 )
)
= Eτ−2 +O(τ−

7
3 ),

which is the conclusion for large positive τ . □

By the definition of B(τ, x), we obtain

Lemma 4.3. Let p, φ, and ηj be the same as in Lemma 4.2. Let u ∈ L2(0,+∞) and let

y ∈ C([0,+∞);L2(0, L)) ∩ L2
loc

(
[0,+∞);H1(0, L)

)
be the unique solution of (3.7). We have∫ +∞

0

∫ L

0
|y(t, x)|2φx(x)e

−iptdxdt =

∫
R
û(τ)û(τ − p)

(
E

|τ |2
+O(|τ |−

7
3 )

)
dτ.

4.3. Quantitative estimates of QM . In the following proposition, we will transfer the fre-

quency asymptotic property into an estimate with certain Sobolev norms, which is the key

ingredient for the analysis of the obstruction of null-controllability for small time of the KdV

system (1.1).

Proposition 4.4. Let p, φ, and ηj be the same as in Lemma 4.2. Let u ∈ L2(0,+∞) with

u ̸≡ 0, u(t) = 0 for t > T . Let y ∈ C([0,+∞);L2(0, L)) ∩L2
loc

(
[0,+∞);H1(0, L)

)
be the unique

solution of (3.7) with y(t, ·) = 0 for t > T . Then, there exists a real number N(u) ≥ 0 such that

C−1∥u∥H−1 ≤ N(u) ≤ C∥u∥H−1 for some constant C = C(L) ≥ 1, and∫ ∞

0

∫ L

0
|y(t, x)|2e−iptφx(x)dxdt = N(u)2

(
E +O(1)T

1
100

)
. (4.17)

Before we present our proof of Proposition 4.4, we first recall the definition of H in Lemma

3.11. Since H is a non-constant entire function, we know that there exists γ > 0 such that

H′(τ + iγ) ̸= 0 for all τ ∈ R.

Fix such a γ and denote

Hγ(τ) = H(τ + iγ), τ ∈ C. (4.18)

Thus, we have the following asymptotic behaviors for Hγ and H, whose proof can be found

in [CKN24b, Page 1216]

Lemma 4.5. H and H′
γ have the following asymptotic behaviors:

1. H(τ) = κτ−
2
3
−ke−µ1Lτ

1
3
(
1 +O(τ−

1
3 )
)
, H′

γ(τ) = −µ1L
3 τ−

2
3κτ−

2
3
−ke−µ1Lτ

1
3
(
1 +O(τ−

1
3 )
)
,

where κ = − 1
(µ2−µ1)(µ1−µ3)

.

2. limτ∈R,τ→+∞
H(τ)|τ |−

2
3

H′
γ(τ)

= α := 3e−iπ6

L , limτ∈R,τ→−∞
H(τ)|τ |−

2
3

H′
γ(τ)

= −α.

3. ∃C > 0 such that
∣∣∣ H(τ)
H′

γ(τ)

∣∣∣ ≤ C.
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4. In addition, we have∣∣H(τ)|τ |−
2
3 − αH′

γ(τ)
∣∣ ≤ C|H′

γ(τ)||τ |−
1
3 for large positive τ ,∣∣H(τ)|τ |−

2
3 − αH′

γ(τ)
∣∣ ≤ C|H′

γ(τ)||τ |−
1
3 for large negative τ .

Now let us define

ŵ(τ) :=
û(τ)H′

γ(τ)

H(τ)
. (4.19)

Lemma 4.6. ŵ is an entire function and satisfies Paley–Wiener’s conditions in (−T −ε, T +ε),

∀ε > 0. Therefore, ŵ is the Fourier transform of a L2 function w, with supp(w) ⊂ [−T, T ].

The properties and the construction of w follow the same approach as Coron-Koenig-Nguyen.

However, the main difficulty for us is to obtain a quantitative estimate associated with our

asymptotic expansion of∫ L

0
B(τ, x)dx =

E

|τ |2
+O(|τ |−

7
3 ) for τ ∈ R with large |τ |.

We need to emphasize that we are now in a degenerate situation, which implies we need to deal

with a higher-order non-vanishing term ∼ 1
τ2
. This in turn gives us a lower-order Sobolev norm

∼ ∥u∥2H−1 , which requires a more delicate analysis to derive our quantitative estimates.

Now we are in a position to prove Proposition 4.4.

Proof of Proposition 4.4. Thanks to Lemma 4.5 and the definition of ŵ, we have

|û(τ)| =
∣∣∣∣ ŵ(τ)H(τ)

H′
γ(τ)

∣∣∣∣ ≤ C|ŵ(τ)|. (4.20)

In this proof, to simplify the notation, we will use C to denote a strictly positive constant that

is independent of T . This C may change from line to line.

By Lemma 4.2, we know that
∫ L
0 B(τ, x) dx is uniformly bounded for ∀τ ∈ R. Therefore, we

derive that ∣∣∣∣û(τ)û(τ − p)

∫ L

0
B(τ, x) dx

∣∣∣∣ ≤ C|ŵ(τ)||ŵ(τ − p)| for τ ∈ R. (4.21)

We claim that there exists δ0 > 0 such that∣∣∣∣∫
R
û(τ)û(τ − p)

∫ L

0
B(τ, x) dx dτ − E|α|2

∫
R
(1 + |τ |2)−

1
6 (1 + |τ − p|2)−

1
6 ŵ(τ)ŵ(τ − p) dτ

∣∣∣∣ ≤ CT δ0∥w∥2
H− 1

3
.

Note that, for m ≥ 1 to be specified later,

∣∣∣∣∣
∫
|τ |>m

û(τ)û(τ − p)

∫ L

0
B(τ, x) dx dτ − E|α|2

∫
|τ |>m

(1 + |τ |2)−
1
6 (1 + |τ − p|2)−

1
6 ŵ(τ)ŵ(τ − p) dτ

∣∣∣∣∣
≤
∫
|τ |>m

∣∣∣∣û(τ)û(τ − p)

(∫ L

0
B(τ, x) dx− E|τ |−2

)∣∣∣∣dτ
+ |E|

∫
|τ |>m

|τ |−
2
3

∣∣∣(1 + |τ |2)−
1
6 (1 + |τ − p|2)−

1
6 |τ |

2
3 |α|2ŵ(τ)ŵ(τ − p)− |τ |−

4
3 û(τ)û(τ − p)

∣∣∣ dτ.
On the one hand, for the first part of the right-hand side, by Lemma 4.2 and (4.20), we obtain∫

|τ |>m

∣∣∣∣û(τ)û(τ − p)

(∫ L

0
B(τ, x) dx− E|τ |−2

)∣∣∣∣ dτ ≤ C

∫
|τ |>m

|τ |−
7
3 |ŵ(τ)||ŵ(τ−p)|dτ. (4.22)
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For |τ | large enough, we have

|τ |
2
3 (1 + |τ |2)−

1
6 (1 + |τ − p|2)−

1
6 = 1 +

p

3τ
+O(

1

τ2
).

Therefore, for the second part of the right-hand side, we derive that

|E|
∫
|τ |>m

|τ |−
2
3

∣∣∣(1 + |τ |2)−
1
6 (1 + |τ − p|2)−

1
6 |τ |

2
3 |α|2ŵ(τ)ŵ(τ − p)− |τ |−

4
3 û(τ)û(τ − p)

∣∣∣ dτ
≤ C

∫
|τ |>m

|ŵ(τ)||ŵ(τ − p)||τ |−
5
3dτ + C

∫
|τ |>m

|ŵ(τ)||ŵ(τ − p)||τ |−1dτ

≤ C

∫
|τ |>m

|ŵ(τ)||ŵ(τ − p)||τ |−1dτ.

(4.23)

Putting (4.22) and (4.23) together, we obtain∣∣∣∣∣
∫
|τ |>m

û(τ)û(τ − p)

∫ L

0
B(τ, x) dx dτ − E|α|2

∫
|τ |>m

(1 + |τ |2)−
1
6 (1 + |τ − p|2)−

1
6 ŵ(τ)ŵ(τ − p) dτ

∣∣∣∣∣
≤ C

∫
|τ |>m

|ŵ(τ)||ŵ(τ − p)||τ |−
7
3dτ + C

∫
|τ |>m

|ŵ(τ)||ŵ(τ − p)||τ |−1dτ

≤ C

∫
|τ |>m

|ŵ(τ)||ŵ(τ − p)||τ |−1dτ.

Then we estimate the low-frequency part |τ | ≤ m. Combining the estimate (4.21) and (1 +

|τ |2)−
1
6 (1 + |τ − p|2)−

1
6 ≤ 1, we obtain∣∣∣∣∣

∫
|τ |≤m

û(τ)û(τ − p)

∫ L

0
B(τ, x) dx dτ − E|α|2

∫
|τ |≤m

(1 + |τ |2)−
1
6 (1 + |τ − p|2)−

1
6 ŵ(τ)ŵ(τ − p) dτ

∣∣∣∣∣
≤ C

∫
|τ |≤m

|ŵ(τ)||ŵ(τ − p)| dτ.

Summing up the estimates for high-frequency part and low-frequency part, we derive∣∣∣∣∫
R
û(τ)û(τ − p)

∫ L

0
B(τ, x) dx dτ − E|α|2

∫
R
(1 + |τ |2)−

1
6 (1 + |τ − p|2)−

1
6 ŵ(τ)ŵ(τ − p) dτ

∣∣∣∣
≤ C

∫
|τ |≤m

|ŵ(τ)||ŵ(τ − p)|dτ + Cm− 1
3

∫
|τ |>m

|τ |−
2
3 |ŵ(τ)||ŵ(τ − p)| dτ.

We first deal with the term
∫
|τ |≤m |ŵ(τ)||ŵ(τ − p)|dτ ,∫

|τ |≤m
|ŵ(τ)||ŵ(τ − p)|dτ

≤
∫
|τ |≤m

(1 + |τ |2)
1
6
+ε(1 + |τ − p|2)

1
6
+ε(1 + |τ |2)−

1
6
−ε(1 + |τ − p|2)−

1
6
−ε|ŵ(τ)||ŵ(τ − p)|dτ

Using Peetre’s inequality in Proposition 3.7,

(1 + |τ |2)
1
6
+ε(1 + |τ − p|2)

1
6
+ε ≤ 2

1
6
+ε(1 + |τ |2)

1
3
+2ε(1 + |p|2)

1
6
+ε
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Using |τ | ≤ m and m ≥ 1,

(1 + |τ |2)
1
6
+ε(1 + |τ − p|2)

1
6
+ε ≤ 2

1
6
+ε(1 + |p|2)

1
6
+ε|m|

2
3
+4ε

Therefore,∫
|τ |≤m

|ŵ(τ)||ŵ(τ − p)|dτ

≤ 2
1
6
+ε(1 + |p|2)

1
6
+ε|m|

2
3
+4ε

∫
|τ |≤m

(1 + |τ |2)−
1
6
−ε(1 + |τ − p|2)−

1
6
−ε|ŵ(τ)||ŵ(τ − p)| dτ

≤ 2
1
6
+ε(1 + |p|2)

1
6
+εm

2
3
+4ε∥w∥2

H− 1
3−2ε

.

By Lemma 4.6 and Lemma 3.6, we know that for −1
3 − 2ε > −1

2 ,

∥w∥2
H− 1

3−2ε
≤ CT 4ε∥w∥2

H− 1
3
.

Hence, we derive that ∫
|τ |≤m

|ŵ(τ)||ŵ(τ − p)| dτ ≤ Cm
2
3
+4εT 4ε∥w∥2

H− 1
3
.

For the other term m− 1
3

∫
|τ |>m |τ |−

2
3 |ŵ(τ)||ŵ(τ − p)|dτ ,∫

|τ |>m
|τ |−

2
3 |ŵ(τ)||ŵ(τ − p)|dτ

=

∫
|τ |>m

(1 + |τ |2)
1
6 (1 + |τ − p|2)

1
6

|τ |
2
3

(1 + |τ |2)−
1
6 (1 + |τ − p|2)−

1
6 |ŵ(τ)||ŵ(τ − p)|dτ

Applying Peetre’s inequality again, we obtain

(1 + |τ |2)
1
6 (1 + |τ − p|2)

1
6

|τ |
2
3

≤ 2
1
6 (1 + |τ |2)

1
3 (1 + |p|2)

1
6

|τ |
2
3

≤ 2
1
6 (1+|τ |−2)

1
3 (1+|p|2)

1
6 ≤ 2

1
2 (1+|p|2)

1
6 .

Consequently, we have

m− 1
3

∫
|τ |>m

|τ |−
2
3 |ŵ(τ)||ŵ(τ − p)|dτ ≤ Cm− 1

3 ∥w∥2
H− 1

3
.

In summary, we obtain the following estimate:∣∣∣∣∫
R
û(τ)û(τ − p)

∫ L

0
B(τ, x) dx dτ − E|α|2

∫
R
(1 + |τ |2)−

1
6 (1 + |τ − p|2)−

1
6 ŵ(τ)ŵ(τ − p) dτ

∣∣∣∣
≤ C

(
m

2
3
+4εT 4ε +m− 1

3

)
∥w∥2

H− 1
3
.

Let m
2
3
+4εT 4ε = m− 1

3 . Thus, m = T− 4ε
1+4ε . Taking ε = 1

36 , then δ0 = 4ε
3(1+4ε) = 1

30 and

−2ε− 1
3 > −1

2 , we conclude the claim by the following inequality∣∣∣∣∫
R
û(τ)û(τ − p)

∫ L

0
B(τ, x) dx dτ − E|α|2

∫
R
(1 + |τ |2)−

1
6 (1 + |τ − p|2)−

1
6 ŵ(τ)ŵ(τ − p) dτ

∣∣∣∣
≤ CT

1
30 ∥w∥2

H− 1
3
.

Now we deal with the main term of QM . It is easy to write
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∫
R
(1 + |τ |2)−

1
6 (1 + |τ − p|2)−

1
6 ŵ(τ)ŵ(τ − p) dτ =

∫
R
|f |2e−itp dt,

where f̂(τ) = (1 + |τ |2)−
1
6 ŵ(τ) or we denote by f = ⟨Dt⟩−

1
3w. We choose two cutoff functions

χ, χ̃ such that χ = χ̃ = 1 on [−1, 1], and supp(χ) ⊂ [−2, 2] ⊂ supp(χ̃) ⊂ [−3, 3]. In addition, we

choose χ̃ = 1 on the support of χ, i.e. χ̃χ = χ. Let β ∈ (0, 1) and T ∈ (0, 1). We define

χ̃β(t) := χ̃(
t

T β
), χβ(t) := χ(

t

T β
),∀t ∈ R.

Thanks to supp(w) ⊂ [−T, T ] ⊂ (−T β, T β), we have the following identity:

χ̃βw = w, χβw = w.

Thus,∫
R
|f |2e−itp dt =

∫
R
|χ̃βf |2e−itp dt+

∫
R
(1− χ̃2

β)|f |2e−itp dt

=

∫
R
|χ̃βf |2(1 +O(T β)) dt+

∫
R
(1− χ̃2

β)|f |2e−itp dt

Away from time 0, we aim to prove
∫

R(1 − χ̃2
β)|f |2e−itp dt is negligible when T is sufficiently

small.∣∣∣∣∫
R
(1− χ̃2

β)|f |2e−itp dt

∣∣∣∣ ≤ ∫
R
(1− χ̃2

β)|f |2 dt

≤
∫

R
(1− χ̃2

β)|⟨Dt⟩−
1
3χβw|2 dt

≤
∫

R
(1− χ̃2

β)|[⟨Dt⟩−
1
3 , χβ]w|2 dt+

∫
R
(1− χ̃2

β)χ
2
β|⟨Dt⟩−

1
3w|2 dt.

For the term
∫

R(1− χ̃2
β)χ

2
β|⟨Dt⟩−

1
3w|2 dt, due to (1− χ̃2

β)χ
2
β ≡ 0, we know it vanishes. Then∣∣∣∣∫

R
(1− χ̃2

β)|f |2e−itp dt

∣∣∣∣ ≤ ∫
R
(1− χ̃2

β)|[⟨Dt⟩−
1
3 , χβ]w|2 dt.

Applying Corollary 3.5, we know the commutator ∥[⟨Dt⟩−
1
3 , χβ]∥L(H− 4

3 ,L2)
≤ CT−s0β with s0 =

13
3 . We emphasize that this constant C is independent of T . Hence,∫

R
(1− χ̃2

β)|[⟨Dt⟩−
1
3 , χβ]w|2 dt ≤ ∥[⟨Dt⟩−

1
3 , χβ]w∥2L2 ≤ CT−2s0β∥w∥2

H− 4
3
.

Using Lemma 3.6, we have∫
R
(1− χ̃2

β)|[⟨Dt⟩−
1
3 , χβ]w|2 dt ≤ CT−2s0β∥w∥2

H− 4
3
≤ CT 2( 1

6
−s0β)(1 + ln

1

T
)∥w∥2

H− 1
3
.

On the other hand,
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∫
R
|χ̃βf |2 dt =

∫
R
|χ̃β⟨Dt⟩−

1
3χβw|2 dt

=

∫
R
|⟨Dt⟩−

1
3 χ̃βχβw + [χ̃β, ⟨Dt⟩−

1
3 ]χβw + |2 dt

=

∫
R
|⟨Dt⟩−

1
3w + [χ̃β, ⟨Dt⟩−

1
3 ]χβw|2 dt

=

∫
R
|⟨Dt⟩−

1
3w|2 dt+ 2

∫
R
⟨Dt⟩−

1
3w[χ̃β, ⟨Dt⟩−

1
3 ]χβw dt+

∫
R
|[χ̃β, ⟨Dt⟩−

1
3 ]χβw|2 dt

Using Cauchy-Schwarz’s inequality,

2

∫
R
⟨Dt⟩−

1
3w[χ̃β, ⟨Dt⟩−

1
3 ]χβw dt ≤ 2∥w∥

H− 1
3
∥[χ̃β, ⟨Dt⟩−

1
3 ]w∥L2 ≤ CT−s0β∥w∥

H− 1
3
∥w∥

H− 4
3

≤ CT
1
6
−s0β(1 + ln

1

T
)
1
2 ∥w∥2

H− 1
3

Similarly, ∫
R
|[χ̃β, ⟨Dt⟩−

1
3 ]χβw|2 dt ≤ CT 2( 1

6
−s0β)(1 + ln

1

T
)∥w∥2

H− 1
3
,

we obtain∫
R
|f |2e−itp dt =

∫
R
|χ̃βf |2(1 +O(T β)) dt+ ∥w∥2

H− 1
3
O(T 2( 1

6
−s0β)(1 + ln

1

T
))

= ∥w∥2
H− 1

3

(
1 +O(T β) +O(T

1
6
−s0β(1 + ln

1

T
)
1
2 ) +O(T 2( 1

6
−s0β)(1 + ln

1

T
))

)
.

Since limT→0+ T s0β(1+ ln 1
T )

1
2 = 0, for any β ∈ (0, 1), we choose β such that 1

6 − 2s0β > 0, then∫
R
|f |2e−itp dt = ∥w∥2

H− 1
3

(
1 +O(T β) +O(T

1
6
−2s0β) +O(T 2( 1

6
−2s0β))

)
.

Therefore, we have∫
R
û(τ)û(τ − p)

∫ L

0
B(τ, x) dx dτ = E|α|2∥w∥2

H− 1
3

(
1 +O(T β) +O(T

1
6
−2s0β) +O(T 2( 1

6
−2s0β)) +O(T

1
30 )
)
.

Choosing β sufficiently small, for example, β = 1
100 , we obtain:∫

R
û(τ)û(τ − p)

∫ L

0
B(τ, x) dx dτ = E|α|2∥w∥2

H− 1
3

(
1 +O(T

1
100 )
)
.

The conclusion follows by noting that

∥w(τ)∥2
H− 1

3
≥ C

∫
R

|û(τ)|2

1 + |τ |2
dτ,

and by normalizing u such that |α|∥w∥L2(R) = 1. □

4.4. The explicit construction of the trapping direction Ψ. Let (k, l) ∈ S2, and

L = 2π

√
k2 + kl + l2

3
, p =

(2k + l)(k − l)(2l + k)

3
√
3(k2 + kl + l2)3/2

. (4.24)

We solve the characteristic equation η3 + η + ip = 0 and the roots read as follows:

η1 = −2πi

3L
(2k + l), η2 = η1 +

2πi

L
k, η3 = η2 +

2πi

L
l. (4.25)
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Lemma 4.7. Let (k, l) ∈ S2 and let E be given by (4.8) with ηj in (4.25) and with p, L in

(4.24). Then

E = −8π3p

27L2
kl(k + l) ̸= 0.

Proof. We compute directly

3∑
j=1

ηj+1 − ηj
ηj+2

=
3k

k + 2l
− 3l

2k + l
− 3(k + l)

k − l
= − 27kl(k + l)

(k + 2l)(2k + l)(k − l)
.

We then have, by (4.8),

E =
1

27
p2L

(
− 27kl(k + l)

(k − l)(k + 2l)(2l + k)

)
= −8π3p

27L2
kl(k + l)..

The proof is complete. □

Let (k, l) ∈ S2, ηj be in (4.25) with p, L in (4.24). As a consequence of Lemma 4.7, we obtain

a nonzero direction Ψ = Ψ(k,l) defined as follows

Ψ(t, x) = Re(E)Re{φ(x)e−ipt}+ Im(E)Im{φ(x)e−ipt}, (4.26)

which satisfies satisfies the linear KdV system (4.1) with φ defined in (4.6), as noted in [Cer07].

Equipped with Proposition 4.4, we are able to give proof to Proposition 4.1.

Proof of Proposition 4.1. By Lemma 4.2, let p ∈ R and let φ be defined by (4.6), where (4.7)

holds, ηj ̸= 0, η3j + ηj + ip = 0 for j = 1, 2, 3. For E ̸= 0, there exists T∗ > 0 such that, for any

u ∈ L2(0,+∞) with u(t) = 0 for t > T∗ and y(t, ·) = 0 for t > T∗ where y is the unique solution

of (3.7).

Multiplying (4.17) by E and normalizing appropriately, we have

Re

∫ ∞

0

∫ L

0
|y(t, x)|2Ee−iptφx(x) dx dt =

∫ ∞

0

∫ L

0
|y(t, x)|2∂xΨ(t, x) dx dt.

Therefore, for T∗ sufficiently small,∫ ∞

0

∫ +∞

0
y2(t, x)∂xΨ(t, x)dxdt ≥ C∥u∥2H−1(R).

We conclude with the estimate above. □

5. Obstruction to the small time local null-controllability of the KdV system

The main result of this section is the following, which implies in particular the Main Theorem.

Theorem 5.1. Let (k, l) ∈ S2, ηj be in (4.25) with p, L in (4.24), and Ψ be defined in

(4.26). There exists ε0 > 0 such that for all 0 < ε < ε0, for all 0 < T < T∗/2, where T∗

is the constant in Proposition 4.1 with p, ηj, and L given previously, and for all solutions

y ∈ C
(
[0,+∞);H4(0, L)

)
∩ L2

loc

(
[0,+∞);H5(0, L)

)
of

∂ty + ∂3
xy + ∂xy + y∂xy = 0 in (0,+∞)× (0, L),

y(t, 0) = y(t, L) = 0 in (0,+∞),

∂xy(t, L) = u(t) in (0,∞),

y(0, ·) = y0(x) := εΨ(0, ·),

(5.1)
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with u ∈ H
4
3 (R+), ∥u∥

H
4
3 (R+)

< ε0, u(0) = 0, and supp(u) ⊂ [0, T ], we have

y(T, ·) ̸= 0,

i.e., the small-time null controllability fails.

Proof. Before we present our proof, we recall the negative Sobolev norm defined in (4.3) and

fractional Sobolev–Slobodecki norm in Appendix A.3. We point out that all controls we use in

this proof are à priori defined in L2(R+). Consequently, their negative Sobolev norms are both

well-defined and finite. Regarding the fractional Sobolev–Slobodecki norm, it is applied only to

u ∈ H
4
3 (R+) and its zero extension, which is guaranteed by Lemma A.3 and Corollary A.4 in

Appendix A.3.

By Lemma 4.7, the constant E is not 0. Let ε0 be a small positive constant, which depends

only on k and l and is determined later. We prove Theorem 5.1 by contradiction. Assume

that there exists a solution y ∈ C
(
[0,+∞);H4(0, L)

)
∩ L2

loc

(
[0,+∞);H5(0, L)

)
of (5.1) with

y(t, ·) = 0 for t ≥ T , for some u ∈ H
4
3 (0,+∞), for some 0 < ε < ε0, and for some 0 < T < T∗/2

with ∥u∥
H

4
3 (R+)

< ε0, u(0) = 0, and supp(u) ⊂ [0, T ].

We adapt the approach introduced in [CKN24b, Proof of Theorem 5.1], concerning the ob-

struction to small-time controllability. We introduce

y1(t, x) = y(t, x)− c

∫ L

0
y(t, η)Ψ(t, η) dηΨ(t, x), (5.2)

with a normalized constant c−1 :=
∫ L
0 |Ψ(0, η)|2 dη. It is easy to see that y1(0, x) = 0 for

x ∈ (0, L) and y1 satisfies (3.1) with h1 = h2 ≡ 0, h3(t) = u(t), and

f(t, x) = f1(t, x) + ∂xf2(t, x),

with

f1(t, x) =
c

2

∫ L

0
y2(t, η)∂xΨ(t, η) dηΨ(t, x), f2(t, x) =

1

2
y2(t, x).

Thanks to Lemma 3.2, we obtain

∥y∥L2((0,T )×(0,L)) ≤ C
(
∥y0∥L2(0,L) + ∥u∥

H− 1
3 (R)

)
,

∥y∥L2((0,T );H−1(0,L)) + ∥y1∥L2((0,T );H−1(0,L)) ≤ C
(
∥y0∥L2(0,L) + ∥u∥

H− 2
3 (R)

)
.

Here we emphasize that this constant C > 0 is independent of the solution y and the control u.

In this proof, to simplify the notation, we will use C to denote a strictly positive constant that

is independent of the solution y and the control u. C may change from line to line.

Now we introduce two functions y2 and y3, satisfying a decomposition y1 = y2 + y3. Let

y2 ∈ C
(
[0,+∞);L2(0, L)

)
∩ L2

loc

(
[0,+∞);H1(0, L)

)
be the unique solution of (3.1) with h1 =

h2 = h3 ≡ 0 and the same f = f1 + ∂xf2 defined above. Let y3 ∈ C
(
[0,+∞);L2(0, L)

)
∩

L2
loc

(
[0,+∞);H1(0, L)

)
be the unique solution of (3.1) with h1 = h2 ≡ 0, h3(t) = u(t) and

f = 0.

There exists u4 ∈ L2(0,+∞) such that supp(u4) ⊂ [2T∗/3, T∗],

∥u4∥L2(0,+∞) ≤ C∥y3(2T∗/3, ·)∥L2(2T∗/3,T∗), y4(T∗, ·) = 0,
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where y4 ∈ C
(
[0,+∞);L2(0, L)

)
∩ L2

loc

(
[0,+∞);H1(0, L)

)
is the unique solution of

∂ty4 + ∂3
xy4 + ∂xy4 = 0 in (2T∗/3,+∞)× (0, L),

y4(t, 0) = y4(t, L) = 0 in (2T∗/3,+∞),

∂xy4(t, L) = u4(t) in (2T∗/3,+∞),

y4(T∗/2, ·) = y3(2T∗/3, ·).

Such an u4 exists since y3(2T∗/3, ·) is generated from zero at time 0, see [Ros97]. For u4, applying

Lemma 3.2, we obtain

∥u4∥L2(0,+∞) ≤ C∥y2(2T∗/3, ·)∥L2(0,L)

≤ Cmin
{
∥y∥2L2((0,T )×(0,L)), ∥y∥L2((0,T );H1(0,L))∥y∥L2((0,T );H−1(0,L))

}
≤ Cmin

{(
∥y0∥L2(0,L) + ∥u∥

H− 1
3 (R)

)2
, ε0

(
∥y0∥L2(0,L) + ∥u∥

H− 2
3 (R)

)}
Let ỹ ∈ C

(
[0,+∞);L2(0, L)

)
∩ L2

loc

(
[0,+∞);H1(0, L)

)
be the unique solution of (3.1) with

h1 = h2 ≡ 0, h3(t) = u4(t) + u(t), and f = 0. Then, by the choice of u4,

ỹ(t, ·) = 0 for t ≥ T∗.

Multiplying the equation of y with Ψ(t, x), integrating by parts on [0, T ]× [0, L],∫ L

0
y0(x)Ψ(0, x) dx+

1

2

∫ T

0

∫ L

0
y2(t, x)∂xΨ(t, x) dx dt = 0.

Considering the systems for y − y1 and y1 − ỹ, we have∣∣∣∣∫ T

0

∫ L

0
y2(t, x)∂xΨ(t, x) dx dt−

∫ T

0

∫ L

0
y21(t, x)∂xΨ(t, x) dx dt

∣∣∣∣
≤C∥y − y1∥L2((0,T );H1(0,L))∥(y, y1)∥L2((0,T );H−1(0,L))

≤Cε0∥y0∥L2(0,L) + C
(
∥y0∥L2(0,L) + ∥u∥

H− 2
3 (R)

)(
∥y0∥L2(0,L) + ∥u∥

H− 1
3 (R)

)2
.

Similarly, we have∣∣∣∣∫ +∞

0

∫ L

0
y21(t, x)∂xΨ(t, x) dx dt−

∫ +∞

0

∫ L

0
ỹ2(t, x)∂xΨ(t, x) dx dt

∣∣∣∣
≤ C

(
∥y0∥L2(0,L) + ∥u∥L2(R+)

)2 (∥y0∥L2(0,L) + ∥u∥
H− 2

3 (R)

)
.

As a consequence, we obtain∣∣∣∣∫ T

0

∫ L

0
y2(t, x)∂xΨ(t, x) dx dt−

∫ +∞

0

∫ L

0
ỹ2(t, x)∂xΨ(t, x) dx dt

∣∣∣∣
≤ Cε0∥y0∥L2(0,L) + C

(
∥y0∥L2(0,L) + ∥u∥

H− 2
3 (R)

) (
∥y0∥L2(0,L) + ∥u∥L2(R+)

)2
.

On the other hand, from Proposition 4.1 and the choice of y0, we have∫ L

0
y0(x)Ψ(0, x) dx+

1

2

∫ +∞

0

∫ L

0
ỹ2(t, x)∂xΨ(t, x) dx dt ≥ C

(
∥y0∥L2(0,L) + ∥u+ u4∥2H−1(R)

)
.

Indeed, we know that

∥u+ u4∥2H−1(R) ≥ C∥u∥2H−1(R) − C∥u4∥2L2(R) ≥ C∥u∥2H−1(R) − C
(
∥y0∥L2(0,L) + ∥u∥

H− 1
3 (R)

)4
,
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Therefore, we derive∫ L

0
y0(x)Ψ(0, x) dx+

1

2

∫ ∞

0

∫ L

0
ỹ2(t, x)∂xΨ(t, x) dx dt ≥ C

(
∥y0∥L2(0,L) + ∥u∥2H−1(R)

)
−C∥u∥4

H− 1
3 (R)

.

As a consequence, we derive the following inequality.

Cε0∥y0∥L2(0,L) + C
(
∥y0∥L2(0,L) + ∥u∥

H− 2
3 (R)

) (
∥y0∥L2(0,L) + ∥u∥L2(R+)

)2
≥C

(
∥y0∥L2(0,L) + ∥u∥2H−1(R) − C∥u∥4

H− 1
3 (R)

)
.

It follows that, if ε0 is fixed but sufficiently small,

∥u∥4
H− 1

3 (R)
+ ∥u∥

H− 2
3 (R)

∥u∥2L2(R+) ≥ C∥u∥2H−1(R). (5.3)

By the interpolation of Sobolev norms, we have

∥u∥2
H− 1

3 (R)
≤ C∥u∥

H
1
3 (R)

∥u∥H−1(R)≤ Cε0∥u∥H−1(R),

and

∥u∥2L2(R) ≤ C∥u∥8/7
H−1(R)∥u∥

6/7

H
4
3 (R)

, (5.4)

∥u∥
H− 2

3 (R)
≤ C∥u∥6/7

H−1(R)∥u∥
1/7

H
4
3 (R)

,

Recall that we extended u by 0 for t < 0. Thanks to Lemma A.3 and Corollary A.4, using

the definition of Sobolev–Slobodeckij spaces (see Appendix A.3 for proof details), we know that

u ∈ H
4
3 (R). Moreover, we have the following estimates:

∥u∥
H

4
3 (R)

≤ C∥u∥
H

4
3 (R+)

,

∥u∥
H

1
3 (R)

≤ C∥u∥
H

1
3 (R+)

(5.5)

Here this constant C is independent of u.

Therefore, we obtain

∥u∥4
H− 1

3 (R)
+∥u∥

H− 2
3 (R)

∥u∥2L2(R+) ≤ C

(
∥u∥2

H
1
3 (R)

+ ∥u∥
H

4
3 (R)

)
∥u∥2H−1(R) ≤ C

(
ε20 + ε0

)
∥u∥2H−1(R)

Therefore, we derive from (5.3) that, ∥u∥2H−1 ≤ Cε20∥u∥2H−1 + Cε0∥u∥2H−1 . So, for fixed

sufficiently small ε0,

u = 0.

As a consequence, we know that Y = y − εΨ is a solution to
∂tY + ∂3

xY + ∂xY + Y ∂xY = ε2Ψ∂xΨ+ εΨ∂xy + εy∂xΨ in (0,+∞)× (0, L),

y(t, 0) = y(t, L) = 0 in (0,+∞),

∂xy(t, L) = 0 in (0,∞),

y(0, ·) = 0,

Therefore, by energy estimates, we derive that

∥Y (t, ·)∥L2(0,L) ≤ C∥ε2Ψ∂xΨ+ εΨ∂xy + εy∂xΨ∥L2((0,T )×(0,L))

≤ C
(
ε2 + ε

(
∥∂xy∥L2((0,T )×(0,L)) + ∥y∥L2((0,T )×(0,L))

))
.

Due to Lemma 3.2,

∥y∥L2((0,T );H1(0,L)) ≤ Cε∥Ψ(0, ·)∥L2(0,L) ≤ Cε.
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Finally, in particular, we obtain the following estimate5:

∥y(T, ·)− εΨ(T, ·)∥L2(0,L) ≤ Cε2.

If ε0 is sufficiently small, this implies that y(T, ·) ̸= 0, which is a contradiction. The proof is

complete. □
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Appendix A.

A.1. Commutator estimates. In this section, we provide a proof of Corollary 3.5.

Proof of Corollary 3.5. For any f ∈ S(R), using the quantization formula,

(⟨Dx⟩−sϱRf)(x) =
1

2π

∫
R2

ei(x−y)ξ(1 + ξ2)−
s
2 ϱ(

y

R
)f(y) dy dξ,

(ϱR⟨Dx⟩−sf)(x) =
1

2π

∫
R2

ei(x−y)ξϱ(
x

R
)(1 + ξ2)−

s
2 f(y) dy dξ.

By definition, the commutator [⟨Dx⟩−s, ϱR] acting on f is given by(
[⟨Dx⟩−s, ϱR]f

)
(x) =

1

2π

∫
R2

ei(x−y)ξ(1 + ξ2)−
s
2

(
ϱ(

y

R
)− ϱ(

x

R
)
)
f(y) dy dξ

=
1

2π

∫
R2

ei(x−y)ξ(1 + ξ2)−
s
2

(∫ 1

0

y − x

R
ϱ′(

θy + (1− θ)x

R
) dθ

)
f(y) dy dξ

=− 1

2iπ

∫
R2

∂ξ(e
i(x−y)ξ)(1 + ξ2)−

s
2

(∫ 1

0

1

R
ϱ′(

θy + (1− θ)x

R
) dθ

)
f(y) dy dξ.

Integrating by parts in ξ variable, we obtain(
[⟨Dx⟩−s, ϱR]f

)
(x) =

1

2iπ

∫
R2

ei(x−y)ξ∂ξ(1 + ξ2)−
s
2

(∫ 1

0

1

R
ϱ′(

θy + (1− θ)x

R
) dθ

)
f(y) dy dξ

=
1

2iπR

∫
R2

ei(x−y)ξ 2ξ

(1 + ξ2)
1
2

(1 + ξ2)
−s−1

2

(∫ 1

0
ϱ′(

θy + (1− θ)x

R
) dθ

)
f(y) dy dξ.

We only need to show that there exists a constant C > 0 such that

∥⟨Dx⟩1+s[⟨Dx⟩−s, ϱR]f∥L2 ≤ C∥f∥L2 .

We notice that

⟨Dx⟩1+s[⟨Dx⟩−s, ϱR]f(x) =
1

4iπ2R

∫
R2

K(x, z)f(z) dz dξ,

where

K(x, z) =

∫
R3

ei((x−y)ξ+(y−z)η)⟨ξ⟩s+1⟨η⟩−s−22η

(∫ 1

0
ϱ′(

θy + (1− θ)x

R
) dθ

)
dy dη dξ.

5This can be seen as a “trapping” estimate: if u = 0, then for small time, the solution y to (5.1) is very close to
Ψ.
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We apply Schur’s test, and it suffices to check

sup
x

∫
R
|K(x, z)| dz < ∞, and sup

z

∫
R
|K(x, z)|dx < ∞.

Without loss of generality, we show that supx
∫

R |K(x, z)| dz < ∞.

|K(x, z)| = |
∫

R3

⟨Dη⟩2ei((x−y)ξ+(y−z)η)⟨ξ⟩s+1⟨η⟩−s−22η

(∫ 1
0 ϱ′( θy+(1−θ)x

R ) dθ
)

(1 + (y − z)2)2
dy dη dξ|.

Integrating by parts in η−variable, we obtain

|K(x, z)| = |
∫

R3

ei((x−y)ξ+(y−z)η)⟨ξ⟩s+1⟨Dη⟩6⟨η⟩−s−22η

(∫ 1
0 ϱ′( θy+(1−θ)x

R ) dθ
)

(1 + (y − z)2)3
dy dη dξ|.

Applying Peetre’s inequality (in Lemma 3.3), we know

1 + z2

1 + (y − z)2
≤ C(1 + y2).

Hence,

|K(x, z)| ≤ C

1 + z2
|
∫

R3

ei((x−y)ξ+(y−z)η)⟨ξ⟩s+1⟨Dη⟩6⟨η⟩−s−22η

(∫ 1
0 ϱ′( θy+(1−θ)x

R ) dθ
)

1 + (y − z)2
1 + y2

1 + (y − z)2
dy dη dξ|

Let k ≤ s + 1 < k + 1, then ⟨ξ⟩k+2

⟨ξ−η⟩k+2 ≤ C⟨η⟩k+2 due to Peetre’s inequality. As a consequence,

using the oscillatory integral techniques again,

|K(x, z)| ≤ C

1 + z2
|
∫

R3

ei((x−y)ξ+(y−z)η) ⟨ξ⟩s+1

⟨ξ − η⟩k+2
⟨Dη⟩6⟨η⟩−s−22η

⟨Dy⟩k+2

(∫ 1
0 ϱ′( θy+(1−θ)x

R ) dθ
)

1 + (y − z)2
1 + y2

1 + (y − z)2
dy dη dξ|

≤ C

Rk+2(1 + z2)

Therefore,

sup
x

∫
R
|K(x, z)| dz <

C

Rs+3
.

As a consequence, there exists a constant C > 0 such that

∥⟨Dx⟩1+s[⟨Dx⟩−s, ϱR]f∥L2 ≤ C

Rs+4
∥f∥L2 ,

from which we deduce that

∥[⟨Dx⟩−s, ϱR]∥L(H−s−1,L2) ≤
C

Rs+4
.

□

Remark A.1. The study of the commutator between a Fourier multiplier, represented as a(Dx),

and a multiplication operator b(x), symbolically expressed as [a(Dx), b(x)], holds significant

importance in microlocal analysis. This interaction is intricately connected to the Calderon-

Vaillancourt Theorem. For comprehensive details, one can consult the works [Cor75, CV71].

Furthermore, it’s noteworthy that in this context, the multiplication operator is parameterized
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by R. Specifically, the expression

∥[⟨Dx⟩−s, ϱR]∥L(H−s−1,L2) ≤
C

Rs+4
,

illustrates the dependence, yet the rate in terms of R may not be optimal.

A.2. On Sobolev norms of compactly supported functions. In order to prove Lemma 3.6,

we first establish the equivalence between the standard Sobolev norms and the “homogeneous”

norms.

Lemma A.2. Let s > −1
2 and I = [−R,R] be a compact interval with R > 0. We define the

compact Sobolev space on I by

Hs
I := {u ∈ Hs(R) : supp(u) ⊂ I}.

On this space Hs
I , the standard Hs−norm is equivalent to the “homogeneous” norm:

9u9s =

(∫
R
|ξ|2s|û(ξ)|2 dξ

) 1
2

.

Proof. The proof differs for s ≥ 0 and −1
2 < s < 0. We prove the result for s ≥ 0 first. In such

case, it is easy to see that 9u9s ≤ ∥u∥Hs . We prove the reverse inequality as follows. We choose

a cutoff function ϱR ∈ C∞
c (R) such that ϱR = 1 on I. Then,

∥u∥2Hs =

∫
|ξ|≤A

(1 + |ξ|2)s|û(ξ)|2 dξ +
∫
|ξ|>A

(1 + |ξ|2)s|û(ξ)|2 dξ

≤
∫
|ξ|≤A

(1 + |ξ|2)s|û(ξ)|2 dξ +
∫
|ξ|>A

(1 +A−2)s|ξ|2s|û(ξ)|2 dξ

≤
∫
|ξ|≤A

(1 + |ξ|2)s dξ∥ϱR∥2L2∥u∥2L2 +

∫
|ξ|>A

(1 +A−2)s|ξ|2s|û(ξ)|2 dξ

≤
∫
|ξ|≤A

(1 + |ξ|2)s dξ∥ϱR∥2L2∥u∥2L2 + (1 +A−2)s 9 u 92
s .

We choose A such that
∫
|ξ|≤A(1 + |ξ|2)s dξ∥ϱR∥2L2 < 1

2 . We get the desired result.

If −1
2 < s < 0, we know that ∥u∥Hs ≤ 9u9s. For the reverse inequality,

9u92
s ≤

∫
|ξ|≤1

|ξ|2s|û(ξ)|2 dξ + 2−s

∫
|ξ|>1

(1 + |ξ|2)s|û(ξ)|2 dξ

≤
∫
|ξ|≤1

|ξ|2s∥ϱR(·)e−i·ξ∥2H−s dξ∥u∥2Hs + 2−s

∫
|ξ|>1

(1 + |ξ|2)s|û(ξ)|2 dξ

≤ C(R, s)∥u∥2Hs .

□

Proof of Lemma 3.6. We prove case by case.

• Case: s2 > −1
2 . Let us assume that supp(u) ⊂ [−R,R] ⊂ [−1, 1]. We define v(x) = u(Rx).

Then supp(v) ⊂ [−1, 1]. We notice that

9v92
s =

∫
R
|ξ|2s|û( ξ

R
)|2R−2 dξ = R2s−1 9 u 92

s .

Applying Lemma A.2 to v and u, we know that ∃Cs > 0 such that

C−1
s ∥v∥Hs ≤ 9v9s ≤ Cs∥v∥Hs , C−1

s ∥u∥Hs ≤ 9u9s ≤ Cs∥u∥Hs .
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Therefore, on the one hand,

9u9s2

9u9s1

= Rs1−s2 9v9s2

9v9s1

≤ Cs1Cs2R
s1−s2 ∥v∥Hs2

∥v∥Hs1

≤ Cs1Cs2R
s2−s1 .

On the other hand,

9u9s2

9u9s1

≥ C−1
s1 C−1

s2

∥u∥Hs2

∥u∥Hs1

.

As a consequence, we conclude that

∥u∥Hs2 ≤ C(s1, s2)R
s1−s2∥u∥Hs1 .

• Case: s2 = −1
2 . Let χ ∈ C∞

c ((−2, 2)) and χ = 1 in (−1, 1).

∥u∥2
H− 1

2
≤
∫
|ξ|≤ 1

R

(1 + ξ2)−
1
2 û(ξ)|2 dξ +R2s1+1

∫
|ξ|> 1

R

⟨ξ⟩s1Hatu(ξ)|2 dξ

≤
∫
|ξ|≤ 1

R

(1 + ξ2)−
1
2 dξ∥u∥2Hs1∥χ(

·
R
)ei·ξ∥2H−s1 +R2s1+1∥u∥2Hs1 .

Let I(R) :=
∫
|ξ|≤ 1

R
(1 + ξ2)−

1
2 dξ∥u∥2Hs1∥χ( ·

R)e
i·ξ∥2

H−s1
. Then,

I(R) ≤ C

∫ 1
R

0
(1 + ξ2)−

1
2R(R−2|s1| − ξ−2|s1|) dξ ≤ CR1−2|s1|(ln

1

R
+ 1).

Consequently, we obtain

∥u∥2
H− 1

2
≤ CR2s1+1 ln

1

R
∥u∥2Hs1 .

• Case: s2 < −1
2 , similar as Case s2 = −1

2 . □

A.3. Sobolev-Slobodeckij spaces. The approach to define fractional order Sobolev spaces

arises from the idea to generalize the Hölder condition to the Lp-setting. For 1 ≤ p < ∞,

θ ∈ (0, 1) and f ∈ Lp(Ω), the Slobodeckij seminorm (roughly analogous to the Hölder seminorm)

is defined by

[f ]θ,p,Ω =

(∫
Ω

∫
Ω

|f(x)− f(y)|p

|x− y|θp+n
dx dy

) 1
p

.

In particular, we focus exclusively on the L2−setting. We use [f ]θ,Ω to denote

[f ]θ,Ω =

(∫
Ω

∫
Ω

|f(x)− f(y)|2

|x− y|2θ+n
dx dy

) 1
2

.

Let s > 0 be not an integer and set θ = s− ⌊s⌋ ∈ (0, 1). Using the same idea as for the Hölder

spaces, the Sobolev-Slobodeckij space W s,p(Ω) is defined as

W s,p(Ω) =

{
f ∈ W ⌊s⌋,p(Ω) : sup

|α|=⌊s⌋
[Dαf ]θ,p,Ω < ∞

}
.

It is a Banach space for the norm

∥f∥W s,p(Ω) = ∥f∥W ⌊s⌋,p(Ω) + sup
|α|=⌊s⌋

[Dαf ]θ,p,Ω.

44



Lemma A.3. Let s ∈ (0, 1) and T > 0. Assume that u ∈ H1+s(R+), u(0) = 0 and supp(u) ⊂
[0, T ]. Define

U(t) =

{
u(t), t > 0,

0, t ≤ 0.

Then, there exists a constant C > 0 such that any u ∈ H1+s(R+), with supp(u) ⊂ [0, T ] and

u(0) = 0

∥U∥H1+s(R) ≤ C∥u∥H1+s(R+).

Proof. By the definition of Sobolev-Slobodeckij spaces,

u ∈ H1+s(R+) ⇔ u ∈ H1(R+) and [u′]s,R+ < ∞.

And the Sobolev-Slobodeckij norm is the following

∥u∥2H1+s(R+) = ∥u∥2H1(R+) + [u′]2s,R+
.

Thanks to the fact that supp(u) ⊂ [0, T ] and u(0) = 0, we know that u ∈ H1
0 (R+). Thus, the

extension of u by 0 for t < 0, i.e. U , is a function belonging to H1(R) and

∥U∥H1(R) ≤ ∥u∥H1(R+).

Define

V (t) =


u′(t), t > 0,

0, t = 0,

u′(−t), t < 0.

We claim that V ∈ Hs(R), i.e., [V ]s,R < ∞. Indeed,

[V ]2s,R =

∫
R×R

|V (x)− V (y)|2

|x− y|1+2s
dx dy

=

∫
R+×R+

|V (x)− V (y)|2

|x− y|1+2s
dx dy+2

∫
R+×R−

|V (x)− V (y)|2

|x− y|1+2s
dx dy+

∫
R−×R−

|V (x)− V (y)|2

|x− y|1+2s
dx dy.

Using the definition of V , we know that

[V ]2s,R = 2

∫
R+×R+

|u′(x)− u′(y)|2

|x− y|1+2s
dx dy + 2

∫
R+×R−

|u′(x)− u′(−y)|2

|x− y|1+2s
dx dy

= 2[u′]2s,R+
+ 2

∫
R+×R+

|u′(x)− u′(y)|2

|x+ y|1+2s
dx dy.

Since |x+ y|2 ≥ |x− y|2, we know that |x+ y|1+2s ≥ |x− y|1+2s for s ∈ (0, 1). Therefore,

[V ]2s,R = 2[u′]2s,R+
+ 2

∫
R+×R+

|u′(x)− u′(y)|2

|x+ y|1+2s
dx dy

≤ 2[u′]2s,R+
+ 2

∫
R+×R+

|u′(x)− u′(y)|2

|x− y|1+2s
dx dy

= 4[u′]2s,R+
< ∞.

Hence, V ∈ Hs(R) and ∥V ∥Hs(R) ≤ 2∥u′∥Hs(R+). Applying Hardy’s inequality to V (we refer

to [NS18]), we derive that

∥| · |−sV (·)∥L2(R) ≤ C∥V ∥Hs(R) ≤ C∥u′∥Hs(R+).
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Therefore, ∥| · |−sV (·)∥L2(R) ≤ C∥u′∥Hs(R+). Using again the definition of V ,

∥| · |−sV (·)∥2L2(R) = 2

∫
R+

|u′(t)|2

|t|2s
dt,

which implies that
∫

R+

|u′(t)|2
|t|2s dt ≤ C∥u′∥Hs(R+). Now we look at the seminorm [U ′]s,R. By

definition,

[U ′]2s,R =

∫
R×R

|U ′(x)− U ′(y)|2

|x− y|1+2s
dx dy

=

∫
R+×R+

|U ′(x)− U ′(y)|2

|x− y|1+2s
dx dy + 2

∫
R+×R−

|U ′(x)− U ′(y)|2

|x− y|1+2s
dx dy +

∫
R−×R−

|U ′(x)− U ′(y)|2

|x− y|1+2s
dx dy.

Since U ′ = 0 on (−∞, 0) and U ′ = u′ on (0,+∞),

[U ′]2s,R =

∫
R+×R+

|u′(x)− u′(y)|2

|x− y|1+2s
dx dy + 2

∫
R+×R−

|u′(x)|2

|x− y|1+2s
dx dy

= [u′]2s,R+
+

1

s

∫
R+

|u′(x)|2

|x|2s
dx

≤ C[u′]2s,R+

Consequently,

∥U∥2H1+s(R) = ∥U∥2H1(R) + [U ′]2s,R ≤ C
(
∥u∥2H1(R+) + [u′]2s,R+

)
≤ C∥u∥2H1+s(R+).

□

Corollary A.4. Let s ∈ (0, 1) and T > 0. Assume that u ∈ Hs(R+), supp(u) ⊂ [0, T ] and

u(0) = 0. Define

U(x) =

{
u(x), t > 0,

0, t ≤ 0.

Then, there exists a constant C > 0 such that for any u ∈ Hs(R+), with supp(u) ⊂ [0, T ] and

u(0) = 0,

∥U∥Hs(R) ≤ C∥u∥Hs(R+).

A.4. Eigenmodes at critical lengths.

Proof of Proposition 2.5. Let φ satisfy the equation
φ′′′ + φ′ + iλcφ = 0, in (0, L),

φ(0) = φ(L) = 0,

φ′(0) = φ′(L),

(A.1)

with λc =
(2k+l)(k−l)(2l+k)

3
√
3(k2+kl+l2)

3
2

and L = 2π
√

k2+kl+l2

3 . Then the general form of eigenfunctions is as

follows

φ(x) := e
ix

√
3(2k+l)

3
√

k2+kl+l2 + C1e
−ix

√
3(k+2l)

3
√

k2+kl+l2 + C2e
ix

√
3(−k+l)√
k2+kl+l2 .

Using the boundary conditions, we obtain 1 + C1 + C2 = 0,

− i((−2+C1+C2)k++(−1+2C1−C2)l)√
3
√
k2+kl+l2

= ie−i 23 (k+2l)π((−2+C1+C2)k++(−1+2C1−C2)l)√
3
√
k2+kl+l2

.

There are two situations,
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1. If e−i 2
3
(k+2l)π ̸= 1 ⇔ (k − l) ̸≡ 0 mod 3, we know that C1 = k

l and C2 = − l+k
l . In this

case, we have

φ(x) = e
ix

√
3(2k+l)

3
√

k2+kl+l2 +
k

l
e
−ix

√
3(k+2l)

3
√

k2+kl+l2 − l + k

l
e
ix

√
3(−k+l)√
k2+kl+l2 ,

with φ′(0) = φ′(L) = 0.

2. If e−i 2
3
(k+2l)π = 1 ⇔ (k− l) ≡ 0 mod 3, we know C2 = −(1+C1) and the second equation

is trivial. In fact, we obtain two linearly independent solutions φ as before and φ̃ in the

following form

φ̃(x) = e
ix

√
3(2k+l)

3
√

k2+kl+l2 − e
−ix

√
3(k+2l)

3
√

k2+kl+l2 ,

with φ̃′(0) = φ̃′(L0) = i
√
3(k+l)√

k2+kl+l2
̸= 0.

□
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