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ABSTRACT
Experimental studies on the cellular uptake of nanoparticles (NPs), useful for the investigation of NP-based drug delivery sys-
tems, are often difficult to interpret due to the large number of parameters that can contribute to the phenomenon. It is therefore 
of great interest to identify insignificant parameters to reduce the number of variables used for the design of experiments. In this 
work, a model of the wrapping of elliptical NPs by the cell membrane is used to compare the influence of the aspect ratio of the 
NP, the membrane tension, the NP–membrane adhesion, and its variation during the interaction with the NP on the equilibrium 
state of the wrapping process. Several surrogate models, such as Kriging, Polynomial Chaos Expansion (PCE), and artificial 
neural networks (ANN) have been built and compared to emulate the computationally expensive model. Only the ANN-based 
model outperformed the other approaches by providing much better predictivity metrics and could therefore be used to compute 
the sensitivity indices. Our results showed that the NP's aspect ratio, the initial NP–membrane adhesion, the membrane tension, 
and the delay for the increase of the NP–membrane adhesion after receptor dynamics are the main contributors to the cellular 
internalization of the NP, while the influence of other parameters is negligible.

1   |   Presentation of the Model

To determine the properties that would favor their uptake by 
cancer cells based on a model, it is essential to accurately repre-
sent the mechanical behavior of the cell and its interaction with 
the NP. Thus, we developed a model of the cellular uptake of NPs 
that identifies the equilibrium position of the NP–membrane 
system based on the minimization of the potential energy, as de-
tailed in [1]. This approach models the cell membrane as purely 
elastic, in alignment with existing literature [2–4], and treats 
the NP as an undeformable elliptic solid. The last assumption 
simplifies the model and is consistent with the characteristics of 

existing nanovectors, as discussed in [5]. The model consists of 
identifying the equilibrium position of the NP during its wrap-
ping by the membrane via minimization of the total potential 
energy of the NP–membrane system. The membrane's mechani-
cal properties are represented through its bending rigidity κ and 
tension σ. The NP's geometry is by its aspect ratio r, defined as 
the ratio of the semi-major axis to the semi-minor axis, with a 
constant circumference 200 � nm, equivalent to a circular NP 
with a radius a = 100 nm. The interaction between the NP and 
the membrane is modeled via the adhesion �. To minimize the 
number of input parameters and to facilitate comparison with 
similar studies [6], adimensional variables are introduced: 
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� = �
(
2�a2

)−1 and � = �
(
2�a2

)−1. In this article, a bar is placed 
over a quantity to indicate that it is adimensional. The NP's 
wrapping by the cell membrane is quantified by the wrapping 
degree f , representing the proportion of the NP's circumference 
enveloped by the membrane, varying between 0 and 1. The equi-
librium state is defined by the wrapping degree at equilibrium 
f̃ . Furthermore, this model, elaborated in [7], incorporates the 
membrane's mechano-adaptation during the wrapping, allow-
ing for the variation of �  as a function of f . The evolution model 
of �  during the wrapping process reads

wherein �0 stands for the adhesion at the onset of the wrapping 
process, that is, �0 = �(f = 0). �A defines the amplitude of �, which 
corresponds to �A = �(f = 1)∕�0. �D denotes the delay before the 
inflexion of �  occurs, and �S is a parameter that modulates the 
slope of �(f ) during the transition. For a comprehensive mathe-
matical description of these parameters together with graphical 
illustrations of their contribution to �(f ), the readers are referred 
to [7]. A summary of abbreviations and definitions of parameters 
is provided in the nomenclature section at the end of this article.

2   |   Surrogate Modeling and Deep Learning 
Approaches

2.1   |   Definition of the Input Dataset

Based on our previous studies [1, 7], the intervals of variation 
of the input parameters are defined according to the litera-
ture and some mathematical constraints as follows: �0 ∈ [1, 8], 
� ∈ [0.5, 5.5], �A ∈ [1, 6], �D ∈ [ − 0.45, 0.45], �S ∈ [10, 100], and 
r ∈

[
1∕6, 6

]
. Since the only available information about the pa-

rameters is their lower and upper bounds, following the max-
imum entropy principle [8], their distribution is supposed to 
be uniform. Thus, �0, �, �A, �D, and �S are modeled via ran-
dom variables, defined as follows: � 0 ∼ U(1, 8), Σ ∼ U(0.5, 5.5), 
� A ∼ U(1, 6), �D ∼ U(−0.45, 0.45), and � S ∼ U(10, 100). The dis-
tribution of R is designed such that half of the dataset comprises 
horizontal NPs (1 < R < 6), while the other half consists val-
ues of R that are the inverse of the aspect ratios of the horizontal 
ellipses. Therefore, the distribution of R when R < 1 should be 
the inverse of the uniform distribution that was used to maxi-
mize the entropy for the distribution of the horizontal NPs. The 
corresponding PDF is provided in [7].

After defining the distributions of the input parameters, a quasi-
Monte Carlo sampling method is utilized to generate the input 
dataset. The latter comprises 1012 = 4096 samples, represent-
ing the largest dataset that could be generated with reasonable 
computational cost. The output dataset contains the values of 
f̃  computed by the model for each realization of the input pa-
rameters. These values represent realizations of the random 
wrapping degree at equilibrium, denoted as F̃. The distribution 
of F̃ in the dataset is shown in Figure  1, along with a kernel 
density estimation of its probability density function (PDF). 
This dataset will be used to build the surrogate models in subse-
quent sections. The data exhibits a multimodal distribution with 

three peaks at f̃ ≈ 0.03, f̃ ≈ 0.4, and f̃ ≈ 0.97. The first peak can 
mainly be attributed to elongated vertical NPs, which require a 
significant and energy-intensive bending of the membrane. This 
makes it challenging for the wrapping to overcome the close-to-
zero wrapping degree at equilibrium. The peak of f̃ ≈ 0.4 arises 
similarly, but in this case, it is due to the wrapping of elongated 
horizontal NPs. For these NPs, wrapping one of the elongated 
sides to a degree of f̃ ≈ 0.4 does not require much energy, unlike 
the substantial bending needed to envelop the rest of the NP. The 
final peak at f̃ ≈ 0.97 pertains to cases where the wrapping is 
not significantly impeded by highly elongated NPs.

2.2   |   Kriging and Polynomial Chaos Expansion 
Metamodels

This section compares the construction of Kriging (also known 
as Gaussian Process) and polynomial chaos expansion (PCE) 
metamodels. To determine the minimal number of samples that 
is necessary to be statistically representative of F̃, we first in-
vestigate the representativeness of the dataset. For this purpose, 
the cumulative mean and standard deviation of F̃, as well as 
their normalized gradient, in terms of the number of samples, 
are depicted in Figures  2 and 3, respectively. The normalized 
gradient of a function y with respect to a variable x is defined 
as ∣ y(x + 1) − y(x) ∣ ∕ ∣ y(x) ∣. To ensure convergence (normal-
ized gradient smaller than 1%), at least 158 and 122 samples are 
required for the mean and the standard deviation of F̃, respec-
tively. Based on these results, 10% of the dataset (409 samples) 
will be used to validate the metamodels, and the remaining 90%, 
that is, 3687 samples, will be used for their training.

Both Kriging and PCE metamodels are built using the Open 
TURNS Python library, which enables the construction and post-
processing of surrogate models for sensitivity analyses [9]. Figure 4 
displays the predictions and estimated PDF. The comparison be-
tween the estimated PDFs from the metamodel predictions and 
the original data reveals significant discrepancies, suggesting the 
surrogate model's inability to accurately replicate the data's dis-
tribution. Specifically, while the data exhibits a multimodal dis-
tribution with three peaks at f̃ ≈ 0.03, f̃ ≈ 0.4, and f̃ ≈ 0.97, the 
PCE predictions yield a unimodal distribution with a large peak 

(1)�(f ) =
∣ �0

(
�A − 1

)
∣

1 + e−�S(f−�D)
+ �0,

FIGURE 1    |    Histogram of F̃, the random variable associated to the 
wrapping degree at equilibrium f̃ , based on the dataset, along with the 
kernel density estimation of its PDF.
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around f̃ ≈ 0.4. In addition, the Kriging model results in a bi-
modal distribution with peaks located at f̃ ≈ 0.03 and f̃ ≈ 0.25. 
To further assess the accuracy of the metamodel predictions, we 
compute the predictivity factor Q2 is computed. It is defined as

(2)
Q2 = 1 −

∑N
i=1

�
f̃ i−

̂̃
f i

�2

NVar
�
F̃
� ,

FIGURE 2    |    Variation of the (a) mean and (b) standard deviation of F̃, as a function of the number of simulations. The shaded regions correspond 
to the standard deviation, estimated using 200 shuffled samples.

FIGURE 3    |    Normalized gradient of the (a) mean and (b) standard deviation of F̃, as a function of the number of simulations. The dashed lines 
correspond to the 1% threshold. Only one out of four points have been represented for the clarity of the plots.

FIGURE 4    |    Predicted vs. true values obtained with (a) Kriging and (b) PCE algorithms after optimization of the hyperparameters, along with (c) 
a comparison of the PDFs obtained for these metamodels and that of the data from the model.

 20407947, 2024, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cnm

.3878 by U
niversité D

e N
antes, W

iley O
nline L

ibrary on [23/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 8 International Journal for Numerical Methods in Biomedical Engineering, 2024

in which f̃ i stands for the ith true value, ̂̃f i represents the cor-
responding predicted value, N indicates the size of the dataset, 
and Var is the variance. The predictivity factors of the PCE and 
Kriging models, denoted as QPCE

2
 and QKRI

2
 respectively, are un-

satisfactory. Specifically, QKRI
2

= 0.51 and QPCE
2

= 0.57, values 
which significantly deviate from 1, indicating that the predic-
tions lack accuracy. In this case, it appears that Kriging was 
unable to produce accurate estimations by interpolating the 
points in the dataset due to the dispersion of the data and a large 
number of input parameters that yielded equal values of F̃ in 
the training dataset. It is worth noting that prediction errors are 
concentrated around values of F̃ close to 0 and 1, which are the 
bounds of the domain of definition of the wrapping degree.

2.3   |   Artificial Neural Networks

Artificial neural networks (ANNs) are a type of algorithm used 
in artificial intelligence designed to mimic the behavior of a sys-
tem using mathematical models based on a dataset  [10]. They 
find applications in various domains, such as data classification 
and pattern recognition, which are among the most commonly 
used [11]. As illustrated in Figure  5, an ANN is composed of 
multiple layers of neurons. Each neuron computes a linear com-
bination of its input variables and then applies an activation 
function to produce its output. Activation functions introduce a 
nonlinear relation within the neurons. The ANN is able to cap-
ture complex nonlinear patterns. Examples of commonly used 
activation functions include hyperbolic tangents and Rectified 
Linear Unit (ReLU). The weights �i utilized for the linear com-
binations in each neuron are optimized to minimize the loss 
function.

In this article, we employed the ScikitLearn Python machine 
learning library [11] to conduct a grid search aimed at determin-
ing the optimal configuration of the neural network (number of 
layers, number of neurons per layer, and the activation function) 
that would yield the most accurate predictions. We compared 
two of the most commonly used activation functions: the ReLU, 
defined as g(z) = z if z > 0 and 0 otherwise, and the hyperbolic 
tangent g(z) = tanh(z). Several architectures were then tested. 
They are denoted as 

(
n1,n2, … ,nN

)
, where ni, i ∈ {1, 2, … ,N} 

is the number of neurons contained in the ith layer. The tested ar-
chitectures included (8), (8, 4, 2), (16, 8, 4, 2), (8, 8, 8), (16, 16, 16), 
(64, 32, 16, 8, 4, 2, 1), and (64, 32, 16, 8, 4, 2). Other neural network 

hyperparameters, such as the solver algorithm or the optimi-
zation technique, were set according to the default parame-
ters implemented in the library. The Q2 values were evaluated 
using 5-fold cross-validation. Figure  6 illustrates how the ac-
tivation function and the architecture of the ANN affect Q2. 
Neural networks utilizing a hyperbolic tangent activation func-
tion produced the most accurate predictions, regardless of the 
architecture.

The predictions obtained using the specified ANN configuration 
are depicted in Figure 7. Furthermore, the predictivity factor ob-
tained for these predictions is QANN

2
= 0.85, which is significantly 

better than those obtained using Kriging and PCE metamodels. 
One can also note that all the predictions fall within the range 
of the domain of definition of F̃, that is, [0, 1]. Furthermore, the 
estimated PDF of F̃ based on the outputs of the ANN closely 
matches that obtained based on the data of the original model. 
Based on this result, the values of F̃ generated by the ANN built 
in this study can be used to conduct the sensitivity analysis.

3   |   Sensitivity Analysis

Sensitivity analysis is a field of computational mathematics 
that aims at determining the model input parameters that have 
the greatest influence on a quantity of interest (QoI) [12, 13]. 
It serves various purposes, including model simplifications or 
guiding research efforts, as their results can be used to optimize 
the resources necessary for experimental in vitro investigations. 
Studies such as [14, 15] demonstrate the applications of sensi-
tivity analyses, particularly in biomechanics. There are three 
distinct types of sensitivity analysis: screening methods, local 
sensitivity analysis, and variance-decomposition-based meth-
ods [16, 17]. Screening and variance-decomposition-based meth-
ods are two branches of global sensitivity analysis, as described 
by [12]. Screening methods involve identifying unimportant 
input parameters using a limited number of model calls. On the 
other hand, local sensitivity analysis techniques involve assess-
ing the impact of small input variations around a given point on 
the model's output. While this method can provide quick results 
with few data points, it may not perform well for nonlinear or 
nonmonotonic models. Variance-decomposition-based sensitiv-
ity analyses investigate the influence of input variability on the 
output by studying the contribution of each input to the output 
variance. This is accomplished by sweeping the entire domains 
of input parameter definitions. Global sensitivity analyses have 

FIGURE 5    |    Illustration of (a) a neuron and (b) an artificial neural network.
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been preferred over local techniques in this work due to the non-
linearities and likely nonmonotonicities of the model's response 
(refer to Figure  1). For a detailed analysis of these methods, 
please consult [12, 18, 19] and references therein. According to 
[20], several variance-decomposition-based sensitivity analysis 
techniques can be used in the case of nonmonotonic models. 
However, only two of them provide information on the effects for 
all orders. This includes the effect of a variable alone (first order) 
as well as its interactions with one (second order) or all (total) 
other parameters. These are the Sobol indices, and their estima-
tion is also referred to as analysis of variance (ANOVA) in the 
literature [21]. The Sobol sensitivity indices are used to estimate 
the contribution of an input random variable on the variance of 
the output. The first order and total Sobol indices for a variable Xi 
are defined in Equation 3a, where Xi, i ∈ {1, 2, … ,M} is the set 
of M input variables, Y  represents an output QoI, and � denotes 
the expectation. The first-order index Si estimates the part of the 

variance of Y  due to Xi alone. Moreover, the total index STi
1

2
 ac-

counts for the effect of interactions with other variables Xj,j≠i.

in which � denotes the expectation.

Several approaches are available to numerically compute 
the Sobol indices, which estimate different terms involving 
the evaluation of the variance in Equation (3) [22]. For in-
stance, Saltelli [23], Mauntz-Kucherenko [24], Martinez [25], 
and Jansen [26] have developed techniques to estimate these 
terms. The computation of the Sobol indices depends on the 
number of samples that are used to estimate the variance. 
It is therefore essential to ensure a sufficient sample size. In 
this specific case, when the QoI (i.e., the Sobol indices) can be 
very close to zero (indicating a non-influential parameter), the 
conventional convergence techniques based on the study of a 
normalized gradient of the QoI cannot be applied. Alternative 
criteria for assessing the convergence of sensitivity indices 
have therefore been proposed in the literature. One such cri-
terion, proposed by [27], involves evaluating the variability of 
the sum of the sensitivity indices generated using two samples 
of different sizes. One drawback of this criterion is that it does 
not examine the convergence of each sensitivity index individ-
ually. In addition, Herman et al. [28] considered a threshold 
for the percentage of the sensitivity index of the most influen-
tial input parameter, which does not investigate the conver-
gence of each index either. Then, Sarrazin et al. [29] proposed 
a convergence study based on the range of the 95% confidence 
intervals (CIs) of the indices. They defined that the conver-
gence is reached when the latter is smaller than 0.05. Note that 
the value of the convergence threshold should be adjusted ac-
cording to the nature of the problem and available data. The 

(3a)Si =
Var

[
�
[
Y |Xi

]]

Var[Y ]
,

(3b)STi = 1 −
Var

[
�
[
Y |X1, … ,Xi−1,Xi+1, … XM

]]

Var[Y ]
,

FIGURE 6    |    Effect of the activation function (ReLU or tanh) and the 
architecture of the ANN on the accuracy of the predictions, quantified 
with Q2. The notations (a), (b), (c), (d), (e), and (f), respectively, correspond 
to the following architectures: (8), (8, 4, 2), (16, 8, 4, 2), (8, 8, 8), (16, 16, 16)
, (64, 32, 16, 8, 4, 2, 1), and (64, 32, 16, 8, 4, 2). The error bars correspond 
to the standard deviation between the five predictivity factors obtained 
with 5-fold cross-validation. The predictivity factor QANN

2
 is maximized 

when using a hyperbolic tangent activation function is used on an ANN 
with architecture (d), resulting in QANN

2
= 0.85.

FIGURE 7    |    (a) Predicted vs. true values obtained with the ANN along with (b) a comparison of the PDFs obtained for the predictions of this 
dataset and that of the data from the model.
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criterion must be fulfilled for all the indices. Figure 8 displays 
the range of the 95% CIs of the Sobol indices on a log-log scale, 
based on the number of samples used for their approximation 
using the Mauntz–Kucherenko algorithm. According to these 
graphs, a minimum of 2 × 104 samples is required for the Sobol 
indices to converge. The latter, approximated with 105 sam-
ples, that is, enough for the convergence to be ensured, are 
represented in Table 1.

According to the Sobol indices, the aspect ratio of the NP, r, is the 
most important parameter, with STr = 0.83 and Sr = 0.48. The 
initial adhesion force between the NP and the cell membrane, 
�0, ranks as the second most influential parameter, exhibiting 
STγ0

= 0.36 and Sγ0 = 0.1. This is followed by the membrane ten-
sion � (STσ = 0.16 and S� = 0.02) and the delay of the transition 
of adhesion �D (STγD

= 0.15 and SγD = 0.03). The relatively small 
first-order indices but large total indices for these last param-
eters indicate that their primary contribution to the variance 
of the model's output arises from interactions with other, more 
influential parameters, suggesting their relevance in the study. 
The remaining parameters have a negligible influence, as indi-
cated by their total and first-order indices being close to zero.

4   |   Discussion

The primary goal of this article is to analyze the impact of pa-
rameters on the model to account for the adaptation of adhesion 
between the membrane and the NP during the wrapping pro-
cess. A sensitivity analysis was conducted to measure the effect 
of the model parameters on the wrapping degree at equilibrium 
f̃ . However, recalling that the context of this work is to discrim-
inate the entry of NPs into cells based on their mechanical prop-
erties for targeted cancer therapy applications, it is more relevant 
to focus on the capacity of the NP to enter the cell or not. In this 
case, it is necessary to consider not only f̃  but also the distance 
between the two free sides of the membrane. This is required 
for the merging of the membrane to ensure that the NP cannot 
be expelled by the cell [1]. Therefore, instead of using a continu-
ous variable f̃ , a binary variable indicating whether the merging 
occurred or not could have been used as the quantity of interest 

(QoI) for the sensitivity analysis. The data for this variable could 
have been generated using a classification learning algorithm. 
This article did not explore this approach, but it requires further 
investigation. Furthermore, based on the regression approach 
used in this study, the ANN was able to provide accurate pre-
dictions for the model. However, it is important to note that 
prediction errors may still occur (Q2 = 0.85), and the impact 
of these uncertainties on the Sobol indices predictions has not 
been quantified. The predictions based on ANN could have been 
improved by investigating additional hyperparameters. Indeed, 
only two types of activation functional were used in this paper, 
although it would have been possible to assign one type of activa-
tion function per neuron. Experimenting with additional solvers 
and optimization techniques might also lead to more accurate 
predictions. However, the learning model's objective was to gen-
erate data while minimizing computational costs. Therefore, it 

FIGURE 8    |    Range of the 95% confidence intervals of the (a) first and (b) total Sobol indices, in terms of the number of estimations of the 
metamodel, computed with the Mauntz–Kucherenko algorithm. The dashed lines represent the threshold of 0.05.

TABLE 1    |    First and total Sobol indices, computed using 105 
estimations of the ANN.

Index Parameter Sobol indices

Si �0 0.10

� 0.02

�A 0.01

�D 0.03

�S < 0.01

r 0.48

STi �0 0.36

� 0.16

�A 0.07

�D 0.15

�S 0.05

r 0.83
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would not have been reasonable to spend considerable resources 
optimizing the design and hyperparameters of the ANN.

5   |   Conclusion

The article presents the significant role of machine learning, 
and particularly ANNs, in overcoming computational cost is-
sues. They accurately emulate the behavior of a model with a 
near-to-zero computation time. The study shows that ANNs 
can replicate the model of cellular uptake of undeformable 
elliptic NPs while also considering the adhesive response of 
the cellular membrane to the interaction with the NPs. This 
surrogate model outperformed Kriging or PCE in terms of 
accuracy, with QANN

2
= 0.85, compared to QPCE

2
= 0.57 and 

QKRI
2

= 0.51. The approximations generated by ANN could 
therefore be used to perform a sensitivity analysis. The analy-
sis shows that the aspect ratio of an NP is the most important 
parameter for cellular uptake, followed by the initial adhesion 
between the NP and the cell membrane, the membrane ten-
sion, and the delay before the increase of adhesion. The slope 
and amplitude of the variation of adhesion between the NP 
and the membrane do not appear to affect the equilibrium 
wrapping degree of the NP by the membrane. Identifying these 
parameters is crucial, as it reduces the number of variable pa-
rameters for experimental studies. Indeed, if the hypotheses 
used to build the model presented in this article are respected, 
the amplitude and ratio of the mechanical adaptation of the 
adhesion between the NP and the membrane, along with the 
membrane tension, can be disregarded.

Nomenclature

�	 adhesion

� 	 adimensional adhesion

�0	 adimensional initial adhesion

�	 adimensional tension

r 	 aspect ratio of the NP

�	 bending rigidity

�S	 curvature parameter for the transition of adhesion

�D	 delay of the transition of adhesion

N 	 number of samples

Q2	 predictivity factor

a	 radius of the NP

Γ	 random adimensional adhesion

Γ0	 random adimensional initial adhesion

Σ	 random adimensional tension

ΓS	 random curvature parameter for the transition of adhesion

ΓD	 random delay of the transition of adhesion

ΓA	 random ratio between final and initial adimensional adhesion

�A	 ratio between final and initial adimensional adhesion

Si	 Sobol first order index with respect to input parameter i

�	 tension

STi	 total Sobol index with respect to input parameter i

f 	   wrapping degree

ANN	   artificial neural network

CI	   confidence interval

MC	   Monte Carlo

NP	   nanoparticle

PCE	   polynomial chaos expansion
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