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The MHC class I region contains crucial genes for the innate and adaptive

immune response, playing a key role in susceptibility to many autoimmune

and infectious diseases. Genome-wide association studies have identified

numerous disease-associated SNPs within this region. However, these associa-

tions do not fully capture the immune-biological relevance of specific HLA

alleles. HLA imputation techniques may leverage available SNP arrays by pre-

dicting allele genotypes based on the linkage disequilibrium between SNPs and

specific HLA alleles. Successful imputation requires diverse and large reference

panels, especially for admixed populations. This study employed a bioinformat-

ics approach to call SNPs and HLA alleles in multi-ethnic samples from the

1000 genomes (1KG) dataset and admixed individuals from Brazil (SABE), uti-

lising 30X whole-genome sequencing data. Using HIBAG, we created three ref-

erence panels: 1KG (n = 2504), SABE (n = 1171), and the full model

(n = 3675) encompassing all samples. In extensive cross-validation of these ref-

erence panels, the multi-ethnic 1KG reference exhibited overall superior per-

formance than the reference with only Brazilian samples. However, the best

results were achieved with the full model. Additionally, we expanded the scope
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of imputation by developing reference panels for non-classical, MICA, MICB

and HLA-H genes, previously unavailable for multi-ethnic populations. Valida-

tion in an independent Brazilian dataset showcased the superiority of our ref-

erence panels over the Michigan Imputation Server, particularly in predicting

HLA-B alleles among Brazilians. Our investigations underscored the need to

enhance or adapt reference panels to encompass the target population's genetic

diversity, emphasising the significance of multiethnic references for accurate

imputation across different populations.
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1 | INTRODUCTION

The major histocompatibility complex (MHC) constitutes
a gene-dense region on the short arm of chromosome
6, at 6p21.3. It spans a 4 Mb region with around 250 cod-
ing and non-coding genes.1 Its structural organisation
evolved gradually through several mutations, duplica-
tions, deletions and genomic rearrangement events.2 The
MHC region is the most variable region of the human
genome, particularly at the HLA genes.3 The HLA genes
encode molecules involved in the antigen processing and
presentation pathway and are therefore critical to the
immune response to pathogens. The most polymorphic
HLA genes encode transmembrane glycoproteins that
bind to endogenous or exogenous peptides and present
them to T lymphocytes selected to distinguish self-
peptides from non-self-peptides (derived from viruses,
bacteria, other pathogens, mutated endogenous proteins
or proteins in the context of transplantation),4 thus play-
ing a critical role in adaptive immune responses and sus-
ceptibility to various pathological conditions.1 Additional
less polymorphic HLA genes, also called non-classical,
are involved in different immune processes such as NK
cells modulation (HLA-E, HLA-F, and HLA-G).5

HLA alleles have been extensively studied in several
disorders,6 and particularly associated with autoimmmune
and infectious disease susceptibility, resistance, severity and
particular clinical outcomes. For instance, the HLA-
DQB1*03:02 is associated with type 1 diabetes development,7

HLA-C*12:02 and HLA-DQB1*06:01 with severe acute hepa-
titis protection,8 and HLA-B*27 strongly with ankylosing
spondylitis.9 Generally, the mechanism underlying these
associations is related to differential antigen presentation.

In recent decades, genome-wide association studies
(GWAS) have emerged as a powerful tool to identify asso-
ciations between common genetic variants throughout the
human genome and phenotypes.10 GWAS, which involves
SNP microarrays for the cost-effective genotyping of hun-
dreds of thousands of variants,11 has substantiated the

pivotal role of MHC genes in several diseases and traits.10

However, SNP associations alone do not convey the
immune-biological relevance of specific HLA alleles,
which represent a haplotype of SNPs, particularly consid-
ering that variants in high LD (linkage disequilibrium) are
usually not included in such SNP arrays. Therefore, causal
variants that follow the associated SNP in a given HLA
allele may not be included in the assay.12 To overcome this
issue, we can use HLA imputation techniques to leverage
this data and predict individuals' HLA alleles based on LD
between GWAS-derived SNP data for the MHC region and
specific HLA alleles.13

SNP to HLA imputation algorithms provide a fast,
cost-effective and straightforward method for obtaining
unsurveyed HLA alleles from widely available GWAS
SNP genotyping data.12 These methods ultimately rely on
reference datasets containing HLA alleles and SNP geno-
types for the same individuals. Their predictions have
become increasingly accurate as new algorithms are
developed.13,14 However, the imputation accuracy is
affected by several factors, such as reference panel size,
polymorphism extent in the imputed locus, presence of
rare or population-specific alleles (leading to less precise
imputation due to underrepresentation in reference
panels), and evolutionary proximity between the refer-
ence panel and the samples being imputed.14,15

In this context, we have built different reference panels
for all class I genes, including classical and non-classical
HLA, along with the HLA-H pseudogene and MICA/MICB
genes. Imputation of these genes was previously performed
only using a reference panel composed of Japanese16 or
mainly European17 samples. We used samples from both
Brazil and worldwide populations for our reference panels.
Extensive cross-validation and subsequent imputation
within an independent Brazilian population validated the
accuracy of our models. This study is part of the SNP-HLA
Reference Consortium (SHLARC)12 international network,
which aims to improve and share large reference panels
with the immunogenetic community.
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2 | METHODS

2.1 | Samples used to build reference
panels

The MHC region was investigated using high-coverage
(30X) whole-genome sequencing data from 3675 samples
from different populations worldwide. Among these sam-
ples, there were 2504 individuals from 26 different popu-
lations of the latest release of the 1000 Genomes Project
(1KG),18,19 and 1171 samples from individuals over
60 years of age from the city of São Paulo, Brazil, enrolled
at the longitudinal Health, Well-Being and Aging cohort
(SABE—Saúde, Bem-estar e Envelhecimento).20 We
downloaded the original BAM files from both, with reads
aligned to the hg38 reference genome. For all samples,
we extracted all reads mapped to the MHC region and all
unmapped reads using samtools,21 producing a smaller
BAM file for each sample.

2.2 | Genotyping HLA genes by NGS:
alignment optimization, SNP calls and
allele calls

The methodology applied to call SNPs across the MHC
and HLA alleles in the training data are available at
https://github.com/erickcastelli/HLA_genotyping. Briefly,
we used hla-mapper dna, version 4.1,22 to optimise
the HLA alignments minimising cross-alignments and
unmapped reads from HLA genes. The input files for the
hla-mapper are the BAM files obtained in the previous
step. The hla-mapper program is available at www.
castelli-lab.net/apps/hla-mapper. To call genotypes, we
used the HaplotypeCaller algorithm from the Genome
Analysis Toolkit (GATK),23 version 4.1, in the GVCF
mode, filtering out artefacts and false positives using the
GATK VQSR tool. After applying the VQSR and filtering
out the variants that did not pass the test, we selected the
remaining variants and processed them with the checkpl
tool of the vcfx package (www.castelli-lab.net/apps/vcfx).
Haplotypes were detected by combining physical and
probabilistic inference using WhatsHap24 and Shapeit4.25

After, the complete sequences of each individual were
reconstructed from the phased VCF file using the vcfx
fasta to create complete genomic (exon + introns) and
CDS (only exons) sequences for each sample, resulting in
one for each chromosome. Due to HLA-B and HLA-C
being encoded on the reverse strand of chromosome 6 in
the hg38 reference genome, the sequences were reversed
and complemented. This process allowed the detection of
HLA alleles through direct comparison with known
sequences deposited in the IPD-IMGT/HLA database3 at

both genomic (4-field alleles) and exonic (3-field alleles)
levels. Additionally, EMBOSS transeq26 was employed to
translate the CDS sequences into protein sequences.
These protein sequences were then used to define the
allotypes, referring to the 2-field allele. The outcome of
this methodology was to obtain data on both SNPs and
HLA alleles of each individual included in the study.
Please refer to https://github.com/erickcastelli/HLA_
genotyping for a detailed description of the methodology.
Additionally, to evaluate the accuracy of our method, we
compared our results with Sanger Sequencing HLA typ-
ing by Gourraud et al.27 in a subset of 965 samples from
the 1KG dataset.15 An additional step was required for
MICA and HLA-H genes evaluation since they present
copy number variations (CNV) in some individuals. To
evaluate the presence of MICA and HLA-H gene dele-
tions, we compared the ratio between the read depth
observed in both genes and a reference gene (TNF) using
samtools.21 Then, we plotted these ratios to observe the
samples with no copies of these genes, single copies, or
individuals with two copies.

2.3 | HLA imputation and cross-
validation

We used HIBAG (version 1.4) and its GPU extension
(version 1.19.1) in R, to create reference panels and per-
form HLA imputation. Reference panels for HLA-A,
HLA-B, HLA-C, HLA-E, HLA-F, HLA-G, HLA-H, MICA,
and MICB were built using 100 classifiers and SNPs
within a 500-kilobase flanking region for each gene.15

The parameters used for building the models were set
according to the recommendations provided by the
HIBAG authors.28 The computations were executed on
GPU nodes at the Centre de calcul intensif des Pays de la
Loire (CCIPL) located at Nantes Université in France. We
created three distinct imputation models: 1KG, SABE
(Brazilians only), and full (1KG + SABE). For evaluation,
a 10-fold cross-validation approach was undertaken,
involving the random subsampling of individuals from
each super-population (defined by their genetic ancestry
group) in 1KG, and SABE, that is, we generated numerous
pairs of reference panels and test sets by randomly subsam-
pling individuals from each super-population in 1KG
(AFR, AMR, EAS, SAS and EUR) and SABE (Figure S1).
Individuals of the test set were excluded from the paired
reference panel. SNP data were managed using PLINK,29

which underwent quality control procedures such as
removing SNPs exhibiting more than 2% missing genotypes
or less than 1% minor allele frequency. Additionally, we
removed SNPs with A/T or G/C ambiguities and selected
those within the HSL (Hospital Sirio-Libanes) validation
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dataset SNP array (Axiom_HGCoV2_1, Thermo Fisher Sci-
entific). The resulting dataset contained 6292 SNPs within
the MHC region (chromosome 6, from 29 to 34 Mb). Over-
all, within genes and their flanking regions extending
500 kb upstream and downstream of it, there were a total
of 1527 SNPs for HLA-A, 2077 for HLA-B, 2166 for HLA-C,
1708 for HLA-E, 1099 for HLA-F, 1255 for HLA-G, 1371 for
HLA-H, 2067 for MICA, and 1961 for MICB. HIBAG ran-
domly selects a subset of these SNPs for each locus, and
then determines which SNP haplotypes are the best HLA
allele predictors, repeating this process 100 times. The
selected SNPs are depicted in Figure S2 for HLA-A, HLA-B
and HLA-C. All SNPs within the target gene were included
in the model.

2.4 | Validation of the reference panels

We validated the reference panels by assessing the accu-
racy of the imputation models in predicting HLA-A,
HLA-B and HLA-C genes using an independent Brazilian
population cohort consisting of 192 samples from São
Paulo city. For these individuals, we had access to HLA
allele calls obtained through the AllTypeTM NGS 11-Loci
Amplification kit (OneLambda, ThermoFisher Scientific),
and the Axiom Human Genotyping SARS-CoV-2
Research Array (Axiom_HGCoV2_1, Affymetrix, Ther-
moFisher Scientific). Additionally, we had access to their
global ancestry inference (Figure S3A), generated using
ADMIXTURE30 through supervised analysis (K = 4)
based on multilocus SNP genotypes, with African,
European, East Asian and Native American samples from
the Human Genome Diversity Project31 utilised as paren-
tal populations. This sample is part of a broader study
conducted by the Department of Molecular Oncology at
Hospital Sírio-Libanes (HSL) in Brazil, related to COVID-
19 susceptibility. Furthermore, we compared the HLA
imputation performance of our models with those
employed by the Michigan Imputation Server, which uti-
lised a reference panel containing approximately 20,000
multi-ethnic samples.32

2.5 | Statistical analyses

To evaluate the imputation accuracy, we measured the
proportion of correct predictions under the number of
alleles (i.e., the number of correct predictions divided by
twice the number of individuals in the study, represented
as 2n). A prediction was considered correct when it was
concordant with known genotypes. We also considered
other metrics when evaluating the models' performance
to predict specific alleles, such as precision, sensitivity

and the F1 score. Precision represents the proportion of
true positive predictions for a specific allele to the total
number of positive predictions. It indicates the propor-
tion of positive predictions that were correct for that par-
ticular allele. Sensitivity, on the other hand, is the
proportion of true positive predictions for a specific allele
to the total number of actual positive instances. It indi-
cates the proportion of actual positive alleles that the
model correctly identified. The F1 score is computed for
each allele as 2 � (precision � sensitivity)/(precision
+ sensitivity), which ranges from 0 to 1. A score of 1 indi-
cates perfect precision and sensibility, meaning that all
positive predictions are correct and all positive instances
are identified. A score of 0 indicates that the model's pre-
dictions are always wrong. Here, we computed the mean
F1 score for each allele and its average for each model.

3 | RESULTS

3.1 | HLA class I diversity

Using the hla-mapper bioinformatics pipeline for geno-
typing at the SNP and HLA allele levels, we evaluated the
HLA class I genetic diversity in 3674 reference samples
from 27 worldwide populations. When comparing our
results from a subset of 965 samples from the 1KG data-
set for HLA-A, HLA-B and HLA-C at the 2-field resolu-
tion with Sanger Sequencing typing method, we found
compatibility of 99.6%, 99.3% and 98.9%, respectively.
This pipeline can assess the full HLA class I genetic diver-
sity in all levels, SNPs, indels, haplotypes, and 2 to 4-field
resolution alleles obtained from whole-genome sequenc-
ing. We used the 2-field alleles (allotypes) and the SNPs
across the MHC to build the reference panel. Our results
are based on 2-field alleles, and we will use ‘alleles’ to
denote 2-field alleles (allotypes) throughout the text. This
resolution (2-field alleles) was chosen because it is the
most used by association studies. Furthermore, these
sequences can be encoded by distinct variations across
the gene, all encoding the same protein. Therefore,
increasing the resolution would add even more complex-
ity to the imputation process, potentially increasing the
error rate. Newly identified alleles, that is not previously
described, or alleles not fully characterised, were omitted.
However, their summed frequencies are still reported in
Table S1. As expected, classical HLA genes (HLA-A,
HLA-B and HLA-C) showed higher diversity, with HLA-B
having the highest diversity, consequently harbouring
the greatest number of less frequent and rare alleles
(Figure S4). Our data cover 81%, 86% and 85% of the
alleles classified as ‘common’ at the G group level by
CIWD version 3.0.033 for HLA-A, HLA-B and HLA-C,
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respectively. These alleles represent 95%, 92% and 98% of
the cumulative allele frequencies identified in our data-
set. Table 1 shows the number of different alleles we
found per gene across the whole study population. Other
genes, such as HLA-H, MICA and MICB, also presented
significant diversity, although to a lesser extent. Further-
more, our analysis revealed copy number variations for
HLA-H and MICA, with frequencies of 15% and 1.4%
for the full deletion, respectively. The frequency of each
allele in the entire dataset is presented in Table S1.

3.2 | HLA imputation in worldwide
populations

We used three reference panels for HLA imputation—
1KG (n = 2504), SABE (Brazilian population, n = 1170)
and 1KG + SABE full reference (all samples,
n = 3674)—to predict classical and non-classical HLA
class I alleles. To assess the performance of each refer-
ence panel, we conducted 10 resampling iterations of
200 samples for each biogeographic region. Across all
populations, the accuracy of all reference panels consis-
tently exceeded 90% for most evaluated genes, with some
(for instance HLA-E, HLA-F and HLA-G) reaching
remarkably high accuracies ranging from 95% to 100%
(Figure 1). Nonetheless, the accuracy was relatively lower
for HLA-A and HLA-B (Figure 1) due to their higher alle-
lic diversity in the general population (Table 1) and, con-
sequently, the increased prevalence of less common and
rare alleles, particularly within admixed populations
(Figure S4).

In predicting non-classical alleles, the three reference
panels exhibited robust performance, achieving an over-
all mean accuracy that surpassed 95% across all popula-
tions. However, lower accuracies were noted for MICA in
AFR populations across all reference panels, ranging
from 92% to 94%. Additionally, a slight reduction in per-
formance was observed when predicting MICB in EAS
populations, and MICA/HLA-H in SAS populations using
the SABE reference (Table S2). Nevertheless, even in
these instances, the average accuracy remained consis-
tently above 90%, underscoring the reliability and effec-
tiveness of the imputation process for non-classical HLA
class I alleles.

Notably, the EUR population exhibited the highest
accuracy of imputation. Conversely, EAS and SAS popu-
lations had particularly low accuracies when imputed
using the SABE reference, which was expected, since
there are just a few samples with Asian ancestry in the
SABE cohort and EAS is not an ancestral population of
Brazil. The full reference panel demonstrated the best
performance in imputing all populations, followed
closely by 1KG and SABE. Compared with SABE, the
1KG reference panel generally showed enhanced overall
performance, with exceptions observed when predicting
subsets from the SABE dataset (Figure 1 and Table S2).

The performance of imputation for specific alleles
within the training set generally correlates with their fre-
quencies in the reference panels (Table S3), with some
exceptions. For instance, when predicting HLA alleles in
AFR populations, all reference panels showed limited
precision and sensitivity for imputing HLA-B*51:01,
despite its relatively high frequency within the reference
panels (ranging between 5% and 8%). Interestingly, the
SABE reference panel displayed improved sensitivity for
this allele (Figure S5). Low precision indicates that other
alleles are inaccurately predicted as HLA-B*51:01, includ-
ing less frequent alleles, such as HLA-B*52:01 and HLA-
B*78:01.

In the AMR population, all reference panels showed
low precision (less than 0.5) when predicting HLA-
B*35:01, despite it being one of the most common HLA-B
alleles. This pattern was similar in EAS, where precision
decreased (to less than 0.6) when predicting the most fre-
quent HLA-A allele, HLA-A*02:01. Moreover, SAS has
reduced precision specifically when utilising the SABE
reference panel (with a precision of 0.24) for HLA-
A*02:01. However, the SABE reference panel displayed
perfect sensitivity (100%) for predicting HLA-A*02:01 in
this population, surpassing the performance of the other
reference panels (see Table S3).

It is worth noting that population-specific and less
frequent alleles are more difficult to predict due to the
lack of these alleles in the reference panels. Nevertheless,
the absence of some rare alleles within the reference
panels, stemming from their exclusion for test dataset
purposes, contributed to suboptimal sensitivity and preci-
sion in imputation for population-specific and less fre-
quent alleles.

TABLE 1 The number of different

alleles per gene found in this study.
Gene No of alleles Gene No of alleles Gene No of alleles

HLA-A 90 HLA-E 10 HLA-H 24

HLA-B 164 HLA-F 5 MICA 34

HLA-C 73 HLA-G 8 MICB 14

SILVA ET AL. 5 of 12
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We also computed the mean F1 score for each allele
(Table S3) and its average for each model (Figure 2 and
Table S2). Our results indicated that HLA-B tended to

exhibit lower F1 scores than other genes, except within
Asian populations where HLA-A displayed lower F1
scores in some cases. Notably, among non-classical genes,

FIGURE 1 HLA imputation accuracy across different populations. The bar plots illustrate the distribution of imputation accuracy,

represented as the percentage of correct predictions, based on 10 resampling iterations of 200 samples for each population. The populations

are grouped into five categories: African (AFR), Admixed American (AMR), East Asian (EAS), European (EUR) and South Asian (SAS).

Additionally, there is a sixth category called SABE, which refers to the Brazilian population sample from the SABE cohort. The reference

panels used for imputation include 1KG (n = 2504), SABE (Brazilian population, n = 1170) and the full model (all samples, n = 3674).

6 of 12 SILVA ET AL.
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HLA-E showed reduced F1 scores, primarily due to the
presence of some less frequent alleles. For instance,
alleles such as HLA-E*01:09 among AMR, EUR, AFR and

SABE, and HLA-E*01:11 between EUR and SABE
(as shown in Table S3), contributed to this reduction.
These alleles exhibit only one or two base substitutions

FIGURE 2 HLA imputation mean F1 score across different populations. The bar plots illustrate the distribution of the mean F1 score of

the 10 resampling iterations of 200 samples for each gene in a specific population. The populations are grouped into five categories: African

(AFR), Admixed American (AMR), East Asian (EAS), European (EUR) and South Asian (SAS). Additionally, there is a sixth category called

SABE, which refers to the Brazilian population sample from the SABE cohort. The reference panels used for imputation include 1KG

(n = 2504), SABE (Brazilian population, n = 1170) and the full model (all samples, n = 3674).
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compared to HLA-E*01:01, which is the most frequent
allele worldwide. There are only six copies of HLA-
E*01:09 and HLA-E*01:11 considering the entire dataset
(Table S1). Furthermore, the HLA-E*01:10 allele presents
only one copy in the EAS population, therefore it could
not be correctly predicted when selected among the test
set. Additionally, among Africans, the presence of infre-
quent and population-specific alleles, such as HLA-
E*01:13 and HLA-E*01:47, which are exclusive to African
populations in our dataset, further contributed to the
observed reduction in F1 scores but not observed in
weighted F1 scores (Figure S6).

3.3 | Testing HLA imputation in an
independent Brazilian population

We assessed the performance of HLA imputation
methods for HLA-A, HLA-B and HLA-C using an inde-
pendent dataset from São Paulo, Brazil. Our findings
showed that the SABE reference panel yielded the high-
est imputation accuracy for HLA-A and HLA-B in the
Brazilian population cohort (Figure 3 upper panel). In
addition, we tested HLA imputation using the Michigan
Imputation Server, which employs a reference panel
including over than 20,000 samples from worldwide
populations. The SABE reference surpasses the Michigan
Server despite being 15� smaller in sample size.

When examining the sensitivity and precision of each
model in predicting individual alleles of the target gene,
we noticed that the multiethnic reference panel used in
the Michigan Server performed poorly, particularly for
less common alleles (see Figure S7). This resulted in a
lower mean F1 score for the Michigan Server than the
other reference panels, as depicted in the bottom panel in
Figure 3. In addition, the Michigan Server had the worst
performance for HLA-B as compared with any other
model.

The imputation errors for HLA-A, HLA-B and HLA-C
when using the full model are primarily associated with
samples exhibiting a higher degree of admixture, defined
as those with less than 80% ancestry from any single
parental population. The error proportion is higher
among admixed samples for HLA-A and HLA-B, with all
errors in HLA-C being attributed to admixed samples
(Figure S3B).

4 | DISCUSSION

Our findings contribute to the SHLARC ongoing efforts
to enhance the power of HLA association studies by pro-
viding the immunogenetics community with large and
diverse reference panels for HLA imputation.12,34 In this
study, we assessed the accuracy of different reference
panels, built with samples from different genetic

FIGURE 3 Accuracy and mean F1 score of

each reference panel to predict HLA-A, HLA-B

and HLA-C alleles in a Brazilian population.

The reference panels used for imputation

include 1KG (n = 2504), SABE (Brazilian

population, n = 1170), and full model (1KG

+ SABE, n = 3674). ‘Michigan’ refers to the

results obtained using the Michigan Imputation

server and its associated reference panel. The

upper panel shows the accuracy measured as the

percentage of correct predictions, and the

bottom panel shows the F1 score average of

each gene.
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backgrounds, in predicting HLA alleles in randomly
selected samples and an independent Brazilian dataset.
Our results highlighted that imputation accuracy is
higher when the model includes samples genetically
close to the predicted population. Additionally, we
expanded the scope of imputation by developing refer-
ence panels for predicting alleles from MHC genes typi-
cally not considered in imputation but relevant in several
immunologic pathways and possibly linked to disease
outcomes, including HLA-H, MICA, MICB, HLA-G, HLA-
E and HLA-F.1

The HLA genes are the most polymorphic in the
human genome, with over 36,000 alleles currently
described in the IPD-IMGT/HLA database.3 However,
this number of alleles is expected to increase signifi-
cantly, as studies estimate that millions of HLA alleles
exist in the human population35 and evidence suggests
that de novo mutations will continue to introduce novel
HLA alleles.36,37 Due to the high degree of polymorphism
observed in these genes, we adopt a methodology suitable
to minimise HLA genotyping errors, which has been pre-
viously validated by other studies to obtain data on the
HLA genes38,39 and also here through comparison of our
results with those obtained using Sanger sequencing
methodologies.27

We used SNPs within a 500-kilobase flanking region
of each HLA gene, thereby including some SNPs from
neighbouring genes, to construct the reference panels.
Genes located close to the beginning of the MHC region
(29 Mb), such as HLA-A, HLA-G and HLA-F, had less
than 500 kb considered in their upstream regions
(Figure S2, bottom panel). However, it does not appear to
jeopardise the accuracy of the models. The selection of
SNPs for model building using the HIBAG method
involves a systematic yet randomised process28; thereby,
we lack sufficient data to rank SNPs based on their signif-
icance for the imputation result. While this systematic
approach aims to capture informative SNPs, there
remains a rather small chance that significant variants
could be randomly omitted, especially for rare alleles.
However, utilising 100 classifiers increases the likelihood
that each SNP was selected at least once across them,
ensuring comprehensive coverage. We assume that most
frequently selected SNPs hold greater importance or
informational value for HLA allele imputation, as sug-
gested by the similarity between HLA-B and HLA-C over-
lapping selected SNPs (Figure S2, bottom panel).
Conversely, less frequently selected SNPs may be less sig-
nificant for imputation accuracy. Additionally, SNPs
exhibiting strong linkage disequilibrium with the target
HLA alleles are more likely to be important for imputa-
tion accuracy. However, a precise SNP ranking remains a
challenge to identify the most informative SNPs for

imputation with the randomness at play with HIBAG
and the large number of SNP haplotypes involved.

Furthermore, the polymorphism of HLA genes differs
across populations,38 with differences in the prevalence
of alleles and the way they are linked together into haplo-
types within populations.40 Therefore, specific alleles and
haplotypes may be highly frequent or absent in certain
populations.41 This can affect imputation accuracy
because the target alleles must be present in the reference
for prediction. However, despite our data covering over
80% of the common alleles33 for classical class I genes, it
is essential to consider the haplotype structure into which
the target allele is inserted. In our data, a notable exam-
ple of different haplotypes within populations emerges
within the AFR population, where we identified
26 instances of the HLA-B*51:01 allele, with 20 of these
linked to HLA-C*16:01. Interestingly, other populations
exhibit distinct linkage patterns to different HLA-C
alleles. Because of this complexity, the observed low pre-
cision (Figure S5) for HLA-B*51:01 suggests the misclassi-
fication of other alleles as being HLA-B*51:01. In
contrast, low sensitivity indicates instances where the
model struggles to identify HLA-B*51:01 itself accurately.
haplotypes, specifically HLA-B*51:01/HLA-C*16:01, HLA-
B*51:01/HLA-C*18:02 and HLA-B*51:01/HLA-C*02:10.
These haplotypes seem to be unique to the AFR popula-
tions, except HLA-B*51:01/HLA-C*16:01, which is also
present in the SABE population and have two copies in
the EUR samples. Furthermore, HLA-B*51:01/HLA-
C*02:10 is only found once in Brazil (SABE). This advo-
cates for the addition of African ancestry samples in HLA
imputation reference panels.

While common alleles are often easy to impute due to
their great representation in reference panels, challenges
arise when specific alleles are found in population-
specific haplotype structures, as discussed in the context
of HLA-B*51:01 in AFR populations. Moreover, the pres-
ence of rare alleles closely related to common alleles, dif-
fering by only a few base substitutions, can drop the
precision of common alleles. An example was observed
with HLA-B*35:01 in the AMR populations. Here, alleles
exclusive to AMR, such as HLA-B*35:12, HLA-B*35:10,
HLA-B*35:09 and HLA-B*35:17, were often misclassified
as HLA-B*35:01. Consequently, they reduce the precision
of HLA-B*35:01 due to the presence of false positive pre-
dictions. In contrast, we noted a good sensitivity of refer-
ence panels in predicting HLA-B*35:01, indicating
accurate predictions for this allele in most instances. A
similar pattern was observed with the common HLA-
A*02:01 allele in the SAS population.

To comprehensively assess the performance of our
reference panels, we computed their mean F1 score
(Figure 2)—a harmonic mean of sensitivity and precision.
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The F1 score provides an overall assessment of how well
the model identifies both rare and common alleles. A
higher F1 score indicates that the model achieves a good
balance between precision and recall, while a lower F1
score suggests that the model may lack accuracy in pre-
dicting certain alleles. The use of multiple metrics is cru-
cial for a comprehensive evaluation of the model's
performance, particularly when dealing with rare or less
common alleles. The F1 score assumes equal importance
for all alleles, which may not always be the case. Here,
we calculated the mean F1 score, which can lead to a
decrease in this metric for genes that have a limited
number of alleles, such as HLA-E. For instance, HLA-E
exhibited a mean F1 score lower than expected for non-
classical genes while maintaining an accuracy higher
than 98% in all cases (Table S2). We complemented this
mean F1 score by showing the F1 scores weighted by the
frequency of the alleles in Figure S6. Therefore, examin-
ing various metrics helps ensure the model accurately
identifies all relevant alleles.

In the Brazilian population, which is characterised by
high rates of admixture between Europeans, Africans and
Amerindian ancestral populations, there is a greater
diversity of HLA alleles as compared to other popula-
tions.38 The HLA allele composition of a given population
usually reflects its demographic history and admixture
proportions42 due to the unique demographic history and
admixture patterns of each region.43 For instance, in the
northeastern state of Piauí, from Brazil, European and
African influences are evident in the moderate frequen-
cies of their corresponding HLA alleles, whereas Native
American alleles are relatively rare.44 In contrast, in the
southern state of Rio Grande do Sul, the HLA-B*35 allele
is more common, while the HLA-B*53 allele is prevalent
among both admixed and Afro-Brazilians. Additionally,
European-origin alleles, such as HLA-B*35, HLA-B*44
and HLA-B*51 show lower frequencies in admixed
Afro-Brazilians.45 These regional differences highlight
the complex, varied origins of the Brazilian population,
and underscore the importance of considering local
demographics and admixture histories when studying
HLA allele distributions.

When imputing an independent Brazilian dataset, we
noticed a significant enhancement in imputation preci-
sion when the SABE reference (composed of Brazilian
samples) or the full reference (which includes the SABE
reference) is used, compared with the 1KG reference.
Notably, we extended this investigation to impute the
Brazilian dataset using the Michigan Imputation
Server,32 leveraging a reference panel of more than
20,000 samples. However, our reference panels exhibited
superior performance, especially for HLA-B. It is worth
emphasising that the similarity in genetic ancestry

profiles and geographic origins between the Brazilian
samples and those comprising the SABE reference likely
contributed to this heightened efficacy. Furthermore, the
Michigan Server employs a distinct methodology for HLA
imputation, which may also influence the observed
results. In light of this, while extensive multi-ethnic refer-
ence panels are certainly essential, the incorporation of
sharing the same genetic heritage as the target data
remains imperative for optimal performance.

Accurate prediction of most HLA alleles demands
extensive training datasets, typically requiring approxi-
mately 10 copies of a specific allele within the training
database to achieve a high level of sensitivity.28 Despite
this, predicting population-specific and less common
alleles presents a challenge due to their underrepresenta-
tion in the reference panel. This underrepresentation leads
to imputation errors, particularly for less frequent and rare
alleles. The likelihood of encountering one of these haplo-
types might be higher in admixed populations, especially
in samples with a higher degree of admixture
(Figure S3B). Therefore, training sets for admixed popula-
tions need samples from multiple ancestries to circumvent
poor imputation accuracy attributed to underrepresenta-
tion.46 Degenhardt et al.47 demonstrated this by integrat-
ing multiple existing single-ancestry reference panels to
construct a multiethnic reference panel covering ethnically
heterogeneous populations. Given the ancestry-specific
nature of the LD and haplotype structure in the MHC
region, a multiethnic reference panel can maintain high
accuracy across different ethnicities.48

In summary, our models achieved great accuracy
when predicting HLA class I alleles across different popu-
lations. In general, the 1KG reference performed better
than SABE alone. However, the SABE reference brings
valuable information to the panel, improving the accu-
racy in predicting certain alleles. Consequently, the opti-
mal performance was achieved with the full reference, a
consensus of both SABE and 1KG datasets. In addition, it
is important to emphasise that this is the first study to
examine the imputation accuracy in non-classical alleles,
which showed good results as expected for less polymor-
phic genes but also shows the same limitation as the clas-
sical alleles when predicting rare and population-specific
alleles. In conclusion, our investigation underscores the
paramount importance of enhancing reference panels or
adapting existing ones to capture the genetic diversity
inherent to the target population comprehensively.

ACKNOWLEDGEMENTS
The SHLARC project has received support from Nantes
Métropole, the Pays de la Loire Region and the European
Union (via the FEDER) under the Programme of Invest-
ments for the Future. This work was supported by ANR

10 of 12 SILVA ET AL.

 20592310, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tan.15543 by U

niversité D
e N

antes, W
iley O

nline L
ibrary on [22/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PIA-Investment (NExT, SHLARC Project, Nantes Univer-
sité), and the Fundação de Amparo à Pesquisa do Estado
de São—FAPESP/Brazil (grants 2021/02815-8 and
2021/14851-9). The Brazilian HSL cohort was sequenced
and genotyped with funding from The COVID-19
Research Campaign of the Hospital Sirio-Libanes donors.
This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior—Brasil
(CAPES) within the scope of the CAPES/COFECUB Pro-
gram. This study was financed in part by the Comité
Français d'�Evaluation de la Coopération Universitaire et
Scientifique avec le Brésil (COFECUB) within the scope
of the CAPES/COFECUB Program (Me 1044/24).

CONFLICT OF INTEREST STATEMENT
The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT
The raw sequencing data used in this study are available
in public repositories: 1000 Genomes at https://ftp.1000
genomes.ebi.ac.uk/vol1/ftp/data_collections, the Brazilian/
SABE cohort at https://ega-archive.org/datasets/EGAD
00001008640 and the Brazilian HSL cohort NGS and
genotype array data are available under request to the
authors. The reference panels generated in this study will
be soon available on the SHLARC website.

ORCID
Nayane S. B. Silva https://orcid.org/0000-0001-5511-
8426
Pierre-Antoine Gourraud https://orcid.org/0000-0003-
1131-9554
Nicolas Vince https://orcid.org/0000-0002-3767-6210

REFERENCES
1. Klein J, Sato A. The HLA system—first of two parts. N Engl J

Med. 2000;343:702-709.
2. Hughes AL. Natural selection and the evolutionary history of

major histocompatibility complex loci. Front Biosci. 1998;3(4):
A298-d516. doi:10.2741/A298

3. Robinson J, Barker DJ, Georgiou X, Cooper MA, Flicek P,
Marsh SGE. IPD-IMGT/HLA database. Nucleic Acids Res. 2020;
48(D1):D948-D955. doi:10.1093/nar/gkz950

4. Amigorena S. Antigen presentation: from cell biology to physi-
ology. Immunol Rev. 2016;272(1):5-7. doi:10.1111/imr.12436

5. Wyatt RC, Lanzoni G, Russell MA, Gerling I, Richardson SJ.
What the HLA-I!—classical and non-classical HLA class I and
their potential roles in type 1 diabetes. Curr Diab Rep. 2019;
19(12):159. doi:10.1007/s11892-019-1245-z

6. Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation
and disease. Nat Rev Immunol. 2018;18(5):325-339. doi:10.1038/
nri.2017.143
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