
HAL Id: hal-04907803
https://hal.science/hal-04907803v1

Submitted on 27 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient GPU implementation of a
Boltzmann-Schrödinger-Poisson solver for the simulation

of nanoscale DG MOSFETs
Francesco Vecil, José Miguel Mantas, Pedro Alonso-Jordá

To cite this version:
Francesco Vecil, José Miguel Mantas, Pedro Alonso-Jordá. Efficient GPU implementation of a
Boltzmann-Schrödinger-Poisson solver for the simulation of nanoscale DG MOSFETs. Journal of
Supercomputing, 2023, 79, pp.13370 - 13401. �10.1007/s11227-023-05189-0�. �hal-04907803�

https://hal.science/hal-04907803v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Efficient GPU implementation of a Boltzmann-Schrödinger-Poisson
solver for the simulation of nanoscale DG MOSFETs

Francesco Vecil · José Miguel Mantas · Pedro Alonso

Received: date / Accepted: date

Abstract The germ work [1] describes an efficient and accurate solver for nanoscale DG MOSFETs
through a deterministic Boltzmann-Schrödinger-Poisson model with seven electron-phonon scattering
mechanisms on a hybrid parallel CPU/GPU platform. The transport computational phases, i.e. the
time integration of the Boltzmann equations, was ported to the GPU using CUDA extensions, but the
computation of the system’s eigenstates, i.e. the solution of the Schrödinger-Poisson block, was left to
the CPU for its complexity (though parallelized using OpenMP). This work fills the gap by describing
a port to GPU for the solver of the Schrödinger-Poisson block. This new proposal implements on GPU
a Scheduled Relaxed Jacobi method to solve the sparse linear systems which arise in the 2D Poisson
equation. The 1D Schrödinger equation is solved on GPU by adapting a multi-section iteration and
the Newton-Raphson algorithm to approximate the energy levels and the parallel cyclic reduction to
approximate the wave vectors. We want to stress that this tool is of particular interest because it can be
adapted to other macroscopic, hence faster, solvers for confined devices exploited at industrial level.

Keywords Semiconductor physics · Deterministic mesoscopic models · Parallel heterogeneous systems ·
GPU computing · Schrödinger-Poisson system · Parallelization of numerical algorithms

1 Introduction

This paper comes as a completion of the work described in [1], in which a deterministic and physically
accurate solver for Double-Gate Metal Oxide Field-Effect Transistors (DG-MOSFETs) was implemented
on a high-performance platform in order to palliate the computational weight of such a high-dimensional
model. NanoscaleDG MOSFETs are a key element in modern integrated circuits, and their modeling
and simulation aims at contributing to their downscaling following Moore’s law.
The deterministic model consists of a set of collisional Boltzmann equations to describe electron transport
inside the structure, and a 1D Schrödinger–2D Poisson block to compute the eigenstates, which read, in

Francesco Vecil
Laboratoire de Mathématiques Blaise Pascal, Université Clermont Auvergne, France
E-mail: francesco.vecil@gmail.com

José Miguel Mantas
Lenguajes y Sistemas Informáticos, Universidad de Granada, Spain
E-mail: jmmantas@ugr.es

Pedro Alonso
Departamento de Sistemas Informáticos y Computación, Universitat Politècnica de València, Spain
E-mail: palonso@upv.es

its dimensionless form as (we address the reader to [1] for the particular about these equations):

∂Φν,p
∂t

+
∂

∂x

[
a1
ν Φν,p

]
+

∂

∂w

[
a2
ν,p Φν,p

]
+

∂

∂φ

[
a3
ν,p Φν,p

]
= Qν,p[Φ] sν(w) (1)

−1

2

d

dz

(
1

mz,ν

dψν,p
dz

)
− (V + Vc)ψν,p = εν,p ψν,p (2)

−∇ · (εR∇V) = −

(∑
ν,p

%ν,p · |ψν,p|2 −ND

)
. (3)

The numerical solver described in [1] fully ports onto GPU the transport part represented by the Boltz-
mann Transport Equations (BTEs) (1), while the goal of the present paper is to describe how we fully
port onto GPU the computation of the eigenstates through the Schrödinger-Poisson block (2)-(3). We
fulfill this objective to achieve a twofold improvement:

– to exploit the highest computational power of modern GPUs to accellerate this computational phase
and

– to avoid definitively costly data transfer between the host and the device RAM in the heterogeneous
platform.

In order to solve the Schrödinger-Poisson block (2)-(3), whose input is the surface densities %ν,p(x) and
whose outputs are the energy levels εν,p(x), the wave functions ψν,p(x, z) and the electrostatic potential
V , a Newton-Raphson iterative algorithm is used, as was the case in the previous works (we address
the reader to [1] and references therein for more details). An iteration in the Newton-Raphson algorithm
consists of two main computational phases, which will be described separately in the following (see Figure
1):

a) Updating of the guess for the potential V through a Poisson-like equation (unlike the Poisson equa-
tion (3) it contains an additional non-local term). The linear system deriving from the Poisson-like
equation, and whose solution is the update for the guess on the potential V , is solved by means of a
Scheduled Relaxed Jacobi (SRJ) scheme [24,25]: it consists of a sequence of relaxed Jacobi schemes
with different relaxation factors, constructed in such a way to boost convergence to the solution.

b) Updating of the eigenstates εν,p(x) and ψν,p(x, z) through the Schrödinger equation (2). The compu-
tation of the energy levels εν,p(x), i.e. the eigenvalues of the Schrödinger matrix, is achieved by using
a multisection algorithm [30] in the initial time step and a Newton-Raphson iterative algorithm in the
following steps. Once the energy levels have been computed, the wave-vectors ψν,p(x, z), which are the
eigenvectors of the Schrödinger matrix, are computed by implementing a Cyclic Parallel Reduction
(CPR) strategy [31,32,33].

The parallel implementation of the self-consistent numerical solution for the Schrödinger-Poisson block to
simulate semiconductor devices has been tackled using different approaches and programming technolo-
gies. Initially, numerical solvers for shared memory parallel architectures were derived using OpenMP [23].
In this way, an OpenMP implementation of a numerical solver for a drift-diffusion-Schrödinger-Poisson
model is described in [5] and a 2D multi-subband ensemble Monte Carlo simulator of 2D MOSFET
devices which solve the Poisson-Schrödinger block is described in [7]. Subsequently, versions of solvers
of the Poisson-Schrödinger block for distributed memory machines were obtained using the Message
Passing Interface (MPI) to describe the interprocessor communication. Thus, the development of the na-
noelectronics modeling tool NEMO5 [10] includes a self-consistent Schrödinger-Poisson simulation and
the parallelization of the simulations in NEMO5 is based on geometric partitioning techniques using MPI
and several portable open-source packages. A parallel 1D Schrödinger-3D Poisson solver is implemented
with a Gummel iterative method [12] using MPI and the PETSC library [13,14] in [11]. In [6], a parallel
implementation to simulate a metal-oxide-semiconductor (MOS) device, where a set of self-consistent
1D Schrödinger-Poisson equations are solved, is described. In this implementation, a parallel divide and
conquer algorithm is developed to solve the Schrödinger equation while the Poisson equation is solved
with a parallelization of a monotone iterative method.
In [8], a resolution scheme of 2D Schrödinger equation-based corrections compatible with an existing
parallel drift-diffusion model is implemented using MPI to simulate 3D semiconductor devices in the
simulation framework VENDES [9].

2

This work is of interest also for other kinds of solvers which also require the solution of the Schrödinger-
Poisson block but using a less accurate description of the carriers in nanoscale semiconductors. The
solver for the Schrödinger-Poisson equations, seen as a blackbox, receives as input the surface electron
densities and returns as output the eigenstates, and in particular the force field that drives the electrons
along the device thanks to the applied voltage. Therefore, this machinery and its efficient implementation
on CUDA platforms, can be adapted to macroscopic models, that are in general preferred in industrial
simulations because of their lower computational cost, like drif-diffusion solvers [15,17,5,16], Monte Carlo
solvers [19,7,18], solvers based on the maximum-entropy-principle energy transport model [21,22] and
Spherical Harmonics Expansion (SHE) solvers [20].
The paper is organized as follows: in Section 2 we summarize the model and the equations on which
we focus; in Section 3 we describe the solvers and the strategy implemented to achieve a solution of
the Poisson-like equation on GPU; in Section 4 we describe the solvers and the procedure employed
to compute the eigenstates on GPU; in Section 5 we show the numerical results we have obtained by
using powerful modern GPUs; in Section 6 we draw some conclusions and sketch the future work in this
promising auspisious research line.

3

2 The Schrödinger-Poisson solver

From an algorithmical point of view, the Schrödinger-Poisson block (2)-(3) receives as entry the surface
densities %ν,p and returns as result the energy levels {εν,p}, the wave vectors {ψν,p} and the electrostatic
potential V [1,2,4], such as it is shown in Figure 1. In this figure, ν ∈ {0, 1, 2} denotes the valley,
p ∈ {0, . . . , Nsbn − 1} denotes the subband (we consider Nsbn = 6), i = 0, . . . , Nx − 1 denotes the index
for a discretization point in the longitudinal dimension (x) of the physical 2D device, being Nx the number
of discretization points in that dimension, j = 0, . . . , Nz−1 represents an index for a discretization point
in the transversal dimension (confined) of the device (Nz is the number of discretization points in that
dimension) and s denotes the particular stage (s = 0, 1, 2) of the third-order Total-Variation Diminishing
Runge-Kutta method [3] used for time integration.

From now on, we refer to the energy levels {εν,p} as the eigenvalues (of the Schrödinger matrix) and the
wave vectors {ψν,p} as the eigenvectors.

Fig. 1 Structure of the solver for the Schrödinger-Poisson block

Equations (2)-(3) have to be seen as a block because:

– The 1D steady-state Schrödinger equation (2) takes as entry the potential Vi,j and returns as many
eigenvalues and corresponding eigenvectors as needed for the sake of precision, and this must be done
for each fixed position xi and each fixed band ν ∈ {0, 1, 2}. As an example, in our solver, by using
Nx = 65 and Nsbn = 6, this means that we have to compute 1170 eigenvalues and eigenvectors.

– The 2D Poisson equation (3) receives as input the eigenvectors ψν,p,i,j and provides as output the
potential Vi,j .

So, as can be seen, the output of (2) is the input of (3) and vice versa. In the following we describe the
strategy to solve this block.

The idea is to restate (3) as seeking for the zero of functional

P [V] := −∇ · (εR∇V) +
∑
ν,p

%ν,p(x) · |ψν,p|2 −ND (4)

4

under the constraints of the Schrödinger equation (2) via a Newton-Raphson iterative scheme:

P
[
V (k)

]
+ dP

(
V (k), V (k+1) − V (k)

)
= 0 (5)

V (0) is given.

Obviously, stage k + 1 is a refinement of the previous stage k. The derivative is meant in a directional
sense. Details of the computations can be found in [4].
The scheme is sketched in Figure 1: starting from an initial guess, we refine the guess on the potential,
and keep consistency with the eigenstates.
From a computational point of view, this means that we have to be prepared for an alternate solution
of the Schrödinger eigenproblem (2) and the linear system (4). The strategies to deal with this process
are described in the following.

2.1 Schrödinger diagonalization

We can rewrite the steady-state Schrödinger equation in terms of the V -dependent linear operator L:

S[V](Ψ) = −1

2

d

dz

(
1

mz,ν

dΨ

dz

)
− (V + Vc)Ψ =: L(Ψ).

We wish to compute the first Nsbn eigenvalues and relative eigenvectors, called energy levels and wave
functions.
In order to do this, we take into account the uniform grid described in [1] for the spatial dimensions (x
and z) and discretize the operator using finite differences. As a result, a symmetric tridiagonal matrix of
order n := Nz − 2 is obtained:

Lν,i =

d0 e0

e0 d1 e1

e1 d2 e2

e2 d3 e3

. . .
. . .

. . .

en−3 dn−2 en−2

en−2 dn−1

(6)

being: for j = 1, . . . , Nz − 2

dj :=

 1/4
mz,ν,i,j−1

+ 1/2
mz,ν,i,j

+ 1/4
mz,ν,i,j+1

∆z2
− Vi,j

the elements in the diagonal, and for j = 1, Nz − 3

ej :=

− 1/4
mz,ν,i,j

+ 1/4
mz,ν,i,j+1

∆z2

the elements in the sub-diagonal (and the super-diagonal).
The values of the effective masses mz,ν , for the particular case of theDG MOSFET device, depend on
the material:

mz,ν,i,j =

0.5 if (i, j) is in the SiO2 region
0.19 if ν < 2 and (i, j) is in the Si region
0.98 if ν = 2 and (i, j) is in the Si region

From this matrix we extract by some method the first (lowest) Nsbn eigenvalues {εν,p,i}p∈{0,...,Nsbn−1}
and relative eigenvectors {ψν,p,i,j}(p,j)∈{0,...,Nsbn−1}×{0,...,Nz−1}.

5

We take into account the boundary condition

ψν,p,i,0 = ψν,p,i,Nz−1 = 0

and the normalization of the eigenvectorsψν,p,i,j ←− ψν,p,i,j√
∆z
∑Nz−2
j′=1 |ψν,p,i,j′ |

2

j=1,...,Nz−2

.

2.2 Construction of the linear system

One stage of the Newton-Raphson scheme on (4) translates into solving (5). (More details about the
derivation can be found in [4].) This scheme boils down to the linear system on V (k+1)

L(k) V (k+1) = R(k), (7)

where

L(k) V (k+1) =− div
[
εR∇V (k+1)

]
+

∫
A(k)(x, z, ζ)V (k+1)(x, ζ) dζ

R(k) =−N (k)(x, z) +

∫
A(k)(x, z, ζ)V (k)(x, ζ) dζ,

being A(k)(x, z, ζ) := A[V (k)](x, z, ζ) basically the directional derivative of the density N (k) := N [V (k)].
The Laplacian in the linear system (7) reads

div
[
εR∇V (k+1)

]
=
∂

∂x

(
εR

∂V (k+1)

∂x

)
+

∂

∂z

(
εR

∂V (k+1)

∂z

)
and is discretized using finite differences(

div
[
εR∇V (k+1)

])
i,j

=

(1
2 (εR)i−1,j + 1

2 (εR)i,j

∆x2

)
V

(k+1)
i−1,j +

(1
2 (εR)i,j−1 + 1

2 (εR)i,j

∆z2

)
V

(k+1)
i,j−1

−
(1

2 (εR)i−1,j + (εR)i,j + 1
2 (εR)i+1,j

∆x2
+

1
2 (εR)i,j−1 + (εR)i,j + 1

2 (εR)i,j+1

∆z2

)
V

(k+1)
i,j

+

(1
2 (εR)i,j + 1

2 (εR)i,j+1

∆z2

)
V

(k+1)
i,j+1 +

(1
2 (εR)i,j + 1

2 (εR)i+1,j

∆x2

)
V

(k+1)
i+1,j .

The integral is discretized by means of trapezoid rule(∫
A(k)(x, z, ζ)V (k+1)(x, ζ) dζ

)
i,j

=
∆z

2

Nz−2∑
j′=0

A(k)
i,j,j′ V

(k+1)
i,j′ +

Nz−1∑
j′=1

A(k)
i,j,j′ V

(k+1)
i,j′

 , (8)

where

A(k)
i,j,j′ = 2

∑
ν,p

∑
p′ 6=p

%s+1
ν,p,i − %

s+1
ν,p′,i

ε
(k)
ν,p′,i − ε

(k)
ν,p,i

× ψ(k)
ν,p,i,j′ ψ

(k)
ν,p′,i,j′ ψ

(k)
ν,p′,i,j ψ

(k)
ν,p,i,j (9)

For the right hand side R(k), the integral is computed in a similar way to (8), and the density is simply

N
(k)
i,j = 2

∑
ν,p

∑
p′ 6=p

%s+1
ν,p,i

∣∣∣ψ(k)
ν,p,i,j

∣∣∣2 . (10)

As for the boundary conditions, Dirichlet is imposed at metallic contacts (source, drain and the two
gates), while homogeneous Neumann is taken elsewhere.

6

3 Highly-parallel methods for the linear system

The matrix L(k) representing the linear system (7) is of order Nx ×Nz, and contains Nx square blocks
of size Nz on the diagonal. To solve efficiently this matrix, we have implemented on GPU a Scheduled
Relaxed Jacobi (SRJ) method which is a promising extension of the Jacobi method for linear systems
which results from discretizing Poisson-like PDEs [24,25].

3.1 The Scheduled Relaxed Jacobi (SRJ) method

The Jacobi method for the solution of the linear system provides poor convergence rate but is extremely
parallel, as each value of the vector solution can be updated totally independently from all the other
values of the vector solution.
Suppose

A = L︸︷︷︸
lower triang.

+ D︸︷︷︸
diagonal

+ U︸︷︷︸
upper triang.

.

is a square matrix of order N and b a vector of size N .
In [29], a vector form of the Jacobi algorithm is presented. In this vector form, the classical Jacobi step
is rewritten to use the matrix-vector product operation in order to approximate the solution vector u:

η(n) = D−1(b−Aun)

u(n+1) = un + η(n), n = 1, 2, ...

where η(n) denotes the error vector at iteration n.
A significant acceleration of the Jacobi algorithm can be obtained by applying the SRJ method. The SRJ
method extends the classical Jacobi method by introducing an overrelaxation factor ω > 0 which it is
tuned using a number P of different levels to obtain a considerable reduction of the number of iterations.
In the SRJ method one relaxed Jacobi step with parameter ωn has the following form:

η(n) = ωnD
−1(b−Aun)

u(n+1) = un + η(n) (11)

In SRJ, we complete several cycles until obtaining the convergence. At each cycle, we perform M relaxed
Jacobi steps (11) where

M =

P∑
n=1

qn,

being qn the number of times we apply the parameter ωn.
Therefore, a SRJ cycle consists in defining sequences of relaxed Jacobi steps:

L := LωP ◦ . . . ◦LωP ◦LωP︸ ︷︷ ︸
qP times

◦ · · · ◦Lω2
◦ . . . ◦Lω2

◦Lω2︸ ︷︷ ︸
q2 times

◦Lω1
◦ . . . ◦Lω1

◦Lω1︸ ︷︷ ︸
q1 times

(12)

and updating the guess for the solution of system A · u = b using these:

u(`+1) = Lu(`),

where
Lωu := u+ ωD−1(b−Au)

In our experiments, we have obtained good results with P = 7 cycles with M = 93, using the following
relaxation parameters:

(ω1, q1) = (370.035, 1) (ω2, q2) = (167.331, 2) (ω3, q3) = (51.1952, 3) (ω4, q4) = (13.9321, 7)

(ω5, q5) = (3.80777, 13) (ω6, q6) = (1.18727, 26) (ω7, q7) = (0.556551, 41).

7

In order to avoid overflow in our numerical experiments, the schedule of a SRJ cycle does not follow the
sequence (12) but the over-relaxation Jacobi steps (with ωi > 1) are evenly spaced over the SRJ cycle
(see [24] for more details).
Moreover, the system is preconditioned by left-multiplying by

P := diag

(
1

a0,0
,

1

a1,1
, . . . ,

1

aN−1,N−1

)
in such a way that the matrix of the linear system contains only values 1 on the diagonal.

3.2 Implementation details

To implement each SRJ step (11) in CUDA, we have derived a version of the sparse matrix-vector product
which takes into account the narrow banded structure of the matrix A.

Fig. 2 Matriz-vector product when each CUDA warp computes one element of the output vector

We have developed a kernel CUDA to obtain the vector x = Aun in (11), where the computation of
the i-th element of the vector x (by performing the dot product of the i-th row of the sparse matrix
A by the vector un) is computed by a different CUDA warp (see Figure 2). We store the matrix A in
the global memory of the device using the Compressed Sparse Row (CSR) storage format [35]. We use
one-dimensional CUDA blocks where each CUDA block computes B

32 elements of x, being B the number
of threads in a CUDA Block. Initially, all the warps in a CUDA block cooperate to read, in a coalescent
way, the required values of un and load them in a shared memory array s u. Then, the j − th warp in
the k − th CUDA block read the corresponding non-zero values in the row t = kB

32 + j of A and the
affected values s u in order to compute xt. For this, each thread in the j− th warp computes one partial
value and all the threads in the warp will cooperate following a reduction algorithm based on a warp
shuffle operation [34], to add efficienty their previously computed values. In particular, we have used the
operation shuffle xor sync (we assume a compute capability higher or equal than 3.x) to perform
the addition at warp level.

8

The components of the vector x which are obtained by each block are stored in a shared memory array
sx to be written coalescently in the global memory vector x.

4 Implementation strategies: Diagonalization of the Schrödinger matrix

We need to compute the lowest Nsbn eigenvalues and relative eigenvectors of matrix Lν,i in (6). It is
known that for a tridiagonal symmetric matrix like Lν,i, the characteristic polynomial p(X) can be
computed via a recursive sequence of polynomials [27]:

p0(X) = 1

p1(X) = (d0 −X) (13)

pj(X) = (dj−1 −X) pj−1(X)− e2
j−2 pj−2(X) for 2 ≤ j ≤ n,

such that p(X) = pn(X). In order to seek for the zeros of this polynomial, we shall employ two strategies:
either a multi-section iterative algorithm (a generalization of the bisection algorithm) or a Newton-
Raphson iterative algorithm. The first one is extremely robust, can unconditionally provide selected
eigenvalues, but is costly, whilst the second one is faster but needs proper seeding. Therefore, the strategy
will be the following: at the first step of the time evolution we shall use the multi-section algorithm; after
that, we shall switch to Newton-Raphson.

4.1 The bisection algorithm for eigenvalues

The bisection algorithm is a well-known tool for computing eigenvalues, described, for instance, in [27,
28]. We report it here for the sake of clarifying the notation in the following.
The sequence (13) is a (generalized, backward indexed) Sturm chain, therefore the following result holds:
let α a real number, let

σ(ξ) := number of sign changes in (pn(ξ), pn−1(ξ), . . . , p1(ξ), p0(ξ)) ,

then the number of zeros in the interval]−∞, α[is given by σ(α).
Suppose that the eigenvalues are ordered ε0 < ε1 < ε2 < · · · < εn−1. As eigenvalue εp corresponds to the
(p+ 1)th zero of polynomial p, then

εp < ξ =⇒ σ(ξ) ≥ p+ 1 and εp > ξ =⇒ σ(ξ) ≤ p (14)

Suppose now that we wish to approximate, at a given precision εtol, the eigenvalue εp. In order to do
that, the classical way is to use a bisection algorithm exploiting property (14). Let [α0, β0] an interval
containing eigenvalue εp. Therefore, thanks to (14), σ (β0) ≥ p + 1 and σ (α0) < p + 1. Let α = α0 and
β = β0. Iteration

while (some measurement > εtol)

let εp ←−
(
α+ β

2

)
if σ (εp) < p+ 1

then (α, β)←− (εp, β)

else (α, β)←− (α, εp)

produces a sequence of shrinking intervals which enclose the eigenvalue εp. When the iteration exits the
loop, eigenvalue εp is then approximated at “εtol accuracy” (in some sense).
Still, we have to know how to pick a good initial interval [α0, β0] and a stop condition for the bisection
method. If we apply Gershgorin circle theorem to the tridiagonal matrix Lν,i (6), then we know that
every eigenvalue lies in at least one of the Gershgorin intervals [dj −Rj , dj +Rj], being

Rj =

 |e0| if j = 0
|ej |+ |ej−1| if 0 < j < Nz − 3
|eNz−4| if j = Nz − 3

. (15)

9

If we take

[A,B] :=

[
min

0≤j<Nz−2
{dj −Rj} , max

0≤j<Nz−2
{dj +Rj}

]
, (16)

then we are sure that all the eigenvalues fall into interval [A,B], which can thus be used as initial interval
for the algorithm. After the first steps, as the energy levels evolve in a continuous way, we can exploit
the already-computed values to initialize the algorithm, hence reducing the number of iterations needed.
As a stop condition we shall use an absolute one

β − α < εtol, εtol = 10−12.

4.2 The multi-section iteration for eigenvalues

Instead of using bisection, i.e. dividing the interval into two parts at each iteration, we can divide the
interval into an arbitrary number of sub-intervals, which we shall call Nmulti in the following. If we
think of it in a sequential way, the algorithm is less efficient than usual bisection (Nmulti = 2) because
it computes the σ function more times; nevertheless, this approach could be advantageous on a GPU
platform because it better exploits parallelism: we can compute concurrently the σ function at all these
points, and hence use fewer iterations to converge to the desired accuracy.

In order to implement the multi-section algorithm for Nmulti sub-intervals, we shall use the following
magnitudes (all indices start from zero):

– Interval [Ymin, Zmax] is such that it contains all the eigenvalues, and L := Zmax − Ymin.
– Integer n ∈ N \ {0} indexes the iteration of the multi-section algorithm.

– Array εinf
ν,p,i of size Nvalleys × Nsbn × Nx represents a left-approximation of eigenvalue εν,p,i, in the

sense that

εν,p,i ∈
]
εinf
ν,p,i, ε

inf
ν,p,i +

L

(Nmulti)n+1

[
.

– σν,p,i,k of size Nvalleys ×Nsbn ×Nx × (Nmulti − 1) represents the number of sign changes at point

ξν,p,i,k := εinf
ν,p,i + (k + 1)

L

(Nmulti)n+1
.

So, the general view of the methods is:

init

1 Compute Gershgorin circles [Yν,i, Zν,i] on the GPU
2 Compute minimum Ymin and maximum Zmax and let L = Zmax − Ymin

3 Inizialize εinf
ν,p,i = Ymin

4 Compute the number of iterations niters :=

 ln
(

L
εtol

)
ln (Nmulti)

+ 1

loop

5 Loop: for (n = 0;n < niters;n← n+ 1)
6 Compute σν,p,i,k on the GPU

7 Update εinf
ν,p,i on the GPU

(17)

The last instruction inside the loop part, i.e. instruction 7 of (17), requires a reduction, as we need to
compute

k̃ := max {k ∈ {−1, . . . , Nmulti − 2} such that σν,p,i,k ≤ p}

to finally update

εinf
ν,p,i ←− εinf

ν,p,i +
(
k̃ + 1

) L

(Nmulti)n+1
. (18)

10

4.2.1 Implementation details.

We use multi-section with 32 points, i.e. with Nmulti = 33. It is set like this so that we shall make each
warp take care of updating one value of εν,p,i. As Nsbn = 6, it seems reasonable to use either 1 or 2 or
3 or 6 warps per block, to load only one matrix Lν,i per block. Blocks, therefore, will also be of size
{32, 64, 96, 192}. Let Nw the number of warps per block, the block will be of size 32×Nw. As dimensions
are ordered i > ν > p, the 32×Nw threads will take care of computing (for fixed (ν, i))

{σν,p,i,k}31
k=0︸ ︷︷ ︸

0

, {σν,p+1,i,k}31
k=0︸ ︷︷ ︸

1

, . . . , {σν,p+Nw−1,i,k}31
k=0︸ ︷︷ ︸

Nw−1

.

By using a device of compute capability higher or equal than 3.x, we can exploit warp shuffle functions
to perform the reduction (17)-7 at warp level. In particular, we use shuffle xor sync to compute the
maximum k̃ of a vector Σν,p,i,· stored in shared memory and containing

Σν,p,i,k =

{
k if σν,p,i,k ≤ p
−1 otherwise

in such a way that we can update εinf
ν,p,i following (18). The shared memory for Σν,p,i,· is declared as

volatile in order to prevent the compiler from any optimization on Σν,p,i,·, which is modified, when the
reduction is performed, by the other threads in a way that the compiler cannot predict. Hence, without
the volatile keyword, the compiler could assume that some values remain constant while they do not,
thus resulting in miscalculations.
In order to perform a coalescent reading from global memory of matrix Lν,i, whose entries are used
several times by each thread, we use shared memory. Matrix L is stored as described in Figure 3, so that
each block loads SCHROED MATRIX ROW elements, i.e. 128 doubles with our standard parameters, out of
which only 125 are really useful and 3 are just used for padding with zeros.

diag sub−diag

p
ad

d
in

g

p
ad

d
in

g

p
ad

d
in

g

N −2z N −3z
SCHROED_MATRIX_SIZE

SCHROED_MATRIX_PAD

SCHROED_MATRIX_ROW

(n
u
,i

)=
(0

,0
)

(n
u
,i

)=
(1

,0
)

(n
u
,i

)=
(2

,0
)

(n
u
,i

)=
(0

,1
)

(n
u
,i

)=
(1

,1
)

(n
u
,i

)=
(2

,1
)

(n
u
,i

)=
(0

,2
)

... (n
u
,i

)=
(2

,N
 −

1
)

x

Fig. 3 Schrödinger matrices. Storage format of matrices L.

4.3 Newton-Raphson iterative method for eigenvalues

The Newton algorithm can also be found in the classical book [27]. In our implementation the iteration
is controlled by the CPU, and each call to a kernel updates the guess for the eigenvalues. We use one
thread per eigenvalue. The implementation does not need any sophisticated technique, therefore we do
not give further details here.

11

4.4 Eigenvectors

Once the eigenvalues have been computed, it is the turn of the relative eigenvectors. In order to do that,
we have to provide one of the two (up to the sign) normalized solutions to Lν,i ψν,p,i,· = εν,p,i ψν,p,i,·, i.e.

d̃0 e0

e0 d̃1 e1

e1 d̃2 e2

. . .
. . .

. . .

ej−2 d̃j−1 ej−1

ej−1 d̃j ej
ej d̃j+1 ej+1

. . .
. . .

. . .

en−2 d̃n−1

ψ0

ψ1

ψ2

ψ3

...
ψj−1

ψj
ψj+1

...
ψn−2

ψn−1

=

0
0
0
0
...
0
0
0
...
0
0

. (19)

where we have set d̃i = di − εν,p,i for the sake of lighter notations, and skipped other indices that only
act as parameters.
In order to compute one of the two normalized eigenvectors solution to the problem, we set up the Inverse
Power Iterative Method (IPIM). Namely, if we start from a guess ψ(0) and we iterate

solve (Lν,i − ε̃ν,p,iI)ψ(k+1) = ψ(k) for k ≥ 0

ψ(k+1) ←− ψ(k+1)∥∥∥ψ(k+1)
∥∥∥ (20)

then the sequence ψ(k) will converge to an eigenvector relative to the eigenvalue closest to ε̃ν,p,i. Although
the system (19) is analytically singular, numerically it is not, due to the limited precision by which real
numbers are represented, so the choice ε̃ν,p,i = εν,p,i in the IPIM is legitimate. Actually, in a slightly
counter-intuitive way, as pointed-out in [36], the fact of being close to a singular matrix in this case turns
out to be an advantage and accelerates convergence.
Hence, in order to implement the IPIM (20), we need:

– a method for the solution of the linear system;
– a reduction method for the normalization of the solution;
– a reduction method to control the iterations.

The choice has been made of using one block for each eigenvalue, with a block size multiple of 32 in
such a way that it is larger than Nz − 2. This way, we can exploit the Parallel Cyclic Reduction method
(described in the following section) for the solution of linear system, and warp shuffle functions for the
reductions.

4.4.1 Parallel Cyclic Reduction

We use the Parallel Cyclic Reduction (PCR) algorithm to solve the symmetric tridiagonal linear system
[31,32,33].
The kernel uses one block to solve each linear system where each block consists in as many warps as
needed to cover the Nz − 2 points (so for instance, 2 warps, i.e. 64 CUDA threads, are used for our
standard meshes where Nz − 2 = 63).
In the PCR algorithm, to solve a tridiagonal system with n equations, we perform log n forward reduction
steps. At the k-th step (k = 0, ..., log n − 1), the equation j (j = 0, 1, ..., n − 1) is modified as a linear
combination of the equations (j + 2k) and (j − 2k).
For each CUDA block, the inputs are the vectors (d̃0, d̃1, . . . , d̃n−1) and (e1, e2, . . . , en−2) with the pre-
viously introduced modification (imposing ψj′ = 1 for a particular j′ ∈ {0, . . . ,n− 1}) , and the output
is (ψ0, ψ1, . . . , ψn−1). The algorithm which describe the computation of a CUDA thread in a kernel is
shown in Table 1. In this algorithm, the jth CUDA thread (at each CUDA block) manages locally the
coefficients of jth equation of the system to compute ψj .

12

Input: (d̃0, d̃1, . . . , d̃n−1) and (e1, e2, . . . , en−2)
Output: (ψ0, ψ1, . . . , ψn−1)
1: Declare shared memory arrays a, b, c and y with size n
2: if j < n then
3: b[j] = d̃j
4: c[j] = ej
5: y[j] = 0
6: end if
7: Synchronize threads in CUDA Block
8: if j < n− 1 then
9: a[j + 1] = cj

10: end if
11: if (j = 0) then { a[0] = 0; c[n− 1] = 0 y[j′] = 1 }
12: Synchronize threads in CUDA Block
13: for k = 1, . . . , dlogne do
14: j+ = j + 2k; j− = j − 2k

15: if j− ≥ 0 then
16: α = −a[j] · b[j−]−1

17: a′ = α · a[j−]; b′ = α · c[j−]; y′ = α · y[j−]
18: end if
19: if j+ < n then
20: β = −c[j] · b[j+]−1

21: a′ = β · c[j+]; b′ = β · a[j+]; y′ = β · y[j+]
22: end if
23: Synchronize threads in CUDA Block
24: if j < n then
25: a[j] = a′; b[j] = b′; y[j] = y′

26: end if ‘
27: end for
28: if j < n then
29: ψj = y′/b′

30: end if

Table 1 Algorithm to solve a tridiagonal system using a CUDA block

13

5 Numerical results

We have analyzed the performance of the parallel solver, centering in the GPU implementation of the
Schrödinger-Poisson block (herein called the ITER phase).

5.1 Description of the platform and solvers

The numerical experiments have been performed on a computing server with dual Intel Xeon Silver 4210
CPUs (20 cores total) with 96 GB RAM, and 4TB solid state hard drive. The system includes a NVIDIA
Tesla V100 GPU (5120 cuda cores, 7 TFlops of double precision peak performance and 32 GB DDR5
SDRAM) and a NVIDIA GeForce RTX 3090 GPU (5248 cores, 556 GFLOPS of double precision peak
performance and 24 GB GDDR6X). The operating system is Linux Debian 10.9 with GCC version 10.2.0
and the CUDA 10.2 runtime.
We have developed two implementations of the solver:

– OpenMP solver: This solver only exploit the cores of the CPUs in the platform by using OpenMP
directives and functions (see [2] for additional details). In the experiments, this solver is run using 16
cores of the server.

– CUDA solver: This heterogeneous code performs all the relevant computing phases on one of the
available GPUs (Tesla V100 or RTX 3090) under the control of a CPU thread which invokes the
corresponding CUDA kernels. In the compilation with nvcc, we have used the switches O3 -m64

-use fast math and the options necessary to generate PTX code and object code optimized to the
particular GPU architecture.

5.2 General view

In Figure 4 the absolute and relative cost of each computational phase is drawn. For a CPU-parallel
code using OpenMP, we see that the bottleneck is represented by the integration of the Boltzmann
Transport Equations (BTE phase). When this part is performed on the GPU, a significant execution
time reduction is obtained. The new results are represented by the CUDA solver, in which a significant
reduction is obtained also for the iter phase.
In Figure 5 we sketch the absolute and relative cost of each computational phase inside iter phase. The
dominant parts are the solution of the linear system (7) and the computation of the eigenstates (2).

14

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O
penM

P-16-cores

Tesla-R
TX-2080

Tesla-K40

Tesla-V100

speedup
4.0

speedup
5.7

speedup
24.2

a
b
s
o
lu

te
 w

e
ig

h
t
(i
n
 s

e
c
o
n
d
s
)

BTE
dens

iter
other

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

O
penM

P-16-cores

Tesla-R
TX-2080

Tesla-K40

Tesla-V100

re
la

ti
v
e
 w

e
ig

h
t
o
v
e
r

o
n
e
 s

te
p
 (

p
e
rc

e
n
ta

g
e
)

BTE
dens

iter
other

Fig. 4 Phases. The absolute and relative cost of the three computational phases for a GPU execution.

15

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

O
penM

P-16-cores

Tesla-R
TX-2080

Tesla-K40

Tesla-V100

speedup
6.4

speedup
3.9

speedup
7.1

a
b

s
o
lu

te
 w

e
ig

h
t

(i
n
 s

e
c
o
n

d
s
)

iter.eigenstates
iter.NRkernel

iter.constrlinsys
iter.solvelinsys

other

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

O
penM

P-16-cores

Tesla-R
TX-2080

Tesla-K40

Tesla-V100

re
la

ti
v
e
 w

e
ig

h
t

o
v
e

r
o
n
e
 s

te
p
 (

p
e
rc

e
n
ta

g
e
)

iter.eigenstates
iter.NRkernel

iter.constrlinsys
iter.solvelinsys

other

Fig. 5 Iter. The relative cost inside the iter phase for a GPU execution.

16

5.3 The ITER block

In the following, we shall analyze the computational sections inside the ITER block, namely:

– the computation of the eigenstates (eigenvalues and eigenvectors) of the Schrödinger matrices;
– the computation of the Newton-Raphson kernel for the iterative method;
– the construction of the linear system to update the guess on the potential V ;
– the solution of the aforementioned linear system,

as they appear in Figure 5.
As a global picture, in Figure 6 we show the performances of the main kernels involved, for different
GPUs.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

RTX
2080

K40
V100

a
v
e
ra

g
e
 e

x
e
c
u
ti

o
n
 t

im
e
 [

m
s
]

Kernels for the computation of the eigenstates

GPU matrix vector product3
cuda compute kernel 4

tridiag solve 2
GPU update x 2

cuda constr linsys
cuda eigenvalues NewtonRaphson

Fig. 6 The ITER computational block. Performances of the main kernels.

5.3.1 The computation of the eigenstates

First of all, we sketch in Figure 7 the speedups we have obtained for the routine diagonalizing the
Schrödinger matrix.
The computation of the eigenstates relies on three sub-blocks (construction of the Schrödinger matrices;
eigenvalues; eigenvectors) and six kernels in total, but only either five or three are used: at the first time
step, we use a costlier but more robust method, employing five kernels.

at step 1 at step > 1

1 cuda init d A cuda init d A

cuda gershgorin

2 cuda initialize eps cuda eigenvalues NewtonRaphson

cuda eigenvalues multisection

3 tridiag solve 2 tridiag solve 2

In Figure 8 we show how these kernels scale on different machines.

17

 0

 2

 4

 6

 8

 10

 12

 14

 16

s
p

e
e

d
u

p

OpenMP-16-cores

Tesla-RTX-2080

Tesla-K40

Tesla-V100

Fig. 7 Eigenstates. Speedup of the routine for the diagonalization of the Schrödinger matrix, evaluated over 10 time
steps.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

RTX
2080

K40
V100

a
v
e
ra

g
e
 e

x
e
c
u
ti

o
n
 t

im
e
 [

m
s
]

Kernels for the computation of the eigenstates

tridiag solve 2
cuda eigenvalues NewtonRaphson

Fig. 8 Eigenstates. ...

18

5.3.2 The Poisson-like equation

In Figure 9 we sketch the performances of the routine for the solution of the linear system (7).

 1

 2

 3

 4

 5

 6

 7

s
p

e
e

d
u

p

OpenMP-16-cores

Tesla-RTX-2080

Tesla-K40

Tesla-V100

Fig. 9 Solution of the linear system. Average execution time and speedup of the routine for solution of the linear
system (7).

This computational block relies on three kernels:

– cuda constr linsys builds the linear system;
– GPU matrix vector product3 intervenes in the SRJ iterative method for the solution;
– GPU update x 2 intervenes in the SRJ iterative method for the solution.

In Figure 10 we show the performances of the kernels involved, for different GPUs.

19

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

RTX
2080

K40
V100

a
v
e
ra

g
e
 e

x
e
c
u
ti

o
n
 t

im
e
 [

m
s
]

Kernels for the computation of the eigenstates

GPU matrix vector product3
GPU update x 2

cuda constr linsys

Fig. 10 Solution of the linear system....

20

5.3.3 The Newton-Raphson kernel

In Figure 11 we sketch the performances of the routine for the diagonalization of the Schrödinger matrix.

 0

 10

 20

 30

 40

 50

 60

 70

s
p

e
e

d
u

p

OpenMP-16-cores

Tesla-RTX-2080

Tesla-K40

Tesla-V100

Fig. 11 Computation of the Newton-Raphson kernel. Average execution time and speedup of the routine for the
computation of the Newton-Raphson kernel (9).

In Figure 10 we show the performances of the kernels involved, for different GPUs.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

RTX
2080

K40
V100

a
v
e
ra

g
e
 e

x
e
c
u
ti

o
n
 t

im
e
 [

m
s
]

Kernels for the computation of the eigenstates

cuda compute kernel 4

Fig. 12 Computation of the Newton-Raphson kernel....

21

5.3.4 Performances of the kernels

In Table 2 we report the performances of the main kernels involved in the computations of the ITER
block.
The RTX-2080 graphic card does not allow for profiling, therefore the data are not reported.

QUE MAS HAY QUE PONER AQUI??

22

card kernel L1 hit L2 hit L2 read throughput gld efficiency gld requested throughput FLOPefficiency double precision fu utilization

V100 cuda eigenvalues NewtonRaphson 73.89% 100.00% 24.087GB/s 25.79% 22.621GB/s 0.91% Low (1)
K40 cuda eigenvalues NewtonRaphson 93.20% 97.02% 13.270GB/s 6.50% 12.336GB/s 2.38% Low (1)
V100 tridiag solve 2 7.41% 99.63% 43.769GB/s 84.21% 40.778GB/s 40.23% High (7)
K40 tridiag solve 2 46.21% 94.75% 7.8179GB/s 57.15% 8.2019GB/s 43.77% High (8)
V100 cuda constr linsys 83.18% 72.28% 116.11GB/s 25.71% 90.410GB/s 0.30% Low (1)
K40 cuda constr linsys 64.87% 69.48% 112.91GB/s 6.34% 18.757GB/s 0.30% Low (1)
V100 GPU update x 2 32.67% 96.10% 20.388GB/s 99.93% 25.619GB/s 0.04% Low (1)
V100 cuda compute kernel 4 60.23% 99.39% 561.87GB/s 62.10% 891.43GB/s 43.01% High (9)
K40 cuda compute kernel 4 94.68% 93.32% 34.889GB/s 24.60% 160.96GB/s 38.80% High (8)

Table 2 Measures of the efficiency of kernels involved in updating of the eigenstates. blablabla

23

6 Conclusions and perspectives

In this work, a simulator of nanoscale DG MOSFETs which solves autoconsistently the Boltzmann-
Schrödinger-Poisson system performing all the computing phases on a CUDA-Enabled GPU is described.
The port to GPU of the iterative section solving the Schrödinger-Poisson block provides satisfactory re-
sults, as it significantly reduces the computational times of the execution on CPU. Now all the computing
phases of the simulator can be fully performed on GPU and show good performances, and reasonable
computational times, taking into account the huge computational cost of this deterministic solver.
Regarding the future extensions of this exploratory research, several topics can be explored. First of all,
it would be of interest to test the techniques described here in another kind of solver, in particular in a
macroscopic solver, which is a goal of great interest for the semiconductor industry as it could provide
significant improvement for commercial TCAD simulators.
Second, no Monte-Carlo solver has been ported to GPU, at the best of our knowledge. It would be
interesting to see how the performances of such numerical methods improve.
Finally, on a broader scale, we are working on improving the description of the MOSFET device at
physical level, for example by introducing other scattering phenomena into the collisional operator, and
in particular the surface roughness and the Coulomb interaction. Additionally, devices composed of
different materials and heterostructures can be simulated.

Acknowledgement

Francesco Vecil and J. M. Mantas acknowledge the project MTM2017-85067-P funded by the Spanish
Ministerio de Economı́a y Competitividad (MINECO) and the European Regional Development Fund
(ERDF/FEDER).
We wish to thank A. Vidal from Universitat Politècnica de València and A. Godoy from Universidad de
Granada for their valuable technical support. We also thank the Software Engineering Departament of
Universidad de Granada for the use of its computing server.

24

References

1. Mantas JM and Vecil F (2019) Hybrid CUDA-OpenMP parallel implementation of a deterministic solver for ultra-
shortDG MOSFETs:, International Journal of High Performance Computing Applications 34 (1) 81–102.

2. Vecil F, Mantas JM, Cáceres MJ, Sampedro C, Godoy A and Gámiz F (2014) A parallel deterministic solver for the
Schrödinger-Poisson-Boltzmann system in ultra-short DG-MOSFETs: Comparison with Monte Carlo, Computers and
Mathematics with Applications 67 1703–1721.

3. Carrillo JA, Gamba IM, Majorana A, Shu CW (2003) A WENO-solver for the transients of Boltzmann-Poisson system
for semiconductor devices: performance and comparisons with Monte Carlo methods, Journal of Computational Physics
184 (2) 498–525. doi:10.1016/S0021-9991(02)00032-3.

4. Ben Abdallah N, Cáceres MJ, Carrillo JA, Vecil F (2009) A deterministic solver for a hybrid quantum-classical transport
model in nanoMOSFETs, Journal of Computational Physics 228 (17) 6553–6571. doi:10.1016/j.jcp.2009.06.001.

5. Salas O, Lanucara P, Pietra P, Rovida S, Sacchi G (2011) Parallelization of a quantum-classical hybrid model for
nanoscale semiconductor devices, Revista de Matemática: Teoŕıa y Aplicaciones 18 (2), 231–248.

6. Li Y, Chao T-S, Sze SM(2015) A Novel Parallel Approach for Quantum Effect Simulation in Semiconductor Devices,
International Journal of Modelling and Simulation 23 (2) 94–102. 10.1080/02286203.2003.11442259.

7. Vaĺın R, Sampedro R, Seoane N, Aldegunde M, Garćıa-Loureiro A, Godoy A, G/’amiz F(2012) Optimisation and
parallelisation of a 2D MOSFET multi-subband ensemble Monte Carlo simulator. The International Journal of High
Performance Computing Applications 27(4), 483–492. 10.1177/1094342012464799.

8. Espiñeira G, Garćıa-Loureiro AJ, Seoane N(2021) Parallel Approach of Schrödinger Based Quantum Corrections for
Ultrascaled Semiconductor Devices. Journal of Computational Electronics. (In review). 10.21203/rs.3.rs-787168/v1.

9. Seoane N, Nagy D, Indalecio G, Espiẽira G, Kalna K, Garćıa-Loureiro A (2019) A multi-method simulation toolbox to
study performance and variability of nanowire FETS. Materials 12(15), 2391. 10.3390/ma12152391.

10. Steiger S, Povolotskyi M, Park H, Kubis T(2011) NEMO5: A Parallel Multiscale Nanoelectronics Modeling Tool, IEEE
Transactions on Nanotechnology 10 (6), 1464–1474.

11. Jourdana Clément (2011) Mathematical modeling and numerical simulation of innovative electronic nanostructures,
Ph D. Université Paul Sabatier - Toulouse III; Università degli studi di Pavia.

12. Gummel HK(1964) A self-consistent iterative scheme for one-dimensional steady state transistor calcu- lations, IEEE
Trans. Electron Devices, 11(10):455–465.

13. Balay S, Gropp WD, Curfman L, Smith BF (1997) Efficient management of parallelism in object oriented numerical
software libraries, In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools in Scientific
Computing, pages 163–202. Birkhäuser Press.

14. Balay S et- al. (2010). PETSc users manual, Technical Report ANL-95/11 - Revision 3.1, Argonne National Laboratory.
15. El-Ayyadi A, Jüngel A(2005) Semiconductor Simulations Using a Coupled Quantum Drift-Diffusion Schrödinger-

Poisson Model, SIAM Journal on Applied Mathematics 66, No. 2, 554–572.
16. Jourdana C, Pietra P(2019) A Quantum Drift-Diffusion model and its use into a hybrid strategy for strongly confined

nanostructures, Kinetic and Related Models 12 (1) 217–242.
17. Pietra P, Vauchelet N(2008) Modeling and simulation of the diffusive transport in a nanoscale Double-Gate MOSFET,

Journal of Computational Electronics 7, 52–65. doi:10.1007/s10825-008-0253-z.
18. Donetti L, Sampedro C, Ruiz F.G., Godoy A., Gamiz F.(2018) A Multi-Subband Ensemble Monte Carlo simulations

of scaled GAA MOSFETs, Solid-State Electronics 143, 49–55.
19. Saint-Martin J., Bournel A, Monsef F., Chassat C., Dollfus P(2006) Multi sub-band Monte Carlo simulation of an

ultra-thin double gate MOSFET with 2D electron gas, Semiconductor Science and Technology 21, 29–31.
20. Kargar Z.,Ruić D., Jungemann C.(2015) A self-consistent solution of the Poisson, Schrödinger and Boltzmann equa-

tions for GaAs devices by a deterministic solver. 2015 International Conference on Simulation of Semiconductor Processes
and Devices (SISPAD). 361–364. 10.1109/SISPAD.2015.7292334.

21. Mascali G, Romano V(2012), A non parabolic hydrodynamical subband model for semiconductors based on the maxi-
mum entropy principle, Mathematical and Computer Modelling 55 (3-4) 1003–1020.

22. Camiola VD, Mascali G, Romano V (2013), Simulation of a double-gate MOSFET by a non-parabolic energy-transport
subband model for semiconductors based on the maximum entropy principle, Mathematical and Computer Modelling
58 (1-2) 321–343.

23. Chapman B, Jost G, van der Pas R (2008) Using OpenMP: Portable Shared Memory Parallel Programming The MIT
Press.

24. Yang XIA, Mittal R (2014) Acceleration of the Jacobi iterative method by factors exceeding 100 using scheduled
relaxation, Journal of Computational Physics 274 695–708. doi:10.1016/j.jcp.2014.06.010.

25. Adsuara J, Cordero-Carrión I, Cerdá-Durán P, Aloy M (2016) Scheduled Relaxation Jacobi method: Improvements and
applications, Journal of Computational Physics 321. 369–413. doi:10.1016/j.jcp.2016.05.053.

26. Adsuara JE, Cordero-Carrión I, Cerdá-Durán P, Mewes V, Aloy MA (2017), On the equivalence between the Scheduled
Relaxation Jacobi method and Richardson’s non-stationary method, Journal of Computational Physics 332 446–460.
doi:10.1016/j.jcp.2016.12.020.

27. Stoer J, Bulirsch R (1991) Introduction to Numerical Analysis, Texts in Applied Mathematics, Springer-Verlag New
York. doi:10.1007/978-0-387-21738-3.

28. Demmel JW (1997) Applied Numerical Linear Algebra, SIAM.
29. Abal-Kassim CA, Magoulès F(2017) Efficient implementation of Jacobi iterative method for large sparse linear systems

on graphic processing units, The Journal of Supercomputing 73 3411–3432. 10.1007/s11227-016-1701-3.
30. Lo Sy-Shin, Philippe Bernard, Sameh Ahmed(1987) A Multiprocessor Algorithm for the Symmetric Tridiagonal Eigen-

value Problem, SIAM Journal on Scientific and Statistical Computing 8 (2) s155–s165. 10.1137/0908019.
31. Macintosh HJ, Warne DJ, Kelson NA, Banks JE, Farrell TW (2016) Implementation of parallel tridiagonal solvers for

a heterogeneous computing environment, The ANZIAM Journal 56 C446–C462. .
32. Zhang Y, Cohen J, Owens J. (2010) Fast Tridiagonal Solvers on the GPU, Sigplan Notices - SIGPLAN. 45. 10.1145/

1837853.1693472.

25

http://dx.doi.org/10.1016/S0021-9991(02)00032-3
http://dx.doi.org/10.1016/j.jcp.2009.06.001
https://doi.org/10.1080/02286203.2003.114422599
https://doi.org/10.1007/s10825-008-0253-z
https://www.sciencedirect.com/science/article/pii/S0021999114004173
https://www.sciencedirect.com/science/article/pii/S002199911630198X
http://dx.doi.org/10.1016/j.jcp.2016.12.020
https://link.springer.com/book/10.1007/978-0-387-21738-3
https://link.springer.com/article/10.1007/s11227-016-1701-3
https://doi.org/10.1137/0908019
http://journal.austms.org.au/ojs/index.php/ANZIAMJ/article/view/9371

33. Kim Hee-Seok, Wu S, Chang Li-Wen, Hwu Wen-mei (2011) A Scalable Tridiagonal Solver for GPUs. Proceedings of
the International Conference on Parallel Processing. 444–453. 10.1109/ICPP.2011.41.

34. Yuan Li, Grover Vinod (2018) Using CUDA Warp-Level Primitives. NVIDIA Devewloper Blog. .
35. Buluç A, Fineman JT, Frigo M, Gilbert J R, Leiserson CE (2009) Parallel sparse matrix-vector and matrix-transpose-

vector multiplication using compressed sparse blocks. ACM Symp. on Parallelism in Algorithms and Architectures.
36. William Ford (2015) Numerical Linear Algebra with Applications, Chapter 18 - The Algebraic Eigenvalue Problem,

Academic Press (Boston). 379–438. 10.1016/B978-0-12-394435-1.00018-1.

26

https://devblogs.nvidia.com/using-cuda-warp-level-primitives/
https://www.sciencedirect.com/science/article/pii/B9780123944351000181

	1 Introduction
	2 The Schrödinger-Poisson solver
	3 Highly-parallel methods for the linear system
	4 Implementation strategies: Diagonalization of the Schrödinger matrix
	5 Numerical results
	6 Conclusions and perspectives

