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Abstract

In today’s energy-dependent world, ensuring the safety and efficiency of lithium-ion batteries is crucial. Early representation of
anomalies becomes essential for optimizing performance, reducing disruptions, and prolonging battery lifetime in electric vehicle
applications. This objective necessitates the integration of data from distributed and heterogeneous sources, a challenge traditionally
tackled by semantic web technologies. In response, this paper introduces an ontology-based model that capitalizes on represent-
ing anomalies in lithium-ion batteries. Ontologies play a vital role in representing knowledge in a machine-interpretable format.
Our approach enriches sensor data with contextual information, employing structured concepts, rules, and semantics specifically
designed for representing anomalies in lithium-ion batteries.
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1. Introdution

Lithium-ion batteries have become integral to the advancement and functionality of a broad spectrum of tech-
nologies, from everyday portable electronics to electric vehicles, playing a pivotal role, especially in electric vehicle
(EV) applications. Their superior energy density, longevity, and stability over other types of batteries make them the
ideal choice for powering electric vehicles. These vehicles, which often require consistent and reliable energy for long-
distance travel and efficient operation, necessitate robust and enduring battery solutions. As the electric vehicle market
rapidly expands to include a diverse range of models and systems, the reliance on lithium-ion batteries is expected to
increase significantly. This burgeoning demand underscores the critical need for advanced battery management and
precise fault diagnosis systems. Effective diagnostic techniques that can identify and rectify anomalies in lithium-ion
batteries are essential, not merely for the operational efficiency of electric vehicles but also for their sustainability.
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In addressing this need, our paper presents an approach not previously explored in the domain of lithium-ion bat-
tery, bridging the gap in the application of battery domain ontologies for anomaly representation. We significantly
contribute to the field by: (i) conducting a systematic review of contemporary anomaly diagnosis methods, (ii) en-
hancing the BattINFO ontology [1] with additional properties, (iii) the development of new SWRL (Semantic Web
Rule Language) rules for the descriptions of the modules and the semantic model for representing and classifying
anomalies. (iv) As we conclude, we emphasize the critical importance of advancing battery technology research, par-
ticularly in response to the expanding needs of electric vehicle applications. We also suggest promising directions for
future studies.

2. Related Work

In addressing safety and performance concerns of lithium-ion batteries, research has advanced in diagnostic tech-
niques, notably categorized into knowledge-based and data-driven methods, as detailed by [18]. Knowledge-based
approaches rely on the fundamental understanding of battery mechanics to predict and identify failures, whereas data-
driven methods utilize algorithms and machine learning to analyze operational data for patterns indicating battery
health. Together, these strategies aim to enhance battery safety and efficiency, supporting the reliable use of lithium-
ion technology across various applications.

2.1. Data-Driven Methods

Data-driven approaches leverage statistical, machine learning, and deep learning algorithms to identify patterns,
anomalies, or trends from historical and real-time data of battery operations. Among these techniques, machine learn-
ing techniques have been extensively researched and applied. One comprehensive review [16] discusses several key
techniques, including Artificial Neural Networks (ANN) as discussed in [10, 16, 24] which is a computing system
inspired by the biological neural networks that constitute animal brains. ANNs learn to perform tasks by considering
examples, generally without being programmed with task-specific rules. They are particularly effective in identifying
nonlinear relationships within large datasets, Support Vector Machines (SVM) as highlighted in the works of Hu et
al.[10, 16, 24] is a supervised learning model used for classification and regression analysis. SVMs effectively create
a decision boundary, called a hyperplane, that separates different classes of data with as wide a margin as possible,
making them powerful for high-dimensional data analysis, Random Forest (RF) is explored by Samanta et al. and
Liu et al.[16, 11] as an ensemble learning method for classification, regression, and other tasks that operates by con-
structing a multitude of decision trees at training time. For classification tasks, the output of the Random Forest is the
class selected by most trees. This method is known for its high accuracy, robustness, and ease of use, in the studies by
[16, 15] Logistic Regression (LR) despite its name, is used for binary classification rather than regression. It estimates
probabilities using a logistic function to model a binary dependent variable, making it suitable for cases where the
response variable is categorical, Gaussian Process Regression (GPR) as explored by Samanta et al., Tagade et al., and
Zhao et al. [16, 17, 24] is a non-parametric, bayesian approach to regression that provides a probabilistic prediction.
GPR is particularly useful for estimating uncertainty about the predicted values, making it powerful for modeling
complex phenomena where the prediction includes a measure of uncertainty.

2.2. Knowledge-Based Methods

Conversely, knowledge-based diagnostic methods, referenced in the work of Netzer et al. [14] rely on established
rules and domain expertise to interpret system behavior and identify anomalies. Utilizing an understanding and obser-
vational analysis, proving particularly effective for complex and nonlinear systems like lithium-ion battery systems,
without the need for developing mathematical models. Systems driven by this method facilitate explainability and
knowledge sharing across diverse applications and domains. A concise introduction to some key knowledge-based
methods follows: according to Hu et al. and Zhao et al.[10, 24] expert systems are computer programs that emu-
late the decision-making ability of a human expert. By using a set of coded rules that represent the knowledge and
processes of the domain, expert systems can make inferences and provide explanations to the users about how the
conclusions were derived. Graph Theory (Signed Directed, Fault Tree, Failure Mode and Effect Analysis) this method
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uses graphs to model systems in a way that nodes represent entities or concepts, and edges represent the relationships
between them. Signed directed graphs , as discussed in Yang et al.[23] specifically consider the direction and nature
(positive or negative) of relationships. For zhou et al. and gao [25, 3] fault treesare a top-down approach to identify
the root causes of failures, depicting the logical relations of system failures and potential faults. Failure Mode and
Effect Analysis (FMEA), as detailed by Held et al. [9] systematically evaluates potential failures in a system, their
causes, and effects, often visualized through these graphs for better understanding and analysis. Fuzzy Logic as ex-
plored in the works of Muddappa and Zhao et al. [12, 24] extends traditional boolean logic to handle the concept of
partial truth, where truth values can range between completely true and completely false. It’s particularly useful in
dealing with uncertainty and reasoning about imprecise data, making it a powerful tool for knowledge-based systems
in diagnosis and decision-making processes. Ontologies according to research by Mutz et al., Clark et al. , Wessel et
al., and Hamouni et al. [13, 2, 21, 8] in the context of knowledge representation provide a formalized representation
of concepts, relationships, and constraints within a specific domain. They are used to model domain knowledge in a
structured, machine-readable format, employing languages such as RDF (Resource Description Framework) or OWL
(Web Ontology Language). Ontologies enable comprehensive understanding and reasoning about the domain-specific
anomalies, in this case, lithium-ion battery anomalies. By encapsulating domain knowledge, ontologies facilitate
explainability, interoperability, and knowledge sharing across different systems and applications, offering a robust
framework for the diagnosis and analysis of complex systems.

2.3. Discussion

A comparison between data-driven approaches and knowledge-based systems highlights fundamental differences
in flexibility and explainability. Data-driven methods excel in environments where large datasets are available, offer-
ing adaptability and the potential for uncovering unknown patterns or anomalies. However, they may suffer from the
”black box” problem, where the decision-making process is not transparent, making it difficult to interpret or justify
the results. On the other hand, knowledge-based methods, particularly those employing ontologies, provide a clear
reasoning path for diagnoses, making them highly explainable and trustworthy. However, their effectiveness is con-
tingent upon the completeness and accuracy of the underlying knowledge base, which can be challenging to maintain
and update.

3. Semantic Model for Representing Anomalies in Lithium-Ion Batteries

This section presents the proposed ontology. First, an introduction and the main goals of the ontology are introduced
and then the key ontologies utilized in our approach are also described.

3.1. General Overview

The aim of the ontology is to represent observed anomalies in lithium-ion batteries and their causes. Our ontology
is inspired by [4], which entails combining multiple ontologies. Fig. 1 illustrates the key modules of the proposed
domain ontology along with their relationships. According to [5] ontologies can be categorized into three main types:
core ontologies, domain ontologies, and application ontologies, depending on their conceptual focus. Core ontologies
provide general, domain-independent frameworks that are applicable across different fields of knowledge. In our case,
these ontologies include time, location, and sensor ontologies, which fall into this category due to their universal
applicability meanwhile the domain ontology is a specialized framework that focuses on a specific area of knowledge,
defining its unique concepts, relationships, and entities. It provides detailed insights into a particular field, unlike
general ontologies, to support interoperability and understanding within that domain in this case BattINFO belongs
to this category.

As previously stated, our ontology integrate different ontologies as modules in order to describe lithium-ion bat-
teries anomalies. These modules are Time module, Location module, Sensor module, BattINFO module and
we introduce a new module called Anomaly module. This module allows a hierarchical organization of anomaly
types and their characteristics. It provides relations to represent the association between an anomaly and its detected
location and time as well as the properties that are involved (e.g. temperature, current and voltage).
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Fig. 1: An overview of the ontology.

The ontology is written in OWL (Ontology Web Language) [19] and is developed in Python using Owlready21, a
library for ontology-oriented programming. The following subsections describe the different modules of the ontology.

3.1.1. BattINFO module
The BattINFO [1] module is an integral part of our ontology, specifically focusing on the battery domain. It of-

fers a domain-specific ontology for describing lithium-ion batteries. In particular, the concept Battery which is
defined as assembly of one or more electrochemical cells, used to provide devices with stored electrical energy. It has
two sub-concepts: BatteryCell, defined as a basic functional unit, consisting of an assembly of electrodes, elec-
trolyte, container, terminals and usually separators, that is a source of electric energy; BatteryPack, defined as a
battery containing multiple cells and a casing. The relation hasPart allows to represent the fact that a BatteryPack
has a BatteryCell as a part. Furthermore, the concept BatteryCell has the sub-concepts: CylindricalCell,
PrismaticCell and ButtonCell to represent different shapes of lithium batteries. BattINFO enhances data inter-
operability and supports artificial intelligence workflows. This module is seamlessly integrated with other ontology
modules, notably the Sensor module, through the sosa:hosts relation. This relation enables to state that a senor is
attached to a battery. The example below describes the case of a BatteryPack that contains two CylindricalCell.

BatteryPack(bp) ∧ CylindricalCell(cc1) ∧ CylindricalCell(cc2)∧
hasPart(bp, cc1) ∧ hasPart(bp, cc2)

3.1.2. Sensor module
Developed by the W3C’s Semantic Sensor Networks Incubator Group, the Semantic Sensor Network (SSN)

ontology and its SOSA (Sensor, Observation, Sample, and Actuator) extension [7] allow to effectively
manage heterogeneous data types and metadata.

1 https://owlready2.readthedocs.io/en/latest/
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In particular, it allows to integrate sensor data such as current, temperature and voltage in order to represent anoma-
lies of lithium batteries. The properties are critical for monitoring battery health, safety, and efficiency. This process
of data interpretation, beginning with madeObservation, indicating when a sensor captures data. This data is then
associated with specific properties through observedProperty. Timestamps for these observations are established
with hasTime. Subsequently, the straightforward result values are identified with hasSimpleResult, and finally,
the detailed outcomes are categorized with hasResult. The example below makes use of the previous properties to
describe that a BaterryCell(c) has a S ensor t which measures temperature.

BatteryCell(c) ∧ Sensor(sensor t) ∧ sosa:hosts(c, sensor t)∧
sosa:madeObservation(sensor t,obsT) ∧ sosa:observedProperty(obs,"Temp")∧

hasTime(obsT,t) ∧ hasSimpleResult(obsT,30°C)

3.1.3. Time module
The integration of W3C’s [22] Time Ontology into battery behavior analysis enhances the technical capability

to timestamp and contextualize data within a temporal window. The ontology has a concept time:TemporalEntity
with properties time:hasBeginning and time:hasEnd that link to the temporal instants that define its limits, and
time:hasTemporalDuration to describe its extent. The time:TemporalEntity concept has two sub-concepts:
time:Interval and time:Instant. Intervals are things with extent. Instants are point-like in that they have no
interior points, but it is generally safe to think of an instant as an interval with zero length, where the beginning
and end are the same. The Time ontology provides Allen’s temporal operators [6] to represent relations about time
intervals and instants .

Incorporating the Time Ontology into our model allows representing temporal data. It enables the contextualiza-
tion of fluctuating data, ensuring analyses considering the temporal dimension of changes and anomalies. Particularly,
it allows to event timestamping, for precise timestamping of battery-related events, such as measurements of temper-
ature, voltage, and current as well as anomalies. This facilitates the correlation of such events with specific times,
enhancing the analysis and understanding of battery behavior over its lifecycle. Furthermore, by the use of Allen’s
operators such as time:before, time:after, and time:during to establish temporal relationships between events,
enabling temporal reasoning about battery behavior. The following example captures the situation.

Anomaly(A 1) ∧ Anomaly(A 2) ∧ Anomaly(A 3) ∧ hasTime(A 1, t1) ∧ hasTime(A 2, t2)∧
hasTime(A 3, t3) ∧ time:meets(t1, t2) ∧ time:contains(t2, t3)⇒ time:after(t3, t1)

3.1.4. Location module
The Location Ontology represents the architecture of the battery pack by abstracting their physical spaces, al-

lowing for precise spatial representation of cells and sensors.Through this, an interpretation of the values collected by
the sensors can be conducted, the ontology provides an overall picture of the condition of the pack. It is integrated
with the Semantic Sensor Network (SSN) ontology [20] via the locatedIn property, it maps the exact lo-
cations of sensors. The AnomalyLocation property specifically annotates the positions of anomalies, enabling the
identification of location-dependent performance issues.

Sensor(?sensor) ∧ locatedIn(?sensor, ?location) ⇒ Cell(?cell) ∧
hasSensorLocation (?cell, ?location)Anomaly(?anomaly) ∧ locatedIn(?anomaly, ?location)∧

affects(?anomaly, ?cell)⇒ Cell(?cell)∧
hasPerformanceIssue(?cell, ?issue) ∧ locatedIn(?cell, ?location)
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3.1.5. Anomaly module
Within the domain of battery system management and maintenance, representing and categorizing anomalies is

crucial for ensuring reliability and performance. The centerpiece of our ontology within this domain is the Anomaly

module as detailed in 2, a structured framework designed to classify anomalies into three principal fault categories:
Battery Faults, Actuator Faults, and Sensor Faults. This module not only aids in the precise identification
of the nature of the faults but also lays the foundation for understanding their impact on battery performance.

Fig. 2: Detailed view of the anomaly module.

Battery Faults are at the core of this ontology, focusing on issues that are directly related to the battery’s internal
components. These faults can range from cell degradation, electrolyte imbalances, to internal short circuits. Such
anomalies are intrinsic to the battery itself, often resulting from wear and tear, manufacturing defects, or inadequate
maintenance. Actuator Faults represent the problems associated with external components that interact with or
impact the battery system. Actuators, essential for the operation of Battery Management Systems (BMS), include
components like switches, relays, and other mechanisms that control the charging and discharging processes. Faults in
these actuators can lead to improper battery usage, affecting its performance. Sensor Faults encompass anomalies
arising from inaccuracies or malfunctions in the sensor readings within the battery system. Sensors play a vital role
in monitoring battery parameters such as temperature, voltage, and current. Faulty sensors can lead to incorrect data
being relayed to the battery management system, potentially leading to overcharging, undercharging, or other harmful
conditions. The example below makes use of the previous properties to describe the faults using description logic.

Fault ⊑ Battery Fault ⊔ Sensor Fault ⊔ Actuator Fault

Our approach focuses on the detailed representation of anomalies by analyzing the variations of multiple variables
over time. Specifically, it examines how these variables change within defined periods referred to as ’time windows’
not in isolation, but in conjunction with changes in the values of other related variables. such variations are quantified
using a metric referred to as ”delta” which captures the difference in measurements between two time points, denoted
as tnand tm where tm > tn . ∆x: The change in measurement between consecutive observations is defined as: ∆x =
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xm − xn, where xm and xm represent the measurement values at consecutive times tm and tn, respectively.
Time Window (∆t) : This is a predetermined duration that specifies how long a deviation must persist to be considered
an anomaly defined as : ∆t = tm−tn . The presence of a significant delta over this window is a critical factor in anomaly
representation.

significant changes in measurements ’delta’ must persist for a specified ’delta time’ window to be considered
anomalies. Section 4 provides a concrete example through an illustrative case study, showcasing this method’s appli-
cation.

Integral to our ontology is the concept of the Cause which relates each anomaly to its root cause, providing deeper
insights into the origins of the fault. Examples of these causes include ManufacturingDefects that refer to any flaw
or imperfection that occurs during the production process of the Battery like electrode defects, separator issues and
poor welding or joining. AbnormalHeatGeneration in a lithium-ion battery occurs when excessive heat is produced
due to internal faults or external misuse, LowTemperature describes conditions under which the temperature is below
the optimal operating range for the battery, calibration errors are characterized by inaccuracies or mismatches
in the readings and actual states of battery parameters such as charge level, voltage, and capacity.
This classification not only aids in the diagnosis of issues but also in the formulation of targeted interventions. By
understanding the underlying causes of Battery Faults, Actuator Faults, and Sensor Faults, engineers and
technicians can implement design improvements, refine maintenance protocols, and enhance the overall reliability and
efficiency of battery systems.

4. Illustrative Case Study
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This case study demonstrates the practical application of using the Anomaly ontology for representing anoma-
lies in lithium-ion batteries. We focus on a scenario involving a battery pack of two cells equipped with two sensors
as shown in Fig. 4: one for monitoring current and the other for temperature. The case illustrates how the ontology
facilitates the representation of an Overheat anomaly, a critical condition that can lead to battery failure or even
safety hazards.
System Configuration: the battery pack under consideration contains a cell monitored by two distinct sensors.
SensorI 1, dedicated to current measurement, is hosted by the cell and tasked with creating two observations, in-
stances x1 and x2 ,these observations record the current at two different times, t1 and t2, producing SimpleResults

res1 and res2, respectively. Simultaneously, SensorT 1 measures temperature changes within the same cell, gener-
ating instances y1 and y2 that capture temperature readings at times t1 and t2. These readings are represented as
SimpleResults rest1 and rest2. The ontology-based system is designed to represent anomalies by analyzing varia-
tions in current and temperature over a specific time window. An Overheat anomaly is identified when two condi-
tions are simultaneously met within the same time interval (t2 − t1) .

• Temporal Alignment: This ensures that the detected increases in current and temperature are within the same
time window formalized as : ∆t = t2 − t1 .
• Current Increase Detection: An anomaly is flagged if ∆I > X, where X is a predefined current increase threshold

and ∆I = I2 − I1 .
• Temperature Increase Detection:An overheat anomaly is identified if ∆T ≥ Y , where Y is the minimum temper-

ature increase that indicates overheating and ∆T = T2 − T1 .

In our analysis, we define the anomaly Overheat as illustrated in Fig. 3, which is derived from real, adapted data.
This is done by observing two critical properties. An ’Overheat’ is identified when there is an atypical demand
for current (as compared to standard cycles) within a specific time window [t2 − t1], accompanied by a simultaneous
temperature increase that breaches a predefined safety threshold . This co-occurrence of events indicates a departure
from normal operational parameters, fitting our criteria for an Overheat.
Contrastingly, the time window [t6−t5] presents a different scenario. Here, the temperature reaches a similarly elevated
threshold; however, the absence of a concurrent spike in current demand means this does not qualify as an Overheat.
Instead, it is categorized as an aberration from expected behavior, but it lacks the synchronicity of conditions to meet
the stringent definition of an Overheat.
When such an anomaly is occurred, our ontological model, as introduced in Fig. 1, is designed to systematically
explore and identify potential causes contributing to the thermal anomaly manifested in the battery cell. The example
below describes the Overheatsituation illustrated by cell1 in Fig. 4.

BatteryPack(bp) ∧ Cell(C1) ∧ Sensor(Sensor T1) ∧ Sensor(Sensor I1)

∧sosa:hosts(C1, Sensor T1) ∧ sosa:hosts(C1, Sensor I1)

∧sosa:madeObservation(Sensor T1, obsTemp1) ∧ sosa:madeObservation(Sensor T1, obsTemp2)

∧sosa:madeObservation(Sensor I1, obsCur1) ∧ sosa:madeObservation(Sensor I1, obsCur2)

∧sosa:observedProperty(obs, y 1) ∧ sosa:observedProperty(obs, y 2)

∧sosa:observedProperty(obs, x 1) ∧ sosa:observedProperty(obs, x 2)

∧hasTime(obsTemp1, t1) ∧ hasTime(obsTemp2, t2) ∧ hasTime(obsCur1, t1) ∧ hasTime(obsCur2, t2)

∧hasSimpleResult(obsTemp1, 40°C) ∧ hasSimpleResult(obsTemp2, 55°C)
∧hasSimpleResult(obsCur1, 12A) ∧ hasSimpleResult(obsCur2, 20A)

∧Substract(resT, obsTemp2, obsTemp1) ∧ Substract(resI, obsCur2, obsCur1)

∧greaterThan(resT, Y) ∧ greaterThan(resI, X)
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for current (as compared to standard cycles) within a specific time window [t2 − t1], accompanied by a simultaneous
temperature increase that breaches a predefined safety threshold . This co-occurrence of events indicates a departure
from normal operational parameters, fitting our criteria for an Overheat.
Contrastingly, the time window [t6−t5] presents a different scenario. Here, the temperature reaches a similarly elevated
threshold; however, the absence of a concurrent spike in current demand means this does not qualify as an Overheat.
Instead, it is categorized as an aberration from expected behavior, but it lacks the synchronicity of conditions to meet
the stringent definition of an Overheat.
When such an anomaly is occurred, our ontological model, as introduced in Fig. 1, is designed to systematically
explore and identify potential causes contributing to the thermal anomaly manifested in the battery cell. The example
below describes the Overheatsituation illustrated by cell1 in Fig. 4.
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∧hasTime(obsTemp1, t1) ∧ hasTime(obsTemp2, t2) ∧ hasTime(obsCur1, t1) ∧ hasTime(obsCur2, t2)

∧hasSimpleResult(obsTemp1, 40°C) ∧ hasSimpleResult(obsTemp2, 55°C)
∧hasSimpleResult(obsCur1, 12A) ∧ hasSimpleResult(obsCur2, 20A)
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Fig. 4: Representation of the scenario presented in the case study using our model.

5. Conclusions & Future Work

This research has introduced a novel ontology-based approach for representing anomalies within lithium-ion bat-
teries, enhancing data collected from sensors with contextual information to enable the real-time representation of
potentially hazardous situations. Through the early identification of these anomalies, our methodology not only mit-
igates risks but also facilitates more timely interventions for preventive maintenance. In our subsequent research, we
will explore the adoption of stream reasoning to seamlessly integrate diverse data streams, each with unique semantic
contexts and temporal resolutions, enabling the real-time processing of this information.

In future work, we aim to expand the scope of our ontology-based approach beyond its current application,
exploring its effectiveness across different domains and with various types of batteries, such as lead-acid and
nickel-metal hydride. This exploration will assess the approach’s flexibility and its potential for adaptation to specific
use cases. Additionally, we plan to explore the integration of machine learning and deep learning models to enhance
anomaly prediction capabilities, utilizing historical sensor data and recognized patterns to preemptively identify
potential issues. This predictive mechanism will be refined through the development of algorithms for real-time
adaptive reasoning, enabling the ontology to dynamically update its reasoning in response to new data and emerging
patterns. Such advancements will not only improve the system’s anomaly detection but also contribute to optimizing
the energy efficiency of lithium-ion batteries. By examining the interplay between detected anomalies and battery
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performance, we anticipate uncovering strategies to extend battery longevity and improve overall energy management.
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