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Abstract. Mathematical Morphology has proven to be a powerful tool
for extracting geometric information from greyscale images. In this pa-
per, we demonstrate its application to spectrograms (two-dimensional
greyscale images of sound) of music excerpts. The sounds of musical in-
struments exhibit particular shapes when represented as a spectrogram.
These shapes are determined by the sound characteristics. In general,
musical sounds contain three different components: the attack compo-
nent, appearing as vertical lines; the sustain component, appearing as
horizontal lines; and the stochastic component, appearing as a landscape
of hills and holes. In this paper we propose a pipeline of morphological
operators to separate these three components. This separation allows us
to build a new sound similar to the input one.

Keywords: Mathematical Morphology · Spectrograms · Feature Ex-
traction · Image Analysis.

1 Introduction

Mathematical Morphology (MM) has been proven to be a useful tool for image
analysis and segmentation. In this work, we show how to apply it to a particular
type of images: music spectrograms. Spectrograms are the most popular time-
frequency representations of audio [9, p. 23]. Since they present the audio content
as a function with time and frequency as domain and intensity as codomain, they
can be viewed as greyscale images.

Audio signals exhibit various shapes when represented through a spectro-
gram. However, in general, music instruments have a particular way of being
laid down inside a spectrogram; we can, in most of the cases, find a combination
of three main components: the sinusoidal component, the transient component
and the noise component. These three components appear with characterizing

⋆ This work was partly supported by the chair of I. Bloch in Artificial Intelligence
(Sorbonne Université and SCAI).



2 G. Romero-Garćıa et al.

shapes: the sinusoidal component appears as horizontal lines, the transient com-
ponent appears as vertical lines, and the noise component appears as a landscape
of hills and holes (see Figure 1).

In order to detect these components and to be able to characterize the sound,
we need to extract some features that allow us to recompose the signal; in the
case of the lines (i.e., the sinusoidal and transient components) we want to
obtain the times and frequencies (that is, the pixels) that characterize the lines,
alongside with the amplitude (i.e., the greyscale level). In the case of the noise,
since it is a stochastic component, we do not want the precise values of the hills
and the holes. We rather want a mask to be applied to a white noise through a
pointwise multiplication. With these data, we are able to reconstruct the sound
with the help of a synthesis model.

In this work, we propose a pipeline of MM operators to extract these compo-
nents. MM operators are well suited to detect the lines in the spectrogram and
also to remove them such that a mask for the white noise is obtained.

The paper is organized as follows: we first expose the related work in spectro-
gram feature extraction in Section 2; then, we expose the mathematical definition
of spectrograms in Section 3. After this is set up, we propose our morphological
pipeline in Section 4 and show the results of our experiments in Section 5. We
expose our conclusions and future work in Section 6.

2 Related work

The feature extraction from a spectrogram of audio was impulsed by the work
of X. Serra [15,16], where a model of sound synthesis was proposed, based on
a sum of a sinusoidal component plus a stochastic component, and peak detec-
tion methods were used to perform the analysis. Later, T. Verma and T. Meng
proposed a sinusoids plus transients plus noise (STN) model in [18], that is the
model we use in this work.

There has been a lot of work in the estimation of one or several of these
three components in the case of music sounds [1,8,14,18,20]. The use of MM
for feature extraction in spectrograms has also been done, but rather in speech
spectrograms [3,17,22]. A similar approach is used for detecting lines in videos [6].
The first use of MM for analyzing music sounds is [12].

3 Spectrograms

In this section we expose the main formulas to generate spectrograms, following
the book [5]. We expose them in a continuous framework such that they remain
general and elegant. However, to apply morphological operators, we sample the
result on a uniform grid with a specific time-frequency resolution3.

3 In the experiments exposed in this work, we chose a 10ms step for time and a
44100
4096

≈ 10.77Hz step for frequency. These values are common values for music
applications.
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For our applications, we focus on the spectrogram of the Short-time Fourier
transform (STFT). The STFT is defined as follows: let f ∈ L∞(R;C) and let
g ∈ L1(R;C). The STFT of f with respect to the window g is defined by

STFTg[f ] : R× R → C
(t, ξ) 7→

∫
R f(x)g(x− t)e−2πitξ dx

, (1)

with i being the imaginary unit and g(x− t) the complex conjugate of g(x− t).
The STFT is then a functional operator (it takes a function as input and

returns a function as output). The input function f is associated to the in-
put signal (an audio signal in our case) whose variable t represents time. The
resulting function STFTg[f ] can be interpreted as the Fourier transform of a
neighborhood of the function f around t (the neighborhood being determined
by the window function g). The time will be measured in seconds (abbreviated s)
and the frequency will be measured in Hertz (abbreviated Hz).

The function STFTg[f ] has as domain the time-frequency plane R×R and as
codomain C. Complex values are difficult to handle and to represent. In practical
applications, we usually drop the phase information of the complex value and
keep only the amplitude. This is what happens when using a spectrogram, that
is defined as

SPECg = |STFTg|2 . (2)

This leads to an interpretation of the spectrogram as a power value: its
value at a time-frequency point (t, ξ) is the power of frequency ξ at time t.
We commonly use the logarithmic scale to represent it and thus measure it in
decibels, i.e.

|SPECg|2 = 10 log10 |SPECg|2 dB = 20 log10 |SPECg|dB . (3)

Since the input signal is bounded by 1 and we normalize the window function,
we have that 0 ≤ |SPECg|2 ≤ 1, which turns out to

−∞ ≤ 20 log10 |SPECg|dB ≤ 0 (4)

in logarithmic scale, obtaining as codomain R.
Figure 1 shows the spectrogram of an audio excerpt that will be used as

example; we can see the horizontal lines corresponding to sinusoids and the
vertical lines corresponding to transients. We can also see the landscape of hills
and holes for the noise component.

4 Morphological pipeline

Based on a pipeline of simple MM operators, we propose a method for exploiting
the structure of the spectrogram and the geometry of its components to achieve
the detection of the three mentioned components. Let us expose the pipeline and
illustrate it with the spectrogram from Figure 1.
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(b) The noise component appears
as a landscape of hills and holes

Fig. 1: Spectrogram of an audio excerpt.

The pipeline is decomposed into three steps: pre-processing, processing and
post-processing. All three steps use MM operators. The pre-processing is per-
formed in order to adapt the image for the processing operations, and the main
idea is to fill the holes of the spectrogram to have an image that is well adapted
for the processing step. In the processing step, we use three different chains, one
per component. Finally, for the components associated with lines (the sinusoidal
and transient component) we use a post-processing step that allows removing
small lines that might appear as residuals. The full morphological pipeline is
exposed in Figure 2.

4.1 Pre-processing

The main goal of the pre-processing is to fill the holes of the spectrogram. These
holes correspond to the zeros of the spectrogram (−∞ in logarithmic scale) and
are present when there is noise.

To do that, we apply first a closing and then a reconstruction by erosion.
The closing writes, as usual [2,11,13], φB = εB ◦ δB where the dilation δB and

the erosion εB are defined for a function S ∈ RR×R
and a structuring element

B ⊆ R× R as δB [S] = S ⊕B and εB [S] = S ⊖B with

S ⊕B : R× R → R
p 7→

∨
x∈B

S(p− x)
S ⊖B : R× R → R

p 7→
∧

x∈B

S(p+ x)
. (5)

We use a closing with a structuring element that is a square of width 25ms
and height 75Hz4. These values have been determined experimentally such that
they are sufficiently large for filling the holes.

4 These continuous values are sampled according to the grid, and become 7× 3 in our
case.
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Fig. 2: Pipeline for the morphological processing.

While the closing manages to fill the holes (if B is sufficiently big), it deforms
the shapes. To avoid this effect, we apply as next step a reconstruction by erosion.
The reconstruction by erosion is defined as follows: we choose an image S to be
the marker and we choose an image R to be the reference. Then, the geodesic
erosion is defined as

εR,B [S] = εB [S] ∨R (6)

where B is the structuring element of radius 1. The reconstruction by erosion is
thus defined as the iteration of this operator until stability, i.e.

ε∞R,B [S] = ε
(n)
R,B [S] (7)

where ε
(n)
R,B [S] = (εR,B ◦ · · · ◦ εR,B︸ ︷︷ ︸

n times

)[S] and we have ε
(n)
R,B [S] = ε

(n+1)
R,B [S].

For our purpose, we use as marker the result of the closing and as reference the
input image. We use a structuring element B corresponding to the 8-connectivity,
i.e. a square of size 3× 3.

The results of our pre-processing on our example are shown in Figure 3; we
see that the holes disappear in the closing step but with a deformation of the
shapes, and the reconstruction by erosion recovers the shapes of the lines.

4.2 Extracting the noise mask

Now that we have an input image without holes, we can apply our processing
pipeline to recover the mask of the noise and the lines. Let us start by exposing
how to recover the mask of the noise since it is the simpler part as it only involves
a single operation.



6 G. Romero-Garćıa et al.
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(b) Closing
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(c) Reconstruction

Fig. 3: Pre-processing of our excerpt.

The way we recover the mask of the noise is by applying an opening γB =
δB ◦ εB to the pre-processed image. We use as structuring element a square of
width 44ms and height 193Hz which are the values that ensure a −60 dB drop
both in time and frequency in the shape of the window function.

After recovering the mask of the noise, we can filter a white noise with it by
pixel-wise multiplication and produce a filtered noise that is similar to the one
present in the input spectrogram. This can be remarked in Figure 4.

1.2 1.4 1.6 1.8
Time (s)

269

538

807

1077

1346

1615

1884

2153

2422

Fr
eq

ue
nc

y 
(H

z)

1.2 1.4 1.6 1.8
Time (s)

269

538

807

1077

1346

1615

1884

2153

2422

Fr
eq

ue
nc

y 
(H

z)

-120 dB

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

 0 dB

-120 dB

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

 0 dB

(a) Opening

1.2 1.4 1.6 1.8
Time (s)

269

538

807

1077

1346

1615

1884

2153

2422

Fr
eq

ue
nc

y 
(H

z)

1.2 1.4 1.6 1.8
Time (s)

269

538

807

1077

1346

1615

1884

2153

2422

Fr
eq

ue
nc

y 
(H

z)

-120 dB

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

 0 dB

-120 dB

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

 0 dB

(b) Input

1.2 1.4 1.6 1.8
Time (s)

269

538

807

1077

1346

1615

1884

2153

2422

Fr
eq

ue
nc

y 
(H

z)

1.2 1.4 1.6 1.8
Time (s)

269

538

807

1077

1346

1615

1884

2153

2422

Fr
eq

ue
nc

y 
(H

z)

-120 dB

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

 0 dB

-120 dB

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

 0 dB

(c) Filtered noise

Fig. 4: Processing of the noise component.

4.3 Recovering the lines

The process of recovering horizontal and vertical lines are dual; we use the same
operation but with different structuring elements. For the horizontal lines, we
apply a vertical thinning, followed by a vertical top-hat and finally a threshold.
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For the vertical lines, we apply a horizontal thinning, followed by a horizon-
tal top-hat and finally also a threshold. Let us describe these three operations
independently of the kind of lines we search for.

Thinning The first step is to thin the pre-processed image; this way we obtain
lines that are one-pixel thin. However, since our image is greyscale, we shall use
a greyscale approach. We apply the one presented in [4] based on the notion of
destructible point. From an implementation point of view, this is equivalent to
apply a hit-or-miss transform with some particular structuring elements.

The hit-or-miss transform that we are using is one of the ones presented in [10]
and is defined as follows: for an input image S and a pair of structuring elements
C and D, the hit-or-miss transform S ⊛ (C,D) is defined for all p ∈ R× R as

(S ⊛ (C,D))(p) =
(
(S ⊖ C)(p)− (S ⊕ Ď)(p)

)
∨ 0 (8)

where Ď = {−d ∈ R× R : d ∈ D}.
Now, we can define the elementary thinning of S by C and D as

S # (C,D) = S − (S ⊛ (C,D)) . (9)

We call (C,D) a template.
Applying successive elementary thinnings

(((S # (C1, D1))# (C2, D2))# · · · )# (Cn, Dn) (10)

is called a thinning and is denoted as

S #
(
(C1, D1), (C2, D2), · · · , (Cn, Dn)

)
. (11)

If we apply the thinning operation until stability, we have an ultimate thinning.
The type of thinning we apply depends on the templates we choose. In our

case, we want to perform two different types of thinning: one that thins the lines
vertically (and then produces horizontal lines of one pixel length) and another
that thins the lines horizontally (and then produces vertical lines of one pixel
length).

For the vertical thinning we use the following templates:

(C,D)N , (C,D)S , (C,D)NE , (C,D)SW , (C,D)NW , (C,D)SE (12)

in this (arbitrary) order, and for the horizontal thinning we use the templates

(C,D)E , (C,D)W , (C,D)NW , (C,D)SE , (C,D)NE , (C,D)SW (13)

in this (arbitrary) order, where the templates corresponding to each cardinal
point are

N :

0 0 0
− 1 −
− 1 −

 E :

− − 0
1 1 0
− − 0

 S :

− 1 −
− 1 −
0 0 0

 W :

0 − −
0 1 1
0 − −


NE :

− 0 0
1 1 0
− 1 −

 SE :

− 1 −
1 1 0
− 0 0

 SW :

− 1 −
0 1 1
0 0 −

 NW :

0 0 −
0 1 1
− 1 −


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These patterns should be interpreted in the following manner: ones corre-
spond to the elements of set C, zeroes correspond to the elements of set D, and
− means that the point is not considered in the structuring element. The origin
is located at the center pixel.

The result of the two types of thinnings are shown in Figure 5; we see that
the lines have been reduced to one pixel width but only in one direction.

1.2 1.4 1.6 1.8
Time (s)

269

538

807

1077

1346

1615

1884

2153

2422

Fr
eq

ue
nc

y 
(H

z)

1.2 1.4 1.6 1.8
Time (s)

269

538

807

1077

1346

1615

1884

2153

2422

Fr
eq

ue
nc

y 
(H

z)

-120 dB

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

 0 dB

-120 dB

-100 dB

-80 dB

-60 dB

-40 dB

-20 dB

 0 dB

(a) Vertical thinning
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(c) Horizontal thinning

Fig. 5: Thinnings for reduce the lines to one pixel width.

Top-hat The top-hat operation allows us now to isolate these lines of one pixel
width. Similarly as in the case of thinning, we use a type of top hat for each
type of thinning (vertical and horizontal). The top hat operation is defined as:
∀p ∈ R× R,

S(p)− γB [S](p) (14)

where γB is an opening with structuring element B ⊆ R× R.
The structuring elements we choose are 3 × 1 and 1 × 3 for vertical and

horizontal top-hats, respectively.

Threshold After applying the top-hat, we want to recover the values that are
above a certain threshold (that we set to 5 dB in our applications). The amplitude
values we recover are not the ones of the top-hat but the ones of the result of
the pre-processing, to be able to have the correct amplitudes. The operation is
described as follows: if we denote the result of the pre-processing as S0 and the
result of the top-hat as SId−γ , the threshold S> is defined for all p ∈ R× R as

S>(p) =

{
S0(p) if SId−γ(p) > τ

−∞ if SId−γ(p) ≤ τ
(15)
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4.4 Post-processing

With this processing we manage to isolate the horizontal and vertical lines.
However, we get a lot of residuals that are too small to represent actual sinusoids
and transients. This is why we apply a post-processing operation to remove these
small lines.

The operation consists of two steps: first, we apply a thinning that shrinks
the lines and eventually make them disappear (if they are below a threshold in
length). Then, we apply a reconstruction by dilation with the thinned image
as marker and the processed image as reference. This way, the lines that are
sufficiently long will reappear in their full length.

Thinning The thinning is done now in the same direction as the lines: we apply
an horizontal thinning for the horizontal lines and a vertical thinning for the
vertical ones. We actually only use the templates (C,D)E and (C,D)W for the
horizontal thinning and (C,D)N and (C,D)S for the vertical one. The number of
iterations is fixed to eliminate lines of a certain width or height; if τs (resp. τHz) is
the threshold for horizontal lines and ∆t (resp. ∆ξ) is the time (resp. frequency)
resolution of the spectrogram, the number of iterations Ns (resp. NHz) is given

by Ns =
⌈

τs
2∆t

⌉
and NHz =

⌈
τHz

2∆ξ

⌉
.

Reconstruction by dilation The reconstruction by dilation is the dual of the
reconstruction by erosion. The geodesic dilation is defined as

δR,B [S] = δB [S] ∧R (16)

where S is the marker and R the reference. The reconstruction by dilation is the
iteration of the geodesic dilation until stability and is denoted by δ∞R,B [S]. We
use a structuring element B corresponding to the 8-connectivity, i.e. a square of
3× 3.

At the end of the process, we recover a number of lines with which we can
re-synthesize the input signal. Figure 6 shows the result on our excerpt, that
yields very good results.

5 Experimental results

In this section, we present the outcomes of our experiments, which highlight the
effectiveness of our proposed pipeline. We acknowledge that while our chosen
example features a glockenspiel (a musical instrument known for its distinct
transient and sinusoidal components) the applicability of our pipeline may vary
across different instruments.

Our pipeline was applied to a range of musical instruments, resulting in
diverse outcomes (Figure 7). In most cases, our pipeline performed considerably
good without the need for parameter adjustments. However, there were instances
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(c) Re-synthesis

Fig. 6: Result of the processing in the case of our example.

where fine-tuning was necessary to achieve optimal results. A deeper analysis of
these parameters and quantitative evaluation are left for future work.

In scenarios involving certain instruments or complex musical compositions
with multiple instruments, the separation of the components (sinusoids, tran-
sients, and noise) proved challenging. This often resulted in sparse recovered
lines, with the noise component dominating the information.

We performed the operations using the Python libraries NumPy [7], SciPy [19]
and scikit-image [21]. However, greyscale thinning was not implemented in these
libraries. Consequently, we implemented it through iterative processing, which
became the bottleneck of our pipeline.

Furthermore, initially, we opted for a time resolution of 1ms, resulting in
very large images that noticeably slowed down the process. In an effort to im-
prove efficiency, we experimented with increasing the time resolution to 10ms.
Remarkably, this change did not negatively impact the results while significantly
enhancing the processing speed.

Audio examples and all the code used for the processing the spectrograms and
generating the images are available at https://github.com/Manza12/DGMM-2024.

6 Conclusions and future work

In this work, we have proposed a morphological pipeline for extracting compo-
nents from spectrograms of musical audio signals. We have shown how to detect
the lines that correspond to sinusoids and transients through the use of a mor-
phological pipeline, as well as how to extract a mask for the noise component.

While in general the method works well for simple excerpts, we noticed that
when we apply it to very dense spectrograms it performs badly. This is probably
caused by a difficulty in deciding if something is a line or if it belongs to the
noise component in such situations.

While working on this topic, we found that the border between noise and
signal (understanding signal as sinusoids or transients) is fuzzy. In future work

https://github.com/Manza12/DGMM-2024
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Fig. 7: Lines detection for other instruments.

we will go more in depth about the nature of spectrograms, proposing another
model different from the STN model and more adapted to the detection ridges
and holes, and making a more clear distinction between noise and signal.
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