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Abstract: Loop Closure (LC) is a crucial task in Simultaneous Localization and Mapping
(SLAM) for Autonomous Ground Vehicles (AGV). It is an active research area because it
improves global localization efficiency. The consistency of the global map and the accuracy
of the AGV’s location in an unknown environment are highly correlated with the efficiency
and robustness of Loop Closure Detection (LCD), especially when facing environmental
changes or data unavailability. We propose to introduce multimodal complementary data to
increase the algorithms’ resilience. Various methods using different data sources have been
proposed to achieve precise place recognition. However, integrating a multimodal loop-
closure fusion process that combines multiple information sources within a SLAM system
has been explored less. Additionally, existing multimodal place recognition techniques
are often difficult to integrate into existing frameworks. In this paper, we propose a
fusion scheme of multiple place recognition methods based on camera and LiDAR data
for a robust multimodal LCD. The presented approach uses Similarity-Guided Particle
Filtering (SGPF) to identify and verify candidates for loop closure. Based on the ORB-
SLAM2 framework, the proposed method uses two perception sensors (camera and LiDAR)
under two data representation models for each. Our experiments on both KITTI and a
self-collected dataset show that our approach outperforms the state-of-the-art methods in
terms of place recognition metrics or localization accuracy metrics. The proposed Multi-
Modal Loop Closure (MMLC) framework enhances the robustness and accuracy of AGV’s
localization by fusing multiple sensor modalities, ensuring consistent performance across
diverse environments. Its real-time operation and early loop closure detection enable timely
trajectory corrections, reducing navigation errors and supporting cost-effective deployment
with adaptable sensor configurations.

Keywords: camera; LiDAR; fusion; localization; loop closure; mapping; multimodal;
particle filter; SLAM

1. Introduction
Loop Closure (LC) is a crucial part of SLAM used by autonomous ground vehicles

(AGV) [1]. In the context of Simultaneous Localization And Mapping (SLAM) for Au-
tonomous Ground Vehicles (AGV), Loop Closure (LC) serves as a fundamental detection
process that reduces the accumulation of errors in motion estimates and enables the solu-
tion of the full-SLAM problem within Graph-SLAM frameworks. This aspect is essential
because LC involves not only place recognition but also determining the vehicle’s current
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location on the constructed map. These data are required to correct its previous pose during
the Pose-Graph Optimization (PGO) step.

Loop Closure Detection (LCD) can be achieved using two primary techniques: meth-
ods based on local descriptors and methods based on global descriptors.

Local descriptor-based techniques rely on extracting descriptors around detected
features such as corners or lines from selected keyframes to construct a vocabulary that is
quick to create and match. For instance, ORB features extracted from image frames were
used in Ref. [2] to build vectors that help recognize a revisited place using the Bag-of-Words
(DBOW) scheme [3].

On the other hand, global descriptor-based methods bypass the key points detection
phase and aim to describe the entire frame. Inspired by the Scan Context (SC) global
descriptor [4], Wang et al. [5] proposed a 3D laser point-cloud descriptor that utilizes
intensity information for ground points and height information for non-ground points.

Improving loop closure is crucial for building accurate and consistent maps in SLAM.
One effective approach is to use multiple sources of information and multimodal data. For
instance, combining data from a camera and LiDAR enhances the system’s ability to detect
loop closures, as each sensor provides different types of information. This multimodal
approach not only leverages the complementary strengths of each sensor but also reduces
the impact of errors from individual sensors, thereby increasing the overall robustness of
the system [6]. Additionally, integrating different methods of data representation (multiple
modalities) from the same information source enriches the representation space and makes
the system less vulnerable to missing crucial information.

Overall, utilizing multiple sources of information and multimodal data improves the
accuracy and reliability of loop closure detection in SLAM.

Several challenges in merging multiple modalities for loop closure detection remain
unaddressed. Existing fusing schemes presented in [7–10] often tightly couple the repre-
sentation space of the modalities they employ. This approach can lead to the loss of useful
information or incorrect data association. Alternatively, merging multiple modalities in a
loosely coupled fashion offers several benefits. Firstly, each modality has an independent
role of reliably identifying a loop closure or dismissing false detections from other modali-
ties, especially in challenging and complex situations. Secondly, using the two modalities
separately prevents the dominance of one modality over the others. Lastly, accessing
information from multiple data streams enhances the system’s reliability, redundancy, and
fail-safety.

Moreover, although loop closure has achieved great performance thanks to recent
advances in the field, to the best of our knowledge, this is the first work aiming at
evaluating the impact of accurate and early place recognition on the consistency of the
estimated trajectory.

In essence, existing methods often rely on using the same representation space for
the employed modalities, making them susceptible to environmental variability such as
changes in lighting, weather, or viewpoint. Moreover, many multimodal approaches lack
scalability or exhibit high requirements in computational power, limiting their applicability
in real-world scenarios like autonomous driving. This study addresses these gaps by
proposing a novel Multi-Modal Loop Closure (MMLC) framework that combines comple-
mentary descriptors within a Similarity-Guided Particle Filtering (SGPF) mechanism. This
fusion strategy enhances loop closure reliability, reduces cumulative localization errors,
and ensures robustness across diverse environments and datasets, offering a scalable and
efficient solution for real-time AGV applications.

In light of these considerations, this paper presents an extension of our previously
published framework [11], which can be integrated into the LC block of any Pose-Graph
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Optimization (PGO) based SLAM system, as shown in Figure 1. The proposed methodology
leverages multiple modalities to execute MMLC accurately. To demonstrate this concept,
we employ our strategy to merge four modalities for LCD purposes.
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Figure 1. Focus on N different perception modalities into the loop closure module, independent of
the used pose-graph optimization-based SLAM system.

In summary, the main contributions of this work are as follows:

1. Characterization of Modalities’s Response Model: The response model for each
modality used in the approach is characterized, providing a detailed understanding
of how different data sources contribute to loop closure detection.

2. Multimodal fusion with an enriched particle filtering strategy: A novel fusion scheme
is proposed, based on a similarity-Guided Particle Filter, which infers the most proba-
ble loop closure by integrating information from four different modalities.

3. Comprehensive Experiments: Thorough experiments are conducted to validate the
approach and compare it to state-of-the-art methods using place recognition and
localization metrics on both a publicly available dataset and a self-collected dataset.

The remaining of the article is organized as follows: Section 2 summarizes works re-
lated to the subjects at hand. Section 3 outlines the purpose and background of the research
while highlighting the choices made and the metrics used for the evaluation. Section 4
briefly describes the proposed and prototyped system. In Section 5 comparative results of
the experiments and an in-depth analysis are provided. Finally, Section 6 concludes the
article and discusses future perspectives.

2. Related Work
According to the literature, the loop closure detection problem has been addressed

using a variety of methods. Place recognition in the context of AGV frequently relies on
one of two primary sensors: camera or LiDAR. The primary modalities employed in the
process to determine if a location has been revisited again rely on visual, geometric/spatial,
or semantic data. In the following subsections, we discuss the difference between place
recognition and loop closure, then we present state-of-the-art monomodal and multimodal
place recognition methods. Then, we present the fusion scheme that will be used in
our study.

2.1. Place Recognition vs. Loop Closure

Place recognition involves the task of identifying locations that have been visited or
noted in the past, forming a crucial component in the sphere of navigation. Achieving
accurate recognition requires the use of a database that contains pertinent information
about the environments of previously visited places. This information generally comes
from various sources including photographs, LiDAR scans, or other sensory mechanisms.

Contrastingly, Loop Closure (LC) is a sophisticated process critical in a SLAM system.
It goes beyond identifying a revisited site, which is assured by place recognition techniques.
Predominantly, LC is responsible for adjusting the drift in the vehicle’s pose estimates as
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time progresses. To facilitate this adjustment through pose-graph optimization, a calcula-
tion of the relative transformation between the two poses illustrating an LC is required.
Notably, these kinds of geometric data are not supplied by the current general-purpose
algorithms implemented in place recognition, as outlined in [12].

Furthermore, techniques utilized in place recognition predominantly aim at identifying
locations that have been revisited across a comprehensive set of frames within a dataset.
Conversely, within the framework of SLAM, keyframes are typically employed to pinpoint
a closed loop. A statistical analysis depicting the comparison between revisited frames and
closed loops, utilizing the KITTI dataset, is presented in Table 1 [13]. The methodology for
keyframe detection adheres to the procedures delineated in [2].

Table 1. Comparison of revisited locations and loop closure detection metrics with ORB-SLAM2 [2]
and KITTI dataset [13].

Sequence Total
Frames

Revisited
Frames

Total
Keyframes

Revisited
Keyframes

Invalid
Relative
Transfor-
mation

Cancelled
LC

Effective
LC

KITTI_00 4541 776 1392 151 79 4 5
KITTI_02 4661 299 1748 83 45 26 3
KITTI_05 2761 425 570 58 67 0 2
KITTI_06 1101 268 505 94 19 46 3
KITTI_07 1101 28 253 4 2 0 1
KITTI_08 4071 321 1209 105 0 0 1

The aforementioned table enumerates both the number of revisited frames and the
count of revisited keyframes. Drawing upon the data procured from [2], the table addi-
tionally describes the quantity of identified Loop Closures (LCs) that were disregarded
due to the erroneous relative pose transformations, which failed to meet the criteria for a
consistency check. The final two columns document the instances of terminated LCs during
the phase of pose-graph optimization, along with those that reached successful completion.

This analytical representation elucidates the performance capability of a place recog-
nition algorithm such as DBoW2 [3] in facilitating the Loop Closure Detection (LCD)
procedure within a SLAM system. Moreover, it accentuates the notion that a precise detec-
tion of a revisited location does not unequivocally guarantee a successful loop closure in
the domain of SLAM.

The most advanced place identification systems take into consideration the whole set
of frames in the dataset and are confined to a binary classification issue. However, in the
context of SLAM, the difficulties are not restricted to finding revisited locations from a set
of keyframes (which is, by definition, smaller than the set of frames). But also successfully
estimating a similarity transformation using the detected LC keyframe.

2.2. Place Recognition
2.2.1. Place Recognition Using Camera

Modern cameras offer vast potential for generating high-quality and abundant data
suitable for loop closure detection. By leveraging this sensor, various strategies have
been developed for place recognition, broadly categorized as image-to-image, image-to-
map, and map-to-map methods [14]. Image-to-image methods are commonly applied in
SLAM systems, often employing the Bag-of-Words (BoW) model to simplify computational
demands. The BoW approach converts an image into a set of descriptors, from which a
BoW vector is generated and used to match images against previously registered vectors.
Galvèz et al. [3] introduced a method utilizing ORB features to construct a vocabulary of
binary words, enabling the faster creation and matching of descriptors. Building on this,
ORB-SLAM2 [2] extracts ORB features from selected keyframes to generate vectors, which
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are then used to identify loop closure candidates based on the BoW scheme [3]. To validate
the loop, this approach incorporates geometric verification by calculating the similarity
transformation between the current keyframe and the identified candidate.

In Ref. [15], NetVLAD is introduced. It is based on an end-to-end Convolution Neural
Network (CNN) and is able to transform an image into a Vector of Locally Aggregated
Descriptors (VLAD). However, this method does not take into account dynamic objects in
the environment when creating a global descriptor, which can lead to mismatches.

To overcome this problem, Zhang et al. in [16] presented a novel loop closure detection
approach based on image inpainting and feature selection. Thus, only valid superpoint
features in the areas with high inpainting qualities are selected as the input of the Bag of
Words model for loop-closure detection.

More recent results, such as the work of Xiao et al. [17], proposed efficiently recogniz-
ing loop closures by leveraging the semantic information contained in monocular images.
This approach can be generalized to panoramic images while preserving the panorama’s
characteristics, which outperforms monocular detector-descriptor-based algorithms. Al-
though this method can significantly increase the accuracy of loop closure detection tasks,
it is not suitable for real-life SLAM applications. Indeed, it is time-consuming and does not
provide relative pose estimation to correct the drift in the trajectory.

2.2.2. Place Recognition Using LiDAR

Camera-based place recognition is highly sensitive to appearance changes, making it
vulnerable to errors under significant viewpoint variations or environmental changes. In
contrast, LiDAR, while limited to providing geometric information and intensity measure-
ments, offers advantages such as 360° 3D scans and extended range compared to cameras.
These features make LiDAR an excellent alternative for detecting loop closures in AGV
applications, effectively addressing the limitations of camera-based approaches.

Recent advancements in Convolutional Neural Networks (CNNs) have enabled in-
novative methods like PointNetVLAD [18], which tackles large-scale place recognition by
extracting local features and clustering them into a VLAD global descriptor through the
integration of NetVLAD and PointNet.

Another promising method, Scan Context [4], introduces a spatial global descriptor
that encodes 3D point clouds into a matrix. This matrix captures the structural details
of the scene by leveraging the height, azimuthal, and radial information of the points,
demonstrating strong potential for place recognition tasks. This global descriptor used
for loop closure detection is especially used in recent lightweight SLAM systems such as
E-LOAM [19] and help efficiently correct the trajectory drift.

Recently, Xiang et al. [20] proposed a very deep and lightweight Siamese feature
extraction module and a dual-attention-based feature difference module that can perform
real-time and reliable LCD in large-scale environments.

2.3. Multimodal Loop Closure Detection

Taking advantage of a unified framework to combine multiple sources of information
has been shown to significantly enhance SLAM performance, particularly in place recog-
nition tasks [1,6,21]. Early approaches, such as the work by Collier et al. [22], introduced
a fusion of features extracted from both camera and LiDAR data using parallel BoW vo-
cabularies. Each sensor independently validates loop closure candidates through a 6-DoF
transformation, with the results combined for geometric loop closure. While effective,
this method requires a computationally intensive training step, limiting its applicability in
real-time scenarios.
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More recent methods, such as CORAL [9], adopt a bi-modal representation to in-
tegrate visual and structural features into a bird’s-eye view. This strategy provides an
innovative representation but lacks the flexibility to adapt to highly dynamic environments.
MinkLoc++ [8] takes a different approach by aggregating point cloud and RGB image
descriptors through a late fusion technique. Although effective in descriptor generation,
the network’s reliance on the modality with superior training performance (RGB images)
results in suboptimal outcomes. The authors address this by incorporating uni-modal
descriptors into the loss function, but the method’s inability to estimate relative pose limits
its integration into SLAM pipelines.

Alternatively, semantic fusion methods like SVG-Loop [23] use a combination of
visual-based and semantic-based similarity scores to validate loop closures. While effective
in some cases, this technique heavily depends on segmentation accuracy and struggles
with significant viewpoint changes, reducing its robustness in diverse settings.

Traditional monomodal loop closure detection methods, such as those based on visual
or geometric descriptors, have demonstrated effectiveness under controlled conditions.
However, these methods often struggle with environmental variability, like the lack of
scene structure or texture, which limits their robustness in diverse real-world scenarios.
On the other hand, multimodal approaches aim to overcome these limitations by fusing
complementary sensory data. For instance, learning-based methods excel at recognizing
high-level features but require extensive training datasets and can be sensitive to domain
shifts. Conversely, geometric-based methods are more stable across datasets but may
lack the representational richness of learned features. Despite these advances, existing
multimodal techniques often focus on sensor fusion without addressing computational effi-
ciency or scalability, particularly for embedded systems in autonomous vehicles. Our work
bridges these gaps by proposing a unified framework that leverages the strengths of both
monomodal and multimodal approaches, combining learned and geometric descriptors
using a robust particle filtering mechanism to improve accuracy and scalability in diverse
environments.

3. Methodology
In this section, we introduced the purposes of fusing multiple Loop Closure Detections

(LCD) in the SLAM context. Then, we justified the choices made in terms of the SLAM
algorithm and place recognition methods. Finally, we unveiled the evaluation metrics that
were subsequently used in the experimental results to assess the impact of our contributions.

3.1. Research Purpose

The existing place recognition methods are robust enough when they face environ-
ments similar to those on which they had been tested and validated. However, their
resiliency drops drastically, especially those based on deep learning strategies, when facing
completely new challenging environments. Moreover, on one hand, the existing local
descriptors are robust enough for rotation, but they suffer from a lack of efficiency in
environment description. On the other hand, global descriptors can successfully describe a
scene but will lead to mismatches when faced with rotations. Furthermore, tightly coupling
the modalities used for place recognition leads to losing information in the process or to
errors in data association. This can be avoided by using a loosely coupled strategy where
every modality is processed independently. On top of that, such a strategy can overcome
scenarios where a source of information is temporarily unavailable or faulty.

Finally, studying the loop closure problem and quantifying the impact of accurately
detecting and correcting the loop on the resulting trajectory in the SLAM context can help
design systems that are more suited for specific applications, such as AGVs.
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Thus, combining descriptors that leverage multiple information/ modalities/ strate-
gies will help increase the redundancy of the SLAM system, while guaranteeing its robust-
ness and the consistency of its estimated trajectory.

3.2. SLAM Algorithm Choice

This study’s framework was part of the design of an embedded multimodal SLAM
system for AGV applications. ORB-SLAM2 [2] was chosen as a baseline since it is an
open-source and stable algorithm that provides satisfactory results in outdoor dynamic
scenes. Moreover, it can be embedded [24,25]. Thanks to its low complexity and modularity,
ORB-SLAM2 will help our study by focusing mainly on the LCD strategy without worrying
about the front end of SLAM. Furthermore, ORB-SLAM2 uses ORB features and Bag-
of-Words [3] to detect LCs, which was one of the modalities we used in the proposed
multimodal LC.

3.3. Loop Detection Methods Choice

In light of our research purposes, the chosen place recognition methods to be merged
should meet three criteria: First, use camera or LiDAR information as they are the most
widely used in SLAM applications for AGVs. Second, we represent the processed informa-
tion in different spaces. Third, we assess the public availability of the source code used to
test and validate such a method. As a Proof-of-Concept (PoC) of the proposed framework,
we selected the following place recognition methods:

1. DBOW: Will be referred to in the following DBOW or D. Uses ORB features detected
on camera frames.

2. NetVLAD: Will be referred to in the following NV or N. Uses Convolutional Neural
Network (CNN) to create a Vector of Locally Aggregated Descriptors (VLAD) that
represents a camera frame.

3. Scan Context: Will be referred to in the following SC or S. Uses geometric information
contained in the LiDAR point cloud to create a global descriptor of the current frame.

4. PointNetVLAD: Will be referred to in the following PNV or PN. Uses Convolu-
tional Neural Network (CNN) to create a global descriptor from a given 3D LiDAR
point cloud.

3.4. Evaluation Metrics

Since the proposed method is designed to infer the most reliable Loop Closure Can-
didate (LCC) in SLAM applications; the chosen evaluation metrics leverage performance
indicators used in both place recognition research and in the SLAM context. The following
is a list of the metrics we relied on during this study:

1. AUC: measures the Area Under Curve given by the Precision-Recall. It evaluates a
model’s capability to differentiate between negative and positive classes.

2. F1: the maximum F1 score [26] is the harmonic mean of Precision and Recall.
Defined as:

F1 = 2 × P × R
P + R

(1)

This metric quantifies overall classification performance by treating precision and
recall as equally important.

3. EP: the Extended Precision [27] is defined as follows:

EP = 0.5 × (PR0 + RP100) (2)

Here, PR0 represents the precision at the minimum recall, while RP100 indicates the
maximum recall achievable at 100% precision. By combining these two indicators, this
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metric provides valuable insight into the method’s performance. Specifically, RP100

reflects the highest level of recall attainable without introducing any False Positives
(FP), which is crucial as even a single FP can significantly degrade the pose graph
during the loop correction phase of a SLAM system.

4. ATE: Absolute Translation Error proposed in [28] estimates the global consistency of
the estimated trajectory when using a SLAM system. This evaluation is carried out
by comparing absolute distances (in meters) between the estimated trajectory and
the ground truth (GT). This error can be computed by taking into account the rigid-
body transformation S that provides the least-squares solution to align the estimated
trajectory P1:n with the ground truth trajectory Qi:n, it is defined as follows:

ATE =

√√√√ 1
N

N

∑
i=1

∥∥∥trans(Q−1
i SPi)

∥∥∥2
(3)

5. t_rel and r_rel: the average Relative Translation (in %) and Relative Rotation (in °/100m)
errors proposed in [13] evaluate the local accuracy of the trajectory over a fixed
trajectory length. These error metrics are defined as follows:

trel =
1
F ∑

(i,j)∈F
∡⟨( p̂j ⊖ p̂i)⊖ (pj ⊖ pi)⟩ (4)

rrel =
1
F ∑

(i,j)∈F

∥∥( p̂j ⊖ p̂i)⊖ (pj ⊖ pi)
∥∥

2 (5)

Where F is a set of frames (i, j), p̂ ∈ SE(3) and p ∈ SE(3) are estimated and GT
poses, respectively. SE(3) is the Special Euclidean Group that represents rigid body
transformations in 3D space, including both rotation and translation. ∡⟨.⟩ is the
rotation angle and ⊖ is the inverse motion compositional operator [29] that enables
the computation of the relative transformation that moves the node given by pose pi

to pj.

From a system level, the key aspects that need to be assessed in multimodal SLAM
are its ability to correctly close the loop when a place is revisited, and its capability of
accurately estimating the trajectory and reducing the cumulative errors during runtime.
From one perspective, metrics such as AUC, F1 and EP have been commonly used in
the literature for the rare events of revisiting a place where the classification problem is
skewed [30]. These metrics measure the robustness of the LCD and capture the system’s
ability to distinguish a small set of revisited places from a larger set of initial visit locations.
From another perspective, metrics like ATE, t_rel and r_rel focus on trajectory accuracy by
quantifying the deviation between estimated and ground-truth trajectories, highlighting the
system’s ability to preserve global and local consistency [28]. Unfortunately, these trajectory
metrics focus on the SLAM system performance at the end of the trajectory. The AGV
application constraints require the error to be minimized as quickly as possible. Therefore,
we introduced a metric that evaluates the system’s ability to reduce the error both efficiently
and rapidly during the execution of the algorithm, rather than solely at its completion.
This metric is critical in SLAM because it directly affects the accuracy and consistency of
the generated map and the system’s localization capabilities. As SLAM systems operate
in real-time, errors in trajectory estimation or place recognition can compound over time,
leading to significant deviations from the true path and reducing the system’s chance to
close loops effectively.
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4. System Description
In this section, we introduce the Similarity-Guided sampling mechanism, which

employs a Gaussian-mixture proposal to detect loop closures using various perception
modalities. The modes of the posterior Probability Density Function (PDF) are estimated
by evaluating the similarity between the current keyframe and the entire set of keyframes.

4.1. Problem Formalization

Considering the set of all prior keyframes during an AGV’s trajectory, denoted as
F t = {Fi, |, i = 0, . . . , t}, we define F∗ t = {Fi, |, i = 0, . . . , t − k} as the subset of keyframes
where a loop closure can potentially occur. This assumes the AGV begins at time step 0 and
is currently at time step t, with Jt − k, tK representing a time window where loop closures
are not possible. Here, k is a fixed small number of recently visited keyframes that cannot
correspond to a revisited location.

Let Li = {Li
1, Li

2, . . . , Li
mi
} represent the set of loop closure candidates identified

by perception modality i, where i ∈ J1, NK, assuming N modalities are used for loop
closure detection. The corresponding normalized similarity scores are given by Σi =

{σi
1, σi

2, . . . , σi
mi
}. Notably, Li ⊂ F∗ t.

Using these definitions, our goal is to estimate the unknown variable X , which repre-
sents all loop closure events throughout the vehicle’s trajectory. This variable depends on
the similarities with previously observed poses. The problem can thus be formulated as
follows:

χ∗ = argmax
χ

P(χ|Σ) = argmax
χ

P(Σ|χ)P(χ) (6)

The equality follows from the Bayes theorem in Equation (6) where P(Σ|χ) is the
likelihood of the similarities Σ given the assignment χ and P(χ) is a prior probability
over χ. Assuming that these similarities are independent (the corresponding noises are
uncorrelated), Equation (6) factorizes into

χ∗ = argmax
χ

P(χ)
M

∏
i=1

P(σi|χ)
(7)

4.2. Similarity-Guided Particle Filtering (SGPF)

To address Equation (7), we propose leveraging a Particle Filter (PF) to identify the
keyframe with sufficient evidence to confirm a loop closure event. Building upon previous
works accomplished in [31,32], we resample particles based on the appearance similarity
between the current keyframe and keyframes stored in the map.

Considering M similarity-based particles Σ = {σ1, σ2, . . . , σM} derived from N per-
ception modalities. The probability of a loop closure occurrence at the time step t can then
be expressed as follows:

P(xt|Σt) = P(xt)
M

∏
i=1

P(σi|xt) (8)

Where the set of all similarities fixed by the N perception modalities is given by the
following:

Σt =
N⋃

i=1

Σi
t (9)
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To solve Equation (8), the posterior distribution P(xt|Σt) is represented using a set of
weighted loop closure candidates Lt = {(Lti, ωi

t), |, i = 1, . . . , M} at each time step t. Here,
Li

t denotes a particle representing a proposed loop closure keyframe, and ωi
t is its associated

weight. These weights are determined using an importance sampling approach [33], where
ωt is defined as P(xt |Σt)

Q(xt |Σt)
. The term Q(xt|Σt) represents a proposal function, designed to fa-

cilitate easier sampling compared to directly sampling from the posterior density P(xt|Σt).
In this framework, the proposal function is expressed as Q(xt|Σt) = P(xt|X0:t−1, Σt), in-
corporating the importance of Σt in the sampling process. Where X0:t−1 is the set of LC
occurrences in the vehicle trajectory up to current frame given by index t − 1. The weights
are proportional to the similarity score and the loop closure occurrence likelihood. For each
particle Lt, it can also be written as follows:

ωt ∝ σt ×P(σt|xt) (10)

With the theoretical foundation of the Similarity-Guided Particle Filter (SGPF)
established, we now outline the process for generating particles. Initially, a set of
particles representing LCDs from N perception modalities is generated, denoted as
Lt = {Ltk, |, k = 1, . . . , N}. This set contains |Lt| = M1 candidates produced by the per-
ception modalities. These candidates are sampled using a Gaussian distribution with
covariance matrix G1: P(xt|σi) ∼ N (σi,G1).

To further enrich the pool of candidates, an additional set is generated, represented
as L̂t = {L̂tk, |, k = 1, . . . , N}. This set comprises |L̂t| = M2 candidates sampled from
Gaussian distributions with covariance matrix G2: P(xt|σi) ∼ N (σi,G2). Together, these
sets provide a comprehensive and diverse pool of loop closure candidates.

The mixture distribution outlined in Equation (11) is ensured by defining the total
number of particles as M = M1 + M2. Consequently, at time step t, the complete sample
set is represented as L∗t = Lt ∪ L̂t.

P(xt|Σt) =
M

∑
i=1

P(xt|σi) (11)

Consequently, the final set of particles for loop closure detection consists of a com-
bination of similarity-based candidates and model-generated particles sampled around
these proposed candidates. This entire workflow is outlined in Algorithm 1. The SGPF
framework begins by initializing with the t − k + 1 keyframes from the map, potential LCD
identified by place recognition methods, and additional model-based particles sampled
around these initial candidates. Following this, the similarity scores for all particles are
updated and normalized, and each particle’s weight is computed based on the confidence
associated with its respective modality. Subsequently, during the resampling phase, par-
ticles with lower weights are eliminated, while those with higher weights are replicated,
ensuring the particle filter remains robust and avoids degeneracy. Finally, the loop closure
process and pose-graph optimization are executed only when the weight of a selected
particle surpasses a predefined threshold.

To clarify the methodology, Figure 2 provides a step-by-step illustration of the particle
filtering process employed in the SGPF approach. The figure outlines the key stages of
the process, starting from candidate generation, followed by similarity computation and
particle propagation, to the final validation of LCD and the resampling step.
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Initialization

Distribution of particles on the space of possible LCs

Predicition

Similarity and model-based particle selection

Update

Assignment of normalized weights to particles

Pose graph optimization

If the highest weight of the particles > Threshold

Resampling

Replacing low probability particles 
with higher probability particles

Figure 2. Step-by-step diagram of the SGPF.

Algorithm 1: Loop closure detection pseudo-code using Similarity-Guided Particle Filter
Input : t − k + 1 : Keyframes in the map

M1 : proposed particles
M2 : model-based particles

Output :Predicted loop closure keyframe index

1 /* Step 1: Initialization */
2 Generate initial particles according to Equation (8)

3 begin
4 /* Step 2: Particles propagation */
5 Generate Lt candidates based on their similarity score;
6 Predict L̂t particle based on the proposed particles;
7 L∗t = Lt ∪ L̂t;

8 /* Step 3: Scores update and normalization */
9 foreach Li

t in L∗t do
10 si

t = Similarity(Li
t, CurrentKey f rame);

11 ŝi
t = Normalize(si

t) ;
12 ScoresSum = ScoresSum + ŝi

t ;
13 end
14 /* Step 4: Weights normalization */
15 foreach Li

t in L∗t do
16 ωi

t = ŝi
t/ScoresSum ;

17 end

18 /* Step 5: Resampling */
19 Resample(L̂t);

20 x∗t = argmax
χ

P(xt|ωt)) ;

21 if ω∗
t > threshold then

22 PoseGraphOptimization() ;
23 end
24 end
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5. Experimental Results and Analysis
In this section, the proposed method is implemented by using four loop detection

modalities: Bag-of-Words (DBOW) [3], NetVLAD (NV) [15], Scan Context (SC) [4] and
PointNetVLAD (PNV) [18]. First, we describe the datasets and experimental settings
used to validate our approach. Then, we illustrate the correlation between the ground
truth distance and modality distance between a current keyframe and a Loop Closure
Candidate (LCC). Finally, we perform qualitative and quantitative extended evaluations of
our approach.

5.1. Datasets Description and Experimental Setup

The proposed framework was tested and validated on all the sequences from the
KITTI dataset [13] that include loop closures. Those sequences are 00, 02, 05, 06, 07, 08. As
described in [34], the LiDAR and camera’s temporal synchronization is hardwired, with
the cameras being triggered when the LiDAR scanner is oriented toward the scene in front
of the car. Both camera frames and LiDAR frames are acquired at 10 Hz.

In order to further investigate the modalities complementarity to avoid falling into the
trap of modality one dominance, the instrumented car from the SATIE laboratory (shown
in Figure 3) was used to collect data from three sequences containing loops (total distance,
respectively, 2 km, 1.08 km and 0.75 km). The vehicle has a camera (Intel Realsense D455),
a LiDAR (Velodyne VLP-16), and a GNSS receiver (Altus Positioning System) that uses
Real-Time Kinematic (RTK) corrections to offer precision at the centimeter scale. While the
LiDAR data were recorded at 10 Hz, the stereo frames were obtained at a rate of 30 Hz.

Figure 3. SATIE Laboratory instrumented car. The vehicle is equipped with a stereo-camera, a LiDAR
and a data logger. The ground truth trajectory is recorded using an RTK GNSS receiver.

Data were recorded using ROS (Robot Operating System) and sensor calibration was
conducted prior to data collection using MATLAB Version R2020b. To achieve sensor
synchronization, for each LiDAR frame, the corresponding camera frame with the closest
timestamp was selected. The data collection process involved driving the vehicle through
urban and suburban environments under varying traffic and weather conditions to ensure
diversity. The vehicle’s trajectories were chosen to include both dynamic (e.g., cars, buses,
pedestrians) and static elements (e.g., buildings, houses, trees). Figure 4 illustrates a
selection of the trajectories collected during the process. Additionally, several frames were
largely dominated by the sky or the shade. All experimental validation and tests were
conducted on a workstation with an Intel i7-11800H CPU (2.30 GHz) and 64 GB memory.
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Figure 4. GNSS traces of our self-collected data in SATIE laboratory nearby cities (Saclay and
Saint-Aubin).

5.2. Modalities Characterization

The performance of a place recognition method will highly depend on its ability to
compute the similarity between the current frame descriptor and the loop closure descriptor.
In principle, the model must incorporate probable measurement errors such as noise or blur
and dynamic objects. These errors, being reflected in the computed descriptor, will result in
incorrect loop detections (False Positive (FP)) or loop closure misses (False Negative (FN)).
To avoid this, similarity measurement errors are modeled as Gaussians where the mean is
the computed similarity and the standard deviation is an intrinsic noise parameter of the
modality. In Figure 5, we illustrate the correlation between the ground truth distance (in
meters) and Modality Distance between a current frame and a Loop Closure Candidate
(LCC).

Figure 5. Normalized modality distance of each modality. Using all the frames of sequence 00 of
the KITTI dataset, each plotted point represents the normalized modality distance in function of the
ground truth distance of all possible pairs of frames in the sequence.

5.3. Optimal Particles Ratio

To validate the proposed approach using the Monte Carlo method and ensure its
robustness, we selected sequence 00 from the KITTI dataset. For each of the 18 differ-
ent particle-sampling ratio configurations, the performance was tested across the four
modalities and evaluated over 50 executions. Each configuration is defined as follows:

• The first number represents the number of particles proposed based on the similarity
derived from each modality.

• The second number represents the number of model-based particles generated around
the proposed candidates for each perception modality.

For example, particle distribution 40_200 means that 10 particles were proposed as
potential LCC by each modality (using four modalities, that is 40 particles in total), and
50 particles were appended to the sampling pool based on the weight of the precedent
candidates.
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In what follows, we elaborate on the results obtained using these particle’s ratios
under different evaluation metrics commonly used in the SLAM context.

5.3.1. Place Recognition Metrics

Table 2 provides a summary of the trial results, with the best outcomes highlighted
in green. Based on the AUC, the maximum F1 score, and the Extended Precision (EP), the
optimal configuration is 20_40. Here, five particles are proposed by each modality and 10
particles are added based on a Gaussian model around the proposed particles.

Table 2. AUC, F1 score, and EP for various particle distributions on Seq. 00 of the KITTI dataset, with
the best results highlighted in green.

Particles Distribution AUC F1 EP

4_0 0.95 0.94 0.94
4_4 0.96 0.94 0.95
4_8 0.96 0.94 0.95
4_12 0.95 0.94 0.94
4_16 0.95 0.94 0.94
4_20 0.96 0.94 0.95
20_0 0.94 0.95 0.96

20_20 0.94 0.95 0.96
20_40 0.96 0.95 0.96
20_60 0.96 0.94 0.96
20_80 0.96 0.95 0.95
20_100 0.94 0.95 0.95

40_0 0.94 0.95 0.96
40_40 0.94 0.94 0.95
40_80 0.94 0.95 0.96
40_120 0.94 0.95 0.96
40_160 0.94 0.95 0.95
40_200 0.93 0.95 0.95

5.3.2. ATE Evaluation

In Figure 6 we summarize the results of these trials. We find that the best configuration
is the one given by 20_80. In this configuration, five particles are proposed by each of the
four modalities used and 20 particles are added to the pool of all considered candidates
based on the Gaussian model around the similarity-proposed candidates. This configu-
ration achieves a mean ATE of 0.76m (in contrast to the 20_40 configuration, achieving a
mean ATE of 0.78 m).

Figure 6. ATE (m) in Seq. 00 of KITTI dataset. On the x-axis, the first number represents the total
number of LCCs suggested by the perception modalities, while the second number indicates the
number of sampled loop candidates. The total is the sum of all considered loop candidates.

5.3.3. Timing Evaluation

In Figure 7 we summarize the results of these trials.
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Figure 7. Processing time (ms) in Seq. 00 of KITTI dataset. On the x-axis, the first number represent
the total number of LCCs proposed by the perception modalities. The second number indicates the
number of sampled loop candidates. The sum being all the considered loop candidates.

Following these results, we found that a correct trade-off between performance in
terms of Precision-Recall, trajectory accuracy and time consumption is the configuration
20_80 where each modality can suggest five loop closure candidates, to which, 20 other
candidates are sampled around these best five candidates. This enables the system to run
at 256 Hz while guaranteeing good overall AUC, F1-maximum score and EP and an ATE at
0.76 m on average.

5.4. Qualitative Evaluation

Building on the optimal particle ratio identified in the previous subsections through
timing evaluations, localization errors, and place recognition metrics, we now turn our
attention to validating the effectiveness of this configuration. This involves analyzing
the distribution of sampled and rejected loop closure candidates along the trajectory and
evaluating the contribution of each modality in detecting loop closures.

To validate the success of modalities modelization using the approach described
in the previous subsection, we first show in Figure 8 how the sampled/rejected loop
closure candidates are distributed over all previous frames of the current pose and how
all modalities were able to contribute to detecting LC. This figure demonstrates how the
proposed framework effectively generates probable LCCs across all traversed poses during
the AGV’s trajectory while eliminating inaccurate candidates (depicted as yellow dots).
Conversely, the retained particles with the highest weights are concentrated within the
ground truth loop closure area. We recall that a ground truth LC is defined as a pair of
poses with a relative distance of less than 3 m.
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Figure 8. Distributions of particles representing potential LCCs, identified by the four modalities over
the Seq. 00 of KITTI dataset. (a) The gray particles indicate ground truth loop closures. The yellow
particles are all the sampled particles that were dropped during the update step. The blue (magenta,
orange, green) particles are based on DBOW (NetVLAD (NV), Scan Context (SC), PointNetVLAD
(PNV)) similarity. (b) Distribution of particles across the sequence frames. (c) Distribution of particles
across the sequence map. The black dots are the vehicle’s poses.

5.5. Ablation Studies—Place Recognition Results

The results of the comparative experiments are demonstrated in Table 3. Compared to
the state-of-the-art methods using multiple modalities for loop closure, MinkLoc++ and
CORAL were evaluated only on the Seq. 00 of KITTI dataset and achieved an AR@1% (that
is Average Recall taking into account 1% of the database size) of 82.1 and 76.4, respectively.
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Table 3. Assessment of the AUC, F1 score, and EP for different particle distributions on Seq. 00 of the KITTI dataset. Cells with different colors classify total number
of modalities (from one to four). Highlighted in green is the best result.

AUC F1-Maximum Score Extended Precision

Methods 00 02 05 06 07 08 00 02 05 06 07 08 00 02 05 06 07 08

1_D 0.88 0.70 0.79 0.91 0.67 0.29 0.85 0.79 0.73 0.93 0.78 0.42 0.84 0.72 0.70 0.80 0.78 0.42

1_N 0.92 0.77 0.79 0.98 0.83 0.19 0.87 0.85 0.86 0.98 0.88 0.28 0.77 0.74 0.88 0.96 0.88 0.28

1_S 0.92 0.83 0.82 0.99 0.83 0.78 0.88 0.88 0.80 0.99 0.87 0.75 0.87 0.77 0.80 0.99 0.87 0.75

1_P 0.77 0.53 0.29 0.97 0.56 0.36 0.81 0.58 0.33 0.97 0.77 0.45 0.81 0.56 0.50 0.97 0.77 0.45

2_D_N 0.93 0.80 0.81 0.98 0.82 0.34 0.94 0.86 0.77 0.98 0.87 0.46 0.91 0.79 0.76 0.98 0.87 0.46

2_S_P 0.94 0.81 0.83 0.99 0.83 0.82 0.95 0.87 0.81 0.99 0.88 0.79 0.95 0.79 0.81 0.99 0.88 0.79

2_D_P 0.92 0.72 0.74 0.98 0.73 0.61 0.93 0.80 0.74 0.98 0.80 0.66 0.80 0.75 0.75 0.98 0.80 0.66

2_N_P 0.92 0.71 0.79 0.99 0.83 0.42 0.91 0.82 0.86 0.99 0.90 0.50 0.92 0.72 0.88 0.99 0.90 0.50

2_D_S 0.94 0.95 0.82 0.99 0.83 0.92 0.94 0.96 0.82 0.99 0.88 0.84 0.95 0.75 0.84 0.99 0.88 0.84

2_N_S 0.94 0.87 0.85 0.99 0.83 0.79 0.95 0.88 0.81 0.99 0.87 0.77 0.92 0.88 0.80 0.99 0.87 0.77

3_D_N_P 0.93 0.82 0.74 0.99 0.82 0.51 0.94 0.86 0.72 0.99 0.87 0.59 0.87 0.77 0.74 0.99 0.87 0.59

3_D_N_S 0.92 0.96 0.83 0.99 0.83 0.67 0.93 0.96 0.83 0.99 0.88 0.70 0.86 0.82 0.85 0.99 0.88 0.70

3_D_S_P 0.94 0.89 0.81 0.99 0.82 0.67 0.94 0.91 0.82 0.99 0.87 0.70 0.92 0.81 0.84 0.99 0.87 0.70

3_N_S_P 0.93 0.87 0.82 0.99 0.86 0.78 0.94 0.88 0.80 0.99 0.90 0.75 0.95 0.88 0.83 0.99 0.90 0.75

4_D_N_S_P 0.94 0.96 0.86 0.99 0.87 0.94 0.97 0.96 0.84 0.99 0.92 0.87 0.97 0.79 0.86 0.99 0.92 0.87
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Sensor configuration and environmental factors significantly affect the performance
of multimodal learning-based techniques. Indeed, MinkLoc++, CORAL, NetVLAD and
PointNetVLAD were all trained on the Oxford dataset, which differs considerably in
characteristics from the KITTI dataset. Such dataset dependency, which is a known issue
for learning-based techniques, results in a performance drop when applied to unseen
scenarios and datasets with different characteristics (e.g., different lighting conditions,
weather or sensor noise).

Even if the used modalities NetVLAD and PointNetVLAD were trained on the Robot
Car Dataset, the obtained results using complementary modalities are better by a large
margin. This is due to the fact that the proposed framework takes advantage also of
geometric methods (DBOW and Scan Context) which demonstrate greater robustness when
transitioning across datasets. Their performance tends to remain stable as they rely less on
learned priors and more on intrinsic geometric relationships.

The presented multimodal results are grouped and classified by the number of modal-
ities used and the information source. For example, 1_D, 1_N, 1_S, 1_P means that only
one modality was used and that modality is DBOW, NetVLAD, Scan Context, or Point-
NetVLAD, respectively. The color classification refers to the combination strategy. In gray,
modalities from the same source of information were combined (either camera (DBOW and
NetVLAD) or LiDAR (Scan Context and PointNetVLAD)). In orange, two modalities from
different sources of information are combined. In blue, three modalities are used and lastly,
in red all four modalities are used.

Table 4 shows the same results of the proposed method validated on the self-collected
dataset. Overall, for both tables, we find that combining multiple modalities can increase
the performance of place recognition when considered as a classification problem. This is
especially true when combining multiple modalities from different sensors.

Table 4. Analysis of the AUC, F1-maximum score, and Extended Precision across various ablation
configurations on Self-Collected dataset. Cells with different colors classify total number of modalities
(from one to four). Highlighted in green is the best result.

AUC F1-Maximum Score Extended Precision

Methods 01 02 03 01 02 03 01 02 03

1_D 0.79 0.99 0.79 0.85 0.99 0.83 0.70 0.99 0.81

1_N 0.72 0.99 0.72 0.81 0.99 0.82 0.81 0.99 0.85

1_S 0.69 0.80 0.51 0.80 0.87 0.60 0.83 0.71 0.54

1_P 0.58 0.39 0.69 0.69 0.62 0.81 0.67 0.53 0.66

2_D_N 0.80 0.99 0.93 0.87 0.99 0.93 0.89 0.99 0.93
2_S_P 0.69 0.89 0.72 0.82 0.93 0.76 0.73 0.72 0.63

2_D_P 0.81 0.99 0.81 0.88 0.99 0.84 0.61 0.99 0.81

2_N_P 0.80 0.91 0.75 0.83 0.93 0.82 0.83 0.93 0.84

2_D_S 0.79 0.99 0.83 0.86 0.99 0.85 0.82 0.99 0.70

2_N_S 0.74 0.99 0.74 0.83 0.99 0.81 0.80 0.99 0.84

3_D_N_P 0.80 0.99 0.89 0.87 0.99 0.89 0.85 0.99 0.85

3_D_N_S 0.86 0.99 0.86 0.90 0.99 0.89 0.87 0.99 0.89

3_D_S_P 0.82 0.99 0.81 0.86 0.99 0.83 0.87 0.99 0.69

3_N_S_P 0.80 0.96 0.72 0.89 0.97 0.75 0.85 0.88 0.77

4_D_N_S_P 0.87 0.99 0.83 0.92 0.99 0.87 0.93 0.99 0.88

5.6. Ablation Studies—Cumulative Errors Results

Existing methods often evaluate SLAM systems at the end of a trajectory by calculating
the ATE as introduced in [28], or the Relative Translation (trel) and Rotation (rrel) errors
described in [13]. However, an equally valuable assessment is the Cumulative Error
observed during runtime. Figure 9 illustrates the progression of cumulative error during
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the execution of ORB-SLAM2 [2], using its standard loop closure module based on DBOW
(depicted in black). Other configurations for loop closure detection are represented in their
respective colors.

We demonstrate that by implementing the proposed MMLC framework based on
SGPF, loops are generally detected earlier than using only one modality, which leads to
limiting the drift of the trajectory earlier. Finally, the cumulative error during runtime has
been reduced by 51.90% (from 1.58m to 0.76m) in the first loop detected (comparing 1_D
which is the baseline ORB-SLAM2 without modification and 4_D_N_S_P). This result,
emphasizes the importance of focusing on the loop closure detection functionality as well
as the odometry block to further reduce the cumulative error and approach an accurate
real-time SLAM system.

Indeed, incorporating four modalities (DBOW, SC, NV, PNV) significantly enhances
the system’s ability to detect the LC at the earliest occurrence, facilitating timely trajectory
corrections and more effective mitigation of cumulative drift. This results in a 40.90% cu-
mulative error reduction in the last loop detected when using the four modalities compared
to using a single one. Table 5 summarizes the most relevant cumulative error reduction
under various configurations of the MMLC.

Figure 9. Evolution of cumulative error during ORB-SLAM2 [2] runtime, using different modalities
combinations for loop closure.
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Table 5. Quantitative analysis of Figure 9 illustrating cumulative error improvement using different
monomodal and multimodal loop closures executed on KITTI 00. Here, the baseline is 1_D, cor-
responding to the classical ORB-SLAM2 framework, where only DBOW is used for loop closure.
For each implementation, we highlight (in bold) the frame index of the earliest loop detected by a
modality (third column). Then, we compute the cumulative error of each implementation at the same
frame index of the earliest loop closure (fourth column). The last column is the error reduction (in
green) or augmentation (in red) with respect to the baseline.

Revisited LC Method/ LC Frame Error at the First Improvement
Area Configuration Index LC Frame Index (%)

1

1_D 1613 1.58 -

1_N 1592 0.80 −49.36%

1_S 1625 1.48 −6.33%

1_P - 1.52 −3.80%

2_D_N 1584 0.79 −50%

2_N_S 1586 1.40 −11.39%

3_D_N_S 1584 0.74 −53.16%

4_D_N_S_P 1584 0.76 −51.90%

2

1_D 2463 0.86

1_N 2461 0.89 +3.37%

1_S 2450 0.87 +1.15%

1_P - 1.95 +55.90%

2_D_N 2460 0.89 +3.37%

2_N_S 2449 0.69 −19.77%

3_D_N_S 2463 0.82 −4.65%

4_D_N_S_P 2449 0.72 −16.28%

3

1_D 3352 1.18 -

1_N 3301 1.18 0

1_S 3310 1.01 −14.41%

1_P 3326 2.17 +83.90%

2_D_N 3311 1.17 −0.85%

2_N_S 3302 1.00 −15.25%

3_D_N_S 3294 0.78 −33.90%

4_D_N_S_P 3301 1.03 −12.71%

4

1_D 4490 1.32 -

1_N 4465 1.60 +21.21%

1_S 4455 0.79 −40.15%

1_P 4499 1.96 +48.48%

2_D_N 4464 1.57 +18.94%

2_N_S 4455 0.78 −40.90%

3_D_N_S 4454 0.78 −40.90%

4_D_N_S_P 4455 0.78 −40.90%

5.7. Ablation Studies—Final Trajectory Estimation Results

From the preceding analysis, we selected the 20_80 configuration for distributing
particles between similarity-based candidates and injected candidates (each modality can
suggest five LCDs, to which, 20 other candidates are sampled around these best five
candidates). Each sequence was executed 50 times, and the median value is reported in
the presented results in Table 6 for the KITTI dataset and the Table 7 for the self-collected
dataset.
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The proposed framework consistently outperforms the traditional monomodal loop
closure detection approach of ORB-SLAM2. This superiority is demonstrated using various
metrics, including the Absolute Translation Error (ATE) introduced in [28] and the average
relative translation (trel) and rotation (rrel) errors presented in [13].

Sequence 08 of the KITTI dataset stands out as a notable example, as all loop clo-
sures occurred in the reverse direction. A camera-only place recognition method failed
to detect these loop closures, leading to an ATE of 3.32 m. However, incorporating addi-
tional modalities that leverage LiDAR data successfully identified the loops despite the
reversed revisitation. This reduced the accumulated error to 2.64 m, representing a 20.48%
improvement.

Overall, by enhancing the SLAM system’s back-end with multimodal loop closure,
without altering its front-end, the proposed framework achieved superior performance
across all tested scenarios compared to the existing approach.

In order to rule out the possibility of one modality dominance, we tested the proposed
method on our self-collected dataset where visual features are more salient than geomet-
rical information used by Scan Context (SC) and on which neither NetVLAD (NV) nor
PointNetVLAD (PNV) were trained. The findings were satisfactory since the proposed
method resisted the False Positives proposed by SC and PNV. Finally, we reconfirm our
observation, that is, combining multiple sources of information is more beneficial than
combining multiple modalities using only one source of information. Indeed, the use of
different sensors can offer a degree of redundancy, enhancing the system’s reliability. In
situations where one modality may fail or be less effective, such as in low light conditions
for visual sensors, other modalities can compensate, ensuring consistent performance
across varying conditions.

Table 6. Assessment of the ATE, relative translation (trel), and relative rotation (rrel) errors on the
KITTI dataset, with the best result highlighted in green. Cells with different colors classify total
number of modalities (from one to four).

ATE (m) trel(%) rrel(◦/100m)

Methods 00 02 05 06 07 08 00 02 05 06 07 08 00 02 05 06 07 08

1_D 0.85 3.94 0.76 0.83 0.38 3.32 0.72 0.77 0.44 0.53 0.52 1.08 0.25 0.24 0.19 0.16 0.29 0.32

1_N 0.78 3.94 0.45 0.76 0.36 3.52 0.71 0.77 0.43 0.49 0.50 1.07 0.25 0.24 0.17 0.15 0.28 0.32

1_S 0.78 3.56 0.35 0.72 0.37 2.65 0.71 0.78 0.40 0.49 0.50 1.06 0.25 0.24 0.16 0.14 0.28 0.31

1_P 0.98 7.77 1.61 0.78 0.38 3.21 0.73 0.83 0.59 0.52 0.51 1.05 0.25 0.27 0.24 0.15 0.28 0.32

2_D_N 0.77 3.78 0.39 0.75 0.37 3.28 0.71 0.77 0.41 0.52 0.51 1.06 0.25 0.24 0.17 0.15 0.29 0.31

2_S_P 0.77 3.69 0.34 0.74 0.37 2.65 0.71 0.79 0.40 0.53 0.50 1.03 0.25 0.24 0.16 0.16 0.28 0.30

2_D_P 0.81 3.94 0.74 0.77 0.38 3.12 0.71 0.78 0.45 0.50 0.52 1.03 0.25 0.24 0.19 0.15 0.29 0.30
2_N_P 0.78 3.94 0.48 0.74 0.37 3.20 0.70 0.77 0.43 0.51 0.50 1.05 0.25 0.24 0.17 0.14 0.28 0.32

2_D_S 0.77 3.51 0.35 0.71 0.37 2.64 0.70 0.78 0.40 0.51 0.51 1.04 0.25 0.23 0.16 0.14 0.28 0.31

2_N_S 0.73 3.54 0.33 0.70 0.37 2.65 0.70 0.76 0.40 0.51 0.50 1.03 0.25 0.23 0.16 0.15 0.28 0.31

3_D_N_P 0.77 3.76 0.49 0.77 0.37 3.14 0.70 0.77 0.42 0.51 0.52 1.04 0.25 0.24 0.17 0.15 0.29 0.30
3_D_N_S 0.75 3.51 0.34 0.74 0.37 2.70 0.70 0.77 0.40 0.51 0.51 1.04 0.25 0.24 0.16 0.15 0.29 0.30
3_D_S_P 0.77 3.53 0.35 0.76 0.37 2.67 0.71 0.77 0.40 0.52 0.51 1.03 0.25 0.24 0.16 0.14 0.29 0.30
3_N_S_P 0.75 3.54 0.36 0.73 0.37 2.65 0.70 0.77 0.40 0.53 0.50 1.03 0.25 0.24 0.16 0.15 0.28 0.31

4_D_N_S_P 0.73 3.51 0.32 0.71 0.36 2.64 0.70 0.77 0.40 0.50 0.51 1.05 0.25 0.24 0.16 0.14 0.28 0.32

To sum up, the use of four modalities (DBOW, SC, NV, PNV) statistically enhances
the robustness and reliability of the system by leveraging their complementary strengths,
resulting in significant improvements in trajectory estimation. We demonstrate that our
proposed multimodal approach ensures greater availability of LCD possibility across
diverse conditions, enabling consistent performance even in challenging environments. For
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instance, in Sequence 00 of the KITTI dataset, the error is reduced by 14.12% and is reduced
by 20.48% in sequence 08.

Table 7. Analysis of the ATE, relative translation (trel), and relative rotation (rrel) errors on the
self-collected dataset. Highlighted in green, the best result. Cells with different colors classify total
number of modalities (from one to four).

ATE (m) trel(%)

Methods 01 02 03 01 02 03

1_D 4.38 2.25 1.66 1.67 1.01 0.93

1_N 4.49 2.37 1.73 1.66 1.05 0.98

1_S 4.58 2.45 1.79 1.72 1.09 1.00

1_P 4.80 2.73 1.77 1.76 1.15 0.99

2_D_N 4.38 2.23 1.60 1.64 1.03 0.91
2_S_P 4.53 2.46 1.76 1.73 1.10 0.97

2_D_P 4.33 2.22 1.65 1.64 0.91 0.92

2_N_P 4.35 2.37 1.73 1.61 1.05 0.99

2_D_S 4.39 2.22 1.64 1.64 1.01 0.92

2_N_S 4.49 2.28 1.73 1.69 1.03 0.97

3_D_N_P 4.38 2.18 1.63 1.66 1.02 0.92

3_D_N_S 4.29 2.23 1.65 1.61 1.02 0.93

3_D_S_P 4.31 2.29 1.68 1.63 1.02 0.94

3_N_S_P 4.35 2.28 1.73 1.64 1.03 0.97

4_D_N_S_P 4.29 2.21 1.64 1.60 0.99 0.91

6. Conclusions
In this extended study, we introduced a Multi-Modal Loop Closure (MMLC) detection

framework designed for seamless integration into the loop closure module of any pose-
graph optimization-based SLAM system. The proposed generalized methodology leverages
N-modalities to enhance the accuracy of loop closure detection. To demonstrate the gain
of combining information from multiple sources to infer the most probable loop closure,
we used ORB-SLAM2 as the front end, incorporating both stereo and LiDAR frames
within the loop closure module. The conducted experimental study focused on a four-
modality extension, incorporating DBOW, NetVLAD, Scan Context and PointNetVLAD
for processing camera and LiDAR data. This extension significantly enhanced the global
optimization of pose estimates. The experimental results demonstrated that the proposed
approach effectively minimizes the accumulated residual error at the earliest opportunity
and can be integrated into a real-time SLAM system. Furthermore, the approach expands
the functionality of loop closure (LC) operations while improving robustness against data
unavailability and track loss scenarios. Additionally, it enhances the integrity of the SLAM
system by identifying the most likely multimodal LC.

In our future research, we aim to develop a real-time multimodal loop closure (LC)
module suitable for integration into an AGV, a project already initiated in [35,36]. The
system targets frugal hardware architectures tailored for embedded systems to enhance
computational efficiency. Additionally, we plan to expand the multimodal approach to the
front-end by incorporating multiple information sources for odometry estimation.
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