

Experimental investigation of NOx impact on ignition delay times for lean H2 /Air mixtures using a rapid compression machine under ice conditions

Nicolas Villenave, Guillaume Dayma, Pierre Brequigny, Fabrice Foucher

▶ To cite this version:

Nicolas Villenave, Guillaume Dayma, Pierre Brequigny, Fabrice Foucher. Experimental investigation of NOx impact on ignition delay times for lean H2 /Air mixtures using a rapid compression machine under ice conditions. 5th International RCM Workshop, Jul 2024, Milan, Italy. hal-04906713

HAL Id: hal-04906713 https://hal.science/hal-04906713v1

Submitted on 22 Jan 2025 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

EXPERIMENTAL INVESTIGATION OF NO_x IMPACT ON IGNITION DELAY TIMES FOR LEAN H_2/AIR MIXTURES USING A RAPID COMPRESSION MACHINE UNDER ICE CONDITIONS

N. Villenave¹, G. Dayma^{2,3}, P. Brequigny¹, Fabrice Foucher¹ ¹Univ. Orléans, INSA-CVL, PRISME, EA 4229, F45072, Orléans, France ²CNRS ICARE, Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France ³Université d'Orléans, Orléans, Cedex 2, France

Introduction

- \Box The transport sector is the second most polluting sector: CO₂ emissions = 7000 Mt in 2020.
- \Box Replacing fossil fuels (gasoline and diesel) with green e-fuels: Hydrogen (H₂).
- \Box Exhaust gas recirculation (EGR) in hydrogen spark ignition engines (H₂SIEs) \rightarrow balance betwenn lean-burn condition performance and low NO_x emissions.
- \Box EGR/IGR can impact combustion \rightarrow residual species such as nitric oxide (NO) and nitric dioxide (NO₂).
- \Box Crucial to study the impact of NO, on lean H₂/air ignition delays under H₂SIE conditions and validate kinetic mechanisms.

Experimental facility and methodology: Laser Gas Analyzer DURAG

- Fast interconversion of NO into NO₂: 2 NO + O₂ = 2 NO₂ [2].
- □ Final mixture composition in the tank vessel measured using a precalibrated multi-compo laser infrared spectrometer LaserCEM.
- \Box Measurement uncertainty for NO and NO₂ is \pm 5 ppm.
- Experiment repeated three times for each mixtures : $H_2/air/NO_x$ (= 50, 250 and 1250 ppm) at ϕ = 0.4.

(b)

2000

1500

2500

Experimental rig and methodology: Rapid Compression Machine

- □ IDT = time difference between the time of the maximum pressure rise rate and the pressure at the end of the compression.
- Crevice to prevent vortex roll-up formation.
- **Conditions:** $\phi = 0.4 p_{c} = 30 60$ bar.
- □ NO_x addition: 50 ppm, 250 ppm and 1250 ppm.
- □ Non-reactive experiments conducted to considers
- Pneumatic System Hydrauli

Crevice

Figure 1. Laser Gas Analyzer DURAG

Phase NO conversion

Figure 3. Comparison of NO and NO₂ mole fractions evolution during the mixing in the RCM tank vessel at p = 5 bar and T = 333 K.

□ Kinetic mechanisms show a faster interconversion with initial NO concentration

the heat losses. Figure 2. RCM from Orléans university

Ignition delay times measurement

increases.

A plateau is reached after 30 minutes.

□ Three final mixtures:

(a) $X_{NO} = 8$ ppm et $X_{NO2} = 42$ ppm; (b) X_{NO} = 9 ppm and X_{NO2} = 241 ppm; (c) $X_{NO} = 11$ ppm and $X_{NO2} = 1239$ ppm

Sensitivity analysis

(R11) $H + O_2 (+ M) \rightleftharpoons HO_2 (+ M)$ (R120) $NO_2 + H \rightleftharpoons NO + OH$ (R4) $H_2 + OH \rightleftharpoons H_2O + H$ (R19) H_2O_2 (+ M) \rightleftharpoons 2 OH (+M) (R18) 2 HO₂ \rightleftharpoons H₂O₂ + O₂ (R21) $H_2O_2 + H \rightleftharpoons HO_2 + H_2$ (R122) $NO_2 + HO_2 \rightleftharpoons HONO + O_2$ (R17) 2 HO₂ \rightleftharpoons 2 OH + O₂ \models Reactivity decreases Reactivity increases (R124) HONO $(+M) \rightleftharpoons NO + OH (+M)$ $X_{\rm NO_x} = 1250 \text{ ppm}$ $X_{\rm NO_x} = 250 \text{ ppm}$ $X_{\rm NO_x} = 50 \ \rm ppm$ (R1) $H + O_2 \rightleftharpoons O + OH$ $X_{\rm NO_x} = 0 \ \rm ppm$

Figure 4. Ignition delay times of $H_2/O_2/N_2/NO_x$ \blacksquare H₂/Air • $H_2/Air/NO_x$ ($X_{NOx} = 50$ ppm) mixtures at φ = 0.4. Ignition delay times decrease with NO_x addition. • $H_2/Air/NO_x$ ($X_{NOx} = 250$ ppm) \land H₂/Air/NO_x (X_{NOx} = 1250 ppm) —Present model The proposed model shows very good agreement - - Aljohani et al. [4]for X_{NOx} = 50 ppm and X_{NOx} = 250 ppm. \dots Sun et al. [3] ----- GRI-Mech 3.0 [5] Discrepancies arise for the case $X_{NOx} = 1250$ ppm.

-6 -12OH sensitivity, s [-]

Figure 5. Sensitive reactions on OH radical for $H_2/air/NO_x$ mixtures for $X_{\rm NOx}$ = 0 ppm, 50 ppm, 250 ppm, 1250 ppm at $p_{\rm C}$ = 50 bar, and $T_{\rm C}$ = 908 K.

 \Box The HO₂/H₂O₂ sequence is not the exclusive contributor to OH production. \Box Recycling loop between NO and NO₂ contributing to a more important production of OH. Reactivity enhancement and this ignition delay times decrease.

OH sensitivity, s [-]

Figure 6. Sensitive reactions on OH radical for $H_2/air/NO_x$ mixtures for $X_{\rm NOx}$ = 0 ppm, 50 ppm, 250 ppm, 1250 ppm at $p_{\rm C}$ = 50 bar, and $T_{\rm C}$ = 908 K.

- \Box Dissociation reaction 2HO₂ = 2OH + O₂ [6] \rightarrow enhance the reactivity of the mixture.
- \Box Recent NO_x sub-mechanism has to be revisited by considering (R17).

Conclusion and perspectives

- \Box Ignition delay times for lean H₂/O₂/N₂/NO_x mixtures under H₂SIEs condition measured using a RCM.
- The NO interconversion into NO₂ measured using a laser gas analyser DURAG and also estimated numerically using different kinetic mechanisms.
- \Box This study shows that ignition delay times decrease with NO_x addition due to a recycling sequence between NO and NO₂, leading to enhanced reactivity \rightarrow OH production. \Box The proposed model displays very good agreement for low-to-moderate NO_x mole fractions.
- \Box Recent NO_x sub-mechanism needs to be revisited by considering the reaction 2HO₂ = 2OH + O₂ [6] to reduce discrepancies at high NO_x mole fractions and high-pressure.
 - [1] Y. Song et al. Energ. Fuels (2020). [4] K. Aljohani et al. Combust Flame (2024). [2] A.B. Sahu et al. Combust. Flame (2022). [5] G.P. Smith et al. http://www.me.berkeley.edu/gri mech/ [3] W. Sun et al. Combust. Flame (2022). [6] S.J. Klippenstein et al. Combust Flame (2022).

