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To date, the influence of non-linear stratifications and two layer stratifications on in-
ternal wave propagation has been studied for two-dimensional wave fields in a cartesian
geometry. Here, we use a novel wave generator configuration to investigate transmission in
non-linear stratifications of axisymmetric internal wave. We demonstrate that despite the
additional geometric complexity, with associated features such as inhomogeneous spatial
distribution of energy flux, results for plane waves can be generalised to axisymmetric
wave fields. Two configurations are studied, both theoretically and experimentally. In
the case of a free incident wave, a transmission maximum is found in the vicinity of
evanescent frequencies. In the case of a confined incident wave, resonant effects, in the
sense of constructive interference, lead to enhanced transmission rates from an upper layer
to layer below. We consider the oceanographic relevance of these results by applying them
to an example oceanic stratification, finding that there can be real-world implications.

Key words: Authors should not enter keywords on the manuscript, as these must
be chosen by the author during the online submission process and will then be added
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
keywords.pdf for the full list)

1. Introduction

Inertia-gravity waves are known to be a significant mechanism for energy and momen-
tum transfer in the ocean and atmosphere (?). While a substantial amount of progress in
understanding of their roles has been achieved via plane wave models, a planar geometry
is not necessarily appropriate for studies pertaining to natural phenomena such as oceanic
internal wave generation by hurricanes (?) and tropical cyclones (?), and atmospheric
generation by thunderstorms (?). Furthermore, ? noted that a vertical disturbance of
small spatial extent compared to the horizontal dimension of the system in a stably
stratified fluid like the atmosphere leads to the emission of an axisymmetric perturbation.
As such, axisymmetry is a reasonable approximation to consider for inertia-gravity waves
generated by localised disturbances in either the atmosphere or the ocean.
? and ? studied immersed objects such as spheres as being sources of radiated axisym-

metric internal waves. Several subsequent laboratory experimental studies investigated
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axisymmetric inertia-gravity waves, focusing primarily on the global structure of the
cone-shaped internal wave emission induced by an oscillating or rotating object (????).
More recently, ? investigated internal waves excited by an axisymmetric convective plume
in a constant density-gradient stratification, and ? performed experiments of internal
wave generation with an axisymmetric plume in a two layer stratification, one of them
being of constant density. To obtain a high degree of control on the spatial form of an
axisymmetric source, ? adapted the oscillating plate planar generator of ? to produce a
wave generator capable of producing axisymmetric internal wave fields of arbitrary radial
form, such as truncated Bessel modes or annular patterns, which opens the door on a
wide range of possible experimental investigations. Inspired by studies on confined two
dimensional internal waves, ? used this apparatus to produce pure axisymmetric modes
that can be used as the basis for understanding the behaviour of more complex fields via
modal decomposition using the natural cylindrical basis of Bessel functions.

In the oceans and atmosphere an important consideration is the vertical form of the
density-gradient, as shown in the works of ? and ? with numerical and in-situ studies of
exponentially decaying buoyancy frequency. The influence of non-uniform stratifications
has been studied for planar geometry, determining transmission and reflection coefficients
for stratifications with sharp (??) and smooth (??) discontinuities. Numerical and
experimental studies show good agreement with the theoretical predictions, considering
two different scenarios: one with freely propagating incident waves (??), a configuration
relevant to the atmosphere, and another with parametric subharmonic instability in a
forced, upper stratification layer (?), relevant to an ocean configuration. In the latter
case, the finite extent of the upper layer leads to interferences between downard and
upward waves reflected at the top and bottom boundaries, a phenomenon similar to
resonant cavities as in optics (?) or Helmoltz cavities for sound waves (??). Such a
resonant behaviour – by which we mean constructive interference – has been observed
by ? and has been proven capable of triggering high amplitude wave fields (?).

To date, all experimental studies of axisymmetric internal wave fields have considered
linearly stratified fluids, or stratifications with transitions between a linear stratified
fluid and an unstratified layer (??), and there have been no such transmission studies
for axisymmetric inertia-gravity wave fields involving two layers of different non-zero
buoyancy frequencies. In this paper, therefore, we delve further into the propagation
properties of axisymmetric internal waves in non-linear stratifications. The plane wave
analysis of ? is extended to cylindrical wave modes and we derive a theoretical prediction
for their transmission across a buoyancy frequency interface. Using the experimental
configuration of ?, experimental transmission studies are conducted for a freely propa-
gating axisymmetric internal wave and for an axisymmetric internal wave field excited
in an upper layer (see figure ??); in both cases the radial form of the wave field is a
mode 1 Bessel function. In section 2, we derive the theoretical framework and define the
boundary value problem used for numerical computation. Then, in section 3, we describe
the experimental apparatus. Our experimental results are presented in section 4, followed
by oceanographic considerations in section 5 and conclusions and discussion in section 6.

2. Theory

2.1. Governing Equations

Focusing on an inviscid Boussinesq fluid rotating at an angular velocity Ω, with a
density stratification ρ(z) where z is the ascendent vertical, small amplitude internal
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waves satisfy the following equation in cylindrical coordinates (??)
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in which f = 2Ω is the Coriolis frequency, and N =
√
(−g/ρ0)∂ρ̄/∂z is the buoyancy

frequency, ρ0 being the reference density. The stream function ψ is defined so that the
radial and vertical velocities vr and vz are
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r
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1
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∂(rψ)

∂r
. (2.2)

In the configuration of a horizontal forcing in a linear stratification (N is a constant),
the solutions of equation (??) can be expressed as a product of two decoupled functions: a
radial part depending on the radius r, and a vertical part depending on the depth z. The
cylindrical geometry leads to a natural decomposition over Bessel functions for the radial
component and exponentials for the vertical component. Using a complex notation, the
stream function can therefore be written as a sum of cylindrical modes of the form (?)

ψ(r, z, t) = ψ0J1(lr)e
i(mz−ωt), (2.3)

with ψ0 a constant amplitude, ω the wave frequency, and l and m its radial and vertical
wavenumbers. The radial dependence is expressed through a first order Bessel function
of the first kind J1, corresponding to a non-divergent mode. In the case of either
a free propagating or evanescent wave, the vertical dependence can be written with
an exponential. For a more general framework in further sections, for example while
considering vertically confined wave fields, the vertical component will be noted ϕ. As
in cartesian geometry, the parameters ω, l, and m are linked through the internal wave
dispersion relation (??)

m = ±l
(
ω2 −N2

f2 − ω2

)1/2

, (2.4)

derived from (??), (??) and (??).
In the next two sections, we discuss the two scenarios presented in figure ??, initially

assuming a sharp interface (discontinuity between two different buoyancy frequencies
N1 and N2, with N1 > N2). Figure ??(a) shows the transmission of a free incident
wave ψI , which is more relevant to the modeling of atmospheric internal waves, whereas
figure ??(b) shows the transmission of an incident wave confined from above, which is
closer to an oceanic situation with a surface forcing.

2.2. Transmission of a Free Incident Wave

2.2.1. Sharp Interface

Linear vertical propagation of radial modes has been extensively studied by ?. In this
section, we consider a horizontal interface located at z = 0 that splits the domain into
two media of constant buoyancy frequency N : N1 in the upper layer (z > 0), N2 in
the lower layer (z < 0), the density being continuous at the interface (figure ??(a)). We
assume a larger buoyancy frequency in the upper layer so that N1 > N2. As depicted in
figure ??(a), a free incident wave ψI reaching the interface leads to a reflected wave ψR in
the upper region, and a transmitted wave ψT in the lower region. The total wavefield can
be described by ψ1 = ψI + ψR in the upper region, where ψI is known, and by ψ2 = ψT

in the lower region.
We define the transmission coefficients as the ratios of the velocities above and under
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Figure 1. Transmission of a radial mode J1 across a buoyancy frequency interface. The z axis
is located at r = 0. In both cases, the interface is modeled by a sharp discontinuity in buoyancy
frequency, and the blue pattern represents a Bessel shaped wave field. (a) free incident wave
ψI reaching the interface, leading to a reflected wave ψR and a transmitted wave ψT . (b) a
confined incident wave ψI , located between the surface at z = 0 and the interface at z = −L,
is an infinite sum of waves being reflected at z = 0 and at z = −L, and leads to a transmitted
wave ψT .

the interface, as

Tvz =

∣∣∣∣vTzvIz
∣∣∣∣ and Tvr =

∣∣∣∣vTrvIr
∣∣∣∣ , (2.5)

and

Rvz =

∣∣∣∣vRzvIz
∣∣∣∣ and Rvr =

∣∣∣∣vRrvIr
∣∣∣∣ , (2.6)

where the notation I, R, and T , indicates that the vertical velocity vz or the radial
velocity vr is computed from the stream function ψI , ψR, and ψT , respectively (see
figure ??). These velocities are taken at the interface, which means in the limit z → 0.

Transmission and reflection properties can be derived by applying boundary conditions
at the interface: continuity of the total vertical velocity field vz and the pressure p derived
from ψ1 and ψ2 (?). As in cartesian geometry, these quantities can be obtained using
the linearised Navier-Stokes equations (?). The transmission and reflection coefficients
for the radial and vertical velocities vr and vz, and the flux of the energy j = pvz across
the interface, can therefore be derived, respectively

Tvr =

∣∣∣∣ 2m2

m1 +m2

∣∣∣∣ , Tvz =

∣∣∣∣ 2m1

m1 +m2

∣∣∣∣ , and Tj =

∣∣∣∣ 4m1m2

(m1 +m2)2

∣∣∣∣ , (2.7)

and

Rvr =

∣∣∣∣m1 −m2

m1 +m2

∣∣∣∣ , Rvz =

∣∣∣∣m2 −m1

m1 +m2

∣∣∣∣ , and Rj =

∣∣∣∣ (m1 −m2)
2

(m1 +m2)2

∣∣∣∣ , (2.8)

where m1 and m2 are the vertical wavenumbers corresponding to regions 1 and 2, given
by the dispersion relation (??). These coefficients are the same as in cartesian geometry
for a plane wave beam crossing a density gradient interface (?), suggesting that the
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Figure 2. Colormaps of (a) the transmission coefficient Tvz and (b) the reflection coefficient
Rvz in vertical velocity, in the plane (ω/N1, N1/N2). The Coriolis frequency is set to be f = 0.

radial dependence does not affect wave properties at the interface though it still shapes
the wavefield and the energy distribution. Colormaps of the transmission and reflection
coefficient for the vertical velocity, Tvz and Rvz , are presented in figure ?? as functions
of N1/N2 and ω/N1. A maximum of transmission of vertical velocity appears for ω/N1 =
N2/N1, when the wave just becomes evanescent in the lower region. This evanescence
transition is clearly identified in the reflection coefficient, showing a total reflection of
the wave field for ω/N1 > N2/N1.

2.2.2. Smooth Interface

Following the approach of ?, the propagation of the wave across a physical smooth
interface of finite-width transition region δ is investigated using the buoyancy frequency
profile

N2(z) =

(
N2

1 +N2
2

2

)
+

(
N2

1 −N2
2

2

)
tanh

(z
δ

)
, (2.9)

for which N is assumed to be constant far from the transition region and continuously
going from N1 to N2 at the interface located at z = 0.
In a similar way as done by ? and ?, the wave behaviour close to the interface is

explored through a numerical approach. As the buoyancy frequency profile does only
depend on z, the radial part is still described by a first order Bessel function J1. We use
an ansatz describing the stream function as

ψ(r, z, t) = ϕ(z)J1(lr)e
iωt, (2.10)

where the vertical dependence is no longer described by an exponential as in (??) but by
a z-dependent function ϕ. This function is found to satisfy the differential equation

ϕ′′ + γ(z)ϕ = 0 with γ(z) = l2
(
ω2 −N2(z)

f2 − ω2

)
, (2.11)

where ϕ′′ stands for the second order derivative of ϕ, and γ is a function of z that replaces
the m wave number given in the sharp interface study. Far from the interface, the wave
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field is expected to behave vertically as a Fourier mode, which implies an asymptotic
form

ϕ̃(z) =

{
ϕI0e

im1z + ϕR0 e
−im1z if z = z+,

ϕT0 e
im2z if z = z−,

(2.12)

where ϕI0, ϕ
R
0 , and ϕ

T
0 are constants describing the amplitudes of the incoming, reflected,

and transmitted waves, m1 and m2 are the vertical wavelengths corresponding to the
media of buoyancy frequencies N1 and N2 defined by (??), and z+ and z− are two loca-
tions far from the interface respectively above and below it. The asymptotic expression
ϕ̃ can be written as boundary conditions for ϕ

ϕ = ϕ̃ at z = z+, (2.13a)

ϕ′ = im2ϕ̃ at z = z−. (2.13b)

Thus, we obtain a boundary value problem that can be solved numerically, giving the
z-dependent function ϕ and allowing for the computation the transmission and reflection
coefficients.

2.2.3. Weakly Viscous Correction

As shown by ?, viscous damping for radial modes has to be considered while using
frequencies such as ω/N < 0.5. The weakly viscous correction can be described by
assuming that the first order correction in ε = νl2/ω for a vertical dependence of the
stream functions as ϕ(z) ∝ eimz takes the form (?)

m = m(0) + iεm(1) +O(ε2), (2.14)

with m0 being the inviscid vertical wave number defined by equation (??), and m1 the
correction term

iεm(1) = ∓ iεl

2(1− γ2)α3
√
1− α2

, (2.15)

where α = ω/N and γ = f/ω. Hence, after propagating over a distance z, the weakly
viscous streamfunction ψν is written

ψν(z) = ψ(z) exp(−εm(1)|z|). (2.16)

A more general calculation of the viscous correction, for arbitrary z-dependent stratifi-
cations, can be found in ?.

Using the above expressions, the transmission coefficient can be computed numerically
and compared to the inviscid case. The problem is solved as a boundary value problem,
using a similar system as proposed before (??). Yet, as ϕ is now driven by a fourth
order differential equation (?), the boundary value problem requires four conditions to
be closed

ϕ = ϕ̃ at z = L, (2.17a)

ϕ′′ = −(m
(0)
1 + εm

(1)
1 )2ϕ̃ at z = L, (2.17b)

ϕ′ = i(m
(0)
2 + εm

(1)
2 )ϕ̃ at z = z−, (2.17c)

ϕ′′ = −(m
(0)
2 + εm

(1)
2 )2ϕ̃ at z = z−. (2.17d)
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2.3. Transmission of a Confined Incident Wave

2.3.1. Sharp Interface

In the previous section, semi-infinite domains were implicitly assumed. Such situations
can be found in the atmosphere, as discontinuities in the buoyancy frequency profile
are likely to be far from a source of internal waves. In the oceans, however, strong
stratifications are often found close to the surface (?), so the upper layer cannot be
modeled by a region that extends vertically without boundaries.

We therefore consider a sharp interface between N1 and N2 at z = −L, and an upper
rigid boundary (the ocean surface) at z = 0, as presented in figure ??(b). Analytically,
this problem can be solved as in the case of a semi-infinite domain, except that the
boundary conditions are different because the incoming wave ψI is not known. Instead,
the total field at z = −L is known and its vertical dependence satisfies: ϕ(z = −L) =
ϕ0 = ϕI0e

−iLm1 + ϕR0 e
iLm1 . The following transmission coefficients are derived using the

same continuity properties at the interface as in the previous section

Tvr =

∣∣∣∣vTrvIr
∣∣∣∣ =

∣∣∣∣∣
[
cos(Lm1) + i

(
m1

m2

)
sin(Lm1)

]−1
∣∣∣∣∣ , (2.18)

Tvz =

∣∣∣∣vTzvIz
∣∣∣∣ =

∣∣∣∣∣
[
cos(Lm1) + i

(
m2

m1

)
sin(Lm1)

]−1
∣∣∣∣∣ , (2.19)

and Tj =

∣∣∣∣∣
[
cos(2Lm1) + i

(
m2

1 +m2
2

2m1m2

)
sin(2Lm1)

]−1
∣∣∣∣∣ , (2.20)

with m1 = ±l
(
N2

1

ω2
− 1

)1/2

and m2 = ±l
(
N2

2

ω2
− 1

)1/2

. (2.21)

where the vTr and vTz are the transmitted radial and vertical velocities respectively, and vIr
and vIz are the incoming radial and vertical velocities for the total wavefield in the upper
region (see figure ??). All velocities are taken at the interface, which means in the limit
z → −L. In equation (??) we recall the result from equation (??) in the non-rotating
case (f = 0).

Expressions (??), (??), and (??), invole different experimentally tunable variables: the
buoyancy frequencies of the two layers N1 and N2, the frequency of the wave ω, the
depth L of the interface, and the radial wave number l. These parameters can be reduced
to three non-dimensionalised parameters: L × l, ω/N1, and N2/N1. Figure ?? presents
colormaps of the transmission coefficient for vertical velocity Tvz , as a function of these
different parameters. Clear peaks appear, with large amplitudes due to a constructive
interference effect between upwards and downwards propagating waves in the upper
layer. Figure ??(a) shows the transmission coefficient as a function of ω/N1 and N2/N1

for a fixed value of L × l (= 3.23). Transmission is generally higher for cases where
waves can propagate in both regions (ω < N2 < N1) and drops off for evanescent
frequencies in the lower region (N2 < ω < N1). Maxima of transmission appear for well-
defined values of ω/N1 at a given N2/N1. The curves defining maxima of transmission
are continuous between the evanescent and the propagating regions. Figure ??(b) shows
the transmission coefficient as a function of ω/N1 and L × l for a fixed value of N2/N1

(= 0.74). The cut-off between the propagating and evanescent regions is now observed at
ω/N1 = N1/N2 = 0.74. The resonant interference peaks are expected to be less numerous
as N2/N1 → 1 or as L× l → 0. The study of the transmission coefficient in radial velocity
Tvr shows similar behaviour.
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Figure 3. Colormaps of the transmission coefficient Tvz as a function of (a) ω/N1 and N1/N2

at a given L × l = 3.23, and (b) ω/N1 and L × l at a given N2/N1 = 0.74. Dashed lines show
the cuts at (a) N2/N1 = 0.74 and (b) L× l = 3.23. The Coriolis frequency is set to be f = 0.

2.3.2. Smooth Interface

As in the freely incoming wave case, these results can be extended to the case of a
smooth interface through the same method, simply by changing the boundary condition
at the surface:

ϕ̃(z) =

{
ϕ0 if z = L,

ϕT0 e
im2z if z = z−,

(2.22)

where z− is a location far from the interface in the lower layer, leading to a new set of
boundary conditions for the numerical computation.

2.3.3. Weakly Viscous Correction

The transmission mechanism involved in the confined configuration is supposed to
result from an infinite number of reflection in the upper layer. Such a condition, however,
is not truly satisfied in the case of a viscous fluid, as the amplitude of the wave field
decreases and vanishes after a finite number of reflections. Once again, the problem is
solved numerically after finding out the correct boundary conditions, using the first order
developpement of the vertical wave number m (?).

3. Experimental Apparatus

The experimental arrangement described in ? is used to investigate the transmission
of internal waves across a buoyancy frequency interface. The experiments did not involve
rotation (f = 0), so the waves were purely internal gravity waves. Note that adding
rotation at fixed values of N , ω, and l, would only change the vertical wave number
m and not the physics involved in the linear theory (see equation (??)). A schematic
is presented in figure ??. Experiments were conducted in a cylindrical acrylic tank of
diameter 40.4 cm, inserted into a square acrylic tank of 100 cm × 100 cm horizontal
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Figure 5. Configuration of the generator (l = 19 m−1). The amplitude a is set to 2.5 mm.

section and 65 cm height. Both were filled with salt-stratified water with the same density
profile to avoid optical deformations.
Internal waves are produced using Maurer et al ’s axisymmetric wave generator (?).

This device, adapted from Gostiaux et al ’s planar wave generator (?), comprises 16
concentric cylinders moving with customisable excentricities, enabling us to excite ax-
isymmetric wave patterns. We set its configuration to be a mode 1 profile able to
produce pure cylindrical modes shaped as Bessel functions (?). The profile of the mode
1 configuration, with a radial wavelength of l = 19 m−1, is presented in figure ??. We
use a generator amplitude a = 2.5 mm, which is low enough to limit non-linear effects
(see appendix).
We adapted the double bucket method (??) to fill the tank with salt-stratified water.



10 S. Boury, P. Odier and T. Peacock

In order to obtain bi-linear stratifications, when required we stopped the filling, to change
the filling tank density difference by removing salty water and adding fresh water without
changing the density in the mixing tank. We then re-started the filling, which gave
us a sharp but continuous buoyancy frequency interface at the desired depth. Density
and buoyancy frequency profiles were measured using calibrated PME conductivity and
temperature probes mounted on a motorised vertical axis. Buoyancy frequencies of each
layer are estimated from the mean values of the N profile, obtained after smoothing the
density function ρ(z) and taking its derivative. Errors on the buoyancy frequency are
estimated using the standard deviation of this N profile and are in most cases about 4%
of the estimated N value. In our experiments, we decided to use a stronger stratification
in the upper layer (N1 > N2), as in the theory, because we wanted to look at transmission
when the wave field in the lower layer was either propagating or evanescent.
Experiments were conducted over a period of time up to 40 hours during which the

interface becomes less sharp due to diffusive effects (we estimate the width of the interface
to increase at a rate of about 1 cm/day). Due to the configuration of the apparatus, the
stratification could not be measured at different times while running the experiment
because the presence of the generator prevented access to the domain of interest by
the conductivity probe. As detailed later in the result section, however, we conducted
systematic repeated experiments showing that any evolution of the stratification did not
impact the experimental results.
Visualisation of the velocity fields was performed using Particle Image Velocimetry

(PIV). A vertical laser plane, containing the generator diameter, was created using a
2 W Ti:Sapphire laser (at 532 nm) and a cylindrical lens. Hollow glass spheres of 10 µm
diameter were added to the salt-stratified fluid for the purpose of visualisation. A camera
recorded particle displacements at 1 Hz in the laser plane. The CIVx algorithm was
subsequently used to process the PIV raw images and extract the velocity fields (?).

4. Results

4.1. Transmission of a Free Incident Wave

We first quantified the transmission coefficient for the vertical velocity field in the
case of a freely incoming wave. To conduct this experiment, a two-layer stratification is
used and a range of forcing frequencies is explored. For each frequency, the transmission
coefficient is extracted from the PIV data by looking at the vertical velocity below the
interface.

Figure ?? presents the stratification used to conduct this study. The first two plots
show the density profile ρ(z) computed from the measurements of the C/T probe, and
the buoyancy frequency profile N(z) subsequently derived. The density curve shows two
layers of linear stratification, one from 0 to 30 cm and one from 30 to 60 cm. The
buoyancy frequency profile confirms this trend, showing two constant values for the
density gradient: N1 = 0.94± 0.02 rad · s−1 and N2 = 0.62± 0.05 rad · s−1. We indicate
by a dashed line the interface between these two domains, and by a straight line the top
of the tank. Two to three centimeters are missed in the measurements at the bottom of
the tank, due to the configuration of the probe. On the buoyancy frequency curve, we fit
the N profile with our models for a sharp and a smooth interface (equation (??)) with
the same distance L = 30 cm from the generator, and a width δ = 1 cm. No error is
given on these lengths because it does not impact the transmission coefficient error, as
we will discuss later. A small bump in the stratification is present at 42 cm below the
generator: its width on the N profile is exaggerated because of the averaging process
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Figure 6. From left to right: (a) density profile ρ(z), (b) buoyancy frequency profile N(z) and
fits (with N1 = 0.94 ± 0.02 rad · s−1, N2 = 0.62 ± 0.05 rad · s−1, L = 30 cm, width δ = 1 cm),
and (c) example of vertical PIV cross-section of the vertical velocity field (ω/N1 ≃ 0.4). The
generator is located at the top (z = 0). The dashed line indicates the interface.

used to compute the buoyancy frequency and, as can be seen in figure ??(c), it does not
affect the velocity field. However, to get the most accurate evaluation of N2, we used the
mean value and the standard deviation in the interval [31; 41] cm. The N1 profile was
estimated in the [3; 28] cm interval.
Figure ??(c) presents a PIV snapshot of the vertical velocity field after the wave

field crossed the buoyancy frequency interface. The mode−1 shape of the generator in a
horizontal plane is visible at the top due to a parallax effect. Through the interface, we
see that the radial wavelength, given by the horizontal nodes and antinodes of the field,
is conserved. The vertical wave number, given by the vertical nodes and antinodes (?),
changes when the wave field crosses the interface, and is lower in the bottom layer than
in the top one. Such a behaviour is expected, as the vertical wave number m is fixed by
the buoyancy frequency N and in our experiment we set N2 < N1.
To ensure that the interface does not affect the modal shape of the field, we present

in figure ?? horizontal profiles of the radial and vertical velocity fields in the upper layer
and in the lower layer. Without any regard on the amplitude, as the profiles were taken
at random times, we see that in both cases the fits with the expected Bessel functions
respectively J0(lr) and J1(lr), with l = 19 m−1, agree well with the experimental profiles.

The transmission properties are investigated using the stratification from figure ??, by
producing mode−1 wave fields first for increasing frequencies ω = 0.3 to 0.98 rad · s−1

(labelled by ω↗), then for decreasing frequencies ω = 0.96 to 0.28 rad · s−1 (labelled by
ω↘). As no direct measurement of the stratification can be performed inside the cylinder
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Figure 7. Experimental profiles and fits by Bessel functions: (a) vertical velocity in the upper
layer, at z ≃ −15 cm; (b) vertical velocity in the lower layer, at z ≃ −35 cm; (c) radial velocity
in the upper layer, at z ≃ −15 cm; (d) radial velocity in the lower layer, at z ≃ −35 cm. Profiles
are taken at random times.

due to the lateral, top, and bottom boundaries, this protocol serves as a check that the
stratification does not change while running the experiment. Because we only want to
investigate the transmission of the wave field, short-time measurements are done with
excitations of 100 s, at 20 min intervals each, to ensure that the fluid is initially at rest
for each measurement. We measure the amplitude in the lower region, after the wave has
crossed the interface. To this extent, the selection procedure described in ? is adapted.
We consider the time series obtained by fitting horizontal cuts of vertical velocity for

Bessel functions of radial number l = 19 m−1. These cuts are taken at a depth zm, a few
centimeters below the interface. In this time series, we pick three different time windows
of one-period width, starting at a time when vz = 0, half-covering each other. The middle
time window is chosen to be the last one before the wave reflected at the bottom returns
at z = zm. This returning time, tf , is determined using the group velocity

vg = −ml
2N2

ωk4
ez, (4.1)

computed in both layers. Figure ?? shows examples of (a) timeseries at ω/N1 = 0.89 and
(b) timeseries at ω/N1 = 0.50 , with the three different time windows used to estimate
the amplitude in both cases. The wave field in figure ??(a) is evanescent in the lower
region, so there is theoretically no reflected wave. In this case, the time tf is taken just
before seeing non-linearities. In the measurement region, the temporal evolution of the
amplitude is nearly sinusoidal. In figure ??(b), the amplitude is still growing after the
returning time. It can be due to the reflected wave, or to a non-fully established wave
field.
For each of the three time windows defined, the RMS value of the time signal during

the chosen time windows is computed. The wave amplitude is then defined as the average
of the three values obtained, multiplied by

√
2 since the signal is fairly sinusoidal. The

standard deviation between these three values gives an estimate of the measurement
error. The need of such a process is justified by the fact that for some frequencies, the
wave field is not fully developped when reaching the interface (figure ??). Given this
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Figure 8. Timeseries of the amplitude of the vertical velocity over 100 s, (a) at ω/N1 = 0.89 and
(b) at ω/N1 = 0.50. The black solid line indicates the time tf used to compute the amplitude.
Rectangles show the three periods used to estimate the wave amplitude from RMS.

situation, measuring the right amplitude is difficult even when the profiles are well fitted
by the theoretical Bessel functions.
Direct comparison between the amplitude of the wave field above and under the

interface is not possible, because the multiple reflections within the relatively narrow top
layer make it infeasable to extract the amplitude of the incident wave alone. However,
we have shown in ? that for frequencies above ω/N ≃ 0.3, the experimental amplitude
of an incident mode is well predicted by the generator amplitude aω, corrected with the
theoretical viscous damping coefficient

vz,inc = aω × exp(−εm(1)
1 L), (4.2)

wherem
(1)
1 is defined in section ??. Therefore, to estimate the transmission coefficient, we

compare the measured transmitted amplitude vz,mes to the theoretical incident amplitude
vz,inc.

Tvz =
vz,mes

vz,inc
=

vz,mes

aω × exp(−εm(1)
1 L)

. (4.3)

The experimental transmission data points are presented in figure ??. To scale the
frequencies as a non-dimensional parameter, we use the mean value of the buoyancy
frequency N1. We note that, as the two sets of measurements ω↗ and ω↘ nicely follow
the same trend, the influence of the forcing on the stratification can be considered as
negligible. In order to draw comparisons with theoretical predictions, we must first make
some considerations on the control parameters. The shape of the theoretical curves is
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controlled by various parameters: the position of the interface L, its width δ, and the
buoyancy frequencies of the two layers N1 and N2. We studied the impact of these
parameters by computing different curves for the smooth interface with a weakly viscous
correction using the method explained in sections ?? and ??. We found out that the
distance L mainly controls the viscous damping observed at low frequencies, as the
amplitude of the wave is greatly attenuated for ω/N1 < 0.5, as discussed in ?. The width
δ changes the height of the peak in the transmission curve, located at ω/N1 = N2/N1.
However, as the interface is really sharp in our experiment (δ = 1 cm), its impact is
negligeable. To investigate the influence of the boyancy frequencies, we looked at the
ratio N2/N1. We found that the transmission curve is very sensitive to a slight change in
the buoyancy frequencies, as it shifts the position of the transmission peak and defines
the range of frequencies for which the wave is transmitted or fully reflected.

As discussed at the beginning of this section, we measured N1 = 0.94± 0.02 rad · s−1

and N2 = 0.62 ± 0.05 rad · s−1. As a result, we have N2/N1 = 0.66 ± 0.06. Due to the
fairly large uncertainty on this value, however, we decided to compute numerically the
transmission curves for a smooth interface with a weakly viscous correction, leaving the
ratio N2/N1 as a free parameter that we adjust by ensuring that the position of the
transmission peak in this curve corresponds to the data. This adjusted curve is shown in
figure ??. The resulting fitted value of N2/N1 is 0.73, which is within the uncertainty of
our experimental estimate for this ratio.
We can now discuss how the experimental data points compare with the theory for

a smooth interface and weak viscous effects. The general trend is very similar, with an
increased transmission as the frequency is increased, until one reaches a maximum of
Tvz = 2 at a frequency close to the buoyancy frequency of the lower layer, as expected
since the waves then become evanescent in this region. Then, one observes a sharp
decrease of the transmission. Above ω/N1 ≃ 0.5, which is the region of interest with
the maximum of transmission, the experimental data points show good agreement with
the theoretical curve. In contrast, in the region 0.3 < ω/N1 < 0.5, the data points are
below the theoretical prediction. We assume that this trend for low values of ω/N1 is due
to the poor efficiency of the apparatus at these frequencies, because of boundary layer
damping effects on the cylinder (??), which are not taken into account in our weakly
viscous model. An order of magnitude of these effects gives, at low frequency, a damping
in amplitude up to a factor 2, relevant to what is observed.

4.2. Transmission of a Confined Incident Wave

We now focus on the confined wave configuration. Figure ?? shows the experimental
stratification used in this study, with (a) the density and (b) the buoyancy frequency
profiles, computed as in the previous section. We use a two-layer stratification: the top
layer is from 0 to 17 cm, with N1 = 1.17 ± 0.07 rad · s−1, and the bottom layer is from
17 to 60 cm, with N2 = 0.85± 0.03 rad · s−1. A dashed line indicates the location of the
interface, and a straight line shows the water surface. The buoyancy frequency profile is
fitted with a sharp interface curve and a smooth interface curve, with the same distance
L = 17 cm, and a width δ = 3 cm for the smooth interface. We see an important mixed
layer at the surface, which is part of the upper layer and we make sure that N1 is
estimated outside this layer. We compute N1 in the interval [2; 15] cm and N2 using
the interval [22; 53] cm. Figure ??(c) presents an example of a PIV field for the vertical
velocity in this experiment. Between the generator, at the surface, and the interface, we
can see that the wave field has a smaller vertical wavelength than below the interface,
consistent with N2 < N1, as in the previous experiment.

Mode−1 wave fields for 65 values of frequency from ω = 0.2 to 1.09 rad · s−1 are
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Figure 9. Experimental transmission curve. We fit the experimental data with a theoretical
curve computed for a smooth interface with viscosity (straight line).
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Figure 10. From left to right: (a) density profile ρ(z), (b) buoyancy frequency profile N(z) and
fits (with N1 = 1.17 ± 0.07 rad · s−1, N2 = 0.85 ± 0.03 rad · s−1, L = 17 cm, width δ = 3 cm),
and (c) example of vertical PIV cross-section of the vertical velocity field (ω/N1 ≃ 0.36). The
generator is located at the top (z = 0). The dashed line indicates the interface.
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produced. Given the previous results on transmission in a non-resonant case, we assume
that the stratification does not change in our experiment and we only perform the
measurements by increasing the frequency. We also use short-time excitations of 100 s at
20 min interval each. Amplitudes are measured below the interface in a similar selection
process as before, but the position of the interface closer to the generator allows for
several back and forth reflections in the upper layer. Measurements are compared to the
theoretical generator amplitude (??) to compute the transmission coefficient.
Results are presented in figure ??. Measurements of the transmission coefficient are

plotted as a function of ω/N1, using the mean value of N1. As in the previous section, we
must also investigate the influence of the different parameters L, δ, N1, and N2, on the
theoretical transmission curve for a confined incident wave, a smooth interface and weekly
viscous effects obtained following the method described in section ?? and ??. The length
L contributes to the peak positions in the propagating region ω < N2. The width of
the interface δ has little impact because the interface is relatively sharp. In contrast, the
buoyancy frequenciesN1 andN2 mainly control the shape of the curve, as they change the
position of the peaks, their amplitude, as well as the limit between the propagating and
evanescent transmissions. Using the C/T probe, we measure N1 = 1.17 ± 0.07 rad · s−1

and N2 = 0.85 ± 0.03 rad · s−1, which gives us a ratio N2/N1 going from 0.8 to 0.66.
As a result, several theoretical curves for a smooth interface with viscosity, numerically
computed, are presented in figure ??, one for the central value of N2/N1, namely 0.73,
and two others for the extreme values of the ratio, 0.66 and 0.8. It shows that although
the different theoretical curves always present the same trend, with various peaks, the
position and height of the peaks can vary a lot by slightly varying the ratio N2/N1.

Experimental data display the same qualitative behaviour as theoretical predictions.
For ω/N1 ∈ [0.17; 0.74], the transmission coefficient increases non-monotonically with
local extrema. As in the previous section, measurements at low frequencies show a
smaller transmission than the expected value, also probably due to boundary layer
damping effects (??). The most significant features, however, occur at higher frequencies
and are therefore unaffected by this. For ω/N1 > 0.74 the transmission coefficient is
globally decreasing as the waves become evanescent in the lower region. For a given
range of frequencies ω/N1 ∈ [0.77; 0.84], however, non-linear effects are triggered and no
amplitude can be measured as the wave field is no longer described by our model. This
area is indicated by a shaded area in figure ?? and corresponds to the expected resonant
interference peak of the theoretical curves. Snapshot examples of the vertical velocity
field are given in figure ?? for three different situations after 34 periods of excitation:
figure ??(a) shows propagating waves in both layers at ω/N1 = 0.7, while in figure ??(b)
and ??(c) waves are evanescent in the lower layer at ω/N1 = 0.8 and ω/N1 = 0.9,
respectively. In contrast to the images presented in figures ??(a) and ??(c), the image
presented in figure ??(b) shows small-scale disturbances of the wave field resulting from
non-linear effects due to constructive interference in the upper layer, representing the
typical behaviour observed within the hatched region identified in figure ??.

5. Application to ocean: an example

An interesting application of our confined layer studies is to relate our findings to
a scenario that has a strong upper ocean stratification overlying a weaker deep ocean
stratification. Figure ?? presents an example of density and buoyancy frequency profiles
taken at 159◦57.111′ W, 73◦32.439′ N during the Stratified Ocean Dynamics of the
Arctic (SODA) research cruise, on the R/V Sikuliaq, in September 2018. A very simple
model can be used to describe this stratification at first order: a Melting Layer (ML)
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Figure 12. Snapshots of the vertical velocity field in three different cases: (a) ω < N2 < N1

and ω/N1 = 0.7; (b) N2 < ω < N1 and ω/N1 = 0.7; and (c) N2 < ω < N1 and ω/N1 = 0.8. All
pictures are taken at 34 periods of excitation.
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Figure 13. Example of (a) density profile and (b) buoyancy profile, from in-situ measurements.
Different layers can be identified between dashed lines, from top to bottom: Melting Layer (ML),
N1 linear layer (N1), Interface Region (IR), and N2 linear layer (N2).

at the surface issued from ice melting with a strong density gradient, and a bi-linear
stratification with two buoyancy frequencies N1 and N2 below. Using equation (??), such
a profile can be fitted with N1 ≃ 0.011 rad · s−1 in the upper layer, N2 ≃ 0.001 rad · s−1

in the lower layer, L ≃ 250 m from the Melting Layer (ML) to the center of the Interface
Region (IR) which has a width δ ≃ 150 m. Note that such parameters cannot be obtained
in our experiments, due to its size and to the range of buoyancy frequencies we are able to
produce (here, N1 and N2 are of the same order of magnitude), but the physics involved
remains the same.
As shown by our study, constructive interference effects may appear and produce high

transmission coefficient value for confined internal waves. These effects, however, arise
only when the vertical wavelength 2π/m1 is larger than the interface width (?). Upon
the contrary, the interface acts as a smooth density change for the wave and internal
waves pass through relatively unaffected. Re-writing equation (??) in terms of the radial
wavelength 2π/l as

2π

m1
=

2π

l

(
ω2 − f2

N2
1 − ω2

)1/2

, (5.1)

we explore the range of parameters (ω; 2π/l) by plotting the quantity log(2π/m1) for
propagating waves in the upper layer, which means f < ω < N1, in figure ??. The
Coriolis frequency is set to be f = 1.24 · 10−4 rad · s−1, a typical value in this region (?).

Near-inertial wave generation, with frequencies close to f are found to be easily excited
in the Arctic Ocean (?), with a small vertical wavelength as illustrated in figure ??. In this
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Figure 14. Logarithmic colormap of the vertical wavelength in the upper layer
(N1 = 0.011 rad · s−1) as a function of the frequency ω (from f to N1) and the radial wavelength
2π/l. The white solid line represents ω = N2, and the white dashed line represents ω = N2/2.

configuration, the factor ω2−f2 is of the order of f2 (10−8 rad2 · s−2). Since N1 ≫ ω, the
factor N2

1 − ω2 is of the order of N2
1 (10−4 rad2 · s−2), yielding l/m1 ≃ 10−2. Hence, to

obtain vertical wavelengths of the order of 100 m, the radial wavelength has to be of the
order of 10 km, which can be produced by storms of large extent. Higher frequency waves
can also be produced (???), with a frequency of the same order of magnitude than the
buoyancy frequency N2. Hence, the term ω2 − f2 is of the order of N2

2 (10−6 rad2 · s−2),
yielding l/m1 ≃ 10−1. As a result, resonant interference waves with vertical wavelength
of the order of 100 m can have small radial wavelength (of the order of 1 km).
Following the approach of ?, we present in figure ?? numerical computation of the

transmission coefficient for the Arctic stratification (figure ??) for three different fre-
quencies, two of them being near-inertial at ω = 1.05f and ω = 1.1f , and the third
one corresponding to a higher frequency with ω = N2/2. A resonant cavity effect, in
the sense of constructive interference with sequential peaks of high transmission rate of
internal waves, occurs for ω = N2/2, for both small or large radial wavelengths. For near-
inertial waves, however, the transmission coefficient is almost constant until the vertical
wavelength is larger than 10 km, meaning that this enhancement is only relevant for large
wavelength storms. In both scenarios the enhancement can be several times, even over
an order of magnitude.

6. Conclusions and Discussion

We have presented an experimental study of the propagation of axisymmetric internal
wave modes across a buoyancy interface in stratified non-rotating flows. To support our
laboratory experiments, we develop a theoretical framework for freely incoming waves
and for confined waves, as they represent qualitatively two different scenarios that have
relevance to the atmosphere and ocean, respectively.

In this study we find that, despite the additional geometric complexity, with associated
features such as inhomogeneous spatial distribution of energy flux, results for plane waves
can be generalised to axisymmetric wave fields. For a free incident wave, we show that the
maximum of transmission occurs when the frequency of the wave is equal to the buoyancy
frequency of the lower layer. For a confined incident wave, we identify the existence
of a constructive interference effect in the upper layer, leading to larger transmission
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Figure 15. Numerical computation of the transmission coefficient as a function of the radial
wavelength, for three different frequencies 1.05f , 1.1f , and N2/2, after normalisation by the
incoming energy at the surface.

coefficients and potentially non-linear effects. For both scenarios, theory and experiments
show excellent qualitative, and good quantitative, agreement, especially within the range
of frequencies containing the resonant interence peaks and the enhanced transmission.
This kind of study can help to shed light on in-situ measurements of internal waves

signals, for example near-inertial waves in strongly stratified regions such as the Arctic
Ocean. Different scenarios can be investigated, such as high frequency internal waves
generated by storms at the ocean surface and travelling downwards, or near-inertial
waves produced by tides and topography in the deep ocean and travelling upwards. In
particular, this latter type of waves can therefore be enhanced through transmission
processes and lead to strong signals though the generation process might be of very low
amplitude.

Via a similar mechanism that small-extent staircase stratifications can create selective
transmission of internal waves (?), we show that surface forced non-linear stratifications
can potentially give rise to enhanced transmission due to resonant interference effect of
internal waves to the deep ocean. Nevertheless, for small scale waves of wavelength below
10 km, these effects seem to be limited to high frequencies, while no effect is observed
for near-inertial waves. For the latter type of waves, enhanced transmission can however
also be observed in the case of very large size disturbances of wavelength above 20 km.
We notice that the process involves higher amplification factors as frequency increases,
while becoming more selective in terms of wavelength.
These studies could be extended to more complex cases with various layers of different

buoyancy frequencies, as long as the thickness of the interfaces remains small compared
to the vertical wavelength (??). For a given wave, generated by a storm and observed
near the ocean surface, it could help predict the amount of energy that will be carried
down towards the deep ocean, as well as the ranges of wavelengths more likely to be
transmitted. Such a selection process would lead to a change in the wave features as
it travels downwards. Enhanced amplitudes generated by such constructive interference
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behaviours can also trigger non-linear effects (?) producing smaller scale waves. The
mechanisms involved are still to be explained for axisymmetric geometry, and could lead
to mixing events, changing the stratification, with subsequent feed-back effects on the
wave propagation.

Appendix A. A Criterion for Linearity vs. Non-Linearity

In this appendix, we use a scale analysis to derive a qualitative criterion allowing
us to discriminate whether the forcing amplitude is low enough to delay the growth of
non-linearities.
In the previous sections, all non-linear terms in the internal wave equation were

neglected and the study only focuses on the linear equation. The complete equation,
including both linear and non-linear terms, can be obtained starting from the following
set of equations

∂t∆hψ + J⊙
(
rψ,

∆hψ

r

)
= −

(
2vθ
r

+ f

)
∂zvθ + ∂rb, (A 1)

∂tvθ +
1

r2
J⊙(rψ, rvθ) = f∂zψ, (A 2)

∂tb+
1

r
J⊙(rψ, b) = −N2 1

r
∂r(rψ), (A 3)

coupling the axisymmetric stream function ψ to the azimuthal velocity vθ and the
buoyancy field b. The Laplacian ∆hψ is defined by

∆hψ =
∂2ψ

∂z2
+

∂

∂r

(
1

r

∂(rψ)

∂r

)
=
∂2ψ

∂z2
+
∂2ψ

∂r2
+

1

r

∂ψ

∂r
− ψ

r2
, (A 4)

and the cylindrical Jacobian J⊙ of two functions f and g is given by

J⊙(f, g) =
∂f

∂r

∂g

∂z
− ∂g

∂r

∂f

∂z
. (A 5)

After some calculus, these equations collapse into

∂2t∆hψ +N2∂r

(
1

r
∂r(rψ)

)
+ f2∂2zψ = NL, (A 6)

where NL denotes the non-linear terms

NL = −∂tJ⊙
(
rψ,

∆hψ

r

)
− f∂z

1

r2
J⊙(rψ, rvθ)− ∂r

(
1

r
J⊙(rψ, b)

)
− 1

r
∂t∂zv

2
θ . (A 7)

Let’s now consider a scale analysis. The stream function amplitude ψ0 is a relevant
scaling to be considered. As all frequencies are of the same order of magnitude, ω, N ,
and f , are assumed to have the same scaling in 1/T with T the period of the forcing.
Disregarding boundary layer effects, the r and z derivatives are also assumed to have
the same scaling in 1/L, with L a given lengthscale. Under these assumptions, the linear
part of the equation scales as

ψ0

T 2L2
, (A 8)

and all non-linear terms scale as
ψ2
0

TL4
. (A 9)

Non-linear terms have to be taken into account as soon as both scalings are of the
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same order of magnitude, but they can be neglected if

ψ0

T 2L2
≫ ψ2

0

TL4
, (A 10)

which means

L2

ψ0T
≫ 1. (A 11)

The lengthscale L can be set so that L ∼ 1/l, l being the radial wave number. Given
that ψ0 is the amplitude of the stream function, the amplitude of the vertical velocity
is ψ0l with l the radial wave number and the amplitude of the vertical displacement is
ψ0l/ω ∼ ψ0lT . Setting a the amplitude of the wave generator, a criterion stating that
non-linear effects are small is

a≪ 1/l. (A 12)

In this experiment, l = 19 m−1 and 1/l = 5 cm. The generator amplitude should be one
order of magnitude lower to prevent non-linear effects to appear too early, which means
a few millimeters. As we have a = 2.5 mm, this condition is satisfied.
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