
HAL Id: hal-04908123
https://hal.science/hal-04908123v1

Submitted on 27 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Model of Scores as Abstract Syntactic Trees
Gonzalo Romero-García, Carlos Agón, Isabelle Bloch

To cite this version:
Gonzalo Romero-García, Carlos Agón, Isabelle Bloch. A Model of Scores as Abstract Syntactic
Trees. Mathematics and Computation in Music 2024, Jun 2024, Coimbra, Portugal. pp.268-279,
�10.1007/978-3-031-60638-0_21�. �hal-04908123�

https://hal.science/hal-04908123v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Model of Scores as Abstract Syntactic Tree

Gonzalo Romero-Garćıa1[0000−0003−1971−6204], Carlos
Agón1[0000−0001−7926−2537], and Isabelle Bloch2[0000−0002−6984−1532]

1 Sorbonne Université, CNRS, IRCAM, STMS, Paris, France
{romero,agonc}@ircam.fr

2 Sorbonne Université, CNRS, LIP6, Paris, France
isabelle.bloch@sorbonne-universite.fr

Abstract. This paper deals with the structure of a musical piece. The
score is modeled as an Abstract Syntactic Tree (AST) to account for
the hierarchy of its elements. Formal definitions of harmony, texture and
instrumentation are proposed and constitute the main components of the
model. Concatenation and parallelization operators are then proposed to
combine these components and organize them in a tree structure. This
approach is illustrated on some examples.

Keywords: Harmony · Texture · Instrumentation · Abstract Syntactic
Tree · Hierarchical score modeling.

1 Introduction

Through centuries, Western classical music has been engraved in scores with staff
notation. This way of laying down music is very well suited for sharing music
and allows mutual comprehension between the composer and the interpreter.
However, staff notation does not account, in general, for the hierarchical nature
of music, nor for the structure that underlies a musical piece.

In this article, we propose to model a score as an Abstract Syntactic Tree
(AST). This way, we can express the structure of a musical piece in a hierarchical
way, which has proven to be a very useful way of analyzing and composing
music [12,13,14,15,11,5].

To organize a score into a tree has already been proposed, for instance
through the MusicXML [8] format that uses XML notation and thus a tree
structure. However, this format is a pure translation of the score information,
and the hierarchy is mainly structured in bars. In our model, we aim to go
beyond the bars decomposition into a more high level one.

Modeling a score as an AST (as in [16]) requires making several key de-
cisions, and two fundamental questions must be answered: What are the most
basic materials? And, how can they be combined? In computational terms, these
questions translate to: What are the leaves of the tree, and what are the nodes?
These questions have profound philosophical implications, as their answers are
essentially equivalent to asking: What is music made of, and how is it con-
structed?

2 G. Romero-Garćıa et al.

It is a common approach to say that music is made by combining frequency
with time. To this, we add a third component: timbre. Using these three axes, we
will construct our computational model. More precisely, we will identify three
musical notions—harmony, texture, and instrumentation—and provide them
with formal mathematical definitions. These elements will be shown to be the
essential materials of our model.

To combine these materials, we introduce two fundamental operators: con-
catenation and parallelization. These operators are analogous to those proposed
in [9,10]. They complete our grammar and allow for the construction of ASTs.

Once we have constructed an AST, we can compile it into various musical
representations such as a MIDI file, MusicXML, piano roll, audio file, and others.
In this article, we focus on the compilation into a MIDI file. Note that, audio
and piano rolls can be generated from the MIDI file.

The strength of our model is as follows: constructing our AST allows for a
direct interpretation of the structure and hierarchy of a musical piece and the
relationships between its components. Successfully expressing common repertoire
pieces as ASTs enables us to assert that we have conducted an analysis of the
piece. This has deep implications, since it transforms the analysis problem into
the construction of an AST. In this sense, our work is close to the one proposed
in [18].

Additionally, our approach offers an alternative to traditional score notation
for music composition. While engraving music on staffs is the standard method
for composing Western classical music, this process typically requires a learning
curve that can span years. By contrast, composing through an AST may be
more intuitive for newcomers, especially when presented interactively, as in a
Computer Assisted Composition (CAC) tool, like OpenMusic [1,4]. Currently,
we offer a Python library named harmtex (that can be found in the code that
accompanies this article) and an XML Schema for expressing the AST as an
XML document.

The article is structured as follows. We first expose the main three materials:
harmony, texture and instrumentation. These are introduced in mathematical
terms to provide a robust framework that extends beyond mere computational
implementation. Then, we define the three operators: tensor contraction, par-
allelization and concatenation, which complete the grammar necessary for our
AST model. Finally, we present a computational implementation in the form of
a Python library and XML Schema.

All the code and examples from this article are accessible in the public repos-
itory that accompanies this article: https://github.com/Manza12/MCM-2024.

2 Harmony, Texture and Instrumentation

The concepts of harmony, texture, and instrumentation are subject to various
interpretations and hold different meanings across different domains. In this
article, we provide mathematical definitions for each, tailored specifically to our
model yet capturing a significant part of their traditional meaning.

https://github.com/Manza12/MCM-2024

A Model of Scores as Abstract Syntactic Tree 3

2.1 Harmony

Harmony is a term that is very used in musicology, commonly referring to the
distribution and relation between pitches.

In this article, we consider that a harmony is simply a list of chords. In our
framework, a chord is a finite set of pitches. More formally, if we identify the
musical pitches (..., C3, C♯3, D3, ..., C4, ...) with the integer numbers3 denoted
by Z, a chord is a finite subset of Z, that we denote by C ∈ PF(Z), where
PF(Z) denotes the finite subsets of Z. For instance, {C3,E3,G3} = {60, 64, 67}
is a C major chord. Notice that, with this definition, the empty set is a chord
that corresponds to the absence of pitch and thus to rest, and so is a single note
(a chord of cardinal 1), an interval (a chord of cardinal 2), a scale (a chord with
varying cardinal, usually from 5 to 8), etc. We denote by C the set of all chords.

Since a harmony is a list of chords, we can formally say that H ∈ CN where
N is a finite set of indices, i.e. |N | < ∞. In general, we chooseN = {0, 1, ..., n−1},
for some n ∈ N, and think of H as and ordered list.

This definition of harmony is simple yet powerful; for instance, when we talk
about the harmony of a piece, me may use the list of chords of the piece4. In
a similar way, the harmony of a jazz standard is the ordered list of chords that
forms this standard.

In this work, we use harmonies in a particular way, which is in combination
with textures. Let us then define textures.

2.2 Texture

The notion of texture has a huge amount of interpretations, depending on the
domain. In this article, we refer to what is commonly called symbolic or compo-
sitional texture [7], which is rather recent compared to the study of harmony [6].

In this framework, we aim to give a precise definition of symbolic texture; it
is the time analogous to harmony: instead of pitches, we use what we call hits,
which are pairs of onsets and durations; instead of chords, we use rhythms, that
are sets of hits; and a texture is a list of rhythms.

While saying that a texture is simply a list of rhythms might appear as
oversimplification, we will in the next section that combining a single texture
with different harmonies captures the essence of a symbolic texture paired with
a chord progression.

In order to be mathematically precise, we need to choose a model for time and
define hits, rhythms and textures. Since our main target is to model scores, we
consider that time inside a score is modeled through the use of rational numbers,
denoted by Q, where we associate 1 to ¯ , 1

2 to ˘ “, 1
4 to ˇ “, and so on5.

3 The standard way to do that is to associate each pitch with its corresponding MIDI
number, i.e., C3 → 60, C♯3 → 61, D3 → 62, C4 → 72, etc.

4 The question that naturally arises is how these chords are chosen, but this will be
the subject of next sections.

5 We may model ties by the sum of two rational numbers and tuplets by using different
numbers in the denominator.

4 G. Romero-Garćıa et al.

Then, the duration of a hit can be modeled by a positive rational number. It
is a bit more delicate how to model the onset; we say that there is a 0 that acts
as origin and then the number associated to the onset is the time (expressed in
rationals) elapsed between this origin and the onset. In the case of notes of a
piece, the origin would be the start of the piece6. With this formalization, a hit
h = (o, d) is an element of Q×Q+.

Let us move on to the definition of rhythms. We define a rhythm R as a
finite set of hits, thus an element of PF(Q × Q+). For instance, the rhythm

| ˇ “ > ˇ “ ˇ “
== ˇ “ , where the | symbol accounts for the origin, is associated with the set

{(0, 1
4), (

1
2 ,

1
8), (

5
8 ,

1
8), (

3
4 ,

1
4)}. We denoted by R the set of all rhythms.

Similarly to the case of harmony, a texture is a list of rhythms, that is and
element of RN , where N is a finite set.

2.3 Instrumentation

Instrumentation has been an important domain of music composition and musi-
cology already developed by Berlioz [3], and is today an essential skill for music
composition. As in the case of harmony and texture, we expose it here in a
rigorous mathematical way.

Let us consider a set of instruments I. We call a group G a finite subset of
instruments, i.e. an element of PF(I). We call G the set of all groups7. Now, we
can define an instrumentation O8 as a list of groups, i.e. O = (Gn)n∈N , where
N is a finite set and Gn is a group for each n in N .

We now have a formal setting for harmony, texture and instrumentation, that
is summarized in Table 1.

Table 1: Main terminology employed through this article for frequency, time and
timbre. We consider that N is a finite set, i.e. |N | < ∞.

Frequency elements

Term Notation Belonging to

pitch p Z
chord C C = PF(Z)
harmony H CN

Time elements

Term Notation Belonging to

hit h Q×Q+

rhythm R R = PF(Q×Q+)
texture T RN

Timbre elements

Term Notation Belonging to

instrument i I
group G G = PF(I)
instrumentation O GN

6 We may even allow for negative numbers for the case of anacrusis.
7 The dependence on I is omitted to simplify notations.
8 We use the O for instrumentation since I is already used and it refers to the term
orchestration, usually taken as synonym.

A Model of Scores as Abstract Syntactic Tree 5

3 Composition Operators

We have now our three main mathematical objects (harmony, texture and in-
strumentation) that we are using as leaves of our AST. Let us now expose the
three main operators that we are using to combine them: tensor contraction,
parallelization and concatenation.

3.1 Tensor contraction

Music in a score is made of notes. Each note has a lot of parameters attached to
it, but we are keeping four of them: the pitch, the onset, the duration and the
instrument. This are, as presented before, elements of Z, Q, Q+ and I, which
makes a note an element of Z×Q×Q+ × I, that we will call the space of notes
and denote it by N .

We call the finite power set of N , PF(N), the musical space and we denote
it by M. With these definitions, a musical piece might be defined as an element
of M.

The aim of tensor contraction is to merge a harmony, a texture and an
instrumentation into a set of notes belonging to M, and thus forming a musical
piece (or fragment). Let us present the mathematical formalism.

Let N be a finite set of indices. Let H = (Cn)n∈N ∈ CN be a harmony, T =
(Rn)n∈N ∈ RN be a texture and O = (Gn)n∈N ∈ GN be an instrumentation. We
define the tensor contraction9 generated byH, T and O, denoted byH⊗T⊗O
as the union of the Cartesian products between Cn, Rn and Gn, i.e.,

H ⊗ T ⊗O =
⋃
n∈N

Cn ×Rn ×Gn (1)

=
⋃
n∈N

{(p, o, d, i) ∈ Z×Q×Q+ × I : p ∈ Cn, (o, d) ∈ Rn, i ∈ Gn} .

(2)

Notice that we require H, T and O to have the same set of indices N , such that
we can pair the chords with the rhythms and with the groups.

Let us show how we can use this operator to build music fragments. To this
end, we use as example the first 7 measures of Mozart’s Symphony No.40 in G
minor, K.550, depicted in Figure 1.

Let us focus first in the accompaniment, that is, the pattern

9 The term tensor contraction comes from the similarity of this operation with tensor
contraction, where the contraction operator is the union instead of the sum.

6 G. Romero-Garćıa et al.

Fig. 1: First 7 measures of Mozart’s Symphony No.40 in G minor, K.550.

that can be expressed as the set of notes

Aa
0 = {(G2, 0, 1

4 ,Vlc.), (G2, 0, 1
4 ,Cb.),

(G3, 0, 1
8 ,Vla.), (B♭3, 0, 1

8 ,Vla.), (G3, 1
8 ,

1
8 ,Vla.), (B♭3, 1

8 ,
1
8 ,Vla.),

(B♭3, 2
8 ,

1
8 ,Vla.), (G4, 2

8 ,
1
8 ,Vla.), (B♭3, 3

8 ,
1
8 ,Vla.), (G4, 3

8 ,
1
8 ,Vla.)} .

We can use the following harmony, texture and instrumentation:

Ha
0 =

(
{G2}, {G3,B♭3}, {B♭3,G4}

)
=

(
{43}, {55, 58}, {58, 67}

)
T a =

(
| ˇ “, | ˇ “ ˇ “

==
, | > ˇ “ ˇ “

==)
=

(
{(0, 1

4)}, {(0,
1
8), (

1
8 ,

1
8)}, {(

2
8 ,

1
8), (

3
8 ,

1
8)}

)
Oa =

(
{Vlc.,Cb.}, {Vla.}, {Vla.}

)
and we have

Aa
0 = Ha

0 ⊗ T a ⊗Oa . (3)

We can actually express the rest of the accompaniments by only changing
the harmony, that is by choosing

Ha
1 =

(
∅, {G3,B♭3}, {B♭3,G4}

)
Ha

2 =
(
{G3}, {G3,B♭3}, {B♭3,G4}

)
Ha

4 =
(
{G2}, {G3,B♭3}, {D4,G4}

)
Ha

5 =
(
∅, {G3,B♭3}, {D4,G4}

)
Ha

6 =
(
{G3}, {G3,B♭3}, {B♭3,D4}

)
Ha

8 =
(
{G2}, {A3,E♭4}, {E♭4,A4}

)
Ha

9 =
(
∅, {A3,E♭4}, {E♭4,A4}

)
Ha

10 =
(
{G3}, {A3,E♭4}, {E♭4,A4}

)
Ha

12 =
(
{F♯2}, {A3,D4}, {D4,C5}

)
Ha

13 =
(
∅, {A3,D4}, {D4,C5}

)
and Ha

7 = Ha
3 = Ha

1 , H
a
11 = Ha

9 .
This means that each half bar10 Ai can be expressed as

Aa
i = Ha

i ⊗ T a ⊗Oa . (4)

A similar approach could be used to model the melody; let us consider the
main motive:

10 Ai corresponds to the bar ⌊ i
2
⌋+1 and to the first half if i is even and to the second

half if i is odd.

A Model of Scores as Abstract Syntactic Tree 7

We can model it through the texture

Tm =
(ˇ “(? |, ˇ “(|, | ˇ “, | > ˇ “) . (5)

The harmonies will depend on the instrument we consider; in order to avoid a too
large AST in Figure 3, we consider that both violins are a single instrument11,
Vln., and then we have the instrumentation Om =

(
GVln., GVln., GVln., GVln.

)
with GVln. = {Vln.}. The corresponding harmonices would be

Hm
0 =

(
{E♭4,E♭5}, {D4,D5}, {D4,D5}, ∅

)
Hm

2 =
(
{E♭4,E♭5}, {D4,D5}, {D4,D5}, {B♭4,B♭5}

)
Hm

3 =
(
{B♭4,B♭5}, {A4,A5}, {G4,G5}, ∅

)
Hm

4 =
(
{G4,G5}, {F4,F5}, {E♭4,E♭5}, ∅

)
Hm

5 =
(
{E♭4,E♭5}, {D4,D5}, {C4,C5}, {C4,C5}

)
Hm

6 =
(
{D4,D5}, {C4,C5}, {C4,C5}, ∅

)
Hm

8 =
(
{D4,D5}, {C4,C5}, {C4,C5}, {A4,A5}

)
and Hm

1 = Hm
0 , Hm

7 = Hm
6 .

We have now a way of combining harmonies, textures and instrumentation
through the tensor contraction. Let us now expose how we can combine these
tensor contractions to build bigger ones. To that end, we propose two operators:
parallelization and concatenation.

3.2 Parallelization

Parallelization is a way of combining tensor contractions such that they start at
the same time. To do that, we align the origins of the textures, represented by
the 0. This means that the operation is equivalent to the union. In mathematical
terms, let X1 and X2 be two tensor contractions. Then, the parallelization of
them, denoted by X1 ∥ X2, is the set

X1 ∥ X2 = X1 ∪X2 . (6)

In fact, the parallelization of two tensor contractions is a tensor contraction:
indeed, if we have X1 = H1 ⊗ T1 ⊗ O1 and X2 = H2 ⊗ T2 ⊗ O2 with set of
indices N1 and N2 respectively, we can choose H = (H1, H2) := (Cn)n∈N1⊔N2 ,
T = (T1, T2) := (Rn)n∈N1⊔N2 and O = (G1, G2) := (Gn)n∈N1⊔N2 , where ⊔ is

11 This is only a simplification, the model can handle several instances of an instrument
like Vln. I and Vln. II.

8 G. Romero-Garćıa et al.

the disjoint union12 and then we have

X1 ∥ X2 = H ⊗ T ⊗O (7)

= (H1, H2)⊗ (T1, T2)⊗ (O1, O2) (8)

=
(
H1 ⊗ T1 ⊗O1

)
∪
(
H2 ⊗ T2 ⊗O2

)
. (9)

Notice that this operators inherits all its properties from union, and in par-
ticular it is associative and commutative. The graphic representation of the par-
allelization is shown in Figure 2b.

3.3 Concatenation

The case of the concatenation requires slightly more work; first, we need to define
the endpoint of a texture; we define the endpoint of a texture as the maximum
of the ends of the hits, i.e., if T is a texture with indices N , its endpoint e(T) is
defined by

e(T) = max
n∈N

{max{o+ d ∈ Q : (o, d) ∈ Rn}} . (10)

Now, to concatenate two tensor contractions, we shift all the onsets of the
second one by the endpoint of the texture of the first one and then we take the
parallelization. Mathematically, let X1 and X2 be two tensor contractions with
Xj = Hj ⊗ Tj ⊗Hj . The concatenation of them, denoted by X1 → X2, is the
set

X1 → X2 = X1 ∥
(
H2 ⊗ (T2 + e(T1))⊗O2

)
(11)

where T2+e(T1) = (Rn+e(Tn))n∈N2 with Rn+e(T1) = {(o+e(T1), d) ∈ Q×Q+ :
(o, d) ∈ Rn}.

Similarly as in the case of parallelization, the concatenation of two tensor
contractions is also a tensor contraction.

The concatenation is also associative, but it is not commutative. The graphic
representation of the concatenation is shown in Figure 2c.

⊗

H T O

(a) Tensor contraction

∥

X1 X2 · · · Xm

(b) Parallelization

→

X1 X2 · · · Xm

(c) Concatenation

Fig. 2: Graphic representation of the operators of the AST.

12 We need to use the disjoint union for the case where there are common members
between N1 and N2.

A Model of Scores as Abstract Syntactic Tree 9

Let us show how to model the previous example as an AST. We use the
harmonies, textures and instrumentations previously introduced. Since the size
of the AST grows very fast, we only expose the first three measures.

We chose to split the first bar apart since it is an introduction. We concate-
nate that with the parallelization of the accompaniment and the melody; the
accompaniment is made up from four tensor contractions but the melody has
only three repetitions of the motive.

If we wanted to include the subsequent bars, we can map the same distribu-
tion of the parallelization simply changing the harmonies.

→

∥

→

⊗

OmTmHm
2

⊗

OmTmHm
1

⊗

OmTmHm
0

→

⊗

OaT aHa
5

⊗

OaT aHa
4

⊗

OaT aHa
3

⊗

OaT aHa
2

→

⊗

OaT aHa
1

⊗

OaT aHa
0

Fig. 3: A proposition of AST of the first three measures of Mozart’s Symphony
No.40 in G minor, K.550.

4 Computational implementation

In order to compose through this model, we have made an implementation as
a Python library that allows us to create harmonies, textures and instrumenta-
tions, and use the three operators ⊗, ∥ and → to build ASTs.

In addition to this library, we have specified a XML Schema that allows us
to write XML files that can be compiled with the Python library into MIDI
files. The compilation is done by transforming the AST into a Python object
representation, and then by converting this representation into a MIDI file using
pretty midi [17].

The interface and data structures used are shown in the following listing; the
tensor contraction is an object and the parallelization and concatenation oper-
ators are denoted by | and -, respectively. They are implemented as overridden
operator and thus presented with the or and sub methods, respectively.

Hit: {

onset: frac

duration: frac

}

10 G. Romero-Garćıa et al.

Rhythm: {

hits: Set[Hit]

}

Texture: {

rhythms: List[Rhythm]

}

Pitch: {

number: int

}

Chord: {

pitches: Set[Pitch]

}

Harmony: {

chords: List[Chord]

}

Instrument: {

name: str

}

Group: {

instruments: Set[Instrument]

}

Instrumentation: {

groups: List[Group]

}

TensorContraction: {

texture: Texture

harmony: Harmony

__or__(self, other: TensorContraction) -> TensorContraction

__sub__(self, other: TensorContraction) -> TensorContraction

}

Regarding the XML Schema, we used as root a tag score that includes some
metadata, and that has an ast tag inside. We also allowed in the metadata
section the declaration of harmonies, textures and instrumentations, such that
they can be reused in the AST through an id.

5 Conclusions and future work

Through this article, we have seen how we can model a score as an Abstract
Syntactic Tree (AST). This representation makes the structure of the music
explicit and organizes it in a hierarchical way. Structuring musical information
in such a way sheds light on the different relations between elements and might
be useful both for analysis and composition.

One of the main contributions of this article is the formal definition of key
musical notions, namely harmony, texture and instrumentation. While these def-

A Model of Scores as Abstract Syntactic Tree 11

initions shall not to be taken as the full description of these notions, they capture
a significant part of their essence, especially when combined together.

For combining these three elements and building bigger musical structures,
we presented three operators; the tensor contraction allows for the mix of har-
mony, texture and instrumentation, and transforms them into a set of notes, and
parallelization and concatenation are the necessary operators to arrange tensor
contractions in time.

These six concepts are the elements that constitute the basic grammar of
our language and enable the construction of an AST. While the AST can be
compiled into a MIDI file, it might serve several other purposes; for instance, we
can change some harmonies or textures from the AST for performing harmony
or texture transfer. Even more practically, we can change some instrumentations
to make arrangements.

We think that one of the most promising way of using this model is for
pedagogical purposes; an exercise for a student might be to provide an AST for
a music fragment. This can be followed by a transformation of certain elements
showing up their impact on the global result.

Lastly, we want to say that, in our opinion, music pieces are essentially con-
ceived as ASTs; while this opinion might seem bold, we think that a lot of
composers operate implicitly by choosing textures, harmonies and instrumen-
tations, and aggregating them through tensor contraction, parallelization and
concatenation to build their pieces.

Several avenues of research could be explored in order to enrich the expres-
siveness of the AST. First of all, there are important parameters contained inside
a score that we have drop, mainly the dynamic and articulation. It is a question
whether we could include them in the texture or rather as a separate component
of the contraction. We could also extend the number of operators available in
the language: it would be interesting to have a transposition operator that can
be applied to harmonies, or even include some other operators like the octave
duplication. Another important improvement would be to implement a compiler
that transforms the AST into a MusicXML file. Note that we do not use the
word compiler as a metaphor but we talk about a real compiler as defined in [2].
This will require to make several choices, for instance the way of engraving the
different rhythms of a texture into a single voice. Regarding the interactive part,
we aim to implement this model in the Computer Assisted Composition software
OpenMusic, as we think that it is well suited to its functional approach and most
of the elements are already implemented (like the harmony, that can be mapped
to the ChordSeq object).

References

1. Agón, C.: OpenMusic : un langage visuel pour la composition musicale assistée par
ordinateur. Phd., Paris 6 (1998)

2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Boston Munich (1986)

12 G. Romero-Garćıa et al.

3. Berlioz, H.: Grand traité d’instrumentation et d’orchestration modernes. Schonen-
berger, Paris (1844)

4. Bresson, J., Agon, C., Assayag, G.: OpenMusic: visual programming environment
for music composition, analysis and research. In: Proceedings of the 19th ACM
international conference on Multimedia. pp. 743–746. New York, NY, USA (2011)

5. Carnovalini, F., Rodà, A., Harley, N., Homer, S.T., Wiggins, G.A.: A New Corpus
for Computational Music Research and a Novel Method for Musical Structure
Analysis. In: Proceedings of the 16th International Audio Mostly Conference. pp.
264–267. New York, NY, USA (2021)

6. Couturier, L., Bigo, L., Levé, F.: Annotating Symbolic Texture in Piano Music: a
Formal Syntax. In: Proceedings of Sound and Music Computing 2022. pp. 577–584
(2022)

7. Couturier, L., Bigo, L., Levé, F.: A Dataset of Symbolic Texture Annotations in
Mozart Piano Sonatas. In: Proceedings the 23rd International Society for Music
Information Retrieval Conference. pp. 509–516 (2022)

8. Good, M.: MusicXML for notation and analysis. The virtual score: representation,
retrieval, restoration 12(113–124), 160 (2001), publisher: MIT Press, Cambridge,
MA

9. Hudak, P.: An algebraic theory of polymorphic temporal media. In: International
Symposium on Practical Aspects of Declarative Languages. pp. 1–15. Springer
(2004)

10. Hudak, P., Janin, D.: Tiled Polymorphic Temporal Media. In: 2nd ACM SIGPLAN
international workshop on Functional art, music, modeling & design (FARM). pp.
49–60. Gothenburg, Sweden (2014)

11. Koelsch, S., Rohrmeier, M., Torrecuso, R., Jentschke, S.: Processing of Hierarchical
Syntactic Structure in Music. Proceedings of the National Academy of Sciences
110(38), 15443–15448 (2013), publisher: Proceedings of the National Academy of
Sciences

12. Lerdahl, F.: A Generative Theory of Tonal Music. MIT Press, Cambridge (1983)
13. Lerdahl, F., Jackendoff, R.: An Overview of Hierarchical Structure in Music. Music

Perception: An Interdisciplinary Journal 1(2), 229–252 (1983), publisher: Univer-
sity of California Press

14. Marsden, A., Hirata, K., Tojo, S.: Towards Computable Procedures for Deriving
Tree Structures in Music : Context Dependency in GTTM and Schenkerian Theory.
In: Proceedings of the Sound and Music Computing Conference 2013. pp. 360–367
(2013)

15. Orio, N., Roda, A.: A Measure of Melodic Similarity based on a Graph Represen-
tation of the Music Structure. In: Proceedings of the 10th International Society for
Music Information Retrieval Conference. pp. 543–548. Kobe, Japan (2009), pages:
548

16. Orlarey, Y., Fober, D., Letz, S., Bilton, M.: Lambda calculus and music calculi. In:
International Conference on Mathematics and Computing (1994)

17. Raffel, C., Ellis, D.P.: Intuitive analysis, creation and manipulation of MIDI data
with pretty midi. In: 15th international society for music information retrieval
conference late breaking and demo papers. pp. 84–93 (2014)

18. Tymoczko, D.: Tonality: An Owner’s Manual. Oxford Studies in Music Theory,
Oxford University Press, Oxford, New York (2023)

	A Model of Scores as Abstract Syntactic Tree

