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ABSTRACT
The vast majority of simplification algorithms are based roughly
on the assumption that rendering time is related to the number of
primitives, with the aim of reducing memory impact and render-
ing complexity. In this paper, we define more precisely the links
between 3D object intrinsic characteristics and rendering time in
order to provide a new tool for prediction and to guide these simpli-
fication methods. We conduct a large-scale experiment in a WebGL
environment on multiple devices to measure the rendering time of
a set of photo-reconstructed and textured 3D meshes. The results
showed us the influence of features on rendering time and that the
number of vertices is not the most relevant characteristic. We then
trained a predictor capable of predicting the rendering performance
of a 3D mesh. This predictor takes as input various characteristics
of 3D objects as well as a set of device rendering performance fea-
tures that we have introduced and achieves a prediction accuracy
of 1.16 ± 0.09 ms on average (19.70 ± 2.44 % relative error). We also
provide an analysis of the most important characteristics for the
task of prediction.

CCS CONCEPTS
• Computing methodologies → Classification and regression
trees; Rendering; Graphics processors;Mesh models.

KEYWORDS
Workload Prediction, Rendering Time Estimation, Triangular Mesh,
Random Forest, Mesh Analysis, Mesh Features, WebGL

1 INTRODUCTION
In recent years, advancements in technology have significantly
improved raw computing power, rendering techniques like geome-
try virtualization, and data acquisition through photogrammetry.
These improvements, along with better modeling tools, have made
3D graphics content much more detailed and rich, opening up
possibilities for creating diverse 3D environments. Technological
improvements have also been made in the area of browser-based
graphics rendering using WebGL. This growth is due to its ease
of use and compatibility with a wide range of devices. WebGL is

used in various research fields, including medicine [Min et al. 2018],
cultural heritage [Gaspari et al. 2023], and urban planning [Gautier
et al. 2023; Vincent Jaillot and Gesquière 2020], among others. It
is also a subject of great interest to the contributors involved in
the development of the metaverse, as this technology is promising
and used in several projects [Choi et al. 2022; Gadea et al. 2016].
WebGL plays a crucial role in the metaverse by delivering immer-
sive 3D graphics directly to web browsers. Its accessibility and
cost-effectiveness make it a catalyst for mass adoption.

The task of displaying such complex data in real-time is still a
challenge due to the size of the input data and the limited memory
onmost portable devices and low-power machines. A preprocessing
step is often required and it consists of reducing the complexity of
the shape and/or the texture information through simplification
while preserving an overall shape [DGG 2024; Kim et al. 2002; Lee
and Kyung 2016; Potamias et al. 2022]. When dealing with very
complex objects, this task is often carried out manually by an artist
[Autodesk 2024; EpicGames 2024] as most algorithms give poor
results. Another approach to visualizing massive 3D meshes is to
use spatial data structures to speed up culling operations [Stein
et al. 2014], but these are limited to static scenes or come with a
non-negligible update cost.
One flaw of the simplification pipeline is the lack of tools to precisely
predict at which level a 3D object becomes displayable for a given
target device in a web context. The number of primitives (faces or
vertices) is often used for guiding the simplification task but, as
illustrated in Figure 1, we show that in some cases this information
is not enough to predict the displayability i.e. if the number of
Frames Per Second is above a given threshold. We use the standard
30 FPS established for gaming applications as the lower bound for
displayability. For immersive or XR applications, this threshold can
be raised to 60, 120, or even 240 with certain devices.

In this context, we propose a new offlinemodel of "Mesh-Workload"
capable of predicting if a 3D object, for a given target device, will be
displayable in real-time using a set of geometrical, texture layout,
and data ordering features coupled with descriptors related to the
devices’ rendering performances. Initially, we have chosen to es-
tablish our method using dedicated graphics cards, and we reserve
the study of portable devices for future work.
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This tool paves the way for smarter simplification algorithms whose
objective will not simply be to reduce the number of primitives
but to optimize a set of parameters to render the object above an
FPS threshold while preserving its visual quality. It could also be
included in mesh editing software to provide feedback about the
rendering complexity for a given hardware target.

Figure 1: Impact of vertex ordering on the rendering time:
Two 3D meshes with the same number of primitives orga-
nized in different orders. The color shows the number of
transformations per vertex, green is one transformation, and
red is six. The left object takes 400 𝜇s to render, the right
object 250 𝜇s and the worst case with a fully random order
of vertices is even slower: 600 𝜇s.

In summary, our contributions are the following:
(1) We designed a measurement protocol to collect rendering

times of 3D objects in a WebGL framework.
(2) We propose a new way to extract characteristics of the

rendering capabilities of a physical device.
(3) We train and provide an optimized predictive random forest

model and we show that our model can generalize to new
hardware.

The rest of this paper is organized as follows. The next Section
reviews the related works in the domain of performance prediction.
Section 3 presents an overview of our method. Section 4 describes
the dataset we use, how we augment it, and the set of features that
we compute on 3D meshes and devices. Details about the rendering
environment and the measurement protocol are presented in Sec-
tion 5. Our model is presented in Section 6 along with our feature
selection process and hyperparameters. We present and evaluate
our results in Section 7. Concluding remarks and perspectives are
given in Section 8.

2 RELATEDWORK
The field of performance prediction is vast and is highly coveted in
areas such as task parallelization or memory consumption predic-
tion in high-performance computing centers, but also in the field
of computer rendering, where the main interest is in predicting
rendering time for a wide range of applications.

One area of research is specialized in the prediction of workload
for mobile devices (mostly smartphones). These predictions are
used by a power saving method called DVFS [Dietrich et al. 2013;
Macken et al. 1990; Pathania et al. 2015a,b; Zhang-Jian et al. 2009]
for Dynamic Voltage Frequency Scaling. Estimating the workload
beforehand allows proper management of the power and resources
to improve battery life. As an example, a hybrid workload pre-
diction scheme with a switch between a PID-based and a frame

structure-based predictor is proposed [Gu and Chakraborty 2008].
The authors found a strong linear correlation between rasterization
and total workload, hence the emphasis on this prediction.

Another domain of application where the performance predic-
tion is used is in High-Performance Computing (HPC) architectures.
A genetic algorithm approach [Tikir et al. 2007] is derived from an
analytical formula as a way to predict the bandwidth from cache
hit rates in memory-bound applications. In the same field of ap-
plication, a regression-based approach to predict parallel program
scalability is proposed [Barnes et al. 2008].

For real-time rendering applications, a frame processing time
estimation model using the frequency of integrated GPUs is pro-
posed [Gupta et al. 2016] but this is not applicable in a web context
with limited access to hardware measurements. A signature-based
predictor for estimating the rendering time of a 3D graphic scene
is proposed [Mochocki et al. 2006]. This method performs at run-
time and uses triangle information such as the average area, count,
and height as well as vertex count as a signature at each frame. A
distance is computed with each signature recorded thus allowing
the model to give a precise estimation of the rendering time. This
method is simple and compact but requires modification of the
rendering pipeline which is not desired in our case.

An analytical model [Wimmer and Wonka 2003] is proposed for
predicting the rendering time using the number of transformed
vertices coupled with the number of projected pixels given a view-
point and a list of potentially visible objects. The authors claim their
method can only provide an upper bound due to time-stamping
limitations and proposed two hardware modifications to solve this
issue.

As for more recent work, an API-level workload model for mod-
ern video games is proposed (Gamorra) [Mohammadi et al. 2022].
They used a multi-linear regression model with a hybrid training
scheme (online/offline) as a method for computing weights. Bench-
marking each step of the rendering pipeline improved greatly their
accuracy. Unfortunately, this method requires access to the com-
mands sent at the Application Programming Interface level (API)
which is not an easy task in the case of a WebGL pipeline. They
need to train their model beforehand with frames from the game
to find a proper weight set and this is not applicable in our context
as our model performs offline.

Our work differs from most of these methods in that it can
be described as non-intrusive as we do not perform any pipeline
alteration. This also fits perfectly into aweb context where low-level
GPU information cannot be queried easily. Our method differs from
most rendering time predictors by being completely offline and
not using any information from the renderer or the graphical API
for the prediction. Our context of experimentation is also different
because we are working in a rather classical rendering context
(static photo-reconstructed 3D models and simple materials) which
differs from models working on video game scenes, for example.

Overall, to the best of our knowledge, there are no deep studies
about the impact of a 3D object intrinsic’s features on its rendering
time in a WebGL context, the subject that we tackle in this paper.
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Figure 2: Overview: A set of features is computed for all meshes and all devices from our dataset, We render in a WebGL
environment every mesh for every device and measure the corresponding frametime. The resulting data is then used to train a
machine-learning model, that can be used to predict the rendering time for any new object and device.

3 METHOD OVERVIEW
Our goal is to predict the rendering time of a 3D textured mesh on
various devices. To provide a rendering time, our predictor will take
as input the characteristics of the mesh and the device. To train it,
we need to gather these characteristics and ground truth rendering
times. Our proposed method is composed of three main steps: 3D
mesh and device feature extraction, frametime measurements, and
the training of predictor (see Figure 2).

Features extraction. The first challenge is to characterize 3D ob-
jects and devices’ rendering performances. Triangular meshes are
a well-known and used representation of a 3D object and there is a
wealth of information that can be gathered from analyzing surface
properties (such as mean face surface area), the parametrization
(such as the length of the boundary edges in the UV space), or even
looking at the ordering of vertices in the final rendering buffer
(such the estimated number of transformed vertices). We extract
a large feature vector from the mesh geometry, parametrization
(texture layout), and data ordering presented in table 1. We use
a dataset [Maggiordomo et al. 2020] of 568 meshes reconstructed
from real photos containing a large variety of shapes and defects
that we augment with four simplified versions of each object using
state-of-the-art simplification algorithms, resulting in a dataset of
more than 3000 objects.

Characterizing a device’s rendering capability is an even more
complex task due to the fact there is a copious amount of compo-
nents, brands, and rendering architectures that can have an impact
on the rendering performances. We propose a tool to evaluate the
rendering capability of devices by measuring the mean rendering
speed for two specific tasks (transformation and rasterization) de-
rived into three performance descriptors (see Section 4.3).

Measurements. To accurately predict the frametime we need a
large amount of data from a diverse set of devices. We conducted an
experiment (described in Section 5) in which we rendered multiple
mesh instances in real-time on a user’s web browser and extracted
frametime values for 14 physical devices.

Frametime Predictors. We use the features and frametime mea-
surements of the 3D models coupled with devices’ rendering perfor-
mance indicators to train a features-based random forest predictor

(FTRF for FrameTime Random Forest), that estimates a 3D model’s
rendering time on a specific device from its intrinsic features. We
demonstrate that our model generalizes well on new objects and
new devices.

4 FEATURE EXTRACTION
In this section we present the dataset we use for our experimenta-
tion and how we augment it to increase diversity. We also provide
details about the different sets of features computed on the 3Dmesh
and the performance descriptors we extract from the rendering de-
vice.

Figure 3: Subset of 3D meshes used for the experimentation
from the dataset [Maggiordomo et al. 2020]. The numbers
associated represent the number of vertices.

4.1 3D triangular mesh dataset
We used the dataset "Real-World textured things" [Maggiordomo
et al. 2020] composed of 568 photo-reconstructed 3D meshes (see
Figure 3). This dataset contains meshes with a number of vertices
ranging from 1K to 4.7M, with the vast majority around 100k. In
terms of parametrization, the objects have a number of textures
ranging from one up to five for most of them, with a few exceptions
at 10. Texture resolutions vary from 1K for the smallest to 8K for
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Table 1: Feature list of 3D meshes

Geometrical (12) Texture Layout (13) Data Ordering (7)

Face Number, Vertice Number, Edge Number, Bdry Edge
Number, Bdry Edge Lgth, Bdry Edge Lgth Normalized,
Area, Area Normalized, Nonmanifold Edge Number, Non-
manifold Vertice Number, Unref Vertice Number, Num-
ber Connected Components

Texture Number, Tex Pixel Count, Area UV,
Edge UV Number, Bdry Edge UV Num-
ber, Bdry Lgth UV, Null Charts Number,
Fold Number, Charts Number, Occupancy,
Mapped Fraction, Crumbliness

Vertices Transformed,
Overdraw, Pixels Shaded,
Covered Pixels, Over-
fetch, Bytes Fetched,
ATVR

the largest. To enrich and diversify the content of the dataset, we
extended it by simplifying each object using two simplification
methods, one that only seeks to reduce the number of primitives
and one that also optimizes cache access by reordering the list of
vertices. These simplification methods are described below.

4.1.1 Quadric ErrorMetric. QEM [Garland andHeckbert 1997] con-
sists of decimating the mesh using edge collapses while minimizing
the error computed and propagated using quadrics. We simplify our
meshes at four levels of detail: −50% and −80% of the original face
count and we also explicitly set two other decimation targets on
the vertice count (150000 and 300000) meaning only meshes above
those thresholds are simplified. We use the implemented version
from Meshlab-2022.02 [Cignoni et al. 2008].

4.1.2 MeshOptimizer. MeshOptimizer [Kapoulkine 2023] is a tool
for the simplification of 3D content used for lightweight hardware.
As well as reducing the number of primitives while preserving
global appearance (deviation from the original mesh using normal-
ized distance), it can also remove any duplicated vertex which does
improve performances. Furthermore, its main feature consists of
reorganizing a 3D mesh triangle list to reduce cache operations for
the GPUwhile minimizing vertex transformations. We use MeshOp-
timizer as a second simplification method and we simplify at two
levels of details: −50% and −80% of the original face count coupled
with vertex cache optimizations.

4.2 3D Mesh related Features
We selected 32 features that are computed for each 3D mesh using
TexMetro [A and P 2019] and MeshOptimizer [Kapoulkine 2023].
In order to better assess their influence on the rendering time we
categorize these features into three categories: Geometrical, Texture
Layout and Data Ordering features as in Table 1.

4.2.1 Geometry-Based Features. In this category, we gather fea-
tures related to the geometric information of the 3D meshes. For
clarification, features described with a normalization attribute mean
they are computed on objects normalized beforehand in a unit cube.
Our ensemble starts with the number of primitives describing the
object (Face Number, Vertice Number and Edge Number). As our
dataset contains nonmanifold meshes, we keep these three features
although they are strongly linked for manifold meshes. We also re-
port features that characterize boundary edges (Bdry Edge Number,
their length Bdry Edge Lgth, and a normalized length Bdry Edge
Lgth Normalized). It is known a large number of subpixel triangles
will impact the rasterizer’s task thus we sum the area of triangles
and we provide a normalized value (Area and a Area Normalized).
Non-manifold elements may require more memory to store and

process which can affect rendering performances (Nonmanifold
Edge Number and Nonmanifold Vertice Number). Some models in
our dataset also contain non-referenced elements (Unref Vertices
Number), they are not displayed but they are always loaded, thus
increasing the memory required to process the mesh and more
specifically in the case where a large quantity of these elements are
present. Finally, we report the number of connected components
as it could have an impact on the underlying culling procedure
(Number Connected Components).

4.2.2 Texture layout features. In this category, we selected char-
acteristics related to the parametrization of a mesh that can have
an impact on rendering time. We report the number of textures
(Textures Number) associated with a mesh and the sum of pixels of
all textures from a mesh (Tex Pixel Count). We also collect informa-
tion about the parametrization in the UV space such as the area of
triangles (Area UV ). We report the number of primitives (Edge UV
Number and Bdry Edge UV Number) with their length (Bdry Lgth
UV ) as it is known in the literature it could have an impact on the
rendering time due to duplication of vertices along a texture seam
[Maggiordomo et al. 2020]. The layout of the texture components is
another factor that can also impact the rendering time, the number
of texture charts, those folded and with a zero surface area are also
reported (Null Charts Number, Fold Number Charts Number). Their
presence in large quantities means the texture might contain more
boundaries and increase the sampling workload. We also provide a
descriptor measuring the ratio of every texel that falls inside UV
triangles over the total number of texels (Occupancy) and the per-
centage of surface area that is mapped to a non-zero texture area
(Mapped Fraction). Finally, we selected two statistical descriptors
that are invariant to the object size, they measure how fragmented
a texture is (Crumbliness and Solidity). The reader can refer to the
work of Maggiordomo et al. [Maggiordomo et al. 2020] for more
details about these features and how they are computed.

4.2.3 Data Ordering features. In this category, we include all de-
scriptors provided by MeshOptimizer, that relate to the ordering of
the data and the efficiency of the task of rendering.

Vertices Transformed is the number of transformations operated
on the vertices buffer. It ranges from the number of vertices (for a
ratio of one transformation per vertex in the best case) to up to six
times the number of vertices.

Overdraw is a metric computed from a set of orthographic cam-
eras placed around the object. It measures the average over the
views of a ratio between the number of effective pixels shaded (Pix-
els Shaded) to the total number of pixel shader invocations (Covered
Pixels).
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Overfetch is the ratio between the number of bytes fetched in
memory (Bytes Fetched) over the total number of bytes, a large
number of memory accesses could result in a lower frametime.

ATVR(Average Transformed Vertex Ratio) is the number of trans-
formed vertices over the total vertices. This descriptor allows us to
better assess the rendering efficiency of a mesh.

4.3 Devices related Features
With the tremendous number of different rendering-related hard-
ware such as brands with Nvidia, AMD, Qualcomm or Intel and
their specific hardware optimizations, characterizing rendering per-
formance becomes a real challenge. We considered using 3Dmark
[Solutions 2023] score as a measure of performance but we faced
two problems: First, score values are tied to specific screen res-
olutions and hardware (CPU/RAM, etc), which may not match
the specification of the device; Second, there is no available open
database for us to acquire.

We thus designed a tool to characterize the performance of a
given machine. Inspired by Gamorra [Mohammadi et al. 2022], we
perform several rendering tests, each measuring the performance of
a stage of the rendering pipeline. The first test measures the vertex
transformation rate and the second one stresses the rasterizer stage
and fragment shading stage of the device. Both tests transform
the same number of vertices, rasterize, and then shade the same
number of fragments for a fixed screen resolution. These tests draw
several full screen tessellated quads with a constant total number of
vertices. To obtain our final measure, we apply a temporal median
filter to reduce the noise and keep the median value over 10,000
rendered frames.

Transformation test. We draw four configurations with 65536,
262144, 1048576 and 4194304 total vertices. We report in Table 2 the
distribution of the mean rendering time of 14 devices computed on
our dataset along with the performance indicator Transform 65536.
We can see that this indicator accurately discriminates the render-
ing speed of slower devices and characterizes well the underlying
rendering speed.

Rasterizing test. We draw nine configurations with tessellation
factors 4, 8, 16, 32, 64, 128, 256, 512 and 1024, while adjusting the
number of tessellated quads to transform a constant total number
of vertices. Each configuration draws each full screen quad as a
grid of smaller quads, eg the first test draws a full screen quad as
a 4x4 grid of smaller quads. We also adjust the number of grids to
draw to transform a constant number of vertices. This test varies
the on-screen size of the quads but transforms the same number of
vertices and shades the same number of fragments.

Shading test. Our objects use the same simple textured shading
model. The shading cost is thus constant in this case and we chose
to not measure fragment shading performance.

In addition to these measures, information such as the Operating
System and the screen resolution (in pixels) used for the experimen-
tation are gathered and then fed to our predictor as explanatory
variables. See Table 2 for the specification of the devices used in
this experimentation.

5 FRAMETIME MEASUREMENT
To train our model we asked 12 participants to conduct an ex-
periment that consisted in rendering 3D objects in a 3D WebGL
environment and measuring the frametime on multiple sets of de-
vices and configurations. In Section 5.1 we present our rendering
context, the object loading procedure of the experimentation, and
how we measure the frametime in Section 5.2, and technical details
are given in Appendix A.

5.1 Web Context
We opted to conduct this experiment utilizing a WebGL rendering
engine due to several compelling reasons. The need for additional
analysis tools for applications based on WebGL technologies stems
from two primary considerations. Firstly, there are works from mul-
tiple research fields that are constructed using WebGL technology,
highlighting the practical relevance and demand for advancements
in this domain. Secondly, this project has the potential to stimulate
the creation of new solutions designed for devices with limited
performance. By addressing these imperatives, our research aims
to not only enhance existing applications but also pave the way for
more efficient and adaptable solutions, particularly in the field of
WebGL technology.

As most of the latest versions of web browsers (Chrome, Firefox)
support WebGL rendering, we conducted preliminary experiments
to assess their stability, robustness, and lightness. We chose Google
Chrome as it provides the most consistency in our measurements.
For the choice of theWebGL framework, we chose to use the Three.js
[Cabello 2024] framework due to its stability and flexibility.

Figure 4: Screenshot of the experiment and visualization
of the grid layout - This state corresponds to the loading
procedure represented by a yellow cross in Figure 5

5.2 Loading procedure
To save power, most GPUs adjust their frequency depending on the
difficulty of the rendering task, but in our case, we need to push the
GPU to its full capacity to get accurate measurements. To achieve
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Table 2: Overview of the devices used in our experiment - Screen resolutions are given in the standard format

Device ID GPU VRAM CPU OS Resolution Mean Frametime (ms) Transform 65536†

device_14 RTX 3090 24 GB Xeon W-2245 Windows WQHD 3.9 10.24
device_6 RTX 3090 24 GB Ryzen 9 5950X Windows UW4K 4.1 10.24
device_10 GTX 1080 Ti 11 GB Core i9-12900K Windows WQHD 3.9 11.26
device_13 RTX 3080 10 GB Ryzen 9 5950X Windows FHD 3.5 12.29
device_12 RTX 3080 10 GB Ryzen 9 5950X Windows WXGA HD 3.8 12.29
device_1 RTX 3080 10 GB Xeon Silver 4208 Linux WQHD 4.8 12.29
device_5 RTX 2080 Ti 11 GB Xeon E5-1660 v2 Windows UWQHD 4.2 12.58
device_4 TITAN RTX 24 GB Core i9-10900K Windows FHD 4.3 13.95
device_8 RTX 3070 8 GB Core i9-10900K Windows WQHD 4.6 15.36
device_3 RTX 2080 8 GB Ryzen 7 1700X Linux WSXGA+ 5.7 19.90
device_7 RTX 2060 6 GB Core i9-10900K Windows WQHD 6.7 24.58
device_9 GTX 1080 Ti 11 GB Core i7-6700K Windows WQHD 7.9 34.82
device_2 GTX 1660 6 GB Ryzen 5 3600 Linux FHD 10.5 39.04
device_11 GTX 1050 Ti 4 GB Core i5-9400 Windows FHD 12.6 82.94

† This table is sorted by the transform indicator, lower is better, device ID corresponds to the i-th device tested

maximum GPU usage, we load a high number of instances on the
screen to simulate a complex scene. The object and their respective
instances are loaded consecutively on a 3D regular grid layout of
size 4*4*4 accounting for 64 instances of the object in total (see
Figure 4). They are pre-normalized into a unit cube of unit size
to ensure consistency between objects, their center is recomputed
at the center of the unit cube, and their position is fixed with a
distance of one unit plus a small epsilon to avoid any overlap. Their
orientations are uniformly sampled to avoid any bias caused by
the fact that the camera is looking at them from a fixed point of
view. We used a subset of the previously introduced dataset so
as not to exceed six hours of experimentation per user. For the
object selection, our preliminary tests revealed that rendering time
is strongly linked to vertex transformation time, so we sampled the
initial dataset on this dimension for 600 meshes. For each mesh,
we load and try to display it then we check every 200 ms for the
reception of the callback from the loader as certain objects are over
one gigabyte in size. Then we create instances every 500 ms until
the grid is full. Once all the instances have been loaded, we wait
for 10 seconds during which we measure the rendering time. After
that time, we clean the rendering environment and wait six seconds
before loading the next object (see Fig.5).

Collecting the frametime precisely is a particularly complex task
because, for security reasons, Web browsers do not allow any direct
communication between the client and the GPU. We considered
using the exposed "EXT_disjoint_timer" extension but this is not
supported on all operating systems. Instead, we query Frames Per
Second (FPS) at an interval of one second and we collect the fram-
etime value as the inverse of the FPS. Frametime is logged every
second for the whole duration of the experiment, we process raw
data afterward using timestamps generated at the beginning and
the end of the 10-second measurement window. You can observe
the distribution of the Frames per Second measured for 14 devices
in Figure 6.

Figure 5: Frametime measurement - We first load the object,
then its instances as we observe the frametime increasing.
Only frametimesmeasured within themeasurement window
are considered stable. Following the dispose call, the envi-
ronment is cleaned and ready for the next object

6 FRAMETIME PREDICTOR
To predict the rendering time of a 3D object based on its intrinsic
characteristics, we propose a regression model (FTRF ) based on an
ensemble of decision trees (Random Forest) [Breiman 2001] that
we detail in Section 6.2. We perform a few upstream operations on
the data collected that we discuss in Section 6.1.

6.1 Pre-processing
Our dataset contains only one categorical feature Operating System
with two outcomes: "Windows or Linux". As the random forest
cannot process textual data we use a One Hot Encoding on these
labels.
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Figure 6: Frames per Second distribution for each device - On
the fastest devices, some objects are rendered at more than
6000 FPS while most of the values are under 1000 FPS

Despite collecting the median frametime over more than 10
seconds, for a few sets of massive 3D meshes with multiple textures
we observe discrepancies in the frametime measured caused by
web-browser memory limitation. After a histogram analysis of the
frametime distribution, we observe that approximately 2% of the
measurements are outliers and consequently removed by a quantile
filter.

6.2 Random Forest Regressor
We choose to use a random forest regressor rather than deep-
learning methods for the task of prediction because the latter is
less effective when working on tabular data with a relatively small
number of samples as in our case (<10000) [Borisov et al. 2022; Grin-
sztajn et al. 2022]. With its feature importance mechanism and the
interpretability of decision trees, the random forest is considered to
be more explainable than deep learning models. We then propose a
cross-validation scheme (see Section 6.2.1) where neither a tested
3D mesh nor a tested rendering device is seen in the training fold,
this allows us to demonstrate our model capabilities to generalize.
To compare our model we also train two models for comparison
with only unseen meshes and devices respectively FTRF_meshs
and FTRF_dev.

6.2.1 Cross-validation objects and devices splits - FTRF. We train
our model FTRF using a three-fold cross-validation scheme where
we split our data along two dimensions at the same time, one along
the objects and one along the devices. Each fold contains one-third
of meshes rendered on one-third of our devices for our test set
while our training set contains the two-thirds remaining for both
dimensions, leading approximately to 80%:20% train-test split (see
Figure 7). We report the results as the average over the three folds.
We fine-tune our model using a grid search method and we report
the best parameter for the model that minimizes the L1 norm -
Mean Absolute Error (MAE)

∑ (𝑦𝑖 − 𝑦𝑖 ) over the folds where 𝑦𝑖
are the ground truths and 𝑦𝑖 the predictions. We set the number of
estimators to 30, and the number of features per split is set to 50%
of our total dataset feature number. This parameter value allows us
to take full advantage of the random mechanism provided by the

random forest and reduces overfitting. Finally, the maximum depth
of estimators is set to 16.

Figure 7: Cross-validation: We represent in blue the training
split and in green the test split over one fold in red. For a
total of five blocks, the training split accounts for 80% of the
fold data and the test split for 20%.

6.2.2 Model variations for analysis - FTRF_meshs and FTRF_dev.
For comparison and to illustrate the generalization capabilities of
our method, we also train two models using three-fold 80%:20%
train-test cross-validation schemes where we split our data along
specific dimensions. For FTRF_meshes, neither a 3D object nor its
simplified versions seen during training are used for prediction. For
FTRF_dev, we make sure that every measurement for each device
belongs to either a training or a testing set. We fine-tune our models
using a grid search method and we report the best parameter for the
model that minimizes the MAE over the folds. We set the number
of estimators to 90, and the number of features per split is set to 60%
of our total dataset feature number. Finally, the maximum depth of
estimators is set to 16.

7 IMPLEMENTATION, RESULTS AND
EVALUATION

Our random forest regressor was implemented in Python with the
SciKitLearn framework. Our model training was performed on a
desktop computer with an AMD Ryzen 9 5950X 16-core Processor
and 32GB RAM.

7.1 Metrics
We attach particular importance to the choice of metrics for evalu-
ating our model as our predictions cover multiple orders of magni-
tude.

The Pearson and Spearman correlations are calculated between
the predictions and the ground truth. The Pearson correlation is the
simplest tool for measuring the strength and direction of the linear
relationship, while the Spearman correlation is used to assess the
extent to which the rank of our predictions is consistent with the
rank of ground truth measurements.

The coefficient of determination R2 is another indicator used to
determine the prediction performance of the model. The R2 coeffi-
cient is calculated as follows considering 𝑦 the predictions, 𝑦 the
corresponding ground truths and 𝑦 the mean over the predictions :

𝑅2 = 1 −
∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)2 (1)
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Table 3: Performance of different models

model 𝐶𝑜𝑟𝑟𝑝 𝐶𝑜𝑟𝑟𝑠 R2 MAE (ms) RMSE (ms) Emax (ms) MAPE (%)

Median (cst) n/a1 n/a1 0.12 ± 0.05 4.2 ± 0.12 7.24 ± 0.26 46.05 ± 1.01 204.8 ± 54.14
LM 0.76 ± 0.10 0.88 ± 0.01 0.43 ± 0.25 2.5 ± 0.3 4.93 ± 0.87 37.5 ± 6.4 188.1 ± 67.22
SVR 0.90 ± 0.08 0.96 ± 0.01 0.79 ± 0.16 1.11 ± 0.23 2.79 ± 1.17 37.3 ± 24.6 26.49 ± 5.25
FTRF (ours) 0.93 ± 0.009 0.98 ± 0.002 0.85 ± 0.003 1.16 ± 0.09 2.61 ± 0.18 22.12 ± 2.31 19.70 ± 2.44
FTRF_VN† 0.80 ± 0.03 0.90 ± 0.01 0.63 ± 0.06 2.08 ± 0.04 4.12 ± 0.26 34.33 ± 6.42 50.32 ± 4.30

1 Due to the constant nature of the predictions of the Median regressor model, 𝐶𝑜𝑟𝑟𝑝 and 𝐶𝑜𝑟𝑟𝑠 could not be reported
† FTRF_VN is a Random Forest model trained with devices features and Vertices Number as explanatory variable

We report performances of an L1 norm as the Mean Absolute
Error (MAE), an L2 norm as the Root Mean Square Error (RMSE)
along with Emax standing for the l-infinity norm. We also com-
pute our metrics on specific FPS ranges, by splitting our dataset
according to the measured frametime (See columns 3 to 7 in Table
4). These Frames Per Second (FPS) intervals correspond to different
quality targets in a real-time environment : [1:30], ]30:60], ]60:120],
]120:1000], ]1000:inf[ respectively: Poor, Adequate, Smooth, Fluent,
and Exceptional.

7.2 Results
We first compare our proposed model with other classic machine
learning models and show that it performs better by analyzing cor-
relations and errors. We also report results from another frametime
prediction model for comparison. Finally, we demonstrate FTRF’s
capability to generalize to new objects and devices and we also
report results from two variations of our model that were trained
with other configurations described in 6.2.2.

7.2.1 Comparison against others models. We tested the perfor-
mances of a constant regressor predicting the median, a Linear
Model (LM), and a non-linear model: Support Vector Regressor
(SVR) all trained with the same procedure as our predictor FTRF
(See Table 3). There is a pre-processing step for the SVR training,
the data and the target frametime have been normalized and we
transform back the predictions to compute our metrics. We quantify
this with the metrics we described previously (see Section 7.1) aver-
aged over three folds. Results show that our model performs better
in terms of Pearson and Spearman coefficients and R2 respectively
𝐶𝑜𝑟𝑟𝑝 ≈ 0.93, 𝐶𝑜𝑟𝑟𝑠 ≈ 0.98 and 𝑅2 ≈ 0.85 with relatively small
deviations demonstrating the stability of our model. It achieves
a strong linear correlation between predictions and ground-truth
while preserving the ranking order of frametimes. Results show
that on average, our model produces the smallest Emax (≈ 22.12
ms), L1 and L2 errors for our model are four times smaller than
a constant predictor and twice as small as a linear model. Results
from the SVR model show a relatively close performance to our
model but with higher deviation indicating a lack of stability over
the folds. In terms of relative error MAPE, FTRF achieves the lowest
score with a value of ≈ 19.70%. These performances comfort us in
the choice of a random forest model for predicting the rendering
time.

To demonstrate that the number of vertices alone might not
be the best feature for the task of predicting the rendering time,

we compare our model to one (FTRF_VN) trained with device
performance-related features and only vertex number as an ex-
planatory variable. The result shows that using all mesh descriptors
allows our model to increase the Pearson correlation by ≈ 0.13 and
the L1 MAE is approximately divided by a factor of two.

Finally, our work operates in a different experimental context
to that of other methods that work at API level or on the content
of a rendered frame, which makes comparison more complicated.
Nevertheless, as a qualitative comparison, and although there is
no open-source code available, we report the performance of the
Gamorra model [Mohammadi et al. 2022].We compare the results of
their offline (no adjustments in real-time) model over their dataset
to FTRF_meshs as it falls closer to this training scheme where we
predict only on a new set of meshes. Their model has on aver-
age an estimation error of 1.55 ms with 13.8% relative error and
FTRF_meshs still fall closely with a value of 0.73 ms with 11.7%
relative error thus showing that our model can perform as well as
recent predictors.

7.2.2 Frametime predictor FTRF. Along with the results presented
previously, we also report quantitative results in Table 4 as the
average performance of the cross-validated predictors on their
respective test sets (prediction on new objects for FTRF_meshs;
new devices for FTRF_dev and on both for FTRF). Our variation
model FTRF_meshs achieves sub-millisecond error with an MAE
value of 0.73 ms on average demonstrating great accuracy, with the
highest Pearson correlation coefficient of 0.97. FTRF_dev has lower
scores than the other variant as there is an increased complexity
of the task of predicting on another device, but also because the
number of devices in our dataset is lower compared to the number
of objects. Despite having a complexified training process, FTRF
manages to obtain relatively good scores in terms of correlation
and error, thus showing a great generalization performance.

By looking at the FPS range [1:30], we see that the three models
have the lowest correlation scores and the highest error. This is
mostly due to the low number of measurements used for training
but when we look at the maximum error Emax for FTRF, the pre-
diction of an object measured at 15 FPS will fall between 11 FPS
and 22 FPS in the worst case. In the FPS range ]120:1000], for an
object measured above 120+ FPS, the prediction falls at 98 FPS in
the worst case. This is still enough to determine if an object will be
displayable (rendered above 30 FPS) or not on a specific device.
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Table 4: FTRF performances: Ranges in FPS - Numbers in parenthesis correspond to the number of measurements

metric global [1:30] (102) ]30:60] (446) ]60:120] (955) ]120:1000] (3614) ]1000:inf[ (1860)

FT
RF

𝐶𝑜𝑟𝑟𝑝 0.93 ± 0.01 0.46 ± 0.1 0.54 ± 0.04 0.54 ± 0.09 0.91 ± 0.02 0.81 ± 0.02
MAE (ms) 1.16 ± 0.09 15.68 ± 3.23 5.70 ± 0.29 2.35 ± 0.48 0.70 ± 0.09 0.10 ± 0.01
RMSE (ms) 2.61 ± 0.18 16.42 ± 2.78 6.77 ± 0.38 3.07 ± 0.69 1.05 ± 0.16 0.16 ± 0.01
Emax (ms) 22.12 ± 2.31 22.12 ± 2.31 16.21 ± 4.04 9.87 ± 2.58 5.17 ± 1.66 0.83 ± 0.38
MAPE (%) 19.70 ± 2.44 37.16 ± 7.35 24.79 ± 0.40 20.24 ± 4.17 19.08 ± 3.18 19.28 ± 2.50

FT
RF

_m
es
hs 𝐶𝑜𝑟𝑟𝑝 0.97 ± 0.002 0.51 ± 0.07 0.70 ± 0.08 0.70 ± 0.1 0.92 ± 0.01 0.92 ± 0.03

MAE (ms) 0.73 ± 0.04 6.69 ± 0.86 2.82 ± 0.21 1.44 ± 0.17 0.45 ± 0.04 0.06 ± 0.005
RMSE (ms) 1.81 ± 0.10 8.66 ± 0.91 3.98 ± 0.55 2.19 ± 0.48 0.93 ± 0.09 0.11 ± 0.03
Emax (ms) 25.06 ± 4.32 20.66 ± 2.62 16.54 ± 3.95 14.71 ± 11.39 10.79 ± 0.79 0.89 ± 0.50
MAPE (%) 11.67 ± 0.51 16.04 ± 2.01 12.60 ± 1.03 12.49 ± 1.56 11.97 ± 1.20 10.42 ± 0.89

FT
RF

_d
ev

𝐶𝑜𝑟𝑟𝑝 0.95 ± 0.011 0.11 ± 0.29 0.58 ± 0.04 0.56 ± 0.11 0.92 ± 0.02 0.90 ± 0.03
MAE (ms) 1.05 ± 0.22 12.38 ± 2.76 5.39 ± 0.81 1.97 ± 0.26 0.62 ± 0.11 0.08 ± 0.02
RMSE (ms) 2.43 ± 0.43 14.25 ± 2.90 6.54 ± 0.74 2.61 ± 0.29 0.97 ± 0.15 0.10 ± 0.02
Emax (ms) 24.85 ± 3.17 24.44 ± 3.75 18.83 ± 1.71 10.05 ± 0.52 6.15 ± 1.30 0.42 ± 0.04
MAPE (%) 16.72 ± 2.59 29.26 ± 5.96 23.77 ± 3.58 16.82 ± 2.10 16.68 ± 2.60 14.85 ± 3.07

8 CONCLUSION, LIMITATIONS AND FUTURE
WORKS

We used a 3D photo-reconstructed mesh dataset that we extended
with different levels of detail using simplification algorithms from
the literature. We defined a protocol for measuring the frametime of
3D triangular meshes in a WebGL real-time rendering context. We
developed a tool to measure the rendering capabilities of physical
rendering devices and we derived these values into descriptors.
From all these descriptors and measurements we created a dataset
that we used to train an offline random forest regression model
FTRF for predicting the rendering time of 3D photo-reconstructed
meshes in a WebGL context. FTRF is fine-tuned to predict the fram-
etime of new objects on a set of unknown devices using our new
performance descriptors with an average estimation error of 1.16
ms and 20 % of relative error. this last value might appear relatively
high. However, it’s worth considering that most of our measure-
ments are conducted in a WebGL environment with less timestamp
precision than other methods used in the literature. In addition, our
predictions are performed on devices never observed beforehand
by the model (cross-validated) which is a complex task not tackled
previously using only a few performance descriptors and consid-
ering the renderer as a black box. Despite this, our analysis model
FTRF_meshes can reach a sub-millisecond accuracy of 0.73 𝑚𝑠 and
12% of relative error which is relatively close to results from mod-
els in the literature performing real-time predictions along with
autotuning features and real-time corrections (online models). We
observed that data ordering features, along with performance de-
scriptors, are predominant in the prediction of frametime, while
texture layout features have the least impact but are necessary to
achieve the best prediction performance (see Appendix B for more
details).

Limitations and future works. The dataset used to train the pre-
dictor is composed of 3D models reconstructed from real objects
using photogrammetry methods. This could differ from typically
handcrafted or CAD generated models. Our predictor could greatly

benefit from extending its training on other datasets containing
more diverse 3D mesh types and rendering methods.

Disabling the vertical synchronization was mandatory to have a
free FPS upper bound instead of being capped to the monitor re-
fresh rate. Due to limited browser memory, we instantiated meshes
instead of loading them multiple times, especially for objects with
multiple 8K textures that could otherwise not be loaded in a web
browser. The growing importance of web rendering technologies,
especially WebGPU, could potentially remove certain limitations
associated with measurements.

For our future work, we plan to expand our experimentation to
include more configuration types running WebGL content e.g., VR
headsets and smartphones. Although this method is designed for
WebGL, it could easily be extended to Vulkan or DirectX.

We are exploring the potential applications that this model could
have. For example, we can derive our predictor into a new approach
for guiding simplification and filtering algorithms while preserving
quality attributes, leading to less energy consumption. Our predic-
tor could be used in artist modeling tools to predict if they can add
more details to their scene for a target device with instant feedback.
Finally, in the context of streaming 3D assets to a client for ren-
dering, our model could predict an adequate level of detail by just
using the object’s precomputed descriptors sent over the network.
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A TECHNICAL DETAILS
In this kind of performance-sensitive experiment, any other applica-
tion running on their device could alter our measurements, thus we
defined a strict protocol and asked all participants to ensure they
closed every unnecessary and GPU-related application on their
device before the start of the experiment. We disable the vertical
synchronization that is activated by default in the browser allowing
us to measure frametime above the screen refresh rate. The experi-
ment has to run in full screen to match the screen resolution. On
multi-GPU configuration and for Windows users only, we specified
a procedure to force the main GPU to be used with Chrome. Our
process is now fully scripted and the user only has to press one
button to start the experiment.

The scene is composed of one ambient light and a perspective
camera with position (0,0,10) in XYZ axes. As for the renderer
parameters, we use sRGBEncoding for the renderer output, and
ACESFIlmic for the tone mapping with the exposure coefficient set
to 1. The pixel ratio used is the one provided by the window as well
as the width and height parameters of the participant screen.

Our experiment is implemented in Javascript and some pre-
cautions have been taken regarding memory management. The
Garbage Collector (GC) is an automatic process that is activated
when the resource is disposed but we have no certitudes about
the completion of the task of cleaning thus we fix a timer of six
seconds to avoid any memory leak between the objects. Chrome
has to be started with custom flags: ’–disable-frame-rate-limit’,
’–disable-gpu-vsync’, and ’–start-fullscreen’.

B FEATURE ANALYSIS
The random forest model has a built-in feature importance mecha-
nism allowing us to gain deeper theoretical insight. Specifically, we
were interested in the impact of 3Dmesh features on the predictabil-
ity of the rendering time. We compute the permutation importances
[Hapfelmeier and Ulm 2013] on our model FTRF and we extracted
the scores reported in Figure 8.

From these importance values, we can deduce that the number
of transformed vertices Vertices Transformed is the most important
feature for predicting rendering times on new objects and devices.
Next come the descriptors relating to device performance (Trans-
form 262144 and Rasteriser 32), which also play a predominant role
in the predictions.

The number of textures (Texture Number) and the number of
pixels (Tex Pixel Count) are the least important features probably
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Table 5: Ablation study: Device performance features are
always used, MAE and Emax in milliseconds

Features 𝐶𝑜𝑟𝑟𝑝 R2 MAE(ms) Emax(ms) MAPE

CV
_m

es
hs G 0.908 0.819 1.348 32.951 21.427

UV 0.885 0.782 1.620 33.192 34.395
DO 0.968 0.935 0.791 24.800 13.507
All 0.971 0.941 0.726 25.063 11.675

FT
RF

G 0.853 0.718 1.628 30.676 27.629
UV 0.833 0.685 1.853 34.100 40.535
DO 0.935 0.834 1.254 21.961 21.626
All 0.935 0.854 1.161 22.117 19.701

G stands for geometric, UV for texture layout and DO for data
ordering features

because they are too redundant with other parametrization-related
descriptors but removing them increases the error slightly.

We also conducted an ablation study (see Table 5) that consists of
training four predictors in the same way that we present in Section
6 meaning the cross-validation splits with constraints are used here
with four sets of descriptors: G for geometrical descriptors, UV for
texture layout descriptor, DO for data ordering and All for every
features. Rendering performance descriptors are always used in
each predictor. From these results we can first deduce an overall
trend: features in the Texture Layout (UV) category have a lower
predictive power than those in the Geometric and Data Ordering
categories but they are still required to achieve the best L1 error
MAE. There is a strong relation between the data ordering fea-
ture and the frametime as this set alone achieves a relatively close
prediction performance but it is only when we use the three sets

of features all together that we can achieve the best performance
for every metric used in this evaluation. Overall, Data Ordering,
Geometric, and Device Performance descriptors are the most im-
portant features in predicting the rendering time. Texture layout
descriptors fall below others because they seem to have a lesser
influence factor.

Figure 8: Permutation importance: Random forest feature -
We report the 10 most important features and the least five
respectively above and under the red line. We use a logarith-
mic scale for the x-axe and the scores are obtained from the
FTRF predictor permutation importance
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