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Enhancing Energy Disaggregation with
Attention-Based Neural Network

Nidhal Balti1, Baptiste Vrigneau1, and Pascal Scalart1

Univ of Rennes, IRISA, CNRS, Lannion, France,
{nidhal.balti,baptiste.vrigneau, pascal.scalart}@irisa.fr

Abstract. Deep Neural Networks (DNNs) have been the subject of
much research over the years, with a particular emphasis on Convolu-
tional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs).
The purpose of this study is to evaluate the energy usage of single-source
appliances, like smart meters, in the context of Non-Intrusive Load Moni-
toring (NILM). This paper introduces a novel workflow for Non-Intrusive
Load Monitoring (NILM) by combining a regression subnetwork with a
classification subnetwork. The architecture incorporates an RNN with
attention mechanism in the regression and classification networks, draw-
ing inspiration from successful applications in temporal attention. The
experiments conducted on our own dataset called SmartSense shows that
our proposed architecture outperforms the state-of-the-art under various
conditions.

Keywords: Energy disaggregation, NILM, Environmental sensors data,
RNN, CNN.

1 Introduction

Effective energy management has become more and more important in recent
years due to growing environmental concerns about the effects of energy con-
sumption and the increasing demand for sustainable solutions [1]. The increased
consciousness in this area has led to significant progress in the field, most no-
tably with the introduction of technologies for Intrusive Load Monitoring (ILM)
and Non-Intrusive Load Monitoring (NILM).
Intrusive Load Monitoring involves the installation of specific hardware directly
on individual appliances, such as sensors or meters, providing precise, device-
specific data on energy consumption. This intrusive approach allows for accurate
measurements, facilitating detailed insights into usage patterns and operational
states.In contrast, Non-Intrusive Load Monitoring (NILM) requires only one
smart meter installed on the external panel to disaggregate total energy con-
sumption into appliance-level usage without additional sensors on each device.
Leveraging signal processing and machine learning, NILM analyzes aggregate
power consumption data from sources like smart meters, discerning unique elec-
trical signatures to create detailed appliance-level profiles. While ILM demands
a more involved setup, it offers unparalleled granularity in load monitoring. Both
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ILM and NILM contribute to a smarter, more sustainable approach to energy
consumption, empowering individuals and organizations to optimize usage, iden-
tify faults, and participate in efficient energy management practices within the
context of smart grids and beyond.
In existing literature, the majority of works have centered mostly on electri-
cal power data, including measurements like voltage, current, and active power.
However, these studies often overlook the exploration of other critical data types,
such as environmental variables. We propose that integrating wireless sensor data
into the Non-Intrusive Load Monitoring (NILM) paradigm. By doing so, we un-
lock exciting opportunities for researchers to delve into the complex relationships
between energy consumption and various environmental factors. Through seam-
less incorporation of data from wireless sensors—such as temperature, humidity,
occupancy, and ambient light—we can achieve a more nuanced understanding of
the correlations, dependencies, and causal relationships that significantly impact
appliance-specific energy usage [2][3]. Additionally, our better understanding of
the various factors that influence energy consumption helps to refine more com-
prehensive and sophisticated NILM models.
Our main contributions are three-fold:

1. We introduce a novel approach known as Semi-Intrusive Load Monitoring
(SILM) which use environmental sensor data like CO2, humidity and tem-
perature which provide a wealth of a-priori knowledge about an appliance
state.

2. Accordingly, we propose a novel ON/OFF state NILM model that features a
dual-RNN with attention architecture: one RNN (state-RNN) for capturing
the appliance’s ON/OFF states, the other one (value-RNN) for predicting
the power consumption for each state. A cross-entropy is used to state-
RNN as a regularization item, which degrades the error in predicting the
appliance’s power consumption.

3. Experimental results on our own real-world dataset called SmartSense show
that our model generalizes well to unseen appliances where it achieves roughly
55% Mean Absolute Error (MAE) gain and 30% Root Mean Square Error
(RMSE) gain over the state-of-the-art on the accuracy of energy disaggre-
gation.

The paper is organized as follows. In Section 2, we briefly present an overview of
the available NILM approaches in the literature. Section 3 presents our proposed
method for energy disaggregation. Finally, we present evaluation methodology
and we analyse the experiment results in section 4.

2 Related Work

Two decades ago, Hart proposed a non-intrusive method for disaggregating elec-
trical measurements[4]. This method involved examining the overall load data
to identify power consumption signatures for individual appliances. Unlike other
approaches, Hart’s methodology did not require installing equipment inside the
customer’s property. Instead, aggregated data for the building’s energy usage
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could be obtained externally from the main electrical panel. The main objective
of this process was to separate the whole-house energy data into its primary
consumption components as shown in Fig 2. Non-Intrusive Load Monitoring
(NILM) algorithms proved effective in achieving device-specific energy disaggre-
gation using only aggregated data from a single measurement point. As a result,
NILM remains an attractive approach for energy disaggregation.
A key area of interest in the field of Non-Intrusive Load Monitoring (NILM)
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Fig. 1: Concept of typical NILM: decomposing of aggregated power consumption.

is the integration of environmental sensor data to improve the accuracy and
contextual comprehension of energy use in residential and commercial settings.
Environmental sensing and diverse information play a crucial role in address-
ing challenges encountered by current Non-Intrusive Load Monitoring (NILM)
techniques [5]. However, incorporating these sources can introduce complexity. A
more efficient approach involves integrating supplementary data with the overall
power consumption of a building for load monitoring. Notably, the increasing
number of intelligent sensors within buildings, serving various purposes, has
made acquiring this information more feasible without additional setup. Con-
sequently, there has been a recent emphasis on leveraging this method. As far
as we are aware, no prior research has used environmental sensors in the NILM
area.
Non-Intrusive Load Monitoring (NILM) has undergone significant advancements
in recent years, driven by the exploration of signal processing, machine learning
and deep learning. Signal processing approaches have enabled the extraction of
appliance-specific features and patterns from aggregate power data [6], while
machine learning techniques have leveraged supervised [7] and unsupervised [8],
[9] learning algorithms to discern individual load signatures. Deep learning tech-
niques, particularly deep neural networks, have emerged as powerful tools for
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NILM owing to their capacity to automatically learn hierarchical representations
from raw data. Convolutional Neural Networks (CNN) [10], Recurrent Neural
Networks (RNN) [11], and their variants [12] have demonstrated superior per-
formance in load disaggregation tasks. Researchers have proposed various archi-
tectures, such as sequence-to-point models [13], attention mechanisms[14], and
generative adversarial networks (GANs) [15], to enhance the accuracy and gen-
eralizability of deep learning-based NILM systems.
RNNs with attention mechanisms [16] are an extremely powerful paradigm for
sequence modeling and analysis. RNNs are designed to capture temporal depen-
dencies in sequential data, making them ideal for tasks that require time-series
information, such as natural language processing, speech recognition, and finan-
cial forecasting. The addition of attention mechanisms improves the capabilities
of traditional RNNs by allowing the model to focus selectively on specific parts of
the input sequence while assigning varying levels of importance to different ele-
ments. This dynamic attention mechanism allows the network to effectively eval-
uate the significance of each input, resulting in a more nuanced understanding of
context and an improved ability to capture long-term dependencies. In essence,
attention-based RNNs not only perform well in capturing temporal patterns,
but also demonstrate an enhanced capacity to distinguish and prioritize relevant
information within the input sequence, making them valuable tools across a wide
range of applications.
Therefore, in this paper, we opted to use an RNN model with attention mecha-
nism for energy disaggregation challenge, as they provide substantial advantages
over training simpler neural networks at the edge. RNN networks excel in cap-
turing long-term dependencies within sequential data, a critical capability for
accurately modeling and disaggregating complex energy consumption patterns
over time.

3 Proposed Method

3.1 Problem formulation of energy disaggregation

The NILM approach aims to identify the states sm(t) of an appliance m and
estimate its power consumption ym(t) from the total power consumption x(t)
for m = 1, 2, . . . ,M , where M indicates the number of appliances. We refer to
this as a multi-task NILM problem, where given an observed aggregate power
signal, unobserved states s(t) of electrical appliances are detected, and the corre-
sponding power consumption y(t) estimated. The aggregate power consumption
x(t) at time t can be expressed by Equation 1:

x(t) =

M∑
m=1

ym(t) · sm(t) + ϵ(t) (1)

where ϵt represents the contributions from appliances not accounted for and
measurement’s noise [17]. Specifically, the problem is formulated as follows.

Let X ∈ RT = {x1, . . . , xT } denote a set of input features derived from the
aggregate power consumption of M appliances, and Y ∈ RT×M indicates the
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power signals of the associated appliances, where each appliance has k states
denoted as sm(t) = {sm,1(t), . . . , sm,k(t)} such that smk

(t) ∈ {0, 1}. The matrix
S ∈ RT×M indicates the associated multi-label states for the M appliances.
Given D = {x(t), s(t) | t = 1, . . . , T} datasets, the goal is to learn a multi-task
model that predicts the state vector s(t) = {sm(t), . . . , sM (T )} and power signal
vector y(t) = {ym(t), . . . , yM (T )} from the input aggregate power feature vector
x(t).

3.2 SILM workflow

This paper proposes a Semi-Intrusive Load Monitoring architecture (SILM) that
uses power consumptions combined with environmental sensors data to detect
individual power consumption of devices from aggregated power data as shown
in Figure 2. In fact, the proposed architecture is composed mainly of 2 parts:
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Fig. 2: Architecture of RNN with attention for energy disaggregation and
ON/OFF states detection.

1. The first part consists of a classification task that intends to detect the
On/Off state of appliances from environmental sensors data and then feed
them to the input of the next step;

2. The second part is a regression task that aims to estimate the individual
power consumptions from the aggregate power data and the detected states.
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3.3 Detection of ON/OFF states

The majority of appliances have a minimum ON-power threshold, which defines
the amount of energy required for operation. If an appliance’s energy consump-
tion is less than this on-power threshold, it is considered to be in an off state;
otherwise, it is considered to be on. For example, a kettle typically requires 2000
watts to be operational, whereas a coffee maker machine only needs 800 watts.
In this paper, we address the problem of On/Off detection by using tempera-
ture, humidity, and CO2 levels data from environmental sensors. This involves
estimating whether an appliance is currently in an On or Off state based on the
recorded sensor data. The learning framework based on classification, as shown
in Figure 2, uses a training method for a binary classifier to tackle the problem
of on/off detection. To be more precise, an appliance’s energy readings are first
binary-coded according to the appliance’s ON-power threshold. Then, using the
binary-coded appliance readings as target values and the wireless sensors data
as inputs, a binary classifier is trained. Lastly, the trained classifier is used to
predict the appliance’s on/off state sequence when it is given a fresh set of en-
vironmental sensors data. We choose an RNN with attention mechanism as the
binary classifier with an architecture as follows:

1. Input (sequence length L determined by the appliance duration)
2. BiLSTM (bidirectional LSTM with 128 units, and tanh activation function)
3. BiLSTM (bidirectional LSTM with 256 units, and tanh activation function)
4. Attention (single layer feed-forward neural network with 128 units, and tanh

activation function)
5. Dense (fully connected layer with 128 units, and ReLU activation function)
6. Dense (fully connected layer with 1 unit, and sigmoid activation function)
7. Output (ON/OFF state)

To train an efficient binary classifier for a specific appliance in a sequence-to-
point model, the final layer of the model consists of a fully connected layer
followed by a sigmoid function, indicating the probability of the appliance being
in the "On" state. Assuming the output and its corresponding target values are
represented as ŷ and y respectively, the loss is computed using Binary Cross-
Entropy (BCE) loss which is calculated using the formula:

BCE(y, ŷ) = − 1

T

T∑
t=1

(y(t) · log(ŷ(t)) + (1− y(t)) · log(1− ŷ(t))) (2)

where T represents the total number of samples within one recording, t signifies
the index of a specific sample in the dataset ranging from 1 to T , y(t) is the true
label (ground truth) for the sample at a time t, and ŷ(t) represents the predicted
probability that the sample at time t belongs to class ON or OFF.

3.4 Energy disaggregation

Energy disaggregation aims to estimate the energy usage of individual appliances
based on the recordings of the mains power meter that measures the total energy
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consumption and the detected states provided by the binary classifier.
For this specific task of energy disaggregation, we trained another RNN with
attention mechanism model wich had the following architecture:

1. Input (sequence length L determined by the appliance duration)
2. BiLSTM (bidirectional LSTM with 128 units, and tanh activation function)
3. BiLSTM (bidirectional LSTM with 256 units, and tanh activation function)
4. Attention (single layer feed-forward neural network with 128 units, and tanh

activation function)
5. Dense (fully connected layer with 128 units, and ReLU activation function)
6. Dense (fully connected layer with 1 unit, and linear activation function)
7. Output (power consumption estimation)

The inputs are sequences of aggregate energy recordings x(t) and detected states
s(t) while the target values are sequences of appliance energy readings y. As-
suming an output and the corresponding target value are denoted as ŷ and y
respectively, the loss can then be calculated using Mean Squared Error (MSE):

MSE(y, ŷ) =
1

T

T∑
t=1

(y(t)− ŷ(t))2 (3)

where T represents the total number of samples within one recording, with t
serving as the index of a specific sample ranging from 1 to T . The MSE loss
quantifies the average squared difference between the true and predicted values
across all samples, providing a measure of how well the model is performing in
a regression task.

4 Experiments
4.1 Experimental Setup

Dataset and Performance Metrics The dataset used in this article is called
SmartSense developed in our lab for the purpose of this work. It comprises a com-
prehensive collection of data including energy consumption and environmental
sensor readings from the IRISA lab in France. These readings were recorded
at a low frequency, approximately every 10 seconds, over a period exceeding
three years. Notably, the dataset involves a wide range of data, including both
lab-level energy usage (aggregate recordings) and appliance-level energy usage
(appliance recordings) for more than 10 different types of appliances, in addition
to environmental sensors data such as humidity, CO2 level, temperature from
each office. For the purposes of this article, our focus is primarily on the energy
disaggregation of two specific appliance types: kettle and coffee maker as these
are the appliances most used across our lab’s break room. For more information
on the hardware, software, and details of the data collection process, please visit
the project’s official website1. The dataset files are easily accessible via this stor-
age space2. A summary of SmartSense features is shown in Table 1.
We quantitatively evaluate the performance of our proposed method with both
1 https://smartsense.inria.fr/
2 https://files.inria.fr/smartsense/

https://smartsense.inria.fr/
https://files.inria.fr/smartsense/
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Table 1: SmartSense dataset features.
Measurement
device

Data type Sampling
Rate

Duration Appliances

EcoCompteur global power
data

7.5 Hz coffee maker,
kettle, fridge

ZigBee meter indiv power data 100 mHz 3 years oven, light
Sensors node sensors data 1 Hz PC, printer

regression and classification metrics. To assess the performance of the regression
task, we adopt three standard metrics used in NILM, namely the mean absolute
error (MAE), Root Mean Squared Error (RMSE) and Normalized Disaggrega-
tion Error (NDE) [18]. The MAE and RMSE quantify the error in predicted
power at every time point, given by

MAE =
1

T

T∑
t=1

|y(t)− ŷ(t)| and RMSE =

√√√√ 1

T

T∑
t=1

|y(t)− ŷ(t)|2 (4)

where T represents the total number of samples within one recording, ŷ(t) de-
notes the predicted power at time t, and y(t) is the true power at time t. The
NDE metric measures the normalized error of the squared difference between
the prediction and the ground truth, defined as

NDE =

∑T
t=1(y(t)− ŷ(t))2∑T

i=1(y(t))
2

(5)

In order to measure how accurately each appliance is running in ON/OFF states,
we use classification metrics such as precision, recall and F1-score [19]. Due to
the extreme imbalance in the dataset, we will consider only the recall metric.
For instance, the kettle is only active for about 1% of the time. The F1 score is
interpreted as the harmonic average of precision (P ) and recall (R):

F1 =
2 · P ·R
P +R

, P =
TP

TP + FP
, R =

TP

TP + FN
(6)

where TP , FP , and FN stand for true positive, false positive, and false negative,
respectively. An appliance is considered "ON" when the active power is greater
than a certain threshold and "OFF" when it is less than or equal to the same
threshold. In our experiments, we employ a threshold of 20 Watts for labeling
the disaggregated loads. Precision, recall, and F1-score return a value between 0
and 1, where a higher number corresponds to better classification performance.

Data preprocessing The SmartSense dataset has different sampling rates
based on the collected data, as shown in table 1. As a result, resampling be-
comes necessary in the preparation of training data. To reduce the introduction
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of missing values due to resampling, a resampling rate of 10 seconds was im-
plemented. Furthermore, we addressed data gaps using forward-filling, assuming
that the gaps were caused by data transmission issues. Finally, each appliance
type, the aggregate, and the environmental sensors data were normalized by
subtracting mean values and dividing by the corresponding standard deviations.
The training phase is performed with a sliding window technique over the ag-
gregated signal, using overlapped windows of length L with hop size equal to 1
sample. As stated in reference [20], it is critical to ensure that the window size
for input and output pairs is large enough to cover the entire activation of an
appliance. However, it should not be too large to accommodate contributions
from other appliances.

4.2 Experimental Results

The dataset used in the following experiments covered a complete 30-day pe-
riod to ensure that the neural network was adequately characterized and not
over-trained. Subsequently, to mitigate over-fitting and validate the network’s
performance robustly, we partitioned the dataset into distinct subsets for train-
ing and testing, each encompassing 15 days. This division allowed us to assess
the network’s ability to generalize beyond the training data and to evaluate its
performance on unseen test data effectively. Throughout the training process, we
closely monitored both the training and validation loss curves to detect signs of
over-fitting and to adjust model parameters as necessary. This dataset includes
the overall power consumption as well as the particular power usage trends for
each appliance. We are primarily concerned with breaking down the power usage
of the most used appliances in the lab’ break room such as the kettle, and coffee
maker.
To evaluate our approach, we first implement the basic NILM pipeline which

(a) Confusion Matrix of coffee maker
states detection

Predicted Class

True Class OFF ON Support

OFF 99726 32464 132190
ON 141 1229 1370

Precision Recall F1 Score

OFF 1.00 0.90 0.86
ON 0.04 0.90 0.07

(b) Confusion Matrix of kettle states
detection

Predicted Class

True Class OFF ON Support

OFF 96221 36348 132569
ON 260 731 991

Precision Recall F1 Score

OFF 1.00 0.73 0.84
ON 0.02 0.72 0.04

Fig. 3: Confusion matrices for state detection from CO2, humidity, and temper-
ature data.

uses only the aggregate power data as input and a model based regression task.
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Table 2: Evaluation of disaggregation performance using basic NILM and our
proposed method (in bold)
Appliances RMSE MAE NDE

Kettle 103.14
69.82

12.02
5.2

0.96
0.65

Coffee maker 88.9
59.61

15.07
7.55

1.11
0.74

We choose to implement the RNN model with attention available in the toolkit
NILMTK[21] which is an adaptable software framework designed specifically for
NILM research. The architecture of this model is the same as the model de-
scribed in section 3.4.
Table 2 summarizes the outcomes of our experiments for both our approach
and the basic NILM pipeline. The table includes results for three metrics that
were calculated for each appliance separately. The values reported consist of the
predicted value of the target appliance consumption and the estimated consump-
tion. Tables 3a and 3b shown in figure 3 in present the results of the appliances
ON/OFF states detection by measuring the F1-score, the recall and precision.

21 15:40 21 15:50 21 16:00 21 16:10 21 16:20 21 16:30 21 16:40 21 16:50 21 17:00
Time

0

500

1000

1500

2000

po
we

r (
W

h)

Basic NILM
Proposed method
Ground Truth

Fig. 4: Comparison of kettle power consumption predictions between our pro-
posed method and the basic NILM approach.

According to table 2, our approach surpassed the conventional NILM disag-
gregation with an error decrease by 30% for RMSE and above 55% for MAE.
These results demonstrates that incorporating sensors data about the environ-
ment can enhance NILM disaggregation. As shown in Figure 4, the basic NILM
method produces false ON states detection when compared to the ground truth,
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while our approach accurately identifies the correct ON states. These results
demonstrate that incorporating an a-priori information on appliances states
can enhance NILM disaggregation performance.

5 Conclusion

This paper presents a new NILM approach for disaggregation energy data from
one smart meter and three environmental sensors (CO2, temperature and hu-
midity) into individual appliance-level. This approach is based on a two-steps
procedure: firstly, we detect the appliances ON/OFF states by training an RNN
attention as a binary classifier. Secondly, these predicted states as well as the
aggregated data are then fed to another RNN attention which acts as a disag-
gregator to estimate the individual power data.
Experimental evaluation on the SmarSense dataset shows good disaggregation
performance for the coffee maker and the kettle appliances. Overall, the proposed
method can accurately capture the dependencies between the appliance’s usage,
efficiently detect states appliances and estimate their corresponding power con-
sumption. Compared to existing DNNs approaches for NILM, the advantage of
the proposed approach comes from its ability to provide both appliance states
and power consumption values from environmental sensors and the total energy
data.
Future work should explore the model evaluation with a larger number of ap-
pliances such as printers and laptops as well as other environmental sensors
available in the SmartSense dataset like the audio and light sensors.
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