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Abstract

The thalamus is the brain’s central relay station, orchestrating sensory processing and cog-

nitive functions. However, how thalamic function depends on internal and external states, is

not well understood. A comprehensive understanding would necessitate the integration of

single cell dynamics with their collective behavior at population level. For this we propose a

biologically realistic mean-field model of the thalamus, describing thalamocortical relay neu-

rons (TC) and thalamic reticular neurons (RE). We perform a multi-scale study of thalamic

responsiveness and its dependence on cell and brain states. Building upon existing single-

cell experiments we show that: (1) Awake and sleep-like states can be defined via the

absence/presence of the neuromodulator acetylcholine (ACh), which indirectly controls

bursting in TC and RE. (2) Thalamic response to sensory stimuli is linear in awake state and

becomes nonlinear in sleep state, while cortical input generates nonlinear response in both

awake and sleep state. (3) Stimulus response is controlled by cortical input, which sup-

presses responsiveness in awake state while it ‘wakes-up’ the thalamus in sleep state pro-

moting a linear response. (4) Synaptic noise induces a global linear responsiveness,

diminishing the difference in response between thalamic states. Finally, the model replicates

spindle oscillations within a sleep-like state, exhibiting a qualitative change in activity and

responsiveness. The development of this thalamic mean-field model provides a new tool for

incorporating detailed thalamic dynamics in large scale brain simulations.

Author summary

The thalamus is a fascinating brain region that acts as the gate for information flow

between the brain and the external world. While its role and importance in sensory and

motor functions is well-established, recent studies suggest it also plays a key role in

higher-order functions such as attention, sleep, memory, and cognition. However, under-

standing how the thalamus acts on all these functions is challenging due to its complex

interactions at both the neuron level and within larger brain networks. In this study, we

used a mathematical model grounded in experimental data that realistically captures the

behavior of the thalamus, connecting the scales of individual neurons with larger popula-

tions. We found that the thalamus functions differently depending on whether the brain is
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in an awake or a sleep-like state: When awake, the thalamus processes sensory informa-

tion in a straightforward way, resulting in a faithful information transmission to the cor-

tex. But during sleep, only significant or important stimuli create a response. Importantly,

this behavior can be controlled by cortical-like input and noise. With this study, we shed

light on how the thalamus might modulate and interact with various brain functions

across different scales and states. This research provides a deeper understanding of the

thalamus’s role and could inform future studies on sleep, attention, and related brain

disorders.

Introduction

The thalamus, a well preserved structure found in all mammals [1], serves as the core relay hub

of the central nervous system. Diverse thalamic nuclei function as transmitters of sensory

information from the periphery to the cortex and other central nervous system structures,

while also facilitating the transfer of motor commands from the cortex to various regions of

the body [2, p. 4–5]. Each of the relatively independent thalamic nuclei comprises at least two

cell types: excitatory (glutamergic) principal relay cells, featuring extensive axonal projections

to various nervous system structures, but rarely to other principal cells, and local inhibitory

(GABAergic) interneurons [3, 4].

The primary source of activity in thalamic nuclei arises from direct pathways, operating in

both peripheral-to-central and central-to-peripheral directions. Additionally, cortical feedback

projections exert a strong influence on the thalamus. Notably, the number of thalamo-cortical

outgoing axons is approximately one-tenth of the number of cortico-thalamic incoming axons

[4, 5], and the cortex is the major source of synapses within the thalamus, for example account-

ing for 50% of synapses in the lateral geniculate nucleus (LGN) [4]. This extensive feedback

loop between the thalamus and cortex indicates a substantial modulating role of the cortex in

thalamic relay functions [6].

During attentive wakefulness, thalamic relay neurons display tonic firing. However, mem-

brane hyperpolarization leads to bursting behavior via low-threshold Ca+ channels [7]. Burst-

ing occurs in deep sleep states (NREM) and general states of low attention [8], in which

hyperpolarization is generated by a low level of the neuromodulator acetylcholine (ACh) [9].

Surrounding the thalamus, the thalamic reticular nucleus (TRN) contains GABAergic retic-

ular cells (RE) that broadly inhibit thalamic nuclei through axonal, and themselves through

dense axonal and dendritic connections [4, 7]. RE neurons can be activated through feedfor-

ward signals from thalamic nuclei or feedback from the cortex. These neurons consistently

exhibit bursting behavior and can induce similar patterns in thalamic relay cells via hyperpo-

larization. This recurrent network allows the cortex and thalamus itself to actively modulate

thalamic response and transfer of information, rendering the thalamus as a gate, with the TRN

as the gatekeeper.

In addition to its gating function, there is also evidence of the thalamus playing a principal

role in whole brain dynamics, such as spindle oscillations or slow waves in NREM sleep or

anaesthesia [10–12]. It is suggested that the intrinsic loop between thalamocortical (TC) relay

and RE cells plays a pivotal role in all of these behaviors by acting as a pacemaker and oscilla-

tor. The crucial mechanism at play is the rebound bursting of relay cells via hyperpolarization

induced by RE inhibition.

These oscillatory behaviors primarily manifest during sleep-like brain states, where the TC

cells show a prevalence for bursting [13]. Additionally, in newer studies it was shown that
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thalamic integration with cortical pathways suggests a significant role of the thalamus in many

higher brain functions, including sensation, attention, and cognition [14, 15].

Investigating the interaction between thalamic reticular and relay neurons at various levels

is therefore crucial for deciphering the interplay of the brain with the outside world. To this

end it is necessary to analyze these neuron interactions and their corresponding population

activity via large-scale models. One feasible approach for scaling upwards is to employ net-

works of single-cell neuron models, but the computational demand rapidly increases as the

network size is taken to the scale of anatomical subdivisions of the brain. For larger scales and

even whole-brain simulations, it is necessary to decrease computational complexity. This can

be achieved by reducing the degrees of freedom and describing homogeneous populations of

neurons as the smallest units. A viable option is to use a mean-field theory to model population

dynamic statistics.

Most existing neuronal field models can be separated in two groups: either phenomenologi-

cal models (e.g. [16–18]), or more abstract mathematical models (e.g. [19–21]). Phenomeno-

logical models replicate biological behavior and are capable of modeling particular brain

regions, cell types or whole brain recordings. However, these can not couple significant effects

or characteristics to model parameters which makes it impossible to use such models far of the

fitting point and renders analytical analysis impractical. Conversely, abstract mathematical

models couple the dynamical aspects of neuronal activity directly to model parameters and

allow analytical or fast-forward numerical analysis, but model parameters are often not well

linked to biological observables.

To strike a good balance between these models, we develop in this paper a biologically realis-
tic mean-field model of the thalamus that also allows analytical analysis. To achieve this biolog-

ical realism with a firing rate model, our formalism follows a bottom-up approach, starting at

the single-cell level and incorporating cellular and structural specificities of the thalamic cir-

cuits [22]. Our approach incorporates three crucial biological features: (1) Irregular spiking
activity of neurons is believed to be important for transfer efficiency [23] and the correct base-

line for neurons in both awake-like asynchronous (AI) states [24] as well as in sleep-like syn-

chronous (SI) states [25]. (2) Synaptic conductances allow for realistic bi-stability and self-

sustained activity [26] as well as modeling the fluctuation-driven regime [27]. (3) Adaptation
mechanisms are the main generators of the different firing behaviors in the brain and impor-

tant to include into models for generating realistic firing rate saturation and especially the

bursting behavior of thalamic cells.

Using our mean-field model we investigate the state-dependent responsiveness of the thala-

mus, integrating the interplay between multiple scales (from single-cell level to the mesoscale).

Building upon existing single-cell experiments we show that: First, the transition from tonic to

burst firing of TC cells via ACh renders thalamic response nonlinear in sleep state. Second,

sensory stimuli generate a linear response, while cortical inputs generate a nonlinear response

of the thalamus. Third, cortical input and synaptic noise modulate thalamic response and syn-

aptic noise diffuses thalamic state transitions and removes thalamic response dependency on

both voltage and frequency. Finally, we demonstrate that the proposed model is capable of

generating self-sustained spindle oscillations, drastically altering responsiveness in this state.

Materials and methods

In this section we describe the single-cell, network, and the mean-field model. The chosen net-

work and connectivity structure as well as cell and synaptic parameters are described.
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Spiking neuron model

For both single-cell and network simulations we employ the Adaptive exponential integrate
and fire model (AdEx) (as defined in [28] and analyzed in [29]). This conductance based

model often proved to be a good balance between computability and biological realism in

terms of capturing all firing modes observable in real cells [30] and significantly in thalamo-

cortical cells [31, 32]. Importantly, it allows for a systematic fit of real cell traces. The dynam-

ical system is the two equations describing membrane potential v and adaptation current ω of

a given cell μ

cm
dvm
dt
¼ gLðEL � vmÞ þ gLD e

vm � Vt
D � om þ IsynðtÞ ð1Þ

dom

dt
¼ �

om

to
þ b
X

ts

dðt � tsÞ þ aðvm � ELÞ; ð2Þ

with the cell parameters listed in Table 1 and where Isyn models all incoming synaptic currents.

It consists of two currents dependent on excitatory Ge
syn and inhibitory Gi

syn membrane con-

ductances and is defined as

IsynðtÞ ¼ ðEe � vmÞGe
synðtÞ þ ðEi � vmÞGi

synðtÞ ð3Þ

Gðe;iÞsyn ðtÞ ¼ Qðe;iÞ
X

tðe;iÞs

yðt � tðe;iÞs Þ e
�

t� tðe;iÞs
tðe;iÞ ; ð4Þ

where Gsyn is modeled such that each time a spike (ts) arrives these conductances experience

an increment Q and exponentially relax again with time constant τ. As a baseline we use Qe =

1nS and Qi = 5nS [22].

Additional to the integration of this ODE set comes the usual spike mechanism employed

in integrate and fire models: A spike of neuron μ is counted if vμ> Vthr = −20mV, then the

Table 1. Cell and synaptic parameters for TC and RE cells in awake (ACh) and sleep (no ACh) states. Connection parameters see Fig 1A. The last two parameters are

for the spiking network only and “-” means the same value as in awake state.

PARAM AWAKE SLEEP DESCRIPTION

TC RE TC RE

Qe 1nS 4nS - - exc. quant. conductance incr.

Qi 6nS 1nS - - inh. quant. conductance incr.

cm 160pF 200pF - - membrane capacitance

EL −65mV −75mV −70mV −85mV resting (leakage) potential

gL 10nS 10nS 9.5nS 13nS leak conductance

τw 200ms 200ms 270ms 230ms adaptation time const.

a 0nS 8nS 24nS 28nS membrane potential adaptation

b 10pA 10pA 200pA 20pA spike frequency adaptation

τ(e, i) 5ms 5ms - - syn. time constants

Ee 0mV 0mV - - exc. reversal potential

Ei −80mV −80mV - - inh. reversal potential

Vt −50mV −45mV - - threshold for the spike onset

Δ 4.5mV 2.5mV - - amplitude of the spike onset

https://doi.org/10.1371/journal.pcbi.1012262.t001
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membrane potential is reset to Vr = {−55mV for RE, −50mV for TC} for a refractory period of

5ms.

Network architecture and model parameters

We model one thalamocortical relay (TC) and one connected reticular (RE) population of a

generic lateral thalamic nucleus. We neglect interneurons, as it can be assumed that they only

yield minor contribution to population dynamics [33]. One of the main potential application

of the thalamus mean-field is to be incorporated into large or whole brain models with already

developed cortical and sub-cortical mean-field models and related implementations [22, 34–

40]. As a reference, these previous works on cortical circuits describe typically populations of

*104 neurons, corresponding to the size of a single cortical column. To keep the scale differ-

ence between cortex and thalamus proportional, we employ a scale of 1/10 [4, 5, 41] and there-

fore use N = 500 neurons per population. This allows to build a basic realistic-scale thalamo-

cortical loop with just two mean-field models.

The network with its connections is depicted in Fig 1A. We consider a random connected

Erdos-Renyi network comparable to the statistical assumptions of the mean-field (Table A in

S1 Appendix). TC and RE populations form a loop of excitation and inhibition. TC cells do

not excite other TC cells but RE cells (next to outgoing axons to the cortex). In contrast, RE

are connected in an inhibitory loop and also inhibit TC cells. We propose two external drives

serving as inputs to the model: The cortical drive P (going to both populations) and the sensory
drive S (going only to TC cells) modeling cortical signals and sensory stimuli to the thalamus,

respectively.

For the synaptic and connection parameter values, we start with a connection probability

between TC and RE populations of p = 5%, which captures the sparse connectivity between

the two populations [3]. To model the dense net of locally self-inhibiting RE neurons in the

Fig 1. Network structure and single cell dynamics. A The chosen network structure of two thalamic populations (TC and RE cells of each N = 500),

their synaptic increments Q, and connection probabilities p for all connection between the TC and RE population. The external inputs are shown in

gray: The cortical drive P (N = 8000) and the sensory stimulus drive S (N = 500). The arrows mark the direction of synaptic transmission and if they act

excitatory (blue) or inhibitory (red). B Single cell traces from AdEx IF neurons (see Methods for details) of TC and RE for a timed constant input

current (gray line). The left column shows TC and RE response to the injected current in awake state (with ACh) and the right column the same in sleep

state (no ACh). The cells membrane potential v and adaptation current ω are shown in color for TC (blue) and RE cell (red), respectively.

https://doi.org/10.1371/journal.pcbi.1012262.g001
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TRN [2, 43, 44], we use p = 30%. There are 2 to 10 times more axons projecting from cortex to

TC than from cortex to RE cells, but the amplitude of connection to RE is stronger, keeping a

strong inhibitory cortico-thalamic modulation via the TRN [4, 7]. Last, the number and con-

vergence of axons from RE to TC cells ensures sparse but strong inhibition [3, 7]. See Fig 1A

for all the parameter values.

Moving to cell parameters, we model two states of the thalamus corresponding to high or

low levels of the excitatory modulator acetylcholine (ACh). In [9] and [44], it was shown that

low levels of ACh change the firing patterns of TC cells to inhibit single tonic firing and to pro-

mote bursting. Because of the capability of ACh to act as a switch between tonic and bursting

mode in the TC cells relay, and its role in controlling the overall physiological brain state [33,

45, 46], we define here these two states as awake state (ACh present; wakefulness, REM sleep)

and sleep state (ACh absent; NREM sleep, low attention).

Parameters of the single-cell model were determined via Mean-Absolute-Error (MAE)

analysis between model prediction and recorded TC and RE cell traces of those two studies [9,

42] for the two states of ACh present (awake) and ACh absent (sleep). Initial parameter values

are taken from Destexhe [31] with taking into account experimental parameter ranges of [9,

42] and the NeuroElectro database [52] for TC and RE neurons. The resulting parameters are

shown in Table 1. The robustness of the model parameters is validated via a large range explo-

ration in the parameter space, shown in Fig D–G in S1 Appendix Beyond this initial determi-

nation, two further modifications to the parameters values were performed: (1) A

hyperpolarised EL for RE cells in sleep state. This choice does deviate from a best fit as is evi-

dent from the increased error as shown in the second row in Fig F in S1 Appendix However,

this was necessary to guarantee biologically realistic stable and balanced AI dynamics of the

full network (see Fig 2C). And (2) in a stronger spike adaptation b for TC cells, also in sleep

state. This choice is required for TC cells to burst also in network simulations (see Fig 3B) and

leads to stronger bursting at the single-cell level, but does not significantly increase the error of

the single-cell fit.

To show that the cells inherit the correct behaviour, using the AdEx Eq (1) with the pro-

posed cell parameters, in Fig 1B four exemplary single cell traces of RE and TC are shown. In

there a constant–time gated–current was injected in to the cell to invoke a firing response of

the cell. This was done by setting a rectangular pulse as Isyn in Eq (1) (Isyn generates tonic and

burst firing via two different bifurcations depending on excitability state, see [29]). The top

row shows the wanted response types for the TC cell: Tonic firing with awake parameters

(modulating ACh), and burst firing with sleep parameters (low-level of ACh). In the bottom

row, RE cell’s respond via burst firing in both parameter states, but the burst duration

decreases in sleep state while keeping the same amount of spikes (increased burstiness).

Mean-field model

El Boustani & Destexhe [47] developed a second-order mean-field formalism of differential

equations describing the firing rate statistical moments of spiking networks. This general

framework closes the statistical hierarchy at second order and is applicable to any arbitrary

neuron models as long as a characteristic transfer function can be defined. It is assumed that

the network is a sparse and randomly connected Erdos-Renyi model. It is derived with the

assumption of the system being in an E-I balanced AI state. This formalism is extended by

including the slow dynamic effects of adaptation [22] so that the system is fully described by

mean firing rate νμ and adaptation ωμ for each neuron population μ. The differential equation
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system for this framework then reads

T
@nm

@t
¼ ðFm � nmÞ þ

1

2
@l@ZFmclZ ð5Þ

T
@tcmn
@t
¼ dmnA

� 1

mm
þ ðFm � nmÞðFn � nnÞ þ @lFmcnl þ @lFncml � 2cmn ð6Þ

@tom ¼ �
om

to
þ bnm þ aððmVÞm � ELÞ; ð7Þ

where Fμ is the transfer function of cell population μ and cμν the covariance between two popu-

lation’s firing activity. The indices {μ, ν, λ, η} run over the set of populations, e.g. in our case of

two populations the set of {e, i} for excitatory TC and inhibitory RE. The derivatives are

defined as @m ¼
@

@nm
. Important to note is the role of T which marks the adiabatic time step such

that dynamics with smaller time resolutions are not captured and which has to fulfill the

requirements listed in Table A in S1 Appendix

Fig 2. Validating the mean-field with spiking networks. AB The fitted transfer functions for RE and TC cell for three different inhibitory inputs each

with their corresponding single cell simulations. Top (A, blue) is for TC and bottom (B, red) for RE cell-type (in awake state). The dots each represent

the averaged firing rate of a cell over 100 runs. C Comparison of the firing rate of the mean-field and the spiking network for constant cortical drive

P = 4Hz and a split-Gaussian stimulus coming from S. Top is the raster plot showing all spiking times {ts} for all neurons in the spiking network

simulation. Bottom is the averaged mean firing rate of spiking network (blue/red lines) and predicted mean firing rate of the mean-field ν (black line)

with its standard deviation (shaded blue/red areas). D Comparison of the equilibrium firing rate of the spiking network and of the mean-field over a

range of cortical inputs. Each dot represents a spiking network simulation for 10s where the steady long time mean is calculated. The black lines

correspond to the mean-fields fixpoints n0
ðe;iÞ, with the shaded areas being the standard deviations. The inhibited regime between ca. P’ (1, 20)Hz

marks the standard activity employed. The inset shows a zoom at the low-drive regimes where activity is first silent and then controlled by TC until P’
1Hz. E Left column: The firing rate distributions of spiking network (histogram) and mean-field (line) for P = {2, 4}Hz. Bottom-right: Comparison of

membrane potential distribution for 4Hz. Top-right: Autocorrelation τac of TC and RE population for spiking network (grey lines) and mean-field

(blue/red lines).

https://doi.org/10.1371/journal.pcbi.1012262.g002
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The core of this formalism is the transfer function F and so the main task in constructing a

mean-field of the thalamus is to get the transfer function of TC and RE cells in the two states of

awake and sleep.

To derive the transfer function we follow the semi-analytical approach of Zerlaut et al. [48]

which combines the seminal studies of [49, 50]. In there the firing rate is written as a probabi-

listic function counting the spikes in term of the membrane potential v(t) being above a certain

spike threshold potential Vθ in each time bin of duration τV which resembles the membrane

potentials autocorrelation time. In the Gaussian limit we get a function dependent on the

Fig 3. Bursting of TC cells renders thalamic response nonlinear in sleep state. A Top row: Single cell and population response to a strong oscillatory

sensory drive S in awake state. Bottom row: Activities of spiking network (TC population, blue) and mean-field (TC population, black line with color-

shaded std., RE population, red line). The grading stimulus is pictured in light grey. The single cell recording of the top rows is taken from this network

simulation. RE activity is of same frequency and phase as TC activity but with amplitude*50Hz. B The same setup as in A but in sleep state (TC

bursting, see main text). The single cell recording is done in the network of A which was in awake state to be close to the experiment. (Dark blue is sleep

state and light blue is sleep state with lower adaptation b = 20pA.) The single cell traces in A and B reproduce the experiments of [7]. C Thalamic

response of spiking network and mean-field to a fast changing stimulus (split-Gaussian with steep left-hand std. σl). Inset shows trace of 3 random TC

cells of the spiking simulation, showing bursting at the onset of the stimulus (t0 = 1.5s; mV per s). D Rectangular stimulus in absence of cortical drive

showing that TC activity vanishes after initial burst. E The maximum amplitude of response (peak), relative to the incoming stimulus amplitude, as a

function of the ‘slope’ of stimulus (left std. σl of split-Gaussian; amplitude 10Hz and right std. 0.2s). Depicted is the response for awake and sleep state

and in sleep state for different applied cortical constant drives (from black to gray: {1, 2, 4, 10}Hz).

https://doi.org/10.1371/journal.pcbi.1012262.g003
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membrane subthreshold fluctuation statistical moments and define that as our transfer func-

tion

FðmV ; sV ; tVÞ � nout ¼
pðv > VyÞ

tV
¼

Gaussian 1

2tV
erfc

Veff
y
� mVffiffiffi
2
p

sV

 !

; ð8Þ

where μv is the mean and σv the standard deviation of the (subthreshold) membrane potential.

In the second step, the constant threshold Vθ is replaced with a phenomenological one acting

as a function dependent on—and therefore accounting for—different cell properties. Because

there is no theoretical form, a general second order polynomial dependent on the set {μV, σV,

τV} was proposed [49]

Veff
y
ðmV ; sV ; t

N
VÞ ¼ P0 þ

X

x

Px �
x � x0

dx0
þ
X

x;y

Pxy �
x � x0

dx0

y � y0

dy0
; ð9Þ

with x; y 2 fmV ; sV ; t
N
Vg and where tNV¼tV

gL
cm

is the non-dimensionalised autocorrelation and

the parameters space is normalised to limit the fluctuation driven regime, with mean x0 and

deviation δx0.

Here either single cell simulations or experimental clamp data can be used to get values for

the unknown amplitudes {P}. This fitting has to be performed for each distinctive cell type, so

in our case for TC and RE neurons. Because the two states awake and sleep are mostly changes

in adaptation parameters, and it was shown in [22] that the mean-field is predictive even far

from its fitting point, we just need one fit per cell type. This also is biologically realistic, for the

changes induced by e.g. ACh would not change the cell morphology, and we consider the

threshold membrane potential to stay the same for both states.

The set of {μV, σV, τV} can be calculated purely analytically by using Campbell’s theorem

and assuming Poissonian distribution of incoming spikes as the generator of subthreshold

fluctuations [50] (as is the case in the AI regime). The mean or static synaptic conductances

are calculated then as a function of incoming spike frequencies {νe, νi} in terms of their mean

and standard deviation

mGðe;iÞ ¼ nðe;iÞKðe;iÞtðe;iÞQðe;iÞ ð10Þ

sGðe;iÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðe;iÞKðe;iÞtðe;iÞ

2

r

Qðe;iÞ; ð11Þ

where Kμ = pμNμ. With that the general input conductance of the cell can be computed

mGðne; niÞ ¼ mGe þ mGi þ gL: ð12Þ

Then we can calculate the mean membrane potential μV from the first order approximation

of Eq (1) as a function of incoming spike frequencies

mVðne; ni;oÞ ¼
mGeEe þ mGiEi þ gLEL � o

mG
: ð13Þ

Taking Eq (3) as the general synaptic input, we can calculate the form of a single postsynap-

tic potential (PSP). And via shotnoise theory get the density power spectrum of membrane

fluctuations PV(q) as a response to a stimulation Eq (3). Then the variance of fluctuations with
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taking the integral in frequency domain s2
V ¼

R

qPVðqÞ, follows to

sVðne; niÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

ðe;iÞ

Kðe;iÞnðe;iÞ
ðUðe;iÞ � tðe;iÞÞ

2

2ðtm þ tðe;iÞÞ

v
u
u
t ; ð14Þ

where tmðne; niÞ ¼
Cm
mG

and Uðe;iÞ ¼
Qðe;iÞ
mG
ðEðe;iÞ � mVÞ is the effective synaptic drive.

Finally, the autocorrelation time τV completes the framework which is defined in terms of

the power spectrum as 1

2

PV ð0ÞR

q
PV ðqÞ

, resulting in

tVðne; niÞ ¼
X

ðe;iÞ

Kðe;iÞnðe;iÞðUðe;iÞ � tðe;iÞÞ
2
�
X

ðe;iÞ

tm þ tðe;iÞ

Kðe;iÞnðe;iÞðUðe;iÞ � tðe;iÞÞ
2
; ð15Þ

where in case of only one synaptic event this would reduce to τV = τm + τ(e,i).

With Eqs (13), (14) and (15) the transfer function with effective threshold Eq (8) is now

dependent only on the incoming firing rates at excitatory and inhibitory synapses F(μV, σV,

τV)!F(νe, νi), closing our firing-rate based mean-field formalism.

Transfer function fit

To get the transfer functions we fit {P} on single cell simulations of TC and RE cells (in awake

state) using the AdEx Eq (1). The formalism translates excitatory and inhibitory input firing

rates {νe, νi} of a neuron into its fluctuation statistics {μV, σV, τV} and then to its output firing

rate.

The advantage of this semi-analytic approach is that–given either simulated or experimental

data–we can calculate the phenomenological threshold Veff
thr via reordering of Eq (8). Then the

employed procedure is to first fit Eq (9) linearly in the threshold space (depending on the

topography of the space to capture, this fit can be done nonlinearly too). However, here Eq

(13) has to be adjusted because the adaptation ω is unknown. Therefore, the (stationary) solu-

tion to Eq (7) will be used to calculate ω from the firing rate data. The resulting values for {P}

are following used as initial guesses for the fully nonlinear fit of Eq (8) in the original firing

rate space.

For the fit we normalised the fluctuation regime the same way as done in previous works

[22, 49]; to ensure comparability: m0
V¼ � 60mV, dm0

V¼10mV, s0
V¼4mV, ds0

V¼6mV and

tN 0
V ¼0:5, dtN 0

V ¼1.

Results

The results of this paper are structured as follow: First the mean-field model will be compared

with simulated spiking network dynamics and validated in and far from the fitting point. Then

thalamic responsiveness and how it depends on different external and internal states will be

investigated. Lastly, spindle oscillations in a sleep-like state in the employed models are shown.

Fitting and validation

In this section, we validate the mean-field model and demonstrate its suitability for modeling

both awake and sleep state of the thalamus by comparing it with spiking networks.

The fit parameters of the mean-field’s transfer function via Eq (9), obtained using our fitting

technique, are depicted in Table 2. These parameters are applied to both awake and sleep states

(ACh absent/present) and are used throughout this and the following three sections.
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In Fig 2A, we show the fitted transfer functions F for TC cells (top, blue) and RE cells (bot-

tom, red) across the full range of excitatory input frequencies (νe) and a subset of three inhibi-

tory input frequencies (νi). Each dot represents the averaged output frequency from the single-

cell simulations over 5 seconds. The sigmoid shape of the transfer function (8) is evident. Cer-

tain deviations from the fitted predictions via F are observed only at very high firing rates; a

region of lesser biological relevance for the phenomena studied in this paper. To improve sta-

tistics, the single-cell firing rates were averaged over 100 runs.

A direct validation of the mean-field model is to compare the predicted mean firing rates

and their standard deviations with those of the full spiking network, both modeling the entire

thalamic substructure (Fig 1A). This comparison is shown in Fig 2C. Both populations receive

an external constant cortical input of P = 4Hz and a split-Gaussian sensory stimulus S (defini-

tion in Section B in S1 Appendix). The spiking network provides the membrane potential evo-

lution and spiking times ts for all cells. The spikes of all neurons are shown in the upper raster

plot. By averaging the number of spikes over a specific bin time Tbin, we calculate the time-

dependent averaged firing rate of the spiking population. We use Tbin = 5ms for all simulations

except stated otherwise. To compare to the mean-field, in the formalism we have to employ a

similar time window for the mean-fields time constant T, and we set T = Tbin (in accordance

with the formalism requirements, Table A in S1 Appendix). The spiking network and mean-

field show the wanted balanced excitation-inhibition (E-I) state in AI regime with RE activity

being dominant.

In Fig 2D, we vary the cortical drive P and compare the equilibrium or stationary popula-

tion firing rates (see Section C in S1 Appendix) for TC and RE populations in both the spiking

network and mean field over a 10-second simulation. This analysis reveals four distinct

regimes of TC response: The first regime with no activity. The second regime with a fast

response to changes in P. The inhibited third regime with limited responses. And the fourth

regime with strong TC cell responsiveness due to (biologically unrealistic) saturated RE cell

activity. This justifies using a cortical drive 1< P< 10Hz for most simulations, ensuring a sta-

ble low-activity AI state, comparable to in-vivo experiments.

In Fig 2E, we compare the distribution of firing rates and membrane potentials. In the latter

the refractory states are removed to get a realistic comparison with the mean-field. The fit

between mean-field and spiking network distributions only diverges at high firing rates of

close to 100Hz due to the discontinuous nature of spiking models. The good agreement in not

only firing rate but also membrane potential is significant, because Eqs (13) and (14) predict

accurately the spiking populations membrane potential statistics and can henceforth be used

to compare with electrophysiological data and methods.

In the same figure, top-right, there is depicted a comparison of (normalised) autocorrela-

tions τac of TC and RE population activity in the stationary state corresponding to P = 4Hz,

showing a strong independence of population activity as expected from a inhibition-controlled

network without excitatory-excitatory connections. This also agrees with the models being in

AI state and the choice of T = Tbin = 5ms > τac is justified.

Finally, we assess the robustness of the mean-field by varying global parameters (in Fig B in

S1 Appendix). This is done for adaptation parameters {b, a}, which exhibit the significant

Table 2. The fitting parameters of Veff
thr and their values. All values in mV.

cell P0 Pμ Pσ Pτ Pμμ Pμσ Pμτ Pσσ Pστ Pττ

TC −47.31 1.68 0.97 −3.46 0.47 −1.68 −6.46 3.43 −1.14 0.19

RE −40.77 −1.98 −3.12 3.57 1.39 −0.38 −0.33 0.16 0.26 −0.53

https://doi.org/10.1371/journal.pcbi.1012262.t002
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change between awake and sleep state (Table 1), and synaptic excitatory conductance Qe to val-

idate its change for simulations in this study. We demonstrate that even far of the actual fitting

point, the mean-field remains effective in capturing network dynamics. This validation allows

us to use the mean-field approach for parameter space analysis and the study of the transition

between awake and sleep states with just one mean-field parameter fit.

Tonic and burst firing modes

We explore how bursting (the state of ACh neuromodulation) impacts the response of tha-

lamic neurons and their network. Based on the fit to biological bursting TC cells from [42] we

can already state that the employed parameter set with the AdEx shows bursting of single TC

cells in the ACh-depleted or sleep state (as evident from the cell traces in Fig 1).

We want to investigate the stability of those regimes and their dependence on model

parameters. With the employed models, the mechanism generating bursting is the slow adap-

tation current of the AdEx (1). In Section E in S1 Appendix we derive an analytic metric quan-

tifying firing adaptation using the transfer function of our mean-field framework. With this

metric and with single-cell scans, we show in Fig A in S1 Appendix that the awake and sleep

states are well separated. While they are stable to small perturbations, they are also close to the

phase transition which ensures richer dynamics.

Following, we aim to replicate experiments at single cell level on tonic and bursting states of

TC cells, as documented by Sherman & Guillery [7, ch. 6]. These experiments involved

manipulating the membrane potential of recorded TC cells to force either a tonic mode

(around −65mV, resting state) or a bursting mode (around −75mV, hyperpolarised state), in

the absence of external stimuli. A grating retinal stimulus was applied, leading to an oscillatory

firing rate response. There, TC cells in tonic mode exhibited a linear response, while TC cells

in bursting mode showed responses primarily during the initial phase of each stimulus period.

We recreated this behaviour computationally in our proposed spiking network with an

oscillatory sensory drive S, with amplitude of 10Hz and frequency of 2Hz. The network was set

in awake state emulating a lightly anaesthetised state as in experiment. To model the thalamus

in-vivo, a constant external cortical drive of P = 4Hz was applied (the inhibited regime, Fig

2D). Subsequently, we recorded one single cell with each awake and sleep parameters. While

the proposed awake and sleep states are not identical to the artificially set tonic and bursting

modes in the experiment, the switch via acetylcholine (ACh) generates a similar polarization.

The recorded cell’s response was calculated by averaging the spike times over 40 simula-

tions for a time bin of 15s. This firing rate is depicted in the first row of each Fig 3A and 3B for

the awake state and sleep state, respectively. We observe the same response patterns as in the

experiment for awake and sleep parameters, although with slightly lower response amplitudes

in the sleep state compared to the hyperpolarized state of the experiment. This can be attrib-

uted to the absence of T-channels and low-threshold spikes in the AdEx model [7]. In Fig 3B

there is also depicted, in light blue, the response in sleep state with adaptation parameter in

line with stated constraints (b = 20pA), which does not show the correct behavior.

Moving to population-level, the second row of Fig 3A and 3B superimposes the spiking net-

work’s and mean-field’s responses. In the awake state the entire TC population faithfully tracks

the stimulus, as do single TC cells (top row). In sleep state, the response amplitude and also RE

activity are greatly reduced, both showing phase locking while keeping the shape of the stimu-

lus. The phase shift is created by the delay of slowly activating adaptation mechanisms and

reactive RE inhibition. Phase locking was found in sleep state for all amplitudes of stimuli.

The effects, however, are quite small and functionally not so different between awake and

sleep states. We would expect stronger effects of bursting in the responsiveness when
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adaptation effects are significantly slower than changes in the input and subsequently mem-

brane potential (as is the case for single cells, Fig 1B for a rectangular pulse). To investigate this

at the network level, thalamic response to faster changing stimuli is tested. In Fig 3C, a split-

Gaussian with steep left-hand std. is depicted (at t0 = 1.5s with std. σl = 2ms and amplitude

A = 20Hz, see Section A in S1 Appendix; inhibited regime). TC response is two-fold at an ini-

tial peak and then quickly adapts. This response curve is nonlinear and does not follow the

shape of the stimulus faithfully anymore. This peak response is a direct effect of TC cells burst-

ing at the onset of the stimulus, as shown in the inset for a random TC cell of the spiking net-

work simulation. Similar to the single cells definition of showing bursting (Fig 1B), also the TC

population activity vanishes after the initial peak for a sustained input (no cortical drive, Fig

3D). The initial bursting of TC cells is captured by the mean-field mainly via its second order

moments, namely autocovariance c (blue shaded areas in plot) and autocorrelation C next to a

smaller increase in mean firing rate ν.

To analyze the dependence of thalamic response for both tonic and bursting TC cells

(awake and sleep state) on the shape of the stimulus, in Fig 3E, there is depicted the peak
response amplitude of the thalamus as a function of the std. σl of a split-Gaussian stimulus (σr
= 0.2s and A = 10Hz), representing the change or ‘shape’ of a generic stimuli. In awake state

the peak response is nearly constant, does not depend on how fast the stimulus changes, and

the thalamus magnifies the input amplitude nearly two-fold. In contrast, in sleep state, only

steep slopes or fast changing stimuli are generating a substantial response, whereas for slowly

changing stimuli the response is drastically reduced (Fig 3B).

In conclusion, both single-cell and population-level response of TC cells appears linear in

awake state (ACh present) with enhanced stimulus amplitude, while in sleep state (ACh

absent) response is linear but of reduced amplitude for slowly changing stimuli, and nonlinear

for quickly changing stimuli. In addition, and as evident from Fig 3C, both spiking network

and mean-field model capture the bursting of TC cells, resulting in a “bursting” population

response. This enhances stimulus detection in low attention states for significant sensory

inputs and the transmission of mostly time-dependent information such as oscillations in

sleep state.

Cortical and sensory input

We will proceed with how thalamic responsiveness depends on background activity and how

the two different biological inputs to the thalamus modulate it’s behaviour.

Referring back to Fig 3D, we see a modulating role of cortical input, which in sleep state

can render the usually highly nonlinear TC response linear by removing the dependence on

stimulus change at high cortical drives (gray lines in plot). This could allow the cortex to gener-

ate a time window where outside information temporally is transferred faithfully during usu-

ally non-attentive states.

Moving on, we are interested in the differences between the two drives. In Fig 4A, the (sta-

tionary) firing rate response of the TC cell population in the mean-field model for different

constant inputs in awake state is displayed, with both cortical and sensory drives. We applied a

small constant cortical input P = 1Hz to be in a low activity AI state comparable to in-vivo (Fig

2D). In case of sensory stimuli, the response is strongly proportional to the input, and we iden-

tify that the slope of this response is influenced by the cortical drive P.

In Fig 4B we see this dependency is inversely proportional, where we conducted simula-

tions for varying cortical drive amplitudes and observed that the gain (slope of the linear

response curve) decreases as P increases. In the sleep state, the response remains relatively con-

stant, slightly decreasing with P, contrasting the awake state’s high gain for all cortical inputs.
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The cortical drive removes the firing rate-dependency of thalamic response to stimuli in awake

like states but does not alter it in sleep state. This is in agreement with studies which assumed

the cortical role in the thalamus to be modulating thalamic response similar to noise [51], and

with our study on synaptic noise.

For cortical input, the response is nonlinear but exhibits multiple linear regions, as seen in

Fig 2C. The threshold at around 25Hz serves as a turning point (the end of the inhibited
regime, at which the RE population firing rate saturates). Inputs below this threshold do not

provoke a strong sustained response, while inputs above do. The RE population’s strong

response to changes in the inhibited regime nearly nullifies TC and therefore thalamic

response.

These behaviors are evident in the TC population’s response to a rectangular pulse stimulus

from either P or S in Fig 4C. Notably, low cortical inputs can even be repressive, with only

larger amplitudes triggering robust and sustained responses, particularly in the awake state (in

agreement with studies such like [6]). In sleep state for both inputs or with low cortical inputs

in awake state, responses are highly nonlinear, emphasizing the transfer of gradients rather

than absolute values. The initial activity spikes at the onset of the input are created by the delay

it takes the RE population to react to both stimulus and TC excitation to inhibit TC activity

and –to a lesser extent– by the delayed adaptation mechanisms of both RE and TC popula-

tions. This is magnified in sleep state by stronger adaptation effects and resulting single cell

bursting. This mechanism allows the thalamus to respond to cortical input and modulation

despite its strong inhibiting effect via the TRN.

Fig 4. The thalamus’ responsiveness depends on external input origin. A The steady state output firing rate of the TC population after reaching

equilibrium for different drives P and S. Blue is for inputs coming from cortical drive P, where solid marks the inhibited regime and dashed the blow-up
regime. Black are for sensory drive S, with varying degrees of cortical input. TC cells respond linearly for sensory stimuli, whereas cortical stimuli are

nonlinear only showing a strong proportionality after*20Hz. B Cortical drive removes thalamic response dependency on stimulus frequency. The

gradients of the sensory input response curves (black in A as a function of cortical input P for awake and sleep state. C The TC populations response to

a rectangular stimulus of varying amplitude coming from either drive in both states. In the bottom-right there are also depicted 10 randomly chosen

single cell traces to connect the population spike with single cell burst-like behaviour (mV per s).

https://doi.org/10.1371/journal.pcbi.1012262.g004
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Concluding, only in awake state and for sensory input, or with cortical control for sensory

input at sleep state, thalamic responsiveness is linear while only temporal information is trans-

ferred for cortical input and sensory input at sleep states without cortical control.

Synaptic noise

We have analyzed so far how the responsiveness of the thalamic cells depends on the different

firing modes and input sources. However, it has been shown that the level of synaptic noise

(background activity) can significantly change these responses. We analyse in this section the

role of noise as background synaptic and subthreshold activity and how it influences response

and firing modes. We start by replicating single cell findings from Wolfart [53]. They observed

that synaptic noise controls TC neurons response and behaviour and that such noise removes

the dependency of TC cells response on voltage and input frequency.

We recreated this computationally at single cell level. Fig 5A shows the response of single

TC cells in awake state to a Poissonian spike train of 5Hz with varying excitatory synaptic

strength (Qe), reflecting the experimental setup. We observe the same step-like function in the

static case without external synaptic noise: going from no activity to single spike response to

double spike response or bursts at high conductances (regions separated by dashed lines).

With noise the response function becomes smoother and the partition of the aforementioned

regimes becomes blurred. The time-dependent noise was implemented as an Ornstein-Uhlen-

beck (OU) process entering the cells membrane potential as a synaptic current (see Section B

in S1 Appendix).

To translate this behaviour to the population level we did simulations of the full spiking net-

work of the employed thalamic substructure. A constant Poissonian input of 15Hz was

inserted into all cells, coming from just one source; comparable to dynamical patch clamps at

single cell level. The stationary firing rate output of the TC population was measured for differ-

ent synaptic strengths Qe. The resulting response function is depicted in Fig 5B for the static

and noisy case for both spiking network and mean-field.

For the mean-field, the noise-dependent shape of the response function is passively

included in the definition of the transfer function (8), with its slope being controlled by the

standard deviation of the subthreshold membrane potential (σV). However, to recreate the

experiment, which employed a time-dependent external noise, we extended the formalism by

adding two additional static synaptic conductances ~mGðe;iÞ. Those are modelled as OU-type

functions averaged for each time bin equal to the mean-field’s time constant T (see Section B

in S1 Appendix).

Both spiking network and mean-field show that the TC populations response function has

its maximum slope at the same place as the first step at single cell level from no activity to sin-

gle spike response (the first dashed line in Fig 5A and the dashed line in Fig 5B, respectively).

Furthermore, the effect of synaptic noise is the same for population response as in the single-

cell experiment, decreasing the response functions maximum slope (see Fig 1C in [53]).

How the maximum slope of the response function depends on this noise is depicted in Fig

5C (compare to single-cell experiment; Fig 1c inset in [53]). Here instead of the injected noise

the noise-dependent membrane potential subthreshold fluctuations averaged over all runs

(�sV) is shown. In sleep state the population response slope is*20% less steep for the static

case or small noise. Strong synaptic noise and subsequent membrane potential fluctuations

decrease the slope as expected. Additionally, synaptic noise diffuses the response differences of

awake and sleep state at intermediate noise levels and removes nearly all dependence of tha-

lamic response on conductance at high noise levels (�sV>10mV), where the response function
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is nearly constant (at a value dependent on the ratio of excitatory and inhibitory noise

~mGe=~mGi).

Additionally, the effect of synaptic noise on the firing adaptation F of TC cells was tested in

Fig 5D. Noise diffuses the state transition between no firing adaptation and strong firing adap-

tation for different levels of membrane potential polarization. As before we can refer to the

similarity of F to burstiness, and hypothesize that strong noise allows for firing adaptation and

also bursting for membrane potential levels showing no bursting without noise. Although the

effect for the noise studied here is smaller, this is qualitatively in agreement with experimental

study ([53] Fig 5b therein).

Previously, we showed that synaptic noise modifies thalamic response dependency on volt-

age and conductance. There, input frequency was fixed. Further following [53], we proceed to

investigate how noise changes the thalamus’ response in respect to input frequency.

Fig 5. Synaptic noise modulates the dependence of thalamic responsiveness on voltage. A Response to a 5Hz Poissonian spike train for different

values of excitatory synaptic strength Qe for simulated spiking single cells in awake state. The noise was injected as an OU-like current in the membrane

potential via Isyn. The dots represent each the spikes per receiving incoming spike, averaged over 100 runs for 10s each. The lines correspond to

sigmoidial fits, where the blue dashed lines mark the shift fit parameter depicting the center of the slope. Reproducing Fig 5A of [53]. B The same setup

but with the full thalamic spiking network (squares) and the mean field (lines), showing the relative response to a 10Hz Poissonian spike train. The

dotted line marks the slope center of the single cell simulations going from no spikes to a one-to-one spike response. For the mean-field the synaptic

noise was added as an additional time-dependent conductance into the formalism (see main text). C The (maximum) slopes of the mean-field response

curves A plotted against the standard deviation of the membrane potential predicted by the mean-field. Showing a proportionality between fluctuations

and the slope of the response function. At high noise levels the difference between awake and sleep state vanishes. The two cases from B are drawn as

empty blue/black boxes. D Synaptic noise reduces the dependency of TC firing adaptation (sim. burstiness) on cell state (polarisation). Shaded area is

the standard deviation induced by small conductance noise (5nS), and orange the average.

https://doi.org/10.1371/journal.pcbi.1012262.g005
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For this, single TC cells were simulated for extended duration with incoming Poissonian

spike trains of 10Hz, modeling a generic input from retinal ganglion cells in-vivo. Here the ret-
inal input conductances were fixed. During simulation, for each output spike of the recorded

TC cell, the interspike interval (Δ ISI) of the retinal input between the spike which results in

the spike response and the preceding one is measured. This way the spike probability or

response can be measured as a function of input frequency. Because of the increasingly more

rare occurrence of large ISI’s (Δ> 400ms) in a Poissonian spike train of 10Hz, the following

plots are cut of at 550ms. Until then reasonable long simulation times provide distinguishable

uncertainties. Fig 6A shows the results for a TC cell without additional synaptic noise. At rest-

ing potential (awake state, EL = −65mV with Qe = 14ns) spike response only occurred at

summed input spikes with Δ< 50ms with an all-or-none character. At hyperpolarized poten-

tial (awake state, EL = −70mV with Qe = 24ns) not only input spike summation evoked a

response but also ISI’s with duration longer than 300ms. These even show higher spike proba-

bility compared to spike summation at low ISI’s. The difference in input conductances Qe was

necessary to account for equal number of spikes between both states, where the high conduc-

tance in the hyperpolarized state captures the effects of T-channels. In the presence of synaptic

noise this changes drastically and both TC cells at resting and at hyperpolarized levels exhibit

the same spike response, completely independent of input frequency (see Fig 6B). Remarkably,

with noise spike probability is significantly lower even with spike summation (ISI!0ms),

independent of polarization. These results correctly reproduce the experimental results of [53].

Moving to population level, we present thalamic stimulus response as a function dependent

on synaptic noise. Noise acts in a similar way on the frequency dependent response as cortical

input. In the same manner, in Fig 6C the slope of the linear response of the TC population as a

function of input amplitude is depicted (gain). As with modulating cortical input (refer Fig 4),

noise decreases response. However, different to the control of cortical input, where the gain

saturates at 0.7Hz−1, noise linearly reduces gain until a complete banishment of frequency

dependence at very high noise levels (~sV>12mV). This holds true for all states. In the awake

state the loss of gain per membrane fluctuation is (−0.12±0.01)gain/mV. For the sleep state the

loss is (−0.028±0.003)gain/mV. Finally, we see that the noise required to equalize the

Fig 6. Synaptic noise removes the dependence of thalamic response on frequency. A A single TC cell’s spike response probability dependent on the

interspike intervall (Δ ISI) between input spikes. The input is a Poissonian spike train with a mean frequency of 10Hz, comparable to an in-vivo retinal

input. For both resting (EL = −65mV, blue curve) and hyperpolarized (EL = −70mV, orange curve) states the spike response is nearly 100% at low ISI’s

and therefore only reacting to summed input spikes. In hyperpolarized state, with T-channel adjusted synaptic conductance (see main text), the TC cell

responds to also high ISI’s with a nearly one-to-one spike probability. This reproduces Fig 4 in [53]. B Same setup as in A but with additional synaptic

noise (see main text). Frequency-dependent response is nearly removed. C Thalamic stationary response slope (gain per increase of input, see main

text) of the mean-field to gated sensory stimuli of 10Hz as a function of synaptic noise via noise induced membrane potential fluctuations. For the

awake state, and the sleep state with b 2 {20, 200}pA. Regardless of state, noise linearly leads to a reduced thalamic response dependency on stimulus

frequency. The shaded lines are linear fits.

https://doi.org/10.1371/journal.pcbi.1012262.g006
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dependence on frequency between awake and sleep state is significantly higher than for equal-

izing the dependence on voltage (induced subthreshold fluctuations of 12mV and 4mV,

respectively).

Spindle oscillations

Spindle oscillations are one of the main activity dynamics of the thalamus during NREM sleep

or anesthesia [54], strongly influencing the responsiveness of the thalamus in such states.

These originate from the superposition of multiple cellular and circuit properties, with espe-

cially the mechanism of RE-induced rebound bursts in TC cells in ACh depleted or sleep-like

states (see Section F in S1 Appendix for more details).

To enhance this rebound bursting in our sleep state we promote burst firing by adjusting

the reset membrane potential (Vr) below the sodium spike threshold onset: Vr = −48mV for

TC and Vr = −42mV for RE cell (see [29] for the significant role of Vr). This yields sustained

burst firing without sustained activation, mimicking T-channel like activation and IPSP bar-

rages in RE cells, which we could not capture with the AdEx sleep state. Accordingly we re-cal-

ibrate the mean-field fit to accommodate the change in Vr (Table B in S1 Appendix).

We observe spindles in the proposed models within this adjusted sleep state and when

applying an initial kick to evoke activity. Fig 7A and 7B show self sustained oscillations of both

full spiking network and mean-field, respectively. Their frequency spectrum and phase space

are compared in Fig 7C.

In a previous study [31] only small AdEx networks generated spindles in SR-like dynamics,

while at larger scales of N> 40 neurons, population activity showed self-driven steady states

with AI dynamics. In Fig 7D we show a bifurcation diagram transitioning between connection

and balancing synaptic parameters from [31] (γ = 1) to our parameter values (Table 1, γ = 10).

Increasing connection probability creates a supercritical Andronov-Hopf bifurcation, showing

that sufficient connections are necessary for generating and keeping stable spindles at larger

network scales. The spindles produced by our mesoscale network show realistic SI dynamics

(see Section F in S1 Appendix).

This self-sustained oscillation is remarkably robust in regards to perturbations of all kinds

of inputs, producing spindles of same frequency. This renders the thalamus’ responsiveness in

this spindle-adjusted sleep state highly independent of external input. Only prolonged and

constant inputs of a duration longer than multiple spindle periods destroy the synchronization

and create steady state AI dynamics. However, spindle oscillations emerge again as soon as the

input stops. The bifurcation diagram in connection with [31], shows that thalamic function

and responsiveness can be drastically altered depending on specific order parameters, as seen

here with connection probability and synaptic conductance.

Discussion

In this study, we investigated the state-dependent responsiveness of the thalamus at micro to

meso-scale. For this we introduced a biologically realistic mean-field model of the thalamus,

which captures the population dynamics of thalamocortical relay neurons (TC) and thalamic

reticular neurons (RE) in two physiological states: Awake state (high level of ACh neuromodu-

lation, wakefulness and REM sleep) and sleep state (low level of ACh neuromodulation,

NREM sleep; see methods) and [9, 42]).

The mean-field model employs the master-equation formalism introduced by El Boustani

& Destexhe [47] and incorporates adaptation mechanisms [22]. We constructed it using a bot-

tom-up approach, constraint by existing experiments, following the formalism described by Zer-

laut et al. [49], which includes a cell-specific subthreshold-dependent transfer function [50].
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Existing mean-field models of thalamocortical dynamics [55, 56], have previously incorpo-

rated thalamic single-cell dynamics, such as bursting, into mesoscopic models. While these

previous models provide a valuable approach for studying thalamic states, they have included

so far only bursting from reticular cells, while bursting from relay neurons was not taken into

consideration. In addition, these previous works were focused on reproducing specific types of

dynamics (such as slow-waves), while more extensive analysis regarding the transition between

thalamic states and the response to sensory stimulation was not investigated. Finally, the key

role of neuromodulators in the transition between thalamic neuronal dynamics and states was

not captured by these models, which is central to understand the mechanisms behind these

transitions. In our work we presented a detailed study reproducing multiple neuronal dynam-

ics found in the thalamus (such as spindles, asynchronous irregular activity and different

response modes). Furthermore, these different dynamics emerge as a result of the action of

neuromodulators at the single-cell level that are captured within our mean-field model by fol-

lowing a bottom-up approach.

Fig 7. Spindle oscillations in a sleep-like state generate a highly unresponsive thalamic state. A Raster plot of the full-scale spiking network with

1000 neurons for spindle parameters (ACh/sleep state with rebound burst). B Mean-field oscillations: Firing rates and standard deviations of both TC

and RE populations. C Fourier spectrum for spiking network (grey) and mean field (blue) of the TC population activity. Inset right: Phase plane in the

TC and RE firing rate space. Yellow is the stable limit cycle and black the transient. D Bifurcation diagram showing the suggested Andronov-Hopf

bifurcation that occurs when gradually increasing the connection probability in the network, for spiking network and mean-field. This corresponds to a

parameter shift from the parameters used in [31] with γ = 1 to the parameters used in this paper with γ = 10.

https://doi.org/10.1371/journal.pcbi.1012262.g007
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We started by validating our model and showed the mean-field’s predictive accuracy

through comparison with the spiking network, confirming its ability to replicate the dynamic

behavior and population distribution of thalamic cells. We also demonstrated that the mean-

field model is capable of predicting the network’s subthreshold activity and proved its validity

beyond the fitting point. This allows the use of modeling experiments using intracellularly

injected currents in combination with this model.

Thalamic responsiveness and it’s dependence on internal and external state was then inves-

tigated in three steps:

First, we analyzed the important role of bursting in TC cells which provides a mechanism

by which the thalamus modulates the transmission of sensory information to the cortex,

extending the single cell findings of Sherman & Guillery [7]. We showed that in sleep state

response is highly reduced, except for significant (fast changing) stimuli where mainly their

timing is transmitted via a strong and fast thalamic response, which is generated by TC cell

bursting and delayed inhibition of RE cells. This supports that the thalamus generates and dis-

tributes oscillations in NREM sleep states [54]. Additionally, an important validation of the

proposed mean-field model is that it captures bursting dynamics, a defining thalamic feature.

This is also nontrivial as bursting is highly nonlinear and spike-time dependent, whereas the

model is firing rate-based, suggesting interesting future theoretical work.

Then, we examined the influence of external states on thalamic response. We demonstrated

that in this model, and in accordance with experiments [6], there is an important distinction

in the origin of inputs: sensory-like stimuli experience a more linear response and are therefore

transferred more faithfully than cortical-like inputs, which generate a nonlinear response. In

sleep-like state the relay of information becomes strongly nonlinear regardless of input origin.

Additionally, we identified the modulatory effect of cortical input to (1) repress thalamic

response in awake state, via activation of the inhibiting TRN, and (2) to promote a linear

response to sensory stimulus in sleep state. (2) would allow the cortex to wake-up the thalamus

in order to faithfully transfer sensory input, e.g. after a preceding wake-up call of a potentially

significant stimulus.

The role of synaptic noise in thalamic response was investigated. The experimental findings

of Wolfart [53] were as a first time successfully modeled. We showed that synaptic noise acts

as a controller for response also at the population level. The TC cells’ step-like response func-

tion for single spikes translates well into their collective response at population scale, sharing

the same conductance threshold. This allows the thalamus to fine-tune its responsiveness to

external stimuli at cell and population level. Additionally, noise diffuses transitions between

states of tonic/bursting firing at single cell level and awake/sleep at the population level. We

find that in equal manner for single cell and population level, noise banishes the thalamic

response dependency on both voltage and frequency. We state the interesting similarity

between synaptic noise and cortical input in how both control stimulus transfer and render

stimulus response less dependent on stimulus frequency, whose similarity is often only pre-

sumed [51]. These insights pronounce the importance of integrating conductance-based sub-

threshold fluctuations dynamics into meso to macro scale modeling approaches.

Finally, the successful reproduction of spindle-like oscillations in a sleep-like state is an

important validation for our thalamic model. We emphasize the necessity of specific substruc-

tures within the thalamus for generating realistic oscillations at all scales ([57], Section F in the

S1 Appendix). In this state thalamic responsiveness to inputs is highly suppressed. Only strong

and prolonged cortical inputs temporarily create AI dynamics during their activation.

In conclusion, our study underscores the value of integrating single-cell dynamics with tha-

lamic specific structure at population-level in understanding the complex role of thalamic

responsiveness. With these findings and with offering a biologically realistic and
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experimentally grounded mean-field model of the thalamus, which captures the effects of

bursting, neuromodulation, and fluctuation, we provide here an essential starting point for:

(1) Further investigation of thalamic function and sensory processing. (2) Large-scale model-

ing (especially the thalamo-cortical loop with already developed cortical mean-fields [22, 34]),

while integrating micro-scale cell and synaptic effects with physiological states.

Supporting information

S1 Appendix. Supporting information appendix. Details about employed formulae (Section

A), stimuli (Section B), dynamical analysis (Section C), and numerics/software (Section D).

Supporting/extending results for the firing adaptation metric (Section E) and for spindle

mechanism (Section F). Additional tables and figures.
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