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Abstract

Non-Intrusive Load Monitoring (NILM) attempts to break down the aggregated electrical consumption signal into the power con-
sumption of each individual appliance, which can provide helpful understanding on energy consumption patterns and helps reduce
overall energy usage and costs. This paper proposes an occupancy-aided energy disaggregation approach to address the NILM
problem. Our methodology encompasses three key steps: firstly, features extraction from environmental sensors through the train-
ing of a DAE model; secondly, inference of occupancy information using the K-means algorithm; and finally, the disaggregation
process using a Recurrent Neural Network (RNN) model, incorporating the detected occupancy status alongside power data. Ex-
periments conducted on our real-world dataset demonstrate that our method significantly outperforms the state-of-the-art models
while having good generalization capacity, achieving roughly 40% Mean Absolute Error (MAE) gain and 30% Root Mean Squared
Error (RMSE) gain on a specific appliances disaggregation compared to the conventional NILM approach where only the power
data is used.
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1. Introduction

Enhancing energy efficiency is a significant challenge faced by modern households [1]. Smart grids, which can
precisely measure and monitor energy consumption at the household level, provide detailed data for understanding
user behavior patterns. By analyzing these patterns, effective strategies can be devised to enhance power efficiency [2].
Non-Intrusive Load Monitoring (NILM) is a critical aspect of this technology. It involves separating the aggregated
energy consumption signals from a household (typically collected by smart meters) into individual appliance-level
signals [3]. NILM serves not only to accurately decipher household power consumption patterns [4] but also supports
tasks like load forecasting [5] and malfunction detection [6].
A key component of optimizing energy consumption is the ability to comprehend and reliably predict human presence
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within a space. This is because it makes it possible to create intelligent systems that can dynamically adjust energy
usage based on occupancy data that is updated in real time.
By combining temperature, humidity, and CO2 sensors, occupancy detection can be seen from a variety of angles
and can accurately reflect the complex interactions between people and their surroundings. While temperature and
humidity variations add context and enable a more nuanced understanding of space utilization patterns, CO2 levels,
which are directly influenced by human respiration, serve as a direct indicator of occupancy. This all-encompassing
strategy adds to a thorough framework for energy disaggregation while also improving occupancy detection accuracy.
This paper seeks to clarify the possibilities of using sensor-based occupancy detection as a boost for better energy
disaggregation techniques by investigating these interrelated components. This work is opening the way to create in-
telligent energy management systems that can adjust in real-time, promoting a more sustainable and effective future
for building operations, by deepening our understanding of how human presence interacts with the interior environ-
ment.
In this paper, we argue that existing neural-based models are not sufficient to tackle the problem of NILM. These
models skip over an important step, which is to understand the environmental context and human behaviour, and in-
stead concentrate on translating aggregated input signals directly into per-appliance signals. Understanding contextual
information such as occupancy, activity patterns and environmental conditions can provide a deeper understanding of
the dynamics influencing energy consumption. Occupancy detection, as a key component of context awareness, pro-
vides crucial insights into when and where occupants are present, enabling more accurate disaggregation of energy
usage among different appliances and devices.
Our main contributions are three-fold (i) We introduce a novel approach which provide a wealth of a-priori knowledge
about the environmental conditions in order to enhance the disaggregation performance; (ii) Accordingly, we propose
to detect occupancy using CO2, temperature and humidity level data and then fed it to the energy disaggregation
algorithm (RNN with attention mechanism); (iii) Experimental results on our own real-world dataset show that our
method outperforms the state-of-the-art approaches.
The paper is organized as follows. In Section 2, we briefly present an overview of NILM DNN-based approaches
and occupancy detection methods as reported in the literature. Section 3 presents our proposed method for energy
disaggregation using occupancy information, while, Section 4 details the evaluation methodology. Finally, we analyse
the experiment results in Section 5.

2. Related works

In this section, we explore two distinct aspects of related research: (i) conventional energy disaggregation which use
only power data information and (ii) environmental-aware energy disaggregation, which makes use of environmental
factors air quality and occupant activity patterns.

2.1. Conventional energy disaggregation

Two decades ago, Hart proposed a non-intrusive method for disaggregating electrical measurements [3]. This
method involved examining the overall load data to identify power consumption signatures for individual appliances.
Unlike other approaches, Hart’s methodology did not require installing equipment inside the customer’s property. In-
stead, aggregated data for the building’s energy usage could be obtained externally from the main electrical panel. The
main objective of this process was to separate the whole-house energy data into its primary consumption components.
Non-Intrusive Load Monitoring (NILM) algorithms proved effective in achieving device-specific energy disaggrega-
tion using only aggregated data from a single measurement point. As a result, NILM remains an attractive approach
for energy disaggregation.
In literature, several techniques are commonly implemented for NILM approach. For instance, signal processing tech-
niques such as Fourier analysis, wavelet transforms, and filtering are used to extract features from the aggregated data
[7]. Machine learning algorithms such as Support Vector Machines (SVMs) [8] are employed to classify the extracted
features and identify the corresponding appliances. Probabilistic models such as Hidden Markov Models (HMMs)
[9] [10] and Bayesian Networks [11] are used to model the statistical dependencies between the appliances and im-
prove the accuracy of the disaggregation results. Lastly, some studies have also explored the user behavior patterns
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[12] to enhance the performance of NILM systems. Deep learning techniques, particularly deep neural networks,
have emerged as powerful tools for NILM owing to their capacity to automatically learn hierarchical representations
from raw data. Convolutional Neural Networks (CNN) [13], Recurrent Neural Networks (RNN) [14], and their vari-
ants [15] have demonstrated superior performance in load disaggregation tasks. Researchers have proposed various
architectures, such as sequence-to-point models [16], attention mechanisms [17], and generative adversarial networks
(GANs) [18], to enhance the accuracy and generalizability of deep learning-based NILM systems.

2.2. Environmental-aware energy disaggregation

Apart from the state data and appliance operational features, additional data can be used to enhance the preci-
sion of energy disaggregation, which is called environmental-aware energy disaggregation in this study. In a research
by [19], the location of appliances was included in the analysis to determine appliance-level energy consumption; this
resulted in improved energy disaggregation accuracy across multiple datasets via empirical validation. Additionally,
another method involved analyzing WiFi/Bluetooth signals obtained from wearables and smartphones belonging to
occupants in order to indirectly infer occupancy information. As further examples of incorporating information from
additional sensors, ElectroMagnetic Field (EMF) sensing [20] was used to identify changes in the condition of ap-
pliances. Separately, in [21], scientists placed inexpensive sensors next to domestic appliances and used the ambient
signals these sensors recorded to estimate how much power the appliances used. Furthermore, The authors in [22]
used the aggregated power consumption as a source of occupancy information. Their method tackles the problem of
indoor office occupancy detection based on statistical approaches. On the other hand, occupancy information [23] was
used to improve energy disaggregation performance. The authors first infer the occupancy states of the house based
on the analysis of collected aggregated power data. Then, by applying occupancy inference, they provide energy ap-
proximation for the appliances running in the unoccupied periods, and perform energy disaggregation using signal
processing techniques for the appliances working in occupied periods. As far as we know this is only work that use
occupancy-aided energy disaggregation. Compared with that, we propose to detect occupancy using additional infor-
mation such as CO2, temperature and humidity data and we use deep learning models in particular RNNs to perform
energy disaggregation.

3. Proposed Method

As shown in Fig 1 the proposed method consists of three-core components (i) features extraction, (ii) occupancy
detection and (iii) energy disaggregation.

3.1. Features Extraction

Environmental sensors in particular temperature, CO2 and humidity can indicate how spaces are being utilized,
identify patterns of occupancy, and optimize building operations accordingly. However, raw sensor data often contains
noise and redundancies, making it challenging to extract meaningful information directly. This is where techniques
like Denoising Autoencoders (DAEs) come into play. A DAE is a type of artificial neural network trained to learn
a compressed representation of input data by reconstructing it from a corrupted version. By training the DAE on
these sensors data, it learns to extract essential features that capture the underlying patterns and characteristics of
the environment. These features are then represented in a lower-dimensional latent space, which retains the most
relevant information while filtering out noise and redundancies. This latent space representation serves as a compact
and meaningful representation of the original sensor data. These extracted features are then be fed into occupancy
detection algorithms.

3.2. Occupancy Detection

Given the absence of occupancy ground truth, the K-means algorithm was applied to the extracted features vectors.
This algorithm requires specifying the number of clusters (k) beforehand. In occupancy detection case, this could
correspond to the number of different occupancy states or patterns that we aim to identify. Once the K-means algorithm
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Fig. 1. The proposed architecture of occupancy-aided energy disaggregation.

is run, it iteratively assigns each data point to the nearest cluster centroid based on some distance metric (often
Euclidean distance). Then, it recalculates the centroids of the clusters based on the mean of the data points assigned
to each cluster. After a certain number of iterations or until convergence, K-means produces a set of cluster centroids
representing distinct occupancy patterns within the building. These centroids can be interpreted as representative states
of occupancy, such as ”occupied,” and ”unoccupied.”

3.3. Energy disaggregation

In this paper, our focus lies in exploring the contribution of occupancy information on energy disaggregation. As
such, rather than developing novel disaggregation techniques, we opt to use existing approaches in particular RNN
with attention mechanism [24].
Energy disaggregation is the process of estimating energy usage for individual appliances. We achieve this by com-
bining readings from the mains power meter (which measures total energy consumption) with detected states from a
binary classifier. Our trained RNN model with attention consists of two BiLSTM layers that extract relevant features,
followed by an attention layer. Finally, two dense layers create high-level representations followed by a linear activa-
tion function, estimating the power consumption value of the each appliance.
The inputs are sequences of aggregate energy readings and detected states x while the target values are sequences of
appliance energy readings y. Assuming an output and the corresponding target value are denoted as ŷ and y respec-
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to each cluster. After a certain number of iterations or until convergence, K-means produces a set of cluster centroids
representing distinct occupancy patterns within the building. These centroids can be interpreted as representative states
of occupancy, such as ”occupied,” and ”unoccupied.”

3.3. Energy disaggregation

In this paper, our focus lies in exploring the contribution of occupancy information on energy disaggregation. As
such, rather than developing novel disaggregation techniques, we opt to use existing approaches in particular RNN
with attention mechanism [24].
Energy disaggregation is the process of estimating energy usage for individual appliances. We achieve this by com-
bining readings from the mains power meter (which measures total energy consumption) with detected states from a
binary classifier. Our trained RNN model with attention consists of two BiLSTM layers that extract relevant features,
followed by an attention layer. Finally, two dense layers create high-level representations followed by a linear activa-
tion function, estimating the power consumption value of the each appliance.
The inputs are sequences of aggregate energy readings and detected states x while the target values are sequences of
appliance energy readings y. Assuming an output and the corresponding target value are denoted as ŷ and y respec-
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Table 1. SmartSense dataset features.

Measurement device Data type Sampling
Rate

Duration Appliances

EcoCompteur global power data 7.5 Hz coffee maker, kettle, fridge
ZigBee meter individual power data 100 mHz 3 years oven, light
Sensors node sensors data 1 Hz PC, printer

tively, the loss can then be calculated using Mean Squared Error (MSE):

MSE(y, ŷ) =
1
T

T∑
t=1

(y(t) − ŷ(t))2 (1)

where T represents the total number of samples within one recording, with t serving as the index of a specific sample
ranging from 1 to T . The MSE loss quantifies the average squared difference between the true and predicted values
across all samples, providing a measure of how well the model is performing in a regression task.

4. Evaluation methodology

4.1. Dataset and Performance Metrics

The dataset used in this article is called SmartSense developed in our lab for the purpose of this work. It comprises
a comprehensive collection of data including energy consumption and environmental sensor readings from the IRISA
lab in France. These readings were recorded at a low frequency, approximately every 10 seconds, over a period exceed-
ing three years. Notably, the dataset involves a wide range of data, including both lab-level energy usage (aggregate
readings) and appliance-level energy usage (appliance readings) for more than 10 different types of appliances, in
addition to environmental sensors data such as humidity, CO2 level, temperature from each office. For the purposes of
this article, our focus is primarily on the energy disaggregation of three specific appliance types: kettle, coffee maker
and computer as these are the appliances most used across our lab and which need the human presence to be activated.
For more information on the hardware, software, and details of the data collection process, please visit the project’s
official website1. The dataset files are easily accessible via this storage space2. A summary of SmartSense features is
shown in Table 1.
We quantitatively evaluate the performance of our proposed method with both regression and classification metrics.

To assess the performance of the regression task, we adopt three standard metrics used in NILM, namely the Mean
Absolute Error (MAE), Root Mean Squared Error (RMSE) and Normalized Disaggregation Error (NDE) [25]. The
MAE and RMSE quantify the error in predicted power at every time point, given by

MAE =
1
T

T∑
t=1

|y(t) − ŷ(t)| and RMSE =

√√
1
T

T∑
t=1

|y(t) − ŷ(t)|2 (2)

where T represents the total number of time points, ŷ(t) denotes the predicted power at time t, and y(t) is the true
power at time t. The NDE metric measures the normalized error of the squared difference between the prediction and

1 https://smartsense.inria.fr/
2 https://files.inria.fr/smartsense/
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the ground truth, defined as

NDE =
∑T

t=1(y(t) − ŷ(t))2

∑T
i=1 y2(t)

(3)

In order to measure how accurately each space occupancy is detected, we use classification metrics such as precision,
recall and F1-score [26]. Due to the extreme imbalance in the dataset, we will consider only the recall metric. The F1
score is interpreted as the harmonic average of precision (P) and recall (R):

F1 =
2 × P × R

P + R
, P =

T P
T P + FP

, R =
T P

T P + FN
(4)

where T P, FP, and FN stand for true positive, false positive, and false negative, respectively. A space is considered
”Occupied” when the active power consumption of any appliance within it exceeds a certain threshold. It is labeled
”Unoccupied” when no active appliances are drawing power. In our experiments, we employ a threshold of 20 Watts
for labeling the disaggregated loads. Precision, recall, and F1-score return a value between 0 and 1, where a higher
number corresponds to better classification performance.

4.2. Data preprocessing

The SmartSense dataset has different sampling rates based on the collected data, as shown in table 1. As a result,
resampling becomes necessary in the preparation of training data. To reduce the introduction of missing values, a re-
sampling rate of 10 seconds was implemented. Furthermore, we addressed data gaps using forward-filling, assuming
that the gaps were caused by data transmission issues. Finally, each appliance type, the aggregate, and the environmen-
tal sensors data were normalized by subtracting mean values and dividing by the corresponding standard deviations.
The training phase is performed with a sliding window technique over the input data, using overlapped windows of
length L with hop size equal to 1 sample. As stated in reference [27], it is critical to ensure that the window size for
input and output pairs is large enough to cover the entire activation of an appliance. However, it should not be too
large to accommodate contributions from other appliances.

5. Results

The dataset used in the following experiments covered a full 30-day period. It was then divided into separate subsets
for training and testing, each lasting 15 days. This dataset includes the overall power consumption as well as the
particular power usage trends for each appliance. The global power includes at the same time the power consumption
of 18 appliances: 9 computers, 1 video projector, 1 printer, 2 coffee maker, 1 kettle, 1 fridge, 1 TV, 1 microwave and 1
oven. We are primarily concerned with breaking down the power usage of the most used appliances in the lab’ break
room such as the kettle and the coffee maker as well as the computer.
Table 3 summarizes the outcomes of our experiments for both our approach and the basic NILM pipeline. The table
includes results for three metrics that were calculated for each appliance separately. The values reported consist of
the predicted value of the target appliance consumption and the estimated consumption. Due to the lack of occupancy
ground truth labels, we provide in Table 2 the confusion matrix report for occupancy detection in both the lab’s break
room and an office room. This report evaluates the F1-score, recall, and precision, comparing the predicted occupancy
states with the appliance states in each room. Specifically, the office room’s evaluation considers the computer as the
indicator of occupancy, while for the lab’s break room, the kettle and coffee maker serve as occupancy indicators.
The results indicate highly accurate occupancy detection in the office room, achieving a recall rate of approximately
95%. Conversely, the detection performance is slightly lower for the lab’s break room, with an 85% recall rate.
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the ground truth, defined as

NDE =
∑T

t=1(y(t) − ŷ(t))2

∑T
i=1 y2(t)

(3)

In order to measure how accurately each space occupancy is detected, we use classification metrics such as precision,
recall and F1-score [26]. Due to the extreme imbalance in the dataset, we will consider only the recall metric. The F1
score is interpreted as the harmonic average of precision (P) and recall (R):

F1 =
2 × P × R

P + R
, P =

T P
T P + FP

, R =
T P

T P + FN
(4)

where T P, FP, and FN stand for true positive, false positive, and false negative, respectively. A space is considered
”Occupied” when the active power consumption of any appliance within it exceeds a certain threshold. It is labeled
”Unoccupied” when no active appliances are drawing power. In our experiments, we employ a threshold of 20 Watts
for labeling the disaggregated loads. Precision, recall, and F1-score return a value between 0 and 1, where a higher
number corresponds to better classification performance.

4.2. Data preprocessing

The SmartSense dataset has different sampling rates based on the collected data, as shown in table 1. As a result,
resampling becomes necessary in the preparation of training data. To reduce the introduction of missing values, a re-
sampling rate of 10 seconds was implemented. Furthermore, we addressed data gaps using forward-filling, assuming
that the gaps were caused by data transmission issues. Finally, each appliance type, the aggregate, and the environmen-
tal sensors data were normalized by subtracting mean values and dividing by the corresponding standard deviations.
The training phase is performed with a sliding window technique over the input data, using overlapped windows of
length L with hop size equal to 1 sample. As stated in reference [27], it is critical to ensure that the window size for
input and output pairs is large enough to cover the entire activation of an appliance. However, it should not be too
large to accommodate contributions from other appliances.

5. Results

The dataset used in the following experiments covered a full 30-day period. It was then divided into separate subsets
for training and testing, each lasting 15 days. This dataset includes the overall power consumption as well as the
particular power usage trends for each appliance. The global power includes at the same time the power consumption
of 18 appliances: 9 computers, 1 video projector, 1 printer, 2 coffee maker, 1 kettle, 1 fridge, 1 TV, 1 microwave and 1
oven. We are primarily concerned with breaking down the power usage of the most used appliances in the lab’ break
room such as the kettle and the coffee maker as well as the computer.
Table 3 summarizes the outcomes of our experiments for both our approach and the basic NILM pipeline. The table
includes results for three metrics that were calculated for each appliance separately. The values reported consist of
the predicted value of the target appliance consumption and the estimated consumption. Due to the lack of occupancy
ground truth labels, we provide in Table 2 the confusion matrix report for occupancy detection in both the lab’s break
room and an office room. This report evaluates the F1-score, recall, and precision, comparing the predicted occupancy
states with the appliance states in each room. Specifically, the office room’s evaluation considers the computer as the
indicator of occupancy, while for the lab’s break room, the kettle and coffee maker serve as occupancy indicators.
The results indicate highly accurate occupancy detection in the office room, achieving a recall rate of approximately
95%. Conversely, the detection performance is slightly lower for the lab’s break room, with an 85% recall rate.
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For instance, Fig 2 shows a visualization of the detected occupancy of the office room.

Table 2. Confusion Matrix report of occupancy states detection from CO2, Temperature and Humidity data

Appliance State Precision Recall F1 Score Support

Kettle OFF 1.00 0.60 0.75 140986
ON 0.02 0.83 0.03 1214

Coffee maker OFF 1.00 0.60 0.75 140859
ON 0.02 0.89 0.04 1341

Computer OFF 0.98 0.99 0.99 107672
ON 0.96 0.94 0.95 34528
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Fig. 2. Visualization of the detected occupancy of the office room.

Table 3. Evaluation of disaggregation performance of basic NILM and our proposed method (in bold)

Appliances RMSE MAE NDE

Kettle
110.11
108.3

14.72
11.68

0.96
0.77

Coffee maker
88.9
79.73

15.07
12.54

1.11
1.03

Computer
30.54
21.67

16.69
8.85

0.96
0.65

According to the performance metrics outlined in Table 3, our approach exhibits significant improvements over
conventional NILM disaggregation, particularly evident in the case of computer appliance usage, where we observe a
noteworthy 30% reduction in RMSE, NDE, and over 40% decrease in MAE. On the other hand, the improvements for
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the kettle and coffee maker appliances are more modest. This disparity can be attributed to the fact that while these
appliances require the user’s presence for operation, they don’t necessarily need continuous presence throughout their
activation duration. Therefore, the influence of incorporating space occupancy information may have been less pro-
nounced for these appliances.
Nonetheless, the overall findings indicate the efficacy of integrating space occupancy information into NILM disaggre-
gation methodologies, affirming its potential to substantially enhance performance across various appliance categories.

6. Conclusion

This paper presents a novel approach or addressing the energy disaggregation challenge, which aims to breakdown
smart meter data into individual appliance-level usage. Our approach is based on a two-step procedure: firstly, we use
environmental sensor data, such as CO2, temperature, and humidity readings, to detect occupancy space states (oc-
cupied/unoccupied). Given the absence of occupancy ground truth, we employ for this task an unsupervised learning
techniques, specifically the K-means algorithm. Secondly, these predicted occupancy states as well as the aggregated
data are then fed to an RNN attention which acts as a disaggregator to estimate the individual power data.
Experimental evaluation on the SmartSense dataset shows good disaggregation performance. Overall, the proposed
method can accurately capture the dependencies between the appliance’s usage, efficiently detect occupancy states
related to the use of some appliances and estimate their corresponding power consumption. Compared to existing
DNNs approaches for NILM, the advantage of the proposed approach comes from its ability to provide an a-priori
knowledge on users presence which enhance the probability of using the appliances in the space room.
Future work should investigate others sensors type such as the audio and light sensors which can increase the occu-
pancy detection.
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