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LOCAL DECAY AND ASYMPTOTIC PROFILE FOR THE DAMPED
WAVE EQUATION IN THE ASYMPTOTICALLY EUCLIDEAN
SETTING

R. FAHS AND J. ROYER

ABSTRACT. We prove local decay estimates for the wave equation in the asymptot-
ically Euclidean setting. In even dimensions we go beyond the optimal decay by
providing the large time asymptotic profile, given by a solution of the free wave equa-
tion. In odd dimensions, we improve the best known estimates. In particular, we get
a decay rate that is better than what would be the optimal decay in even dimensions.
The analysis mainly relies on a comparison of the corresponding resolvent with the
resolvent of the free problem for low frequencies. Moreover, all the results hold for the
damped wave equation with short range absorption index.

1. INTRODUCTION

We consider on RY, d > 3, the (possibly damped) wave equation

{agu + Pu+a(z)ou=0, onRy xR (1.1)

(’U,, alfu)|t:0 = (f) 9)7 on Rda

where (f,g) € H' x L%, the operator P is a general Laplace operator on R?, close to the
free Laplacian at infinity, and the absorption index a(x) is small at infinity.
More precisely, P is of the form
1
w(z)
where the density w(z) and the symmetric matrix G(x) are smooth and uniformly
positive functions: there exist C, C,, > 1 such that, for all 2 € R? and ¢ € R?,

CHl €] < {G(2)€,Epa < O |7 and Oy < w(z) < Cy. (1.3)

We assume that P is associated to a long range perturbation of the flat metric. This
means that G(z) and w(z) are long range perturbations of Id and 1, respectively, in the
sense that for some pg €]0,1] there exist constants C,, > 0, o € N¢, such that for all
zeRY,

P=_

divG(z2)V, (1.2)

|0%(G () — Id)| + [0%(w(z) — 1)| < Cy (z) 071 (1.4)

Here and everywhere below, we use the standard notation (z) = (1 + |x|2)% We also
denote by Ag the Laplace operator in divergence form corresponding to G:

Ag =divG(z)V.

This definition of P includes in particular the cases of the free Laplacian, a Laplacian
in divergence form, or a Laplace-Beltrami operator. We recall that the Laplace-Beltrami
operator associated to a metric g = (g;r)1<jk<d 1S given by

d

1 0 1 0
Py=-— Y lg@)? ¢ (z) s,
9(x)|2 ;52 0% Ok

NI
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2 R. FAHS AND J. ROYER

where |g(z)| = |det(g(x))| and (¢/*(x))1<jr<a = g(x)~. Then Py is of the form (1.2)

with w = |g|% and G = |g|% g L.

On the other hand, the absorption index a(x) is smooth, bounded, takes non-negative
values, and is of short range: there exist C, > 0, a € N¢, such that, for all z € R%,

0%a(z)| < Cy (a) "t mPom ol (1.5)

In particular, a can be identically 0, so our setting includes the undamped wave equation.

The solution of the wave equation is explicit for the free case

{6t2u0 — Aug =0, on R, x R?, (1.6)

(uﬂa atUO)‘t:O = (f07 gO)v on Rd7
see for instance [Eva98, CH89]. In particular, if the dimension d is odd, the wave
propagates at speed 1 (this is the strong Huygens Principle). Then, given R > 0 and
(fo, go) supported in the ball B(R) of radius R, the solution ug of (1.6) vanishes on the

ball B(R) for any time ¢t > 2R. The situation is different in even dimension, but the
wave still escapes to infinity. More precisely, we have the estimate

[uo(t) ||L2(B(R)) S <75>7d Hf0HL2(B(R)) + <t>lid ||90HL2(B(R)) . (1.7)
We can separate the contribution of fp and gg by writing

up(t) = cos(tv/—A) fo + sin(t\/@gm (1.8)

and then we have

—d
feos(tv=B)fo| o S 07 ol oy (1.9)
and
Sil’l(t —A) 1—d
e < O Lol 2aemy - (1.10)
V—A L2(B(R)) L2(B(R))

Moreover, as observed in [BB21], these estimates are optimal if the integral of fy (re-
spectively gg) is not 0.

Finally, we recall that in dimension 1, the solution of the free wave equation is given
by the d’Alembert formula

uo(t,x) = + - go(s)ds.

2 2

folx +1t) + fo(z — 1) 1J‘”t

r—t

We easily see that if fp and gg are supported in | — R, R[ then for ¢ > 2R, the first term
vanishes in | — R, R[ (as in any odd dimension), while the second term is equal to a
constant (half of the integral of gp).

Our purpose in this paper is to prove such local decay estimates for the solution of
the perturbed wave equation (1.1).

We will work from a spectral point of view, and study this time-dependent problem
with a frequency-dependent analysis. In particular, it is well known that the contribu-
tions of high and low frequencies play very different roles.

A high frequency, a wave propagates along the classical trajectories. In our setting,
we set on R?? ~ T*R?

p(z,€) = w(x) ' {G(2)§, E)pa -
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The classical rays of light are the solutions of the corresponding Hamiltonian problem

I’l(t, anéO) = afp(x(tv x07£0)7§(t;$07§0))7
&' (t;0,&0) = —0up(x(t; w0, &0), £(; w0, &0)),
(2,€)(0;20,&0) = (0, &o)-

For example, if P is the Laplace-Beltrami operator Py, then the rays of light are the
geodesics of the metric g. The geometry of these rays of light plays an important role
for the analysis of high frequencies.

The behavior of the contribution of low frequencies is completely different. Geometry
does not play any particular role, but the setting at infinity is crucial. In particular, the
fact that our problem looks like the free wave equation at infinity (in the sense given
by Assumptions (1.4) and (1.5)) will be important. This is even more important given
that the rate for local decay is limited by the contribution of low frequencies.

This question of local decay has a long history for the wave and Schrodinger equations.

The first results are about the undamped wave equation. We refer for instance to
[Mor61], where a multiplier method is used for the free wave outside a star-shaped
obstacle in dimension 3. Then exponential decay is proved in [LMP63] via an analysis
of the corresponding semigroup. See also [LP62, LP72, LP89).

We have said that the contribution of high frequencies follows the classical rays of
light. Without damping, it is then natural that waves escape to infinity if these rays
of light do. The following non-trapping condition is then very important for the local
decay of the undamped wave equation:

V(zo,&) e p ({1}),  |a(t; 2o, &) T (1.11)
It is proved in [Ral69] that this non-trapping condition is necessary to have uniform
local energy decay. Local energy decay outside non-trapping obstacles is considered in
[Mor75, Str75, MRS77].

In [Vai75], the properties of the time-dependent problem are deduced from the analysis
of the stationary problem. Another important step is the analysis of [Mel79], based on
the propagation of singularities of [MS78]. See also [Kaw93, Vod99]. We also refer to
[Bur98] for the logarithmic decay (with loss of regularity) outside any (in particular,
trapping) compact smooth obstacle.

The recent papers deal simultaneously with the local decay for the Schrodinger and
wave equations, which are now similar from this spectral point of view. We refer to
[Boulla, BH12| for estimates with an e-loss on an asymptotically Euclidean setting.
The e-loss has finally been removed in [BB21]. The method does not see the parity of
the dimension, so this final result is optimal for Schrodinger or for the wave in even
dimension, but not for the wave in odd dimension. However, a better result is obtained
in [BH13] when the metric goes faster to the flat metric at infinity. In these works,
the main contribution is the analysis of low frequency resolvent estimates (see also
[Wan06, DS09, Boullb, BH10]).

High frequency resolvent estimates were already understood for the Schrodinger op-
erator in close settings. See, for instance, [RT87, Rob92, Bur02].

Here, we also consider the damped wave equation. Stabilization of the wave equa-
tion also has a long history on compact domains. In particular, it is known that the
global energy decays uniformly (hence exponentially) under the Geometric Control Con-
ditions (all the classical trajectories go through the damping region), and we get weaker
results with loss of regularity when this condition is not satisfied. See, for instance,
[RT74, BLR92, Leb96, LR97, BHO7, Chr07, LL17, BG20].
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In unbounded domains we have additional difficulties, in particular due to the contri-
bution of low frequencies.

For the damped wave equation on an unbounded domain, the size of the solution on a
compact now has two reasons to decay. Either because it escapes to infinity, or because
it is dissipated. The expected corresponding condition on classical trajectories is that
they should all escape to infinity or go through the damping region. This means that
we can allow trapped trajectories if they are damped. We set

Qp — {(:m,so) e (1) + supla(tian. &) < +oo}.

Then the condition on classical trajectories reads
V(.’L’o, &)) € Qb, dt e R, a(a;(t, xo, &))) > 0. (1.12)

We refer to [AK02] for the damped wave equation in odd dimensions, in an exterior
domain, and with a compactly supported damping, and to [Khe03] for even dimensions.
The damped wave equation in the asymptotically Euclidean setting has been studied in
[Roy10, BR14, Roy18], where the local energy decay with e-loss has been obtained.

The present work improves the results of [BR14, Roy18] about the damped wave
equation, and also the sharp estimates of [BB21] for the undamped case. More precisely,
in a general setting including the damped case, we go beyond the optimal estimate of
[BB21]. For this, as is done in [Roy24] for the Schrodinger equation, we estimate the
difference between the solution u(t) of (1.1) and a solution ug(t) of the free wave equation
(1.6). We prove that this difference decays faster than the rates given by (1.9)-(1.10).

To state the main result of this paper, we introduce some notation. Instead of con-
sidering compactly supported solutions and estimating the solution in a compact, we
work in weighted spaces. For § € R, we set L2 = L2((z)? dz) and we denote by H'0
the corresponding Sobolev space, with norm defined by

2 2 2
lulzs = IVulLzzs + [ulz2s -

Our results rely on the damping condition (1.12), saying that all the geodesics go through
the damping region or go to infinity. We recall that py €]0, 1] measures the decay to the
free setting in (1.4) and (1.5).

Theorem 1.1. Assume that the damping condition (1.12) holds. Let p; €]0, po[ and
0>d+ % There exists C > 0 such that for f € HY®, ge L*% and t = 0, we have

[u(t) = wo(®)pa-s < C{OT | flgus + C O af + gl 2a

where u is the solution of the damped wave equation (1.1) and ug is the solution (1.8)
of the free wave equation (1.6) with initial condition

(fo.90) = (wf,awf + wg).

With this result, we generalize in particular the optimal estimates of [BB21] to the
undamped wave equation.

Theorem 1.2. Assume that d is even and that the damping condition (1.12) holds. Let
R > 0. Then there exists C > 0 such that for f € H' and g € L? supported in B(R) we
have, for all t = 0,

lu®)l z2aery < C O 1w + C O af + gl 12,

where u is the solution of the damped wave equation (1.1). Moreover, the estimate is
optimal if d is even and (g fdz # 0 or §za(af + g)dz # 0.
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The conclusions of Theorem 1.1 are different in even and odd dimensions. In even
dimension, it proves that u(t) is equal to ug(¢) up to a smaller rest. This not only means
that u(t) decays exactly like ug(t) (as stated in Theorem 1.2, which is already known in
the undamped case but new with damping) but also gives the leading term for the large
time asymptotic expansion of u(t) in weighted spaces: u(t) looks like uy(t) on compacts
for large time.

In odd dimension, the situation is different, since the solution of the free problem
decays very fast. In this case, we do not get the asymptotic profile of the solution u(t)
but we improve the local decay. Even if we do not get an optimal result, going beyond
the t'=9/t=7 rate of decay is a very important improvement. Indeed, the best results
about local decay are based on the Mourre commutators method (see Section 6 below),
which does not see the parity of the dimension. Thus, even in odd dimension, it cannot
give a result better than what is the optimal decay in even dimension. Here, we will use
the same commutators method, but by comparing the solution with the solution of the
free wave equation, we reintroduce a difference between odd and even dimensions. This
gives the following result for odd dimensions.

Theorem 1.3. Assume that d is odd and that the damping condition (1.12) holds. Let
p1 €]0, po[ and R > 0. There exists C > 0 such that for f € H* and g € L* supported in
B(R) we have, for allt >0,

[ 2y < C O™ [l +C B gl 2,
where u is the solution of the damped wave equation (1.1).

Notice, however, that for the undamped wave equation, if G — Id decays fast enough
at infinity, it is proved in [BH13] that the time decay for the local energy improves with
the spatial decay rate toward the free metric. More precisely, for any pg,e > 0, the lo-
cal energy decays like t~7° if the metric converges like |z|™” 0=27¢ toward the Euclidean
metric. We use a much weaker assumption in this paper.

Theorem 1.1 will be proved from a spectral point of view. Given u > 0, we can write

1

u(t) = — e " R(2)(awf — izwf + wg) dz, (1.13)
27 Jim(z)=n
where for Im(z) > 0, we have set
R(z) = (- Ag — izaw — zgw)fl. (1.14)

Due to the (growing) exponential factor in (1.13), our purpose is to prove estimates for
the right-hand side that are uniform in g > 0, and to let u go to 0. Moreover, since we
want to prove time decay for u(t), we have to estimate the derivatives of the integrand
in the right-hand side of (1.13).

This implies that we have to prove estimates for R(z) and its derivatives near the real
axis in weighted spaces (limiting absorption principle). See details in Section 2. The
main difficulties are due to the contribution of high frequencies (for z large) and low
frequencies (for z near 0).

For high frequencies, we have the following estimates (see [BR14, Th. 1.5]).

Theorem 1.4. Assume that the damping condition (1.12) holds. Let n € N and § >
n+ 3. Let 79 > 0. There exists ¢ > 0 such that for = € C with |[Re(z)| > 79 and
Im(z) > 0, we have
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With Theorem 1.4, we will check that the contribution of high frequencies decays very
fast. As said above, the rate of decay for the local decay is governed by the contribution
of low frequencies. This is the main issue of this paper.

Since our purpose is to compare the solution of the perturbed wave equation with a
solution of the free problem, we compare R(z) with

Ro(2) = (—A — 2*)71 (1.15)
The main part of this paper will be the proof of the following low frequency estimates.

Theorem 1.5. Let p; €]0,po[. Let n € N and § > n+ 3. There exists C > 0 such that
for z € C with |z| <1 and Im(z) > 0, we have

(@™ (BG) - B @) @77, < Ol
L(L?)
As for the time decay problem, this result gives the optimal resolvent estimate in even
dimensions and improves the best estimates in odd dimensions.

Corollary 1.6. Letne N and 6 > n + % There exists C > 0 such that for z € C with
|z| <1 and Im(z) > 0, we have
-6 p(n) = min(d—n—2,0)
@) RVG) @), <Ol .
Corollary 1.7. Let p1 €]0, po[. Assume that d is odd. Let n € N and R > 0. There
exists C' > 0 such that for z € C with |z] <1 and Im(z) > 0, we have
1 RM™ ()1 H < O |p|min(d+p1—n=20)
L5 R ) amy| ) < O

Plan of the paper. The paper is organized as follows. In Section 2, we give some basic
properties for the resolvent R(z) and we derive the local decay stated in Theorem 1.1
from the resolvent estimates of Theorems 1.4 and 1.5. Then, it remains to prove Theorem
1.5. In Section 3, we outline the strategy of the proof, assuming some intermediate
results. These results are proved in the remaining sections. In Section 4, we show
how the decay of the coefficients at infinity (see (1.4) and (1.5)) and the weights (z)~°
provide smallness for low frequencies, and in Section 5 we combine this observation with
the elliptic regularity of R(z) to prove some resolvent estimates. Finally, in Section 6,
we recall the Mourre method and use it to prove estimates for R(z) when z is close to
the real axis.

2. FROM RESOLVENT ESTIMATES TO TIME DECAY

In this section, we check that the resolvent R(z) (introduced in (1.14)) is well defined
and we show how we can deduce Theorem 1.1 from Theorems 1.4 and 1.5. By density,
it is enough to prove the estimates of f and g in the Schwartz space S.

We set
C* ={2zeC : +Re(z) >0}, Ci={zeC : £lm(z) >0}.
We say that an operator T" on a Hilbert space H is accretive (resp. dissipative) if
Vo € Dom(T), Re(Tp,py; =0 (resp. Im{Tp, ), <0).

Moreover, T' is maximal accretive (resp. maximal dissipative) if some (hence any) z € C~
(resp. z € C;) belongs to the resolvent set of T'.

For z € C, we consider on L? the operators
P(2) = (—Ag —izaw — 2*w), Py(z) = (—A — 2%), (2.1)

with domain Dom(P(z)) = Dom(Py(z)) = H?. They can also be seen as bounded
operators from H'! to its dual H~ 1.
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Proposition 2.1. Let ze C,.

(i) The operator P(z) is boundedly invertible and R(z) —see (1.14)~ is a well defined
bounded operator on L?.
(ii) We have R(2)* = R(—%).
(iii) The resolvent R(z) extends to a bounded operator from H*™' to H*™' for any
seR.

Proof. Let ¥, = arg(—iz) € | — Z,Z[. By (1.3), there exists ¢y > 0 such that for all
ue H!

l;_}@gﬁffﬁzp(z)u, w) (2.2)
= cos(9,) (GVu, Vuy o + | 2| lawu, u) ;s + cos(V,) |2 (wu, ud ;s
> ¢ ul 7 -
By the Lax-Milgram Theorem, this implies that e~*Yz P(z) and hence P(z) define bound-
edly invertible operators from H! to H~1. Then R(z) is well defined as an operator from
H~! from H'. By elliptic regularity, it can also be seen as a bounded operator from

L? to H?. More generally, by elliptic regularity, duality and interpolation, it defines a
bounded operator from H*~! to H**! for any s € R. Finally, we have

P(2)* = —Ag + izaw — 22w = P(—%),
so R(z)* = R(—Z2). O
Next, we recall that (1.1) is well posed. We set 5# = H! x L? and we define on 7

the operator

(0 w! _ g2 1
W<AG —a)’ Dom(W) = H* x H".

Proposition 2.2. The operator W generates a C°-semigroup on 5. Moreover, for
€ > 0 there exists M. > 0 such that for all t = 0, we have

”6%”5(,%) < Mee.

Proof. Let v = 2¢/|w™"?||f». We consider on .7 the norm Il 4, defined by
[(u,0) 5, = (GVu, Vuy o + v [ullfz + (w v, 0),,, (u,0) € 2.
It is equivalent to the usual norm on J#. For U = (u,v) € Dom(W), we have
WU, U>_%o’l, = <GV(w_1v), Vu>L2 + 12 <w_1v, u>L2
+ <w_1AGu, v>L2 — <aw_1v, ’U>L2 ,

SO
A A

ReOWU,U) ., < V*Re{w 'v,u),, < 5

(1/2 ||u||%2 + <w_1v,v>L2 )
<elUl., -

This proves that —(W — ¢) is accretive on (I, || 4 ,,)-
Now for ¢ € C™ we can check that the operator
R (C) _ —R(ZC)(CLUJ + C’LU) _R(ZC)
W w — wR(i¢)(Caw + *w)  —CwR(iC)
is bounded on 7, with Ran(Rw(¢)) = Dom(W). Moreover, R (¢)(W — () = Idpom(w)
and (W — )Rw(¢) = Id». This proves that ( € p(W), and in particular, —(W — ¢)
is maximal accretive on (J, ||, ). By the Lumer-Phillips Theorem, it generates a

contractions semigroup on (47, || ,,,). And by equivalence of the norms, there exists
M > 0 such that
V>0, [0V < M.
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The conclusion follows. O
Proposition 2.2 ensures that for F' = (f, g) € 5 the Cauchy problem

QU(t) =WU(t), t=0,
{U 0 - F (2.3)

has a solution U € C°(R, ; ##). If moreover F' € Dom(W), then U € C°(R,; Dom(W)) N
CL(R,, ). Denoting by u the first component of U (the second being then wd;u), we
get in particular the following well-posedness result. We recall that by density it will be
enough to work with (f,g) e S x S.

Corollary 2.3. For (f,g) € SxS the problem (1.1) has a unique solutionu € C°(R, H?)n
CYR4, HY) n C*(R4, L?). Moreover, for e > 0 there exists C. > 0 such that

V=0, Ju(t)|fn + |owu(t)|7: < C2=(f 13 + lglz2).

We now turn to the proof of the estimates of Theorem 1.1. Let (f,g) € S x S and let
u be the solution of (1.1). Let x € C*(RR;[0,1]) be equal to 0 on | — o0, 1] and equal to
1 on [2,400[. For > 0 and ¢t € R we set
Uyu(t) = x(t)e Hu(t).
By Corollary 2.3, this defines a function in S(R; L?). By Fourier transform, for all ¢t € R

we can write 1

Uy u(t) = o fR e_itTUx,u(T) dr,
where, for 7 € R,
Uy u(T) = f ey, (t)dt, YT eR. (2.4)
Given 7 € R, we write z for 7 + i,uRe C4. Then we have
P(2)vyu(T) = Fy 2

where

e (awy'(t) + 2wx/(t) 0 + wx” () u(t) dt

;1
w
I
= ?

= J e (awy'(t) — 2izwx/(t) — wx" (t))u(t) dt.

Ee

Finally, for ¢ > 2,

1 .

u(t) = euy ,(t) = f e " R(2)F, . dr.
9. 27_(_ R b

Now we separate the contributions of low and high frequencies. For this, we consider
¢ € C*(R;[0,1]) supported in | — 2,2[ and equal to 1 on a neighborhood of [—1,1].
Then for t > 2, we set

1 —itz
to®) = 5 | )T RP -,
and

1 .
tngnsnt) = 5= [ (1= )P RE:) Py

For § € R, we set # = H x L9 We have the following result of propagation at
finite speed.

Proposition 2.4. Let 6 = 0 and T' > 0. There exists Cr5 > 0 such that for F' =
(f,g) € #° and t € [0,T], we have

[u@l 26 < Crs [ Fl s

where w is the solution of (1.1).
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Proof. ¢ We set v = max (C(;,Cw) > 1, where Cg and Cy, are the constants which
appear in (1.3). First assume that F' is supported in the ball B(R) for some radius
R > 0. We have

d

" ((GVu(t), Vu(t)) + w|0u(t)]” ) dz
R4\ B(R+t)

J Re((GVu(t), Voru(t)) + wotu(t)dru(®)) d
R4\ B(R4+1)

. f ((GVu(t), Vu(t)) + w [du(t)]? ) do(z).
|x|=R+~t
Since

IRe f ((GVu(t), Voru(t)) + wetu(t)dru(D)) da
R4\ B(R+t)

_ _9Re f aw |du(t)? dz — 2Ref L (GVu®) Gl do(z)
R4\ B(R+~t) || =R+t |z|

< f (<GG%Vu(t), G%Vu(t» + \@u(t)]Q) do(x)
|z|=R+~t

< ’yf ((GVu(t), Vu(t)) + w |Opu(t)|? ) do(z),
|z|=R+~t

we get
d

— ((GVu(t), Vu(t)y + w |dpu(t))* ) dz < 0.
dt Jra\B(R+1)

Then

f ((GVu(t), Vu(®)) + w|ru(®)]?) dz = 0

RANB(R+t)

for all t = 0, since this is the case for ¢ = 0 by assumption. We deduce that the solution
u(t) itself vanishes outside B(R + 7t).
e Now we consider a general F' € #°. We set Cy = {zeR?: |z| <2yT} and C, =
{z eR? : 2"yT < |z| < 2""14T} for n € N*. We consider x € CF(R% [0, 1]) equal to 1
on B(2+T) and supported in B(3yT'). Then, for n € N*, we consider x,, :  — x(27 "),
and we denote by u, the solution of (1.1) with initial condition (1 — x,,)F. Let n > 2.
By propagation at finite speed, since (u — u,,_2)(0) is supported in B(3-2"~24T), then
u(t) coincides with wu,_2(t) on C,, for any ¢ € [0,T]. Then, by Corollary 2.3, we have for
te[0,T] and n = 2

lu®) 72,y = lun—2(D)2c,) S 11 =x0-2)FI5 £ X5 1FIincxrain -

k>n—1
Moreover, |u(t)]12couey) S [u@)] < [F] 4, so
2 s 2
Ju®) 2 < D, 220 Ju(t) |22,
neN
2 5 2
< [Fl% + Z 22(n+1) Z IE Ve )< 22 (ch)
n=2 k=>n—1
2 5 —2k6 | 2
SIFI%e + D, 22000 Y 27 P s e r2sen)
n=2 k>n—1
2 —2k6 | |2 5
SIFIZ + X 27 | Flnscyxresey 2, 2209
keN* n<k+1
2
S IS5 -

The proof is complete. O
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For the contribution of high frequencies we have the following estimate.

Proposition 2.5. Letne N and § > n+ % There exists C > 0 independent of f,g€ S
such that for all p >0 and t > 1, we have

lthighoys ) 12— < Ce™t (|l gns + gl 25 ).

Proof. As above, we write z for 7 + iu, 7 € R. By integrations by parts, we have

. f 3 (1 — @) (1) R(2) Fy.) dr.
R

T or

This can be written as a sum of terms of the form

1 —itz n n n,
Tommann(®) = 5= || (1= 6 (RO Fy

where ny + no + ng = n. For such a term we have, by Theorem 1.4,

(it)nuhigh,x,u (t)

1
2
By s Ollss < [ 117 10 Falon dr 5 0 ( [ 1020l ar)
[T]=1 R

By the Plancherel Theorem and Proposition 2.4,

jR o5 Fy s dr < J N0 dt < T + ol
<t

The conclusion follows. O

It was convenient for the contribution of high frequencies to introduce the cut-off
function x(t). Then the initial condition was somehow replaced by a quantity F, . which
depends on the values of the solution for ¢ < 2. However, to get a precise asymptotic
profile, it is now simpler to really work with f and g. Then we set

F, = (aw — izw) f + wg.

Notice that we formally recover F, from F) . with x replaced by 1g, . In particular, we
have

oo
P(2)v, (1) = F;, where v,(7)= J eTe My (t) dt. (2.5)
0
Then we set

tout) = 57 | #(r) R P dr,

We check that the difference between tujow,y,u(t) and ujow,,(t) is irrelevant for our
purpose.

Proposition 2.6. Let m € N. There exists C > 0 independent of f,g € S such that for
all p >0 and t = 2, we have

Hulow,x,u(t) - ulow,,u(t>HL2 < Ce't <t>_m ( HfHHl + HgHL2 )
Proof. By integrations by parts, we have
o 1
(Zt) (ulow,x,u(t) - ulow#@)) = % R
Let v € {0,...,m}. By (2.4) and (2.5),
2
% (wnlr) = ur)) = [ (6977 (x(s) = D) .

Consequently, with Corollary 2.3

e M (A1) (Vi (T) — (7)) dr.

|07 (0xu(7) = v (7)) [ 12 < sup_Ju(s)l> < IFlgr + gllz2 s
0<s<2

SRS

and the conclusion follows. O



LOCAL DECAY FOR THE DAMPED WAVE EQUATION 11

Finally, we have proved that for n € N and 6 > n + % there exists C' > 0 such that for
allpy>0and t >0

[u(t) = wow,u ()] 25 < C™ (&)™ (1 s + |9l s )-
With a possibly different constant C, we also have

Ju(t) = tow,u () 25 < C™ (&) ([l + laf + gl 20 )-

Similarly, given (fo, go) € #7° the solution ug(t) of the free wave equation (1.6) is close
to

1 »
tosow(t) = 5 | Sr)eRo(2) Fo
T JR
where Fy . = go — iz fo, in the sense that

luo(t) = woow () 2.5 < Ce™ &)™ ([ foll 2 + lafo + goll 2 )-

Now we can use Theorem 1.5 to compare o, (t) With g jow,.(t). Notice that in The-
orem 1.1 we have chosen fy = fw and go = wg + awf to have F, = Fy,. We use a
classical argument to convert the resolvent estimates into time decay.

Proposition 2.7. Let p1 €]0,po[. Let § > d + % There exists C' > 0 independent of
f,9 €8 such that for all u > 0 and t = 2, we have

—d— —d—
[ten (8) = ttowu(®) 25 < Ce ({05 s + (07 af + gl )

where (fo,90) = (fw,wg + awf).

Proof. We set h = af + g. As above, we write z for 7 + iu. Since F, = F , we have for
t>=2,
1

ulow,u@) - UO,Iow,,u(t) = %

[ otme(me) - o) R

By integrations by parts, we have

(it)d_l (Ulow,u (t) — UQ,low,u (t)) !

T2

JR e izpd-1 (Hi(z) + Hi(z)) dr, (2.6)
where
0,(2) = &(1)(R(2) — Ro(2))wh, 6;(2) = —ig(r)(R(2) — Ro(2))zwf.
By Theorem 1.5 we have, for v € {d — 1, d},
|06, 2 < 71T T 2  os

Then, on the one hand,

t71

< e b 2. f 7Pt dr S P B s -

2,6 —t—1
On the other hand, with another integration by parts, we get

t—1 .
f e—“zaﬁ—lei(z) dr
1

t

J e_itzﬁﬁ_lﬁ(z) dr
>t

L2,—¢

d=1pl; =1 , : de1pl /a1 . -
<et H(?T 0,(=t"" +iu) Lo + et | o 0, +ip) s
+et“J 0% (2 dr
t71§|’7"<2 T M( ) [2:—6
< etigl—r [hll 2. + et 1R 2.5 j |7|Pr=2 dr
t—1g|r|<2

< M o
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Finally,

—itz ad—1p1
jRe 1z pd 0,,(2)dr
For Gﬁ we have an additional power of z, so we do another integration by parts to write
. —itz Ad—1p2 —itz Ad 2
it fR e o0 0,(2)dr = JR e ”Z&THM(Z) dr. (2.8)

Then we can proceed as above. Since for v € {d,d + 1}, we have

0267 () p2res S 1T | fl s

< et b 2 - (2.7)

[2,—9

we get

HJ A dr| < P ] s - (2.9)

The conclusion follows from (2.6), (2.7), ( .8) and (2.9). O

Now we can conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. With Propositions 2.5, 2.6 and 2.7, we have proved that there
exists C' > 0 independent of > 0, f € S, g€ S and ¢t = 0 such that

[u(t) = wo(®)|pa-s < Ce™ ({) T | flgpua + (O™ Jaf + gl 2s).

By density, the same inequality holds for any f € H' and g € L?°. Finally, since the
left-hand side does not depend on ., it only remains to let u go to 0 to conclude. O

3. STRATEGY OF THE PROOF FOR LOW FREQUENCIES

In this section, we give the main arguments for the proof of Theorem 1.5. Some
intermediate results will be proved in the following sections. We set

D={CeC:[{|<1}, Dy=DnCy4,

so that the estimates of Theorem 1.5 concern z € D, .
We have to compare the resolvents R(z) and Ry(z) (see (1.14), (1.15) and Proposition
2.1). For this, we use the resolvent identity

R(z) = Ro(2) = R(2)0(z)Ro(2), (3.1)
where
0(2) = (Ag — A) +izaw + 2% (w — 1). (3.2)
We actually compare the difference of the derivatives of these resolvents. For n € N,
the difference R (z) — R(()n)(z) is a sum of terms of the form

R (2)002) (2)RY™) (2),  ny +ng + ng = n.
Notice that §("2)(z) = 0 for ny = 3. For o € {0, 1,2}, we set f,(z) = 82~ (2), so that
Oo(z) =2(w —1), 01(2) =daw + 2z(w —1), 6Oa(2) =0(z). (3.3)

The motivation for this notation is that in suitable spaces 6, (z) will be of size |2|”** for
p €]0, po[ (see Proposition 4.7 below for a precise statement), so this parameter o will
appear in all the estimates below (in particular in Propositions 3.1 to 3.5).
We have
R'(2) = R(2)(iaw + 22w)R(z).

Setting

Y1(2) = iaw + 2zw,  yo(z) = 71(2) = 2w, (3.4)
we can check by induction on n; € N that the derivative R(™)(z) can be written as a
sum of terms for the form

R(2)7j, (2)R(2)..75, (2) R(2) (3.5)
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where j1,...,Jk € {0,1} are such that
2k — (1 + -+ k) = n1. (3.6)

The same applies to Réns)(z), with R(z), 71(2) and 7o(2) replaced by Ry(z), 19(z) = 2=
and 7 (z) = 2.

We will introduce 72(z) and 79(2) in (3.14) below. For k € N, j = (j1,...,j%) €
{0,1,2}* and 2,2’ e D, , we set

Rij(#,2) = R(Z' )y (2) R(2).. 75 (2) R(Z),

Rij (2, 2) = Ro(2')7j, (2) Ro(2')..7;, (2) Ro(2')
(with the natural convention that this is just R(z") or Ry(z’) for k = 0), and
m(k,j) =2(k+1) = li[ =2k +1) = (J1 + - +Jx) = 2.

Notice for further reference that when j € {0, 1}*, we have

m(k,j) =k + 2. (3.7)
We write Ry, j(2) for Ry j(2,2). In particular, each term (3.5) is of the form Ry ;(z) with
keN,je{0,1}* and

m(k,j) =n1 + 2.
The reason for introducing m(k,j) is that for suitable z,2’ (|z| = |2/| ~ Im(2’)) then

R(Z, z) will be of size |z|7m(k’j) (see Proposition 5.3 below). Then this quantity will
also appear in all the estimates below (see again Propositions 3.1 to 3.5).

Finally, for z € D, the difference R(™(z) —R[(Jn) (z) can be written as a sum of operators
of the form

Riei (2)00 (2) R o (2),
with o € {0,1,2}, k, ko € N, j € {0,1}* and jo € {0,1}* such that
m(k,j) — o + m(ko,jo) = n + 2.
Then Theorem 1.5 is a consequence of the following estimate.

Proposition 3.1. Let p1 €]0, po[. Let o € {0,1,2}, k, ko e N, j € {0,1} and jo € {0, 1}*o.
Let § > m(k,j) + m(ko,jo) — o — % Then there exists C' > 0 such that for z € Dy, we
have
H <x>—§ Rk,‘,] (2)90(2)7?%0,]'0 (Z) <$>_6HE(L2) < C |Z|mil’l(d—m(k,j)—m(kOujO)-i-(J'—i-Pl70) . (38)
The main ingredient to prove such resolvent estimates near the real axis is the Mourre
commutators method. In particular, for the resolvent of a Schrodinger-type operator,
one usually uses the selfadjoint generator of dilations, defined by
AVAE AV id
A= TV EIVE MY (3.9)
2 2
Its domain is the set of u € L? such that (z - V)u € L? in the sense of distributions.
In Section 6, we will deduce from the abstract commutators method the following
result.

Proposition 3.2. (i) Let ke N, je {0,1}* and § > k + % There exists C > 0 such
that for z € Dy, we have

()7 Ry ()] < Ol (3.10)
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(i) Let p € [0,po[. Let k,ko € N, j € {0,1}%, jo € {0,1}* and § > k + ko + % Let
0 €{0,1,2}. There exists C > 0 such that, for z€ D,

H <A>—(5 Rk,j(z)ea('z)Rgmjo (Z) <A>—5HE(L2) <C ’Z‘—m(k,j)-l-(a-&-p)—m(kmio) . (311)

These estimates do not directly give Proposition 3.1. The second ingredient is the
fact that one can use the elliptic regularity given by the resolvents and the decay of the
weights () 9 to get some smallness for low frequencies (this will be detailed in Section
4). This is also the reason why the decay of the coefficients in 6(z) gives extra smallness
for the difference R(z) — Ro(z) compared to the estimates for each resolvent alone.

To get elliptic regularity, we replace the resolvent R(z) by R(i|z|). For z € D, and
r = |z|, we have the resolvent identities

R(z) — R(ir) = R(ir)y2(2)R(2) = R(2)y2(2)R(ir) (3.12)
and
Ro(z) — Ro(ir) = Ro(ir)y3(2)Ro(2) = Ro(2)79(2)Ro(ir), (3.13)
where
Yo(2) = (r +iz)aw + (22 + rHw and 49(z) = 22 + 12 (3.14)

(notice that the factors commute in (3.13) but not in (3.12)).

In order to get elliptic regularity, the idea is to replace each term in (3.5) by a sum of
terms with resolvents R(ir) only, or with as many factors R(ir) as needed. The proof
of the following lemma is given in Appendix A.

Lemma 3.3. Let ke N, je {0,1}*, ze Dy andr = |z|. Let N € N. Then Ry;(z) can
be written as a sum of terms of the form

Ry (i, z) (3.15)
for some k€ {k,...,N} and [ € {0,1,2}" such that
m(k, ) = m(k,j), (3.16)
or of the form
R, (i1, 2)7e(2) Ry in (2), (3.17)
with ko € {0,...,k}, j1 € {0,1,2}V jo € {0,1}*2 and £ € {0,1,2} such that
m(N,j1) + m(ka,j2) — £ = m(k,j). (3.18)

Similarly, ngo (z) can be written as a sum of terms of the form

Rivo i (i1 2) (3.19)
for some kg € {ko,..., N} and [y € {0, 1,2}"° such that
m("{O’ [0) = m(k07j0)7 (320)
or of the form
,ngl,[l (Z)7?0 (Z)R(])V,[Q (Z"f’, Z)? (321)
with k1 € {0,...,ko}, [1 € {0,1}*1 [, € {0,1,2}" and ¢ € {0,1,2} such that
m(k:l, [1) + m(N, [2) —{y = m(ko,jo). (3.22)

Thus, we will prove (3.8) with Ry j(2) replaced by terms of the form (3.15) or (3.17),
and Rgoh (z) replaced by terms of the form and (3.19) or (3.21).
For the contributions (3.15) and (3.19), which only involve resolvents of the form

R(ir) or Ry(ir), we use the following estimate.
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Proposition 3.4. Let p € [0,po[. Let k, ko e N, j e {0,1,2}* and jo € {0,1,2}%0. Let
$1,89 € [0, g[, 01 > s1 and dy > syo. There exists C > 0 such that for z € Dy and r = |z|,
we have

<C |Z’min(s1+327m(k,j),0)

(@)™ Ry, 2) ()~ e

)

and
@) R i, )0 (2R, i, 2) (@) 72| < € s minertsemmED oo mlio o)),

L(L?)

For the terms (3.17) and (3.21) which still involve resolvents of the form R(z) or
Ry(z), we will apply the commutators method (see Proposition 3.2). Then we use the
elliptic regularity to get some smallness and to compensate for the derivatives which
appear in the conjugate operator A. More precisely, we need the following estimates.

Proposition 3.5. Let p € [0,po[. Let s € [0,%[ and 6 > s. Let o € {0,1,2}. Let
kE,N €N, j,jo € {0,1,2}" and j1,jz € {0,1,2}*. Let ¢,4y € {0,1,2}. There exist Ny € N

and C > 0 such that if N = Ny then for z € Dy and r = |z|, we have

H RN} ir, Z)’W( ) A>§ HL(LQ) <C |Z|87m(N’j)+£, (3.23)

| ()7 Ry (i, )00 (2) Ry 1, (i1, 2078y (2) (A)° [ 0 < C [ Horo 7m0 o
(3.24)
[ €AY A, (2) R (i, 2) ()~ | 510y < C 2700, (3.25)

H <A>(5 VE(Z)RNJ (iT, Z)GJ(Z)R]{;J2 (i’f‘, Z) <.’1§'>76 ||£(L2) < C |Z’S*m(NJ)JF(O'JrP)*m(k,J'Q)Jr@ )
(3.26)

We will prove propositions 3.4 and 3.5 in Section 5. Now we have all the ingredients
to prove Proposition 3.1 (and hence Theorem 1.5).

Proof of Proposition 3.1, assuming Propositions 3.2, 3.4 and 3.5. Let p €|p1,po[. Let
z €Dy and r = |z|. As said above, we apply Lemma 3.3 to replace Ry j(2) and 7?,20 JO( 2)
by terms of the form (3.15) or (3.17) and (3.19) or (3.21), respectively. This gives four
different forms of contributions to estimate.

We begin with the case where Ry, ;(2) and Rgo,jo (z) are replaced by terms of the form
(3.15) and (3.19), respectively. We apply Proposition 3.4 with

1 d
81 = 89 = 5 min (d + p1 — p,m(k,j) + m(k‘o,jg) — J) < 5, (3.27)
and 01 = 02 = J. By assumption we have § > m(k,j) +m(ko,jo) —o — %, o in particular

1 . .
o> i(m(k’]) + m(k07]0) - J)‘
With (3.16) and (3.20), Proposition 3.4 gives
H /-c[ Z'I“ 2)0 <Z)R20’[O (iT’, Z) <x>—§H < |Z’min(s1+52—m(n,[)+(J+p)—m(no,[0),0)

o) "~
< |Z|min(sl +S27m(k7j)+(g+p)7m(k07j0)70)

~

< |Z |min(d+p1 —m/(k,j)+o—m(ko,jo),0) )

~

(3.28)
Thus we have proved (3.8) for a contribution with factors (3.15) and (3.19).
Then we consider the case where Ry ;(z) and Rgo,io(z) are replaced by terms of the
form (3.17) and (3.21), respectively. Notice that by (3.7), we have

1 3 3
5>m(k,j)+m(ko,j0)—0—§>kz+k‘0+§>k¢2+k1+§,
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so (3.11) applies to Ry, j, (z)Gg(z)RglJl(z). We choose s as in (3.27). We can assume
that N is greater that Ny given in Proposition 3.5. We write

N 1= ()™ R, (i, 2)96(2) R o (2100 (2)RE, 1, (278 (2D R, (i, 2) ()|
<[t R tir, 2l )
X )<A>_5 ng,jz('z>60(z)R21u[1 () <A>_6H
X )(A)é 0 o (2 )R (2 )<x>_6H£(L2)'

By (3.23), (3.11) and (3.25), we obtain with (3.18) and (3.22)
N < |z|8—m(N,i1)+f ‘Z|—m(kz,j2)+(0+p)—m(k1»|1) ’z‘s_m(Nv[Q)J"EO

L(L?%)

£(L2)

< |Z’25—m(k,j)+(a+p)—m(ko,i0)
< |Z|min(d+p1—m(k,j)—i—cr—m(ko,jo),O) )

Now we consider the case where Ry ;(z) and Rko j,(2) are replaced by terms of the
form (3.15) and (3.21) respectively. We have to estimate an operator of the form

()™ Roca(ir, 2)00 (2)RY, 1, (217 ()R, (i 2) ()0

We cannot estimate directly this operator. We need more factors Ry(ir), now on the
left of Rgl,[l (z). Thus, as we did above, we write Rgl,[l (z) as a sum of terms of the form

RNO  (ir, 2) (3.29)
for some kg € {k1,...,N} and [y € {0,1,2}"0 such that m(kg,lp) = m(k1,[1), or of the

form
R 1, (i, 2)70 ()R, 1 (2), (3.30)
with ks € {0,..., k1), 1 € {0,1,20Y, 1, € {0, 1,2}*2 and ¢’ € {0, 1,2} such that m(N, [}) +
m(ke, ly) — € = m(ky,11). A term of the form
() R, 200 (2R, 1 (i, 298, ()R 1 i1, 2) ()7
is estimated with Proposition 3.4 as before. On the other hand, with (3.24), (3.11) and
(3.25),

| <x>-67zn,[<z'r, )00 (2R (i, zw?/(zm& . <zm90<z>7z9v W (i72) (@)

L(L?)
H Ry i(ir, 2)0s (Z)RN [, (ir, 2)y0 (2 H H k’z,[' )<A>—6H
x () g, (2 RS i, 2) (@) 7|
< |Z|s m(k,1)+(o+p)—m(N,]) +€/| | m(ka,l, |Z|S m(Na,l2)+£o

<|Z|2S*m(k,j)+(0+p) m(ko,jo)
< |Z|min(d+p1—m(k,j)-‘ra—m(ko,jo),O) '
The case where Ry, j(z) and Rgo i, (2) are replaced by terms of the form (3.17) and (3.19),
respectively, is similar. O
4. THE GENERALIZED HARDY INEQUALITY

In the next two sections, we prove Propositions 3.2, 3.4 and 3.5. For this, we fix
p €0, po[ and p €]p, pol.
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We first introduce suitable norms on the usual Sobolev spaces. For r €]0,1] and s € R
we denote by H; the usual space H*, endowed with the norm defined by

HUHH; = H(Dr>SUHL2, where D, = V=A/r.

For z e D, we set H = Hfz‘. Notice that for a € N¢, we have

162 e -ty = 1. (4.1)

These norms are adapted to the analysis of slowly oscillating functions, for which a
derivative defines a ”small” operator (these norms are useful when r = |z| is small).

One of the key points of the analysis is that multiplication by a coefficient decaying
at infinity behaves like a derivative: it costs some regularity but it is small for low
frequencies. For this, we generalize the usual Hardy inequality.

Let dp be a fixed integer greater than %. For k = 0, we denote by S™" the set of
smooth functions ¢ on R? such that

[$ls-x = sup sup | ()" 0%(a)] < +o0. (42)

|ar|<dp zeR4

It is now classical that we can use the following result to convert decay at infinity and
regularity into smallness for low frequencies. The following result is [BR14, Prop.7.2] or
[Roy24, Prop.3.1].

Proposition 4.1. Let s E] — %, %[ and k = 0 be such that s — K E] — %, %[ Let n > 0.

There exists C = 0 such that for ¢ € S™" ", we H® and r €]0,1], we have
lpul gs—r < CT™ || @] g—rn 1] s -

Remark 4.2. If ¢ € S™" for some 1 > 0, then for any s € ] — %, %[ the multiplication by
(1 + ¢) defines a bounded operator on H? uniformly in r €]0, 1].

In particular, together with the elliptic regularity that will be given by the resolvents,
the weights which appear on both sides in (3.8) will give positive powers of the frequency
|2[:

Lemma 4.3. Let s € [O, %[ and 6 > s. There exists C > 0 such that for r €]0,1], we
have

@)™ lee sy <O and (@)™ |ppa sy < O

We also use this generalized Hardy inequality to see that with the assumptions (1.4)
and (1.5) at infinity, the operator P(z) (see (2.1)) is a perturbation of Py(z) is the
following sense.

Proposition 4.4. Let s € | — d %[ There exist ps €]0, p] and C > 0 which only depend
on s and such that, for ze D,

|P(2) — PO(Z)HE(Hgﬂ,Hg*l)
<C (|Z|2 |G —1d|s-5 + |Z|2+ps law| g-1-5 + |Z|2+p lw — 1”375) .

Proof. We apply Proposition 4.1 and Remark 4.2. For j,k € {1,...,d}, we have by (1.4)

2 2
10;(Gjr — 5j,k)ak||g(H;+17H§*1) <[z [Gjk = djkl L(Hs,Hs) S 271Gk — 0kl 55 -

There exist s1,s2 € [s + 1,5 — 1] m] — g, %[, such that s; = so — p. Then

2 2
HZQ(“J - 1)H[,(H§+1,H§*1) < |27 w — 1Hc(H§2,H§1) < |2] e lw — 1] g5



18 R. FAHS AND J. ROYER

Finally, we choose p, €]0, p] such that [s — ps,s + ps] < | — %, %[ Then, we can find
s1,82€ [s — 1,5+ 1] m] - g, %[, such that so — s; = 1 + ps. By (1.4)-(1.5), we have

2+Ps

Hzang(Hgﬂ,HjU < |7 HawH[:(H?,Hjl) < |2 law| g-1-7,

which gives the contribution of the damping term. O

In Proposition 5.2 below, we will need smallness of |z| 2 (P(z)—Py(z)) in L(H+!, HS™1)
to get ellipitic regularity for R(z). By Proposition 4.4, the contributions of zaw and
2?(w—1) are small for z small. But this is not the case for the contribution of (—Ag+A),
unless |G — Id| g-5 is small. Since we have not assumed that this is the case, we will write
the perturbation G — Id as a sum of a small perturbation and a compactly supported
contribution, which will be handled differently. The following statement is Lemma 3.6
in [Roy24] (notice that it is for this lemma that we cannot take p = py).

Lemma 4.5. Let v > 0. Then we can write G = Gy + Go where Gy € C§° and
|Goo —Id|g-5 < -

Throughout the proofs of the two sections that follow, we will use commutators of
the different operators involved with the operators of multiplication by the variables x;
and the generator of dilations A.

Let T be a linear operator on S. For r €]0,1] and j € {1,...,d}, we set ad,,;(T") =

Trx; —ra;T : S — S. Then for p = (p1,...,1a) € N?, we set

adfy, = ad)} o---oadld .
Notice that ad,;, and ad,;, commute for j,k e {1,...,d}. For ze Dy and j e {1,...,d}
we set ad; . = ad||,;. We also set ado.(T') = ada(T) = TA — AT. Finally, for k € N

and J = (j1,...,jx) €{0,...,d}*, we set
adzJ(T) = (adjhz ©---0 adjk,z)(T)'
Given N € N, we set Zy = Uch:o {o,..., d}k. For s1, 82 € R, we say that T belongs to

CN(H?', H??) if the operator ad! (T extends to a bounded operator from HS' to HS?
for all J € Zy. In this case, we set

J
HTHC?’(H?,H';Z) = Z Hadz (T)HE(H?,H‘;Q)'
JGIN
We write |T'|ox (ps) for [Ten ps sy Notice that for s1,s0,s3 € R, Ty € CN(Hs, Hs?)
and Ty € CN(H?2, H3), we have
12Ty s 53y < [ Tallen v 2y 1 T2ley sz sy - (4.3)

We recall that the commutators of A with derivatives and multiplication operators
are given by

[V,A] =iz -VV and [0;,A] = —i0;. (4.4)
In particular, by induction on k € N,
Akﬁﬂj = CL‘j(A - i)k. (45)

Now we can estimate the commutators with the main quantities involved in our study.

Lemma 4.6. Let N € N and s € R. There exists C' > 0 such that the following assertions
hold for all ze D.
(i) If se | — 4, 2[, we have |Gllen sy < C and |wlengsy < C-
(i) If se | — 2+ p, 4 then |G — IdHcé\,(Hg’Hgfp) < Clz)? and |w — 1Hcé\,(H§7H§7p) <
C|z|°.

(il) Let p' € {0,p}. Ifse|— %+ p + 1, %[ then |a] <O,

CN (Hs,H:™" ™Y
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(iv) For je{l,...,d} we have ||5ch;V(H;,H;*1> < C|z| and \|@-|\CMH§+17H§) < Clz.

Proof. All these estimates are again given by Proposition 4.1 and Remark 4.2. Notice
that when a = 0, this is Lemma 3.7 in [Roy24], so we only prove the third statement.
By (1.5) and (4.4), we have

N N
1 /
s o e, S 20 1G9l ooy < 3 I 9 (@)1
m=0 m=0

Now we can estimate the commutators with P(z), 6,(z) (defined in (3.3)) and v;(z)
(defined in (3.4) and (3.14)).

Proposition 4.7. Let N € N.

(i) Let s € ] - %, %[ There exists C > 0 such that, for z€ D,

2
HP(Z)HC?)'(H;-Fl’HZS—l) < C|Z| .

(ii) Let o € {0,1,2}. We set o/ = 0 if 0 € {0,1} and o' = 1 if 0 = 2. Let s €

] — g —d +o+p, % + J’[. Then there exists C > 0 such that for z € D, we have

HQU(Z)H@\I(H;HE—U—;J) <C |Z|U+p.

(iii) Let j € {0,1,2} and j' = min(1,j). Then for se | — % + 7', %[ there exists C' > 0
such that for z € Dy we have
i e e, < C 12F (46)

Proof. All these statements follow from Lemma 4.6 and (4.3). We detail for instance
the estimate of f3(z). In this case, we can take s and s —2—p in ] — % -1, % + 1[. Notice
that, compared to the proof of Proposition 4.4, here we can pay 2 + p derivatives and
not only 2. Otherwise, the proof is similar. Let sj,s0 € [s —2 — p,s] n ] - g, %[ such
that so —s1 =1+ p. We have
H92(Z)Hc§(Hg,H§*2*P) = ||P(z) - PO(Z)|‘C§(H57H§*2*¢Z)
. 2
S NG = 1)Vl (g5, prz=2-0) + |2l lawlley gy 2oy + 12710 = Ulew (as,prz=2-0)
2

S HG - Id||C£V(H§71,H§717P) + ‘z‘ Haché\f(H227H;1) + ‘Z| ”w - 1||C§(H§71,H§717P)

< ’z‘2+p )
The other estimates are similar. For the third statement, we observe that in v,(z) there

is a factor |z|, which is why we only pay one derivative to get an estimate of order
ElR O

5. ELLIPTIC REGULARITY

In this section, we prove Propositions 3.4 and 3.5. The parameter p € [0, po[ is fixed by
these statements, and we have also fixed p €]p, po[. Proposition 3.4 is a consequence of
Proposition 5.6 below, and the proof of Proposition 3.5 is given at the end of the section.

Let s € R. For r €]0,1] the resolvent Ry(ir) = r~2(D? + 1)~! defines a bounded
operator from H:~! to H5*! with norm r~2. More generally, if we set

o~ freo. o[}

then there exists ¢y > 0 such that for s € R and z € D}, we have

co
BT p— e (5.1)
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Then, for k € N* and s,s’ € R such that s’ — s < k + 2 there exists ¢ > 0 such that for
z € Dy, we have by (3.5)-(3.6) (for Ry(2))

|55

C

)

Our purpose is to prove this kind of elliptic estimates for R(z). By the usual elliptic
regularity, this holds for any fixed z € D (see Proposition 2.1). The difficulty is to get
uniform estimates for z close to 0.

We cannot extend (5.1) to R(z) in full generality. We begin with the case s = 0.

Proposition 5.1. There exists ¢ > 0 such that for all z € D, we have
B ) < T

More generally, for N € N there exists cy > 0 such that for z € D), we have
IRElep izt < T

Proof. Let z € Dy. The angle 9, that appears in (2.2) now belongs to [— N g], SO
cos(¥,) = % for all z € D;. Then there exists C' > 0 such that for all z € D and u e H],
we have

Re <67WZP(Z)U7U>H71 e cos(¥.) ((GVu, Vuy 2 + |2|? (wu,uypa ) + |2| Cawu, w2

z K z
> C (IVulga + 2P Jul2)
2 2
> Claf Jul -

The Lax-Milgram Theorem gives the first estimate.
Now let .J € Zy. Then ad?(R(z)) can be written as a sum of terms of the form

R(z)ad (P(2))R(2)ad?* (P(2)) ... R(2)ady" (P(2)) R(2),

where v € N and Ji,...,J, € Zy. The second estimate then follows from Proposition
4.7. Il

We have a result similar to (5.1) if G is a small perturbation of the flat metric (see
the discussion after Proposition 4.4) and s is not too large:

Proposition 5.2. Let s; € ] — 521, % + 1[ and so € ] — % -1, %l[ be such that s1 — s9 < 2.

Let N € N. There exist v > 0 and ¢ > 0 such that if |G —d|g-5 < v then for z € Dy,

we have
c

Proof. Let s} € [s1,% + 1| and sy € | — 4 — 1, 55] be such that s} — s} = 2. It is enough
to prove the estimate in C (H;?, H.') instead of CN (H32, H5V).

Let ps > 0 be given by Proposition 4.4 applied with s = %(8’1 +sh)e] - g, g[ Then
there exists C' > 0 such that for z € D}, we have

IPG) = Pt sy = 1P = Pol)l e e
2 s
< CJaf? (v + |2 Jawlg-pr + |2 w0 — 1 gs ).

Thus, if v and |z| are small enough, we have

|P(2) = Po(2)] ,
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where ¢g > 0 is given by (5.1). This proves that

P(2) = Ro()(Id + Ro(=)(P(2) = Pol=))) € L(HE!, HE?)
is boundedly invertible for z small enough, and R(z) can be seen as an operator in
L(H?, H2') with
260
s s < —_—
E(HZQ’HZI) ‘Z|2

|R(2)]

For z € D outside a neighborhood of 0, the same estimate holds (with a possibly different
constant) by elliptic regularity. Thus, the estimate is proved for N = 0. We estimate
the commutators as in Proposition 5.1, and the proof is complete. (|

For ke N and j € {0, 1,2}*, we set
m/(k,j) =2(k+1) — Zmlnljg

In particular,

m'(k,i) = m(k,j)-
The motivation for this notation is that m/(k,j) measures the gain of regularity for the
operator Ry j(z) when z € Dy.

Proposition 5.3. Let ke N andj = (ji,...,jx) € {0,1,2}*. Let sy € | — 4,4 + 1] and
S92 e] — % — 1,%[ be such that

s1— sg < m'(k,j).
Let N € N. Let v > 0 be given by Proposition 5.2. There exists C > 0 such that if
|G —d||g-» < then for z€ Dy and 2’ € Dy with |z| = |7/|,

HRkJ(Zlv z)Hcé\/ <C |z|—m(k,j) )

(HZ%,H:Y)
Proof. Let s €]0, %l[ such that s > s; — 1. For £ € {1,...,k} we set j; = min(1,j,). We
set o = min(s, so + 2). By Proposition 5.2, we have
-2

HR<Z/)HC§’(H§2,H5’“) < I2]

We define o;_1,0%_2,...,092,01 inductively by
oy =min(s,0041 —ji, 1 +2), v=k—1,... 1L

In particular,

d

d
— > > ... = > —— + 1.
2 g1 (% 2

By Propositions 4.7 and 5.2, we have for all v € {2,...,k — 1}
o
HR ’y.]l/ )"C?(H:VWLl’ng) S ’Z‘J .

Finally, if o1 # s then oy # s for all £€ {1,...,k} and

o1 —32+2+Z —Ji41) = s2 +m'(k,j) — (2 j1).

In any case we have s — o1 <2 — 5], so
j1—2
”R(Z/)’YJ& (Z)Hch(H;’I,HjI) < |Z|]1 .
All these estimates together give

HRk‘,i<zl7Z)Hcé\’(H227Hjl) < |Z’(j1+~-~+jk)_2(/€+1) _ ‘z|—m(k7j)7

and the proof is complete. O
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Notice in this proof that if s > % — j1 (or so < —4% + j}) it is important that the first
(last) factor in Ry (2, 2) is a resolvent R(z').

The results of Proposition 5.3 also hold in the particular case G = Id, ¢ = 0 and
w = 1, that is, for R%j(z’, z) instead of Ry (%, 2).

Now we consider the case where we have resolvents R(z’) and Ry(z’) with an inserted
factor 6,(z). For further use, we also consider the possibility of having a derivative next
to Ryi(#, 2).

Proposition 5.4. Let k,ky € N, j € {0,1,2}* and jo € {0,1,2}%0. Let a € N¢ with
la| < 1. Let 51,80 € | — %l, %[ such that

s1— 52 < —laf +m'(k,j) = (0 + p) + m/(ko, o). (5.3)
Let N € N. Let v > 0 be given by Proposition 5.2. Assume that o = 0 or s1 < % —p.
There exists C > 0 such that if |G —Id|g-s < v then for z € Dy and 2’ € Dy with
|z| = |7|, we have

DRy (2,26 (YR jo (s 2) e (uzs iy < Clel D TTrommoioyTiel,

22 H
Proof. As in Proposition 4.7, we set 0/ = 1if 0 = 2 and ¢/ = 0if o € {0, 1}. In particular,
o < o’ + 1. We recall that m/(k,j), m’(ko,jo) = 2. Since a = 0 or s1 < % — p, we have
d
51+ |af = m/(k,j) +o+p < 54—0'.
On the other hand, we also have

d
So + m/(ko,jo) > *5 —o +o+ p.
Then we can consider

d d
54 € }—2 —o totpg —i—a’[ N [s14 o] = m/(k,j) + o + p, s2 + m/(ko, jo)]
(notice that these two intervals are not empty since d + 26" — o — p > 0 and by (5.3)),
and we set

s_ =5, —(0+p).

Since s — so < m/(ko,jo) we have, by Proposition 5.3 applied to Rgo,io(z/’ 2),

R 0 Z .,z —m(ko,jo
By E IOpOSition 4. ;, we have

100 (2) e g+ S 12177

Since s1 + || —s— < m/(k,j) we have, by Proposition 5.3 again,

||Rk7j(z', z z|_m(k’j)

)HCéV(HiiH?*'“') <l

And finally, \|DO‘HCN(H§1+|Q\7H§1) < ]z|‘o‘|. These four estimates together give the result.
U

The previous results hold only if G is close to Id, in the sense that |G —Id|¢s-5 < 7,
which is not the case in general. The idea will be to prove first all the estimates for a
small perturbation of the flat metric and then to add the contribution of a compactly
supported perturbation with one of the following two decompositions for Ry ;(2’, z).

Lemma 5.5. Let v > 0 be given by Proposition 5.2. Let G and Gg be given by Lemma
4.5. Let ze Dy and 2’ € D). Let ke N andj = (ji,...,j%) € {0,1,2}*. We define Ry (2)
and R (2',2) as R(z) and Ry;(2', 2) with G replaced by Go.
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(i) Rij(2',2) can be written as a sum of terms of the form

w102, 2)BL(Z Ry (2, 2)Ba(2') ... Bu(2")RE (2, 2), (5.4)

ko,lo K1,
where v € N, By(2'),..., B,(2') belong to {Ag,, Ac,R(z)Ag,}, and kg, ..., k, €N
and ; € {0,1,2}"% i€ {0,...,v}, are such that
Z m(ki, ;) — 2v = m(k,j). (5.5)
i=0
Moreover, an operator of the form Dy, R(z")Dy, for 1 < £1,0y < d extends to a
bounded operator on L? uniformly in 2’ € D).
(ii) We have
k
Rij(2,2) = RE(Z,2) + ), Ruw, (2, 2) A Ry, (7, 2), (5.6)
v=0
where for v € {0,...,k} we have set [, = (j1,...,Ju) and U5 = (Jju+1,...,Jk), and
we have

m(v, L) + m(k — v, 1) = m(k,j) + 2. (5.7)
Proof. We obtain the first statement by iterating the resolvent identity
R(2') = Roo(2') + Rop (2 ) Ay Roo (2') + Rop (2 ) Ay R(2') Ay R (21),

so that all the remaining factors R(z’) are hidden in the factors By(z"). We have (5.5)
since each time we get a factor By(z') we increase by one the number of resolvents
(roughly, in the corresponding terms we replace one resolvent R(z) by two resolvents
Ry (Z")). The boundedness of Dy, R(z") Dy, comes from Proposition 5.1 and (4.1).

The equality (5.6) simply follows from the resolvent identity R(z') = Ry (2) +
R(Z")Ag, R (2)). O

In the following proofs, we will also use the following simple remark. For p € N* and
Mo, Mty---57p =0 we have

min(ny —n1,0) + - - - + min(ny — 1y, 0) > min (770 —(m+-+np), 0). (5.8)

Now we can prove the estimates for Ry ;(2’, z) and Ry (2, 2)0s (z)R%OJO (7', z) without
the smallness assumption for G — Id, which gives Proposition 3.4. The derivatives that
we add in (5.9) will be useful for the proof of (5.10).

Proposition 5.6. Let s1,s9 € [0, %[, 81 > s1 and 63 > so. Let k, kg e N, j e {0,1,2}F
and jo € {0,1,2}%0. Let 0 € {0,1,2}. Let oy, 0 € N¢ with ||, |ag| < 1. There exists
C > 0 such that for z € Dy and 2’ € Dy with |z| = |2'|, we have

H<x>—51 DaleJ(Z/, Z)Dag <$>—52 ) <C |Z|min(s1+32—m(k,j)+|a1|+|a2|,0) (59)
and
H <33>_61 RkJ(Z/, z)QU(Z)R%jO (Z/, Z) <.Z‘>_62 ) <C ‘Z|min(51+52—m(k,j)-i—(U-‘rp)—m(ko,jo),O) .

(5.10)

Proof. Let v > 0 be given by Proposition 5.2. We use the notation of Lemma 5.5. Then
Propositions 5.3 and 5.4 apply to Ry (2).

e We assume that s; + so < m(k,j) — |a1| — |az|. Otherwise we can always replace s;
and sy by 51 € [0,s1] and §3 € [0, s2] such that §; + 52 = m(k,j) — |aa| — |aa].

By Proposition 5.3, (4.1) and Lemma 4.3, the estimate (5.9) holds with Ry ;(2’, 2) re-
placed by R (', 2).
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To prove (5.9) in general, we estimate a term R(z’, z) of the form (5.4). Using (5.9)
proved for Ry (2'), the compactness of the support of Gy, the derivatives given by the
operator Ag, and the boundedness of an operator of the form 0, R(2')0;,, we obtain

d
< > Not

Z17~-~a€21/:1

(@)™ DU R(, 2) D7 ()~

L(L2)

<[ [@)™" Du R (' 20Dt ()7

=1

x| (@) De, RE (2, 2) D7 ()~

v—1
< |Z|min(sl+sz+\a1|+1—m(/10,[0),0) % H |Z|min(sl+32+2—m(m,[i),0)

~

i=1
% ‘ |m1n (s1+s2+|az|+1—m(ky,l,),0)
< |Z’m1n(sl+52+\o¢1|+\o¢2|+2V*ZiV:O m(ki,1i),0) )
For the last inequality, we have used (5.8) with ng = s1 + s2, m = m(ko, lo) — |a1| — 1,
nj = m(kj—1,li—1) —2 for j = 2,...,v, and finally 7,11 = m(k,,l,) — |az] — 1. With
(5.5), this proves (5.9).
e We turn to the proof of (5.10). Let a € N? with |a| < 1. If a = 0 or 81 < % — P,
then by Proposition 5.4 and Lemma 4.3, we have

i) DR (20 RG22 )7

< |z min(s1+satlal=m(ki)+(otp)=mikojo).0) (5 17)

Now that (5.9) is proved, we no longer need (5.4), and we use the simpler decomposition
(5.6) instead. We have just proved (5.10) with Ry ;(2’, 2) replaced by RY(2',2). We
consider (5.10) with Ry (2, z) replaced by a term of the sum in (5.6). We set s} =
max(s; — p,0) < 4 — p and consider & > ;. For v € {0,...,k} we have, by (5.9) and
(5.11),

@) R (2 2) A6 R (2 2)0 (2) R, (2, 2) ()~

< Y @R D @)

loa |,az|=1

X

(@) DRY (2 2)06 ()R o (7, 2) ()~

min(s1+s2—m(v,l,)+1,0) | |m1ns L +s2+1-m(k—v,l¥)+(o+p)—m(ko,jo0),0)

. ’min(sl +s2—m(k,j)+(o+p)—m(ko,jo),0)

Here, we have applied (5.8) with 79 = s} +s2 >0, 71 = m(v,4,) — 1+ s} —s1 = 0 and
n2 = m(k—v,5) +m(ko,jo) —1— (0 + p) = 0. Then we have used (5.7). This concludes
the proof. O

Now we turn to the proof of Proposition 3.5. We first prove a statement with A
replaced by |z|  and without the factors ,/(z). This will be combined with Proposition
5.8 below.
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Proposition 5.7. Let s € [0,%[ and & > s. Let k,kg € N, j € {0,1,2}* and jg €

{0,1,2}%0. There exists C > 0 such that, for z € D, and r = |z|,

(@) Ry ir, 2) <m>5H£(L2) < Cpmints=m(k).0), (5.12)
H <x>—5 R (i1, 2)00 (2 )Rko N (ir, 2) <m>5HL(L2) < Crmin(s—m(k,j)+(0+ﬂ)—m(ko,jo),0)’ (5.13)
[(ra)° R, (i 2) ()|, < Opminemibaion0), (5.14)

[(r2)" R i, 2)00 (YR (i, 2) ) 7] Orminemm sl (7500)
(5.15)

Proof. As for the proof of Proposition 5.6, we consider v > 0 given by Proposition 5.2
and we use the notation of Lemma 5.5. We first prove the estimates with Ry ;(ir, z)
replaced by Ri’(ir,z) and with an additional derivative. Then we will deduce the
general case with Lemma 5.5.

e We begin with (5.12). Let a € N with |a| < 1. Let 4 € N and 8 € N? with || < 2u
We can write (rz) 2" DRI (ir, 2)(rz)? as a sum of terms of the form

<m‘>_2” (raz)ﬂladffc (DO‘R,;'OJ (ir, z)),

where 31 + 32 = . We estimate such a term. Let s = min(s, m/(k,j) — |a|). By Lemma
4.6, Proposition 5.3 and (4.3), we have

H d62 DO‘R,“ ir Z))HL(LQ ) < plol=m(k,j),

Since (rz) 2 (rz)? is uniformly bounded in L£(HZ), we get

H (rz) =2 (rx)rad2 (DR, (ir, 2)) < plal=miks),

c(r2,Hg) "~
This proves that for any p € N, we have
20 Mo 20 |a|—m(k,j)
H( x)" "D Rk)(zr z) (rz) H[:(LQ,Hg) <r .
By interpolation,
o 6 a|—m(k,j
H( z)° D Rig;(ir, 2) (rx) HL(L2,H5) < plal=m(k;) (5.16)
On the other hand, by Lemma 4.3,
-6 1) -6
[(0)72 )] o S 10 1l ()™ g
—0 -6
< 16@) 2 ez ooy + ) 12l @) 7 | gy (5.17)
< 7.
Finally,
2) 70 DORE. (ir, ) (ra)° 5.18
k.

£(L?)
(ra)y” DO‘Rkl(zr 2) (m:)dH

<[ ey

< Tmin(s+ |a|—m(k,j),0)

£(r2,Hz)
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Now we use (5.6) to prove (5.12). The contribution of Ry (ir, ) is given by (5.18)
applied with & = 0. Then, for v € {0,..., k}, we have by (5.9) and (5.18)

H(x>—572y[y(z 2)AGRE (7, 2) <m>5H

s Y @ Ry (9D

‘a1|7|a2‘:1

(x)~ DO‘?Rk V[*(z z) (rx)
1

< Tmin(s+1—m(v,[u),0) Tmin(s+1—m(k—l/,[,’f ),0)

< Tmin(s—m(kJ),O).
Here we have applied (5.8) with ng = s. This gives (5.12). Similarly, we can prove

[(r2)® Restir, 2 (@) < opmiem o), (5.19)

which gives (5.14) as a particular case.
e We proceed similarly for (5.13). If a =0 or s < %l — p, we get with Proposition 5.4
(@) DORE (i, 2)05 (Y RY, 5, (17, 2) (r2)?| g grointetll=m(ki) oo mioio) ),

cr2) "~
(5.20)
— p and consider ¢’ > s’. Then we get (5.13) with Lemma
we have by (5.9) and (5.20)

We set s’ = max(s—p,0) < 4
}

5.5 since, for v € {0,..., k
(@) R, (2, DA R 5 (2 2)0 (2VRE, 5 (i, 2) ()|

D@ R (22D | (@) DUERE (2, 2)05 (2)R, 5, (i 2) ()’ |
o1 |, az[=1

< Tmin(s+1—m(u, 1,,),0) Tmin(s’—&-l—m(k—lx,[,’f)+(o+p)—m(k0,jg),0)

A

< Tmin(s—m(k,j)+(J+p)—m(’€07j0)70).
We have applied (5.8) with 79 = ¢'.
e We finish with (5.15). We proceed again similarly. Let
s = min(s, m(k,j) — (o + p) + m(ko,jo) — ||).
With Proposition 5.4 and the same strategy as for (5.16) we get

[(r2)? DR i, 200 (2)RY, g im.2) ) 7, Sl sz,

As in (5.17), or by duality, bt’H J —“H <75 and h
s in (5.17), or by duality, we obtain |{rz)° (x) J— r®, and hence

|(r2)® DORE (17, 2)65 (2YRY, 5 (i1 2) <:p)_5H£(L2) < pmin(slalm(k,)+ (s+p)-m(ko 0).0).

We finally get (5.15) with Lemma 5.5, (5.19) and (5.11). For v € {0, ..., k}, we have
(r2) Ry (i1, 2) Ay R (i1, 2)0 (2)RY, (7 2) <x>—‘5 H

< Z H <7‘x)67€,,7[y (ir,z) D (x > ‘
o1 |, az|=1

< ,rmin(s—m(l/,lu)+1,0) rmin(s+1—m(k—u, ¥)+(o+p)—m(ko,jo),0)

K050

Estimate (5.15) follows with (5.8) applied with ny = s. O

To finish the proof of Proposition 3.5, we have to replace (rz)’ by (A)° in (5.12)-
(5.15). For this, we use again the elliptic regularity to compensate for the derivatives

that appear in (A)°.
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Proposition 5.8. Let § > 0. Let k € N and j € {0,1,2}*. Assume that k > 6. Let
01,05 € {0,1,2}. Then there exists C > 0 such that for z € Dy and r = |z|, we have

[(ra) ™ 0 () Ris i 20, () (AP, |, Crrm b,

and

[$4)° e ()R 2, (2) (r) 0| Crtimm e,

Note that the assumption £ > ¢ is not optimal, but we have as many resolvents as
we wish in Proposition 3.5.
Proof. We start by proving by induction on x € N that, for any k > x and p € N,
H (ra)”"ad¥, (’ygl (2)R,i(ir, 2)ve, (z))A"‘HL(m) < pli=m(kj)+te (5.21)

With g = 0, we can deduce the first estimate of the proposition when § is an even
integer. The general case will then follow by interpolation. Estimate (5.21) with x = 0
is established by Propositions 4.7 and 5.3 (notice that m/(k,j) = 2 > min(1,4;) +
min(1,43)).

Now let x € N* and p € N, and assume that k > k. We can write the commmutator
ad”, (v¢, (2)Ry(ir, 2)7ve,(2)) as a sum of terms of the form

ad?y (ve, (2)Ri—1, (i, 2)75,(2)) adkz (R(ir)ye, (2))
where
j1="{j1,.. - Jk—1} and p1+p = p (5.22)
Then we can write
(re) ™" adll (e, (2) Re—1, (07, 2)7j, (2) ) adlz (R(ir) e, (2)) A”
as a sum of terms of the form
<T‘IE>7K adﬁ;: (751 (Z)Rk—l,h (iT, Z)ij (Z))Apadzipadﬁg (R(i’l“)’ng (Z)) )
where p € {0,...,k}. For p < k — 1, we apply the induction assumption to write
” (T‘/E>_H adﬁf; ('751 (Z)Rk—l,il (iT‘, Z)’}/jk (2))APHL(L2)

< [(ra) ™" ad} (e, (2)Roe—v,i, (i, 2)75,. (2)) AP o 1)

S T,Elfm(kfl,j1)+jk_
By Propositions 4.7 and 5.3, we have

Hadz_jadﬁj (R(ir)’yg2 (z)) Hz:(Lz) < pf22,

Using the last two estimates, along with (5.22), we obtain the estimate for p < k — 1.
Now we consider the term corresponding to p = k. We have

. d
d
AF = —%Aﬁ_l + Aﬁ_l E rXy - T_ng.

l=1
The contribution of the first term is estimated as before. Now let ¢ € {1,...,d}. By
Propositions 4.7 and 5.3 again, we have

Hringadﬁ% (R(ir)’yb(z)) HE(LQ) < 22,
On the other hand, we have by (4.5)
(ra) ™" ad (ve, (2) Ri—1,j, (i1, 2)75, (2)) A" Lrag
— ()™ ad (e, (2R, (i, 2)95 () rze (A — i)
= ray (ra) " adll (Yo, (2) Ri—1, (ir, 2)75,, (2)) (A — 0)" !
+ (rz) " ad,a, (adt (e, (2) Ri—1,j, (ir, 2)75,(2)) ) (A —§)" 1.
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Both terms are estimated with the induction assumption, thus proving (5.21) and hence
the first estimate of the proposition. The proof of the second estimate is similar. O

Now we can conclude the proof of Proposition 3.5.

Proof of Proposition 3.5. We combine Propositions 5.7 and 5.8. We consider (3.23).
Since N can be chosen large we have, for some k1, k2 € N, j; € {0,1,2}%1 j5 € {0, 1, 2}F2
and 7 € {0,1,2},

RN,i(ir7 z) = Ry, (ir, Z)’VE(Z>R/€2J2 (ir, 2),

with i
m(klajl) _£+m(l€27]2) :m(N7])7 m(khjl) = S, k2 25
Then
H <x>76 RN‘(Z'T Z)’W(Z) A b “E(LQ)
1 -4 . 4
< (@) 7 Ry i, 2) (r2)? | g | (72) ™0 (2 Ry i, 2)e(2) ()2 |
< Ts—m(kml)ﬂ—m(kmb)'f‘e < Ts—m(NJ)‘*‘Z_
The other estimates are proved similarly. O
6. MOURRE COMMUTATORS METHOD
We set

DE = {z €Dy : +2Re(z) = |z|2}, Dr = D§ u Dg.

In this section, we prove Proposition 3.2 about terms involving resolvents R(z) with
z in DR. For z € I}, Proposition 3.2 holds with 6 = 0. This is a consequence of elliptic
regularity, and more precisely of Proposition 3.4 applied without weights.

The proof of Proposition 3.2 relies on the Mourre commutators method. We use the
version given in [Roy24, Sec.5], which we recall now.

We consider two Hilbert spaces H and K such that K is densely and continuously
embedded in H. We identify H with its dual, so that K ¢ H < K*. Compared
to [Roy24], we choose the convention that the dual of a Hilbert space is the set of
continuous antilinear forms. Then the identification H ~ H* and the natural embedding
Z: K — K* are linear.

Let Q € L(K,K*). We assume that @ is boundedly invertible and that its imaginary
part has a sign. For instance, we assume that it is non-positive, and we set

Q-Q"
= —Im = -
In general, we say that an operator in L£(K,K*) is dissipative if its imaginary part is
non-positive.

> 0. (6.1)

Let A be a selfadjoint operator on H, with domain Dy. It can be seen as a bounded
operator Ay from Dy (endowed with the graph norm) to H. By restriction, Ay defines
a bounded operator Ax from Dx = {¢ € K n Dy : Ayp € K} to K. Then A§ defines a
bounded operator Ags from Dicx = {¢ € K* : Ay e K*} to K£*.

Let K1,y € {K,H,K*}. We set Cg\(lCl,/Cz) = L(K1,K2) and for S € L(K1,K2)
we set ad}(S) = S. Then, by induction on n € N*, we say that S € CR(Ky,K2) if
S € Cp'(K1,K2) and the commutator ad} ' (S)Ax, — A,"‘C;adZ’l(S), which defines at

least a bounded operator from Dy, to Di.., extends to an operator adj (S) in L(K1, K2).

’C* 9
Then, we set

ISl ey ey = > Had/IZ(S)HE(Kl,]CQ)'
)
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We write C" (K1) for C™ (K1, K1).

Now we can recall the definition of a conjugate operator to ). Compared to the
version given in [Roy24], we add a parameter h. We do not use it here (we choose
h =1 in Proposition 6.4 below), but it is useful when dealing with high frequencies (see
[Roy10, BR14]).

Definition 6.1. Let N € N* h €]0,1] and T > 1. We say that A is (h, T)-conjugate to
Q@ up to order N if the following conditions are satisfied.
(H1) For ¢ € K we have |¢[l; < T [¢]x.
(H2) For all # € [—1,1] the propagator e A € L(H) defines by restriction a bounded
operator on K.
(H3) Q belongs to Cx T (K, K*) and
(@) Qg s < T,
(b) ada(Q) gk %) < VAT,
(c) Hadﬁ‘(Q)Hﬁ(,C k) RY, for all k€ {2,..., N + 1}.
(H4) There exist Q@ € L(K,K*) dissipative, QT € L(K,K*) non-negative and II €
Ca(H,K) such that, with II; = Idg — IT € £L(K),
(a) Q = Ql - ZQIa
(b) HQjH[:(,C’K*) <7, ”H”C,{(H,K) < T, and for ¢ € H we have |IIp|, < T [T,
(c) @1 has an inverse Ry € L(K*,K) which satisfies [IILR| [ s ) < T and
HRJ_H]k_Hﬁ(;c*,;c) <7
(H5) There exists 8 € [0, T] such that if we set

M =iada(Q) + BQ+ € L(K,K¥),

<
<

then
lada(IT*MIT) || £ i gy < AT,

and, in the sense of quadratic forms on H, we have
h
IT*Re(M)II > ¥H*IH.

We recall the estimates of Q™! given by the commutators method. See Theorem 5.2
in [Roy24]. For the proof we follow [Roy24]| and check the dependence in h of all the
estimates (see also [Roy10]).

Theorem 6.2. Let Q € L(K,K*) be dissipative and boundedly invertible. Let A be
a selfadjoint operator on H. Let N € N* h €]0,1] and Y > 1. Assume that A is
(h, T)-conjugate to Q up to order N.
(i) Let § > % There exists ¢ > 0, which only depends on Y and 0, such that
-5 H—1 -6 c
W, < o
(ii) Assume that N = 2 and let §1,02 = 0 be such that 51 + 9o < N — 1. There exists
¢ > 0, which only depends on N, Y, §; and 62, such that

(A T (A)Q M (A (A2 < (6.3)

(iii) Assume that N = 2 and let § € ]%, N[. There exists ¢ > 0, which only depends on
N, T and 0, such that

(A TQ s, (A) <A>5‘1H,;(H> <

(6.4)

and
(6.5)



30 R. FAHS AND J. ROYER

Using [Roy24, Lemma 5.5] we can convert the simple resolvent estimates into multiple
resolvent estimates, with inserted factors. This gives the following result.

Theorem 6.3. Let A be a selfadjoint operator on H. Let n € N* and N > n. Let
Q1,...,Qn € LIK,K*) be dissipative and boundedly invertible. We assume that for all
j e {l,...,n} the selfadjoint operator A is (h;, Y ;)-conjugate to Q; up to order N for
some Y; =0 and h; €]0,1]. Let By,...,B, € CX (H). Let

T = BoQ,'B1Q5" ... B,_1Q;,' By,.

Let b € ]n - %, [ and let 61,99 = 0 be such that 61 + o < N —n. There exists C > 0

which only depends on N, T1,...,Y,, §, 01 and do such that

C
-5 -5
(AT w7 < Boloyn - 1 Baley oo (6.6)
C
H<A>61 1p_(A) T 1g, (A) (A)® ’L(H) < 1Bollcyey - IBaleyoy . (67)
_ _ C
(A7 T A< g IBoloyoy - IBaloyi . (68)
6—1 =5 C
(A e (T A7 < e IBoloyey - IBaloyy - (69)

Proof. We apply [Roy24, Lemma 5.5] with (2n+1) factors 11, ..., To,+1. More precisely,
we set

T2j+1 = j/ HBHCN(H) V2j+1 = 02j+1 = 0 for all _7 € {0 ,n},
Ty = th ,vj=1,005=0—n+1forall je{l,...,n},

©; = (A), for all j €{0,...,2n + 1},

H;r = 1g, (A), I = Ig= (A), for all j € {0,...,2n + 1}.

The estimates for Q;l are given by Theorem 6.2. For an operator B;, we apply [Roy24,
Proposition 3.11]. Then Lemma [Roy24, Lemma 5.5] provides a collection of constants
C ={C;(Cs_s,); (C5); (CS)} which only depend on N, Yq,..., Ty, 6, 61 and 3 such
that (6.6)-(6.9) hold. The conclusions follow. O

For the proof of Proposition 3.2, we apply this abstract result in # = L? to the
resolvent R(z) with the generator of dilations (3.9) as the conjugate operator. For each
z € Dgr, we choose K = H!. Everything depends on z, but the key in the following
statement is that T does not.

Proposition 6.4. Let N € N. There exist Y = 1 such that for all z € D; the generator
of dilations A is (1,Y)-conjugate to || 2 P(z) € L(H}, H ') up to order N.

Compared to the proof of Proposition 5.4 in [Roy24], we add the contribution of the
damping term, and we check that we can work with the usual generator of dilations A.

For the proof, we will use the Helffer-Sjostrand formula, which we recall now. Let
H be a selfadjoint operator on a Hilbert space H, m > 2 and let ¢ € C(R). Let
e CP(R,[0,1]) be supported on [—2,2] and equal to 1 on [—1, 1]. The almost analytic
extension qg of ¢ is defined by

&7 + ip) = ( )qu(’“

Then we have

ot =~ [ 2 -7 axc

where A is the Lebesgue measure on (C. See for instance [DS99, Section 8] or [Dav95].
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Proof. For z € DY we set Q. = |2| 72 P(z).
e The assumption (H1) holds for any T > 1 since |2 < ||z for any z € Dg. For
(H2), we recall that for § € [—1,1], u € L*(RY) and = € R? we have (e!4u)(z) =
e%eu(eea;). Thus, if u belongs to H! = H'(R), then so does ¢?4u, and \\eiGAu\\H;(Rd) <
e|luf g1, which gives (H2). By Proposition 4.7, we have Q. € CN(H}, H') with norm
independent of z € D, and (H3) follows.
o We set

Pr(z) = Re(P(2)) = |2]* Re(Q.) = —Ag + awlm(z) — wRe(z?).

This defines a selfadjoint operator on L? with domain H?, and also a bounded operator
from H} to H;!. We have

[Pr(2),iA] = —2A¢ + Ki(2),
where
Ki(z) = Z 0j((x - V)G x(2))0k — Im(2)(z - V)(aw) + Re(z*)(z - V)w.
7,k
Moreover,
—2Ag = 2Pr(2) + 2Re(2%) + Ka(2), Ka(2) = —2Im(z)aw + 2Re(2%)(w — 1).
Setting K (z) = K1(z) + Ka(z), we obtain

[Pr(2),iA] = 2Pr(2) + 2Re(2?) + K (2). (6.10)
We fix p €]0, pp[. Then there exists C; > 0 such that
1K (2) (z2)° |l £ aas g1y < Ch Iz (6.11)

e Now we construct the operator II, which appears in (H4) and (H5). Let ¢ €
CF(R,[0,1]) be equal to 1 on [—1,1] and supported in | — 2,2[. For n €]0,1] and
A € R, we set ¢, (N) = ¢(\/n). Then for z € D}, we set

Pr(z)
Hn,z = d)n(Re(Qz)) = (1)77 < |Z|2 ) .
We also set
0 0 0o —A-— 2?
Hn,z = ¢U(Re(Qz))v Qz = 7
For all n €]0, 1/32] we have
2
z
2 ”H277,zPR(Z)H277,z| L(L?) < |4| (612)

Moreover, with the Helffer-Sjostrand formula, we can check that there exists Co > 0
such that for all z € D and n €]0,1/32], we have

| T2y, - |L’(H;1,H;) < Ch. (6.13)
e We prove that there exists a family (nz)zemg in ]0,1/32] such that 7, := infn, >0

and, for all z € ID);,
2
|L(L2) < |Z4’ (6.14)
Let 29 € IDTFQ. We prove that there exist 7., €]0,1/32] and a neighborhood V., of zy in C
such that for all z € ]D)g N V., we have (6.14) with 7, = n,,.
First assume that zo # 0. Since IT; ., € L(H ', L?), K(20) (z)? (D) "' e L(L?, H™),
(D) (x)""(D)"? is a compact operator on L? and (D)*II; ., € £(L?), the operator

Iy 2o K (20)M1 2 = Iy 2 (K (20) (@)” (D) ™) ((D) ()" (D)) ((D)* 101 5,)

[Hap. - K (2)Iay. -
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is compact on L2. Since 0 is not an eigenvalue of Pr(2¢), the operator II, ., goes weakly
to 0 as 1 goes to 0, so there exists 7, €]0,1/32] such that

Jzof*

8
By continuity with respect to z, there exists a neighborhood V,, of 2y such that, for all
zeDE N Vi,

HH%ZO 7ZOK(ZO)H2nZO 20 Hc(L2) =

£l
HH277z0,2K(Z)H2'r]ZO,z“L(LQ) < T
e Now, we proceed similarly for z in a neighborhood of 0. Let 7y € [%, 1]. Since

(D) (z)~"(D)™? is compact as an operator from L? to H' and (D)? gzﬁno(#gﬁ?) goes
weakly to 0 as 19 goes to 0, there exists 1y € ]O7 %] such that

(D:) (z2) ™" ¢y, <W> - H(D> (@) oy (—Algﬁ?)

16 |z
1
where C and Cy are the constants which appear in (6.11) and (6.13). If ‘Re(zQ/ |2|?) — 72

S gA A
8C1Cs
8no we have
—A— 72 |,2'|2
Hgﬁo,z = ¢770 (0 Hgnmz’

£(L2) L% (6.15)

16 |z

SO
_ 1
H(z:r) pngnovzHL(L{Hzl) < 8C.Cy (6.16)

Since [%, 1] is compact, we can choose 79 so small that (6.16) holds for any z € }D)JRr.

By the Helffer-Sjostrand formula (applied with m > 3) and the resolvent identity, the
difference Ilg,, . — Hgmvz can be rewritten as

-1

1 [ Opan, _
=] S0 (Re(@2) — 7" Re(Q: — Q1) (Re(@2) ~ ) dN(Q).
We can check that for z € D} and ¢ € 5D\R,., we have
-1 0 -1 1
H(Re(Qz) —9 HL(H;l,HZl) - H(Re(QZ) ) HE(L2,HZ2) s [Im(¢)| (6.17)

On the other hand,
|Re(Q: — QS)HL(HZH’J,Hz_l) SEE
This proves

|(Re(@2) = )" Re(Q: — @) (Re(@%) ~ ) ],

2"

L2 "~ [Im(Q)f*

Since anggno is compactly supported and decays faster than |Im(¢ )|2 near the real axis,
we deduce

“HQUO,Z - Hgnmz‘ [,(LQ,Hzl) S ‘Z‘p . (618)
Then, by (6.16) and (6.18), there exists ro €]0, 1] such that for z € Dg with |z| < g we
have

B 1
[€z2) ™ Wang 2 2y < STeres (6.19)

With (6.11) and (6.13) we get

|2
||H27707ZK(Z)H2770,Z||£(L2) < s (6.20)

IN
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This concludes the proof of (6.14). The fact that we can choose the family (7,) bounded
away from O comes from the fact that 7, can be chosen constant in a neighborhood of

any zp in the compact ]D)g.
e Now we can prove (H4) and (H5). We begin with (H5). We choose 5 = 0. Let
z e DE. By (6.10), (6.12) and (6.14), we have for all z € D&

2
. z
Mo - Pr(2), iAITay - > 2Re(2)03, -
Since 2Re(2%) = |z|* we get after composition by IT,,, . on both sides
2
j2 AL S e
77Z7 [ R( ) ? ] Nz,2 = 2 Nz,2"

This gives (H5) with I, :=1II,,, ..
e By the Helffer-Sjostrand formula and Lemma 4.6 we have

. O,
H[Hza'LAZ]Hﬁ(HZI,HZI) ’SJ e

< | [Re( Qz JiA] “c HYH:')
<1

Q|| Re(@2) =) ia| ., dA©)

L(HZ'HY)

Now we set )
Pr(z) — ilm(2%)wmin _

where Wi, = mingeg w(z) > 0. Then

Qi (2) =i(Q.—QL(2)) = Bl [Im(2*)(w — Wimin) + Re(2)aw]
is non-negative, | (z) is boundedly invertible and by the functional calculus we have
-1 -1 1
|(1-T)QL(2 “5 H; ' HY) =[Qux) (- HZ)HL(H;l,Hg) S e
This gives (H4) and the proof is complete. O
Now we can prove Proposition 3.2.

Proof of Proposition 3.2. We begin with (3.10). If k = 0, it is given by Theorem 6.2 ap-
plied with A = A and Q = #P(z) Assume that k = 1, so that Ry; = R(2)v;, (2)R(z)
for some j; € {0,1}. If j; = 0 we simply apply Theorem 6.3 with Q1 = Q2 = #P(z) and
Bi1 = v0(2). When j; = 1, we want to see 71 (z) as an operator from H? to H~! for some
s, since then it is of size O(z). Then we cannot apply directly Theorem 6.3, where the
inserted factors are bounded operators on L?. Thus, we apply once more the resolvent
identity (3.12) to get elliptic regularity. Setting r = |z| and 1(z) = R(ir)v1(2)R(ir),
we can write

R(2)11(2)R(2) = [1+ R(2)12(2) |51 (2)[1 + 72(2) R(2)]

= %1(2) + N1 (2)12(2)R(2) + R(2)72(2)71(2) + R(2)72(2)71(2)72(2) B(2).
By Propositions 4.7 and 5.1, we have
- 1 - 1 - 1
171 (2) ey 2y < P 171 (2)v2(2) e 22y S El Iv2(2)7(2)llew 22y S Bl

and
271 (2)2(2)llew 22y S 2]

Then, we can apply Theorem 6.3 for each term and deduce (3.10) for k =1 and z € ]D)JRF.
We proceed similarly for k > 2, the details are omitted.
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We turn to (3.11). We use the same trick to see the inserted factor f,(2) as an
operator of size O(|z|”"). Assume for simplicity that k = ko = 0. Setting 0,(z) =
R(ir)0,(z)Ro(ir), we can write, with the resolvent identities (3.12) and (3.13),

R(2)05(2) Ro(2) = [1 + R(2)72(2)]05 (2)[1 + 73 (2) Ro(2)]
= 05(2) + 05(2)75 (2) Ro(2) + R(2)72(2)0 (2) + R(2)72(2)05(2)75 (2) Ro(2).
By Propositions 4.7, 5.1 and Proposition 5.2 for Ry(z), we have
In2(2)80 (2198 ()l 12y S 1211 106 (2)le (12,111
< |Z|4 HR(Z'T)Hcg(H;{H;) HQU(Z)HCJA}’(H;JfﬂH;l) HRO(“")HCIA}I(L{HZHP)
S 277
Similarly,
10a (e gy 12170
106 (298 (2) ey 2y < 1217772 Ih2(2)00 (2) ey 12y < 127072
We deduce (3.11) for z € Di, and the proof is then similar when k, kg > 1.

Then Proposition 3.2 is proved for z € ]D)JR”. By a duality argument, we deduce (3.10)
and (3.11) for z € Dy, and the proof is complete. O

)

APPENDIX A. ADDITIONAL PROOF
In this appendix we prove Lemma 3.3.

Proof of Lemma 3.3. The result is proved by induction on N € N. We begin with the
case N = 0. If £ = 0 then the claim is directly given by the resolvent identity (3.12).
Now assume that k£ > 1. We have

Rii(2) = R(2)v5 (2) R(2)-.75, (2) R(2) = R(2) 75 (2) Re—1,y (2)-
where we have set i’ = (ja, .. .,j%) € {0,1}*71. By (3.12) we get
Rij(2) = R(ir)vj, (2)Rr—1, (2) + R(ir)7v2(2) R j(2).
Both terms are of the form (3.17). Now, let N > 1 and assume that the result is proved
for N —1. Then it is enough to prove that an operator of the form (3.15) or (3.17) (with
N —1 instead of N) can be written as a sum of terms of the form (3.15) or (3.17). A term
of the form (3.15) is already in suitable form. We consider a term of the form (3.17) (for
N —1). Let j1 = (i1, jinv-1) € {0, 1,271 o = (jais- - Jok,) € {0,1}%2 (with
ko < k) and £ € {0,1,2}. If ko = 0, we have by (3.12)
Rn-1 (ir, 2)7e(2) R(2)
= RN-1j (i1, 2)7e(2) R(ir) + Rn—1j, (ir, 2)ve(2) R(ir)72(2) R(2)
= R js (i1, 2) + R jj (i, 2)72(2) R(2),
where j3 = (ji1,...,51.8-1,¢) € {0,1,2}". If ko > 1, we similarly have with j, =
(2.2, Jok) € {0, 134271
RN—15, (17, 2)70(2) Ry o (2)
= Rn—1, (i1, 2)70(2) B(2)Vjp 1 (2) Rtz —1,34 (2)
= Rjs (i1, 2)Vjo, (2) Rip—1,i4(2) + R j; (ir, 2)72(2) R(2)7j, (2) Rip—1,54 (2)-
= RNjs (07, 2)Vjo 1 (2) Rig—1,34 (2) + R js (07, 2)72(2) Ry, (2).
In both cases, we get two terms of suitable form. O
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