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Abstract

The aim of this work is to study the controllability of the viscous Burgers equation in the case of bilinear
controls. We consider the problem on the one-dimensional flat torus and on bounded intervals equipped
with Dirichlet or Neumann boundary conditions. The controls depend solely on time and act through a
given family of spatial functions. We first prove the small-time global approximate controllability of the
equation between states of the same sign. This result is ensured by a saturating geometric control approach
with at least three controls that are localized in frequency. Afterward, we show the small-time global
exact controllability to the non-zero constant states of the equation via at least four controls in the case
of the flat torus and Neumann boundary conditions. For this second result, we proceed by studying the
null-controllability of a suitable linearized system. Then, we infer the controllability for the initial bilinear
Burgers equation via fixed-point arguments. Explicit examples of bilinear controls verifying our results are
provided in the work.
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1 Introduction

Control theory is a branch of applied mathematics that investigates whether practical problems from fields such
as engineering, physics, and other sciences can be controlled through specific external actions. Control problems
involving partial differential equations are typically studied in the presence of internal or boundary controls due
to the nature of the system evolution. A linear control term is added to the equation, and controllability is
analyzed based on the reachable states of the modified system. Since the associated control problem is often
linear, this facilitates its mathematical analysis. From a practical standpoint, internal or boundary controls

1



represent external influences on the system that interact with its evolution. However, in many applications
across applied science, physics, and chemistry, the control mechanism often modifies the evolving variable itself
rather than acting as an external influence. In such cases, it is relevant to consider control terms that depend on
the evolving variable. A notable and significant example of this approach is the use of multiplicative controls.

The aim of this work is the study of the following viscous Burgers equation in the presence of a particular
multiplicative control: {

∂tψ − ∂xxψ + ψ∂xψ = (u ·Q)ψ in (0, T ),
ψ(0, ·) = ψ0.

(1.1)

The equation is considered at first on the one-dimensional torus T := R/2πZ and later on the interval (0, 2π)
in the presence of Dirichlet and Neumann boundary conditions. In (1.1), the state ψ is controlled via the
multiplicative control term (u ·Q)ψ. Here, the function

Q = (Q0, . . . , Qq−1)

with q ∈ N∗ is fixed and u ∈ L2(0, T ;Rq) is the control. This type of multiplicative control is also called bilinear,
since only the time-depending intensity is the actual control of the evolution and the term is linear with respect
to it. Our aim is to study different controllability results for (1.1). Our theory is developed in the framework
of the flat torus T in order to simplify the presentation. We explain later how to deal with the Dirichlet and
Neumann cases.

Small-time global approximate controllability

We recall that, with the above assumptions, the equation (1.1) admits a unique strong solution with values in
H1(T) as soon as Q is smooth enough (see Proposition 2.1, Proposition 6.1 and Proposition 7.1 below). We
consider first the framework of the one-dimensional torus and our first objective is to show that when{

1, cos(x), sin(x)
}
⊂ span{Q0, . . . , Qq−1}, (1.2)

we can approximately reach any element of

S (ψ0) :=
{
eφψ0 : φ ∈ H1 (T)

}
.

The corresponding result states as follows:

Theorem 1.1. Assume the condition (1.2). Then, for any ψ0 ∈ H1(T), for any ψ1 ∈ S (ψ0), for any ε > 0
and T > 0 there exist τ ∈ (0, T ] and u ∈ L2(0, τ ;Rq) such that the solution ψ of (1.1) satisfies

∥ψ(τ, ·)− ψ1∥H1(T) < ε.

As a corollary, if ψ0 is positive (respectively negative), then one can reach any ψ1 ∈ H1 (T) with the same
sign:

Corollary 1.2. Assume the condition (1.2) and assume ψ0, ψ1 ∈ H1 (T) with ψ0ψ1 > 0 in T. For any ε > 0
and T > 0, there exist τ ∈ (0, T ] and u ∈ L2(0, τ ;Rq) such that the solution ψ of (1.1) satisfies

∥ψ(τ, ·)− ψ1∥H1(T) < ε.

More generally, the same result holds provided that ln (ψ1/ψ0) ∈ H1(T). This allows us to consider the case
where ψ0 and ψ1 can cancel, but in that case, they need to have the same behaviour around any (common)
zero to avoid a singularity in ln (ψ1/ψ0). We can extend this condition, but we obtain an approximation in L2

instead of H1:

Corollary 1.3. Assume the condition (1.2) and assume ψ0, ψ1 ∈ H1 (T) with sign(ψ0) = sign(ψ1). For any
ε > 0 and T > 0, there exist τ ∈ (0, T ] and u ∈ L2(0, τ ;Rq) such that the solution ψ of (1.1) satisfies

∥ψ(τ, ·)− ψ1∥L2(T) < ε.

Corollary 1.2 and Corollary 1.3 state the global approximate controllability of the equation (1.1) in any
positive time. The control can be performed by considering the three potentials

Q0(x) = 1, Q1(x) = cos(x), Q2(x) = sin(x). (1.3)

The method used to prove Theorem 1.1, the saturation limit developed in Section 3, is well-adapted to
manifolds without boundaries, such as T. Nevertheless, on can extend this method to the case of manifolds
without boundaries. Here, we consider the Burgers equation in the interval (0, 2π) with the “standard” Dirichlet
or Neumann boundary conditions. The Dirichlet case is quite close to the torus, while we slightly need to adapt
our techniques for the Neumann boundary conditions (see Section 6 and Section 7). In detail, we prove the
following results.
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� When Dirichlet boundary conditions are verified, an equivalent result to Theorem 1.1 can be ensured and
we stated it in Theorem 6.4. In this case, we replace the hypothesis (1.2) with{

1, cos(x/2), sin(x/2)
}
⊂ span{Q0, . . . , Qq−1}.

The result infers the small-time global approximate controllability with respect to the L2-topology which
is presented in Corollary 6.5 (as Corollary 1.3 is implied by Theorem 1.1).

� The same property is true for the Neumann framework considered in Theorem 7.5, which adapts Theo-
rem 1.1 under the hypothesis{

1, cos(x/2), cos(x)
}
⊂ span{Q0, . . . , Qq−1}.

Corollary 7.7 and Corollary 7.8 present two subsequent approximate controllability results, respectively,
with respect to the H1− topology and to the L2−topology (as Corollary 1.2 and Corollary 1.3).

To the best of our knowledge, this type of results was previously unknown in the literature. This may have
been due to the uncertainty surrounding the study of bilinear global approximate controllability for parabolic
equations before the recent work [17]. In that work, the authors introduced a successful technique for achieving
this controllability in the heat equation with bilinear controls. The proof of Theorem 1.1 revisits the methods
from [17] and demonstrates that this approach can be extended to the Burgers equation, despite its specific
nonlinear dynamics. From this perspective, it is natural to ask whether the Navier-Stokes system can also be
controlled via bilinear controls. This will be the subject of a future work.

Small-time exact controllability to the constant states

Our second objective is to show the small-time global exact controllability of (1.1) to the non-zero constant
states associated with u ≡ 0 in the framework of the flat torus or in the presence of Neumann boundary
conditions. As above, we focus at first on the torus T. We denote by

λk := k2, ∀ k ∈ Z (1.4)

the eigenvalues of the Laplace operator A0 : H2(T) → L2(T), ξ 7→ −∂xxξ. Up to λ0 = 0, the eigenvalues are
double (λk = λ−k) and a corresponding family of orthonormalized eigenfunctions for A0 is given by

wk(x) :=
1√
2π
eikx, ∀ k ∈ Z, x ∈ T. (1.5)

Theorem 1.4. Assume the condition (1.2) and assume that Q0 ∈ H2(T;Rq) verifies

∃ b, d > 0, ∀ k ∈ Z, (λdk + 1)
∣∣∣(Q0, wk)L2(T)

∣∣∣ ⩾ b. (1.6)

For any T > 0, ψ0 ∈ H1(T) with ψ0 > 0 and Ψ ∈ R∗
+, there exists u ∈ L2(0, T ;Rq) such that the solution ψ of

(1.1) satisfies ψ(T, ·) = Ψ.

Theorem 1.4 ensures the global exact controllability of the equation (1.1) to the non-zero stationary states
associated with u ≡ 0 in any positive time. The result is obtained by coupling the small-time global approximate
controllability ensured in Corollary 1.2 and a local exact controllability to the stationary states in any positive
time. For this reason, we can control the equations by considering 4 control potentials : we need the 3 directions
to ensure Corollary 1.2 (as in (1.3)), together with an addition control. An example of Q ensuring Theorem 1.4
is the following:

Q0(x) = x2(x− 2π)2, Q1(x) = 1, Q2(x) = cos(x), Q3(x) = sin(x).

The result of Theorem 1.4 is also valid when considering the Burgers equation with Neumann boundary
conditions, as presented in Theorem 7.9. Also in this case, we can give explicit potentials Q verifying the
controllability. Two examples that can be deduced from Example 7.10 are the following

Q0(x) = x2, Q1(x) = 1, Q2(x) = cos(x/2), Q3(x) = cos(x),

Q0(x) = x3(x− 2π)2, Q1(x) = 1, Q2(x) = cos(x/2), Q3(x) = cos(x).

The question of whether exact controllability can be achieved within the Dirichlet framework remains open, as
constant functions are not stationary solutions in this setting. Alternative non-constant states must therefore be
considered, but our current techniques do not readily extend to this scenario. Further research will be essential
to explore exact controllability under Dirichlet boundary conditions.
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Some bibliography

The controllability of the Burgers equation has been widely studied via additive controls. Let us mention a few
key results. One of the first results concerns the case of the non-viscous Burgers equation [23]. Subsequently,
the local exact controllability of the Burgers equation with additive distributed controls was obtained using
Carleman estimates in [20]. Several articles then addressed the global exact controllability, such as [22], [14],
[25], [26], and others.

The study of bilinear controllability for parabolic-type equations has not been extensively explored until
recently. The primary reason is the nature of the bilinear control, which is generally weaker compared to
additive control. For instance, when we consider the simple linear heat equation

∂tψ − ∂xxψ = (u ·Q)ψ, (1.7)

with bilinear controls, it is well-known that exact controllability cannot be achieved in L2 when Q ∈ L∞. This
obstruction was first proved by Ball, Marsden, and Slemrod in the seminal work [6]. The authors demonstrated
that the reachable set of the system (1.7) is contained in a countable union of compact subsets of L2, and
its complement is dense. This property represents a natural obstruction to exact controllability in L2, and
alternative types of controllability, such as approximate controllability or exact controllability to trajectories,
must be considered. Of course, the results in [6] do not directly apply to (1.1), but they highlight the difficulty
of achieving exact controllability via bilinear controls.

To the best of our knowledge, the approximate controllability of the Burgers equation via bilinear control has
not been proven in the literature, and the result for the heat equation (1.7) (even in the presence of polynomial
nonlinearities) was only established recently in [17]. In that work, the authors adapted a saturating geometric
control approach, introduced by Agrachev and Sarychev in [1, 2] for internal controllability. This method
was first applied to the bilinear controllability of the Schrödinger equation in [15], and further improvements
were made in subsequent works such as [7, 8, 16, 27]. Our result on approximate controllability, presented in
Theorem 1.1, shows that the saturating method can be extended to study the Burgers equation (1.1), despite
its specific nonlinear behavior.

A second type of controllability introduced in the literature to overcome the obstructions proved in [6] is
exact controllability to trajectories. This concept was first introduced by Alabau-Boussouira, Cannarsa, and
Urbani in [3] to study heat-type equations like (1.7) on intervals. This approach was later applied to study the
same equation in the presence of polynomial nonlinearities in [17], and on compact graphs in [11]. The first
result of this kind in higher-dimensional settings is found in [10], where the controllability of (1.7) is proven
for two-dimensional domains. A key aspect of the techniques developed in [3] to prove exact controllability to
eigensolutions is ensuring the solvability of a suitable moment problem. This kind of result has been widely
studied in the past few decades, starting with the classical works [18, 19], and extending to more recent ones
such as [4, 5, 9, 11, 12, 13, 21], and others.

Outline of the work

The paper is organized as follows. In Section 2, we present some preliminary results on the problem as the
well-posedness of the Burgers equation (1.1). In Section 3, we ensure an important saturation limit, which is
used in the proof of Theorem 1.1. Section 4 is dedicated to the proof of Theorem 1.1 and Corollary 1.3. In
Section 5, we finally develop the proof of Theorem 1.4. In Section 6 and Section 7, we present the controllability
of the Burgers equation for Dirichlet and Neumann boundary conditions instead of the periodic boundary case.
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2 Preliminary results

The well-posedness of the Burgers equation is classical and can be done by adapting the proofs for the Navier-
Stokes system (see, for instance, [28, Theorem 3.1, p. 282]): we use the Galerkin method where we show some a
priori estimates and a compactness argument to pass to the limit in the nonlinear term. We have in particular
the following result:
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Proposition 2.1. Assume ψ0 ∈ H1(T), Q ∈ H2(T;Rq), T > 0 and u ∈ L2(0, T ;Rq). Then, there exists a
unique strong solution

ψ ∈ L2(0, T ;H2(T)) ∩ C0([0, T ];H1(T)) ∩H1(0, T ;L2(T))

of (1.1).

Assume t1 < t2. For u ∈ L2(t1, t2;Rq), we denote by Rt,t1(ψ0;u) the solution ψ(t, ·) of{
∂tψ − ∂xxψ + ψ∂xψ = (u ·Q)ψ in (t1, t2)× T,
ψ(t1, ·) = ψ0 in T. (2.1)

In the particular case where t1 = 0, we simply write Rt(ψ0;u) instead of Rt,0(ψ0;u). Let us now show a
continuity result with respect to the initial condition:

Proposition 2.2. Assume ψ0 ∈ H1(T), Q ∈ H2(T;Rq), T > 0 and u ∈ L2(0, T ;Rq). Then, there exists a
constant C > 0 such that for any ψ1 ∈ H1(T),

∥R(ψ0;u)−R(ψ1;u)∥C0([0,T ];H1(T)) ⩽ C ∥ψ0 − ψ1∥H1(T) e
C∥ψ0−ψ1∥2

L2(T) . (2.2)

Proof. Assume ψ0, ψ1 ∈ H1(T), Q ∈ H2(T;Rq), T > 0 and u ∈ L2(0, T ;Rq). Let us set

ψ := R(ψ1;u)−R(ψ0;u), ψ := R(ψ0;u).

Then {
∂tψ − ∂xxψ + ψ∂xψ + ψ∂xψ + ψ∂xψ = (u ·Q)ψ in (0, T )× T,
ψ(0, ·) = ψ1 − ψ0 in T. (2.3)

Let us first multiply the first equation of the above system by ψ and integrate by parts:

1

2

d

dt

∫
T
|ψ|2 dx+

∫
T
|∂xψ|2 dx+

1

2

∫
T

(
∂xψ

)
ψ2 dx =

∫
T
(u ·Q)ψ2 dx.

Integrating in time and using the Grönwall lemma, we deduce the existence of a positive constant C > 0 such
that

∥ψ∥L∞(0,T ;L2(T)) + ∥ψ∥L2(0,T ;H1(T)) ⩽ C ∥ψ0 − ψ1∥L2(T) exp
(
C
(∥∥ψ∥∥

L2(0,T ;H2(T)) + ∥Q∥L∞(T)q ∥u∥L2(0,T )q

))
.

Second, we multiply the first equation of (2.3) by −∂xxψ and integrate by parts:

1

2

d

dt

∫
T
|∂xψ|2 dx+

∫
T
|∂xxψ|2 dx =

∫
T
ψ∂xψ∂xxψ dx+

∫
T
ψ∂xψ∂xxψ dx

+

∫
T
ψ∂xψ∂xxψ dx−

∫
T
(u ·Q)ψ∂xxψ dx. (2.4)

By using the Cauchy-Schwarz inequality, we deduce

d

dt

∫
T
|∂xψ|2 dx+

∫
T
|∂xxψ|2 dx ⩽ C

(
∥ψ∥2L∞(T) +

∥∥ψ∥∥2
L∞(T)

)
∥∂xψ∥2L2(T)

+ C
(∥∥∂xψ∥∥2L∞(T) + ∥Q∥2L∞(T)q |u|

2
)
∥ψ∥2L2(T) . (2.5)

Applying the Grönwall lemma, the above estimate yields

∥∂xψ∥2L∞(0,T ;L2(T)) + ∥∂xψ∥2L2(0,T ;H1(T)) ⩽ C1 ∥ψ0 − ψ1∥2H1(T) exp
(
C1 ∥ψ0 − ψ1∥2L2(T)

)
, (2.6)

where C1 := C exp
(
C
(∥∥ψ∥∥2

L2(0,T ;H2(T)) + ∥Q∥2L∞(T)q ∥u∥
2
L2(0,T )q

))
for some positive constant C.

3 The saturation limit

The aim of this section is to prove the following result

Proposition 3.1. Assume ψ0 ∈ H1(T), Q ∈ H2(T;Rq), u ∈ Rq and φ ∈ H3 (T), φ > 0. Then, the following
limit holds

eδ
−1/2φRδ(e

−δ−1/2φψ0, δ
−1u) → e(φ

′)2+u·Qψ0 in H1 (T) as δ → 0+.
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Proof. To simplify, we assume in all the proof that δ ∈ (0, 1). By definition,

ψ := R
(
e
− φ√

δψ0,
u

δ

)
is the solution of {

∂tψ − ∂xxψ + ψ∂xψ = 1
δ (u ·Q)ψ in (0, T )× T,

ψ(0, ·) = e
− φ√

δψ0 in T.
(3.1)

We then denote
ψδ(t, ·) := e

φ√
δRδt

(
e
− φ√

δψ0,
u

δ

)
(t ⩾ 0), (3.2)

so that for any t ⩾ 0,

ψ(t, ·) := e
−φ√

δ ψδ

(
t

δ
, ·
)
.

We deduce the following formulas:

∂tψ =
1

δ
e

−φ√
δ ∂tψδ, ∂xψ = e

−φ√
δ

(
∂xψδ −

φ′
√
δ
ψδ

)
, (3.3)

∂xxψ = e
−φ√

δ

(
∂xxψδ − 2

φ′
√
δ
∂xψδ −

φ′′
√
δ
ψδ +

(φ′)
2

δ
ψδ

)
. (3.4)

As a consequence, ψδ is solution of the system

∂tψδ − δ∂xxψδ + 2
√
δφ′∂xψδ +

√
δφ′′ψδ + ψδe

−φ√
δ

(
δ∂xψδ −

√
δφ′ψδ

)
=
(
(φ′)

2
+ u ·Q

)
ψδ in (0, T )× T, (3.5)

ψδ(0, ·) = ψ0 in T. (3.6)

We consider the Laplace operator

A0 : H3(T) → H1(T), ψ 7→ −∂xxψ. (3.7)

This is a diagonalizable non-negative operator and thus (see, for instance, [29, Proposition 2.6.5, p.41] the
infinitesimal generator of semigroup an analytic semigroup

(
etA
)
t⩾0

. We set

ψδ0 := eδ
1/4A0ψ0. (3.8)

Then using a property of analytic semigroups, there exists a constant C > 0 such that∥∥ψδ0∥∥H1(T) ⩽ C ∥ψ0∥H1(T) ,
∥∥ψδ0∥∥H3(T) ⩽

C

δ1/4
∥ψ0∥H1(T) . (3.9)

Moreover,
ψδ0 → ψ0 in H1 (T) , as δ → 0+. (3.10)

Now let us set

g(t, ·) := e

[
(φ′)

2
+u·Q

]
t
ψδ0. (3.11)

By using that H1(T) and H2(T) are algebras, we deduce that g ∈ L∞(0, T ;H2(T)) and there exists a constant
C > 0 (depending on u,Q, φ, ψ0) such that

∥g∥L∞(0,T ;H1(T)) ⩽ C, ∥g∥L∞(0,T ;H2(T)) ⩽
C

δ1/4
(3.12)

Let us define
v := ψδ − g. (3.13)

We deduce from (3.5) that

∂tv − δ∂xxv + 2
√
δφ′∂xv +

√
δφ′′v + δe

−φ√
δ (v∂xv + g∂xv + v∂xg)−

√
δe

−φ√
δ φ′ (v2 + 2vg

)
= F +

(
(φ′)

2
+ u ·Q

)
v in (0, T )× T, (3.14)

6



with
F := δ∂xxg − 2

√
δφ′∂xg −

√
δφ′′g − δe

−φ√
δ g∂xg +

√
δe

−φ√
δ φ′g2. (3.15)

The estimates (3.12) and the above definition yield that

∥F∥L∞(0,T ;L2(T)) ⩽ Cδ1/2. (3.16)

First, let us multiply (3.14) by v and integrate by parts:

1

2

d

dt
∥v∥2L2(T) + δ ∥∂xv∥2L2(T) =

2

3

√
δ

∫
T
e

−φ√
δ φ′v3 dx− δ

2

∫
T
e

−φ√
δ v2∂xg dx

+
3

4

√
δ

∫
T
e

−φ√
δ φ′v2g dx+

∫
T
Fv dx+

∫
T

(
(φ′)

2
+ u ·Q

)
v2 dx in (0, T ). (3.17)

We deduce from (3.12) and (3.16) that

1

2

d

dt
∥v∥2L2(T) + δ ∥∂xv∥2L2(T) ⩽ C ∥F∥2L2(T) + C

√
δ ∥v∥3L3(T) + C ∥v∥2L2(T) in (0, T ). (3.18)

Second, we multiply (3.14) by −∂xxv and integrate by parts:

1

2

d

dt
∥∂xv∥2L2(T) + δ ∥∂xxv∥2L2(T) = 2

√
δ

∫
T
φ′∂xv∂xxv dx+

√
δ

∫
T
φ′′v∂xxv dx

+ δ

∫
T
e

−φ√
δ (v∂xv + g∂xv + v∂xg) ∂xxv dx−

√
δ

∫
T
e

−φ√
δ φ′ (v2 + 2vg

)
∂xxv dx

−
∫
T
F∂xxv dx+

∫
T
(2φ′φ′′ + u ·Q′) v∂xv dx+

∫
T

(
(φ′)

2
+ u ·Q

)
(∂xv)

2
dx in (0, T ). (3.19)

Then, using that φ ∈ H3(T) and (3.12), we have the following estimates∣∣∣∣2√δ ∫
T
φ′∂xv∂xxv dx+

√
δ

∫
T
φ′′v∂xxv dx

∣∣∣∣ ⩽ δ

5
∥∂xxv∥2L2(T) + C ∥v∥2H1(T) , (3.20)

δ

∣∣∣∣∫
T
e

−φ√
δ (v∂xv + g∂xv + v∂xg) ∂xxv dx

∣∣∣∣ ⩽ δ

5
∥∂xxv∥2L2(T)

+ Cδ
(
∥v∥2L∞(T) ∥∂xv∥

2
L2(T) + ∥g∥2L∞(T) ∥∂xv∥

2
L2(T) + ∥v∥2L∞(T) ∥∂xg∥

2
L2(T)

)
⩽
δ

5
∥∂xxv∥2L2(T) + C ∥v∥2H1(T) + Cδ ∥v∥4H1(T) (3.21)

and using that e
−φ√

δ ⩽ Cδ,∣∣∣∣√δ ∫
T
e

−φ√
δ φ′ (v2 + 2vg

)
∂xxv dx

∣∣∣∣ ⩽ δ

5
∥∂xxv∥2L2(T) + C ∥v∥2H1(T) + Cδ ∥v∥4H1(T) . (3.22)

Finally, from (3.15),∣∣∣∣∫
T
F∂xxv dx

∣∣∣∣ ⩽ ∫
T

∣∣∣δ∂xxg − δe
−φ√

δ g∂xg +
√
δe

−φ√
δ φ′g2

∣∣∣ |∂xxv| dx
+

∫
T

(
3
√
δφ′′∂xg + 2

√
δφ′∂xxg +

√
δφ(3)g

)
∂xv dx. (3.23)

Using (3.12), we deduce that∣∣∣∣∫
T
F∂xxv dx

∣∣∣∣ ⩽ δ

5
∥∂xxv∥2L2(T) + C

√
δ + C ∥v∥2H1(T) . (3.24)

Gathering (3.19), (3.20), (3.21), (3.22), and (3.24), we find

1

2

d

dt
∥∂xv∥2L2(T) +

δ

5
∥∂xxv∥2L2(T) ⩽ C

√
δ + C ∥v∥2H1(T) + Cδ ∥v∥4H1(T) in (0, T ).

The above estimate and (3.18) yield

1

2

d

dt
∥v∥2H1(T) +

δ

5
∥v∥2H2(T) ⩽ C

√
δ + C ∥v∥2H1(T) + Cδ ∥v∥4H1(T) in (0, T ). (3.25)
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Integrating in time the above relation and using (3.16), there exists a constant C0 > 0 such that for t ∈ [0, T ],

∥v(t, ·)∥2H1(T) ⩽
∥∥ψ0 − ψδ0

∥∥2
H1(T) + C0

√
δ + C0

∫ t

0

(
∥v(s, ·)∥2H1(T) + δ ∥v(s, ·)∥4H1(T)

)
ds. (3.26)

From (3.10), there exists δ0 ∈ (0, 1) such that for δ ∈ (0, δ0),(∥∥ψ0 − ψδ0
∥∥2
H1(T) + C0

√
δ
)
e2C0T < 1. (3.27)

By using the continuity of v and (3.27), we deduce the existence of a maximal interval [0, Tδ) ⊂ [0, T ] such that

∥v(t, ·)∥2H1(T) < 1 t ∈ [0, Tδ).

In particular, using (3.26), the Grönwall lemma and the above relation, we obtain

∥v(t, ·)∥2H1(T) ⩽
(∥∥ψ0 − ψδ0

∥∥2
H1(T) + C0

√
δ
)
e2C0T (t ∈ [0, Tδ),

and this shows that Tδ = T . In particular, we can take t = 1 in the above relation and this implies that if
δ → 0, then

∥v(1, ·)∥H1(T) =

∥∥∥∥e φ√
δRδ

(
e
− φ√

δψ0,
u

δ

)
− e

[
(φ′)

2
+u·Q

]
ψδ0

∥∥∥∥
H1(T)

→ 0

Using again (3.10), we deduce the result.

4 Proof of the approximate controllability results

In this section, we prove Theorem 1.1 and Corollary 1.3 by using Proposition 3.1 proved in the previous section.
Let us start with the following definition:

Definition 4.1. We denote by A the set of φ ∈ H1(T) such that for any ψ0 ∈ H1(T), for any T > 0 and ε > 0,
there exist τ ∈ (0, T ) and u ∈ P(0, τ) such that

∥Rτ (ψ0, u)− eφψ0∥H1(T) ⩽ ε. (4.1)

Remark 4.2. From Proposition 3.1 (with φ = 0), we already have that

span {Q0, . . . , Qq−1} ⊂ A.

Moreover, we remark that φ1, φ2 ∈ A =⇒ φ1 + φ2 ∈ A.

Proposition 4.3. Assume φ ∈ H3(T), φ > 0 such that spanφ ⊂ A. Then (φ′)
2 ∈ A.

Proof. Let us consider ψ0 ∈ H1(T), T > 0 and ε ∈ (0, 1). By Proposition 3.1, there exists τ1 ∈ (0, T/3) such
that ∥∥∥e φ√

τ1 Rτ1

(
e
− φ√

τ1 ψ0, 0
)
− e(φ

′)
2

ψ0

∥∥∥
H1(T)

⩽
ε

3
.

We set
ψ1 := Rτ1

(
e
− φ√

τ1 ψ0, 0
)
∈ H1(T)

so that the above estimate writes ∥∥∥e φ√
τ1 ψ1 − e(φ

′)
2

ψ0

∥∥∥
H1(T)

⩽
ε

3
. (4.2)

Since φ/
√
τ1 ∈ A, there exists τ2 ∈ (0, T/3), ũ2 ∈ P(0, τ2) such that∥∥∥Rτ2 (ψ1, ũ2)− e

φ√
τ1 ψ1

∥∥∥
H1(T)

⩽
ε

3
. (4.3)

From Proposition 2.2, there exists C1 > 0 such that for any ψ2 ∈ H1 (T) with∥∥∥ψ2 − e
− φ√

τ1 ψ0

∥∥∥
H1(T)

⩽ 1, (4.4)

then ∥∥∥R(ψ2, 0)−R(e
− φ√

τ1 ψ0, 0)
∥∥∥
C0([0,T ];H1(T))

⩽ C1

∥∥∥ψ2 − e
− φ√

τ1 ψ0

∥∥∥
H1(T)

. (4.5)
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Similarly, there exists C2 > 0 such that for any ψ2 ∈ H1 (T) with

∥ψ2 − ψ1∥H1(T) ⩽ 1, (4.6)

then
∥R(ψ2, ũ2)−R(ψ1, ũ2)∥C0([0,T ];H1(T)) ⩽ C2 ∥ψ2 − ψ1∥H1(T) . (4.7)

Since −φ/√τ1 ∈ A, there exist τ0 ∈ (0, T/3), u0 ∈ P(0, τ0) such that∥∥∥Rτ0 (ψ0, u0)− e
− φ√

τ1 ψ0

∥∥∥
H1(T)

⩽ min

(
1

3(1 + C1)(1 + C2)
ε,

1

1 + C1

)
. (4.8)

Combining (4.5) and (4.8), we deduce that∥∥∥Rτ1+τ0,τ0(Rτ0 (ψ0, u0) , 0)−Rτ1+τ0,τ0(e
− φ√

τ1 ψ0, 0)
∥∥∥
H1(T)

=
∥∥Rτ0+τ1

(
ψ0, u01(0,τ0)

)
− ψ1

∥∥
H1(T) ⩽ min

(
1

3(1 + C2)
ε, 1

)
. (4.9)

By translating ũ2, we deduce from (4.3) the existence of u2 ∈ P(τ0 + τ1, τ0 + τ1 + τ2) such that∥∥∥Rτ0+τ1+τ2,τ0+τ1 (ψ1, u2)− e
φ√
τ1 ψ1

∥∥∥
H1(T)

⩽
ε

3
. (4.10)

Combining (4.7) and (4.9), we deduce that∥∥Rτ0+τ1+τ2

(
ψ0, u01(0,τ0) + u21(τ0+τ1,τ0+τ1+τ2)

)
−Rτ0+τ1+τ2,τ0+τ1 (ψ1, u2)

∥∥
H1(T) ⩽

ε

3
. (4.11)

Combining the above estimate with (4.10) and (4.2), we deduce that∥∥∥Rτ0+τ1+τ2

(
ψ0, u01(0,τ0) + u21(τ0+τ1,τ0+τ1+τ2)

)
− e(φ

′)
2

ψ0

∥∥∥
H1(T)

⩽ ε. (4.12)

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Using Remark 4.2 and (1.2), we already have that

span {1, sin, cos} ⊂ A.

Then using a result proved in [15] and Proposition 4.3, we can show that

span {1, x 7→ sin(kx), x 7→ cos(kx) : k ∈ N∗} ⊂ A.

This implies that A is dense in H1(T). Using this fact and that the mapping

H1(T) → H1(T), φ 7→ eφ

is continuous, there exists φε ∈ A such that

∥eφψ0 − eφεψ0∥H1(T) ⩽
ε

2
.

Since φε ∈ A, for any T > 0, there exist τ ∈ (0, T ) and u ∈ P(0, τ) such that

∥Rτ (ψ0, u)− eφεψ0∥H1(T) ⩽
ε

2
.

Combining the last two relations, we deduce the result.

We also prove here Corollary 1.3:

Proof of Corollary 1.3. Assume ψ0, ψ1 ∈ H1 (T) with sign(ψ0) = sign(ψ1) and let us consider ε > 0. We denote
by Z the closed set of zeros of ψ0 and ψ1:

Z := ψ−1
0 ({0}) = ψ−1

1 ({0}) .
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For η > 0, we set

Zη := {x ∈ T : dist(x, Z) > η} and φη := 1Zη
ln

(
ψ1

ψ0

)
.

Since ψ0, ψ1 ∈ H1(T) ↪→ C0(T), we deduce that φη ∈ L∞(T). In Zη, e
φηψ0 − ψ1 = 0, whereas for x ∈ T \ Zη,

we have ∣∣∣eφη(x)ψ0(x)− ψ1(x)
∣∣∣ = |ψ0(x)− ψ1(x)| ⩽

√
η ∥ψ0 − ψ1∥H1(T) .

We thus deduce that for η > 0 small enough,

∥eφηψ0 − ψ1∥L2(T) ⩽
ε

3
.

On the other hand, since A is dense in H1(T), it is dense in L2(T). Thus, there exists φ ∈ A such that

∥eφψ0 − eφηψ0∥L2(T) ⩽
ε

3
.

Finally, using the definition of A, for any T > 0, there exist τ ∈ (0, T ) and u ∈ P(0, τ) such that

∥Rτ (ψ0, u)− eφψ0∥H1(T) ⩽
ε

3
.

Combining the last three relations yields the conclusion of the corollary.

5 Exact controllability to the stationary states

The proof of Theorem 1.4 is a direct consequence of the combination of Corollary 1.2 and of the following local
exact controllability result:

Theorem 5.1. Assume that q = 1 and that Q0 verifies (1.6). For any T > 0 and for any Ψ > 0, there exists
ε > 0 such that for any

ψ0 ∈ H1(T), ∥ψ0 −Ψ∥H1(T) < ε,

there exists u0 ∈ L2(0, T ;R) so that the solution ψ of (1.1) satisfies

ψ(T, ·) = Ψ.

Remark 5.2. Note that we only consider here the case of one control (q = 1) but if we have more controls, it is
sufficient to take them equal to 0.

Let us give the short proof of Theorem 1.4:

Proof of Theorem 1.4. In order to prove Theorem 1.4, we divide the time interval in [0, T/2] and [T/2, T ]. Then,
we consider the size ε > 0 of Theorem 5.1 associated with Ψ and T/2 and apply Corollary 1.2 to obtain a control
u ∈ L2(0, τ ;Rq) and a time τ ∈ (0, T/2) such that

∥ψ(τ, ·)−Ψ∥H1(T) < ε.

Then applying Theorem 5.1, we obtain a control u ∈ L2(0, τ + T/2;Rq) such that

ψ(τ + T/2, ·) = Ψ.

Then, in the time (τ + T/2, T ), we take the control u ≡ 0 and use that ψ = Ψ is the corresponding solution of
(1.1) so that ψ(T, ·) = Ψ.

Before giving the proof of Theorem 5.1, let us first show the existence of Q0 satisfying (1.6):

Example 5.3. Let us defined
Q0(x) = x2(x− 2π)2 x ∈ [0, 2π],

extended by 2π-periodicity so that Q0 ∈ H2(T). Some standard computation yields

(Q0, wk)L2(T) = −24
√
2π

k4
, ∀k ∈ Z∗,

and (Q0, w0)L2(T) > 0. In particular, using (1.4), we deduce the existence of b > 0 such that

∀ k ∈ Z, (λ2k + 1)
∣∣∣(Q0, wk)L2(T)

∣∣∣ ⩾ b,

that is (1.6) for d = 2.
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We now focus on the proof Theorem 5.1. If ψ is the solution of (1.1) associated with the control u0, then
ξ := ψ −Ψ satisfies the system{

∂tξ − ∂xxξ +Ψ∂xξ = (u0Q0)Ψ− ξ∂xξ + (u0Q0)ξ in (0, T )× T,
ξ(0, ·) = ξ0 in T, (5.1)

with ξ0 := ψ0 −Ψ and our aim is to show the local null controllability of the above system.

5.1 Control of the linearized system

In order to prove Theorem 5.1, we first linearize (5.1) and consider the null-controllability of the linear system{
∂tξ − ∂xxξ +Ψ∂xξ = (u0Q0)Ψ in (0, T )× T,
ξ(0, ·) = ξ0 in T, (5.2)

with Q0 ∈ L2(T) satisfying (1.6). Let us define

D (A) := H2 (T) , A : D (A) → L2(T), ξ 7→ ∂xxξ −Ψ∂xξ. (5.3)

It is well-known that A is the infinitesimal generator of an analytic semigroup. We also define the control
operator

B ∈ L
(
R, L2 (T)

)
, Bu0 := (u0Q0)Ψ.

With the above notation, we can write (5.2) in the following abstract form

∂tξ = Aξ +Bu0 in (0, T ), ξ(0) = ξ0 ∈ L2 (T) . (5.4)

Our result is the following one:

Proposition 5.4. Assume that Q0 verifies (1.6). Then, there exist M,ν ∈ R∗
+ such that the problem (5.2)

is null controllable in any time T > 0 with a cost of the control less than Meν/T . More precisely, for any
ξ0 ∈ L2(T), there exists a control u0 ∈ L2(0, T ) such that

∥u0∥L2(0,T ) ⩽Meν/T ∥ξ0∥L2(T)

and such that the solution of (5.2) satisfies ξ(T, ·) = 0.

Proof. The adjoint A∗ of the operator A defined by (5.3) is given by

D (A∗) := H2 (T) , A∗ : D (A) → L2(T), ξ 7→ ∂xxξ +Ψ∂xξ. (5.5)

Note that the family {wk}k∈Z defined by (1.5) is a family of eigenvectors of −A∗ and the corresponding eigen-
values are

λ̃k := k2 − ikΨ (k ∈ Z).

We then use the standard moment method, that consists in formally multiplying (5.2) byWk(t) := e−λ̃k(T−t)wk,
that is the solution of the adjoint system

−∂tWk = A∗Wk in (0, T ), Wk(T ) = wk.

After some integrations by parts, we deduce that the solution ξ of (5.2) satisfies ξ(T, ·) = 0 if and only if

−
(ξ0, w−k)L2(T)

Ψ(Q0, w−k)L2(T)
e−λ̃kT =

∫ T

0

u0(t)e
−λ̃k(T−t) dt (k ∈ Z) . (5.6)

In order to solve the above moment system, we apply Theorem 1.5 in [9]. More precisely, let us consider the
bijection

Ξ : Z → N∗,

{
k 7→ 2k if k ⩾ 1,
k 7→ −2k + 1 if k ⩽ 0.

Then we set
Λk := λ̃Ξ−1(k) + 1.

We can check that the sequence {Λk}k⩾1 satisfies the following relations

1. For all k ⩾ 1, ReΛk > 0.

2. For all k ⩾ 1, |ImΛk| ⩽ |Ψ|
√
ReΛk.
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3. For all k ⩾ 1, |Λk| ⩽ |Λk+1|.

4. For all k, n ⩾ 1, |Λk − Λn| ⩾ min
(

2|Ψ|
5 , 19

) ∣∣k2 − n2
∣∣.

5. By setting for r > 0,
N (r) := card {k ⩾ 1 : |Λk| ⩽ r} ,

there exists a constant C > 0 such that for any r > 0, |N (r)− 2
√
r| ⩽ C.

Theorem 1.5 in [9] states that if the sequence {Λk}k⩾1 satisfies the above conditions, then there exists a sequence

{Ek}k⩾1 ⊂ L2(−T/2, T/2),

such that

∀k, j ⩾ 1,

∫ T/2

−T/2
Ek(t)e

−Λjt = δk,j

and there exists a constant C > 0 such that

∀k ⩾ 1, ∥Ek∥L2(−T/2,T/2) ⩽ CeC(
√
ReΛk+1/T). (5.7)

We set for k ∈ Z and t ∈ [0, T ],

ek(t) := EΞ(k)

(
T

2
− t

)
e−(T−t)+ΛΞ(k)T/2.

For any k, j ∈ Z, ∫ T

0

ek(t)e
−λ̃j(T−t) dt = e(ΛΞ(k)−ΛΞ(j))T/2

∫ T/2

−T/2
EΞ(k) (t) e

−ΛΞ(j)t dt = δk,j .

Moreover, we deduce from (5.7) that

∀k ∈ Z, ∥ek∥L2(0,T ) ⩽ CeC(
√
k2+1+1/T)+(k2+1)T/2. (5.8)

Our aim is to use this family {ek}k∈Z to construct a solution for (5.6): if the series

u0 :=
∑
k∈Z

−
(ξ0, w−k)L2(T)

Ψ(Q0, w−k)L2(T)
e−λ̃kT ek. (5.9)

is convergent in L2(0, T ), then it is a solution of (5.6). Combining (5.8) and (1.6), we can see that∥∥∥∥∥− (ξ0, w−k)L2(T)

Ψ(Q0, w−k)L2(T)
e−λ̃kT ek

∥∥∥∥∥
L2(0,T )

⩽ Ck2d
∣∣∣(ξ0, w−k)L2(T)

∣∣∣ eC(k+1/T )−k2T/2+T/2 (5.10)

Assume that T ∈ (0, 1). Then∑
k∈Z

(
k2deC(k+1/T )−k2T/2+T/2

)2
⩽ CeC/T

∑
k⩾1

k4de−k
2T/2. (5.11)

In order to estimate this series, we introduce the function f(x) := x4de−x
2T/2 for x ⩾ 1. We can check that

f is increasing for x ∈ [1, 2
√
d/T ] and decreasing for x ⩾ 2

√
d/T . In particular, there exists a constant

C = C(d) > 0 such that

∀x ⩾ 1, f(x) ⩽
C

T 2d

Let us set

k1 :=

⌊
2

√
d

T

⌋
.

Then ∑
k⩾1

k4de−k
2T/2 =

∑
1⩽k⩽k1−1

k4de−k
2T/2 +

∑
k=k1,k1+1

k4de−k
2T/2 +

∑
k⩾k1+2

k4de−k
2T/2
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so that ∑
k⩾1

k4de−k
2T/2 ⩽

∫ ∞

0

x4de−x
2T/2 dx+

C

T 2d
⩽

C

T 2d+1/2
+

C

T 2d
.

Combining the above estimate with (5.11), we deduce that∑
k∈Z

(
k2deC(k+1/T )−k2T/2+T/2

)2
⩽ CeC/T

and using the Cauchy-Schwarz inequality on (5.10), we obtain that u0 is well-defined by (5.9), is in L2(0, T )
with

∥u0∥L2(0,T ) ⩽ CeC/T ∥ξ0∥L2(T) .

This concludes the proof.

5.2 Controllability of the nonlinear system

From the previous section, we have the obtain the null-controllability of (5.4) with an estimate of the cost of
the control of the form γ(T ) :=Meν/T . We now use a method developed in [24] to show the null-controllability
of

∂tξ = Aξ +Bu0 + f in (0, T ), ξ(0) = ξ0 ∈ L2 (T) . (5.12)

More precisely, let us set

ρF (t) := e−72ν/(T−t), ρ0(t) :=Me−45ν/(T−t), ρ(t) := e−44ν/(T−t) (5.13)

and

F :=

{
f ∈ L2(0, T ;L2(T)) :

f

ρF
∈ L2(0, T ;L2(T))

}
, (5.14)

U :=

{
u0 ∈ L2(0, T ) :

u

ρ0
∈ L2(0, T )

}
. (5.15)

Then combining Proposition 2.3 and Proposition 2.8 in [24], we obtain the following result.

Proposition 5.5. There exists an operator E ∈ L
(
H1(T)×F ,U

)
such that for any (ξ0, f) ∈ H1(T) × F , the

solution ξ of (5.12) associated with u0 = E (ξ0, f) satisfies

ξ

ρ
∈ L2(0, T ;H2(T)) ∩ C0

(
[0, T ];H1 (T)

)
∩H1

(
0, T ;L2 (T)

)
. (5.16)

Moreover, there exists a constant C > 0 such that∥∥∥∥ ξρ
∥∥∥∥
L2(0,T ;H2(T))∩C0([0,T ];H1(T))∩H1(0,T ;L2(T))

+ ∥u0∥U ⩽ C
(
∥ξ0∥H1(T) + ∥f∥F

)
. (5.17)

Remark 5.6. The exponents in the definitions of the weight functions in (5.13) are neither unique nor optimal.
They correspond to the construction used in [24]. Once γ and ρF are chosen, the weight function ρ0 is given by

ρ0(t) := ρF (T + r2(t− T ))γ((r − 1)(T − t))

(
t ∈

[
T

(
1− 1

r2

)
, T

])
for some r > 1. Here we take r = 6/5. Then ρ is chosen so that there exists a positive constant such that

ρ0 ⩽ Cρ, ρF ⩽ Cρ, |ρ′| ρ0 ⩽ Cρ2 in (0, T ).

We can now prove Theorem 5.1 in a standard way by using a fixed-point argument:

Proof of Theorem 5.1. Assume ξ0 ∈ H1(T) and let us consider the mapping

Z : F → F , f 7→ −ξ∂xξ + (u0Q0)ξ,

where u0 = E (ξ0, f) and where ξ is the solution of (5.12), that satisfies in particular (5.16) and (5.17). If we
show that Z admits a fixed point f , then the corresponding solution ξ of (5.12) associated with u0 = E (ξ0, f)
is a solution of (5.1) such that ξ(T, ·) = 0.
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In order to show that Z admits a fixed-point, we use the Banach fixed-point theorem. First,

∥Z(f)∥F ⩽

∥∥∥∥ξ∂xξρF

∥∥∥∥
L2(0,T ;L2(T))

+

∥∥∥∥ (u0Q0)ξ

ρF

∥∥∥∥
L2(0,T ;L2(T))

.

With our choice in (5.13), we have ρ2 ⩽ CρF and ρρ0 ⩽ CρF . Consequently∥∥∥∥ξ∂xξρF

∥∥∥∥
L2(0,T ;L2(T))

+

∥∥∥∥ (u0Q0)ξ

ρF

∥∥∥∥
L2(0,T ;L2(T))

⩽ C

(∥∥∥∥ ξρ ∂xξρ
∥∥∥∥
L2(0,T ;L2(T))

+

∥∥∥∥Q0
u0
ρ0

ξ

ρ

∥∥∥∥
L2(0,T ;L2(T))

)

⩽ C0

(
∥ξ0∥H1(T) + ∥f∥F

)2
for some positive constant C0. Let us consider R ∈

(
0, 1

4C0

)
. Then, we deduce from the above estimate that

for any ξ0 ∈ H1(T), ∥ξ0∥H1(T) ⩽ R, the closed ball

BR := {f ∈ F : ∥f∥F ⩽ R}

is invariant by Z. With a similar argument, one can show that the restriction of Z on BR is a strict contraction.
This concludes the proof of Theorem 5.1.

6 Controllability of the Burger equation with Dirichlet boundary
conditions

In the previous sections, we have obtained different small-time controllability results for the Burgers equation
in the torus T, which corresponds to periodic boundary conditions. Here, we show how to adapt some of these
results in the case of another classical boundary conditions: the Dirichlet boundary conditions ∂tψ − ∂xxψ + ψ∂xψ = (u ·Q)ψ in (0, T )× (0, 2π),

ψ(·, 0) = ψ(·, 2π) = 0 in (0, T ),
ψ(0, ·) = ψ0 in (0, 2π).

(6.1)

More precisely, we show that the small-time global approximate controllability of Theorem 1.1 is also valid for
the problem (6.1). The Neumann case is studied in the next section. In these two new frameworks, several
proofs are similar to the ones of the torus case, and we only underline the main differences.

We start by noticing that, for (6.1), we have similar properties to Proposition 2.1 and Proposition 2.2,
ensuring the well-posedness of the system and the continuity of the solutions with respect to the initial data.

Proposition 6.1. Assume ψ0 ∈ H1
0 (0, 2π), Q ∈ H2(0, 2π;Rq), T > 0 and u ∈ L2(0, T ;Rq). Then, there exists

a unique strong solution

ψ ∈ L2(0, T ;H2(0, 2π)) ∩ C0([0, T ];H1
0 (0, 2π)) ∩H1(0, T ;L2(0, 2π))

of (6.1).

We keep the same notation as in the case of the torus: for t1 < t2 and for u ∈ L2(t1, t2;Rq), we denote by
Rt,t1(ψ0;u) the solution ψ(t, ·) of ∂tψ − ∂xxψ + ψ∂xψ = (u ·Q)ψ in (t1, t2)× (0, 2π),

ψ(·, 0) = ψ(·, 2π) = 0 in (t1, t2),
ψ(t1, ·) = ψ0 in (0, 2π).

(6.2)

In the particular case where t1 = 0, we simply write Rt(ψ0;u) instead of Rt,0(ψ0;u).

Proposition 6.2. Assume ψ0 ∈ H1
0 (0, 2π), Q ∈ H2(0, 2π;Rq), T > 0 and u ∈ L2(0, T ;Rq). Then, there exists

a constant C > 0 such that for any ψ1 ∈ H1
0 (0, 2π),

∥R(ψ0;u)−R(ψ1;u)∥C0([0,T ];H1(0,2π)) ⩽ C ∥ψ0 − ψ1∥H1(0,2π) e
C∥ψ0−ψ1∥2

L2(0,2π) . (6.3)

The proof of Proposition 6.1 can be obtained by adapting the proofs for the Navier-Stokes system (see, for
instance, [28, Theorem 3.1, p. 282]) to the Burgers equation and the proof of Proposition 6.2 is almost identical
to the proof of Proposition 2.2 since the boundary terms in the integration by parts disappear with the Dirichlet
boundary conditions.

Now, we start the study of the controllability of (6.1) and the result associated with the saturation limit
can be stated similarly as Proposition 3.1:
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Proposition 6.3. Assume ψ0 ∈ H1
0 (0, 2π), Q ∈ H2(0, 2π;Rq), u ∈ Rq and φ ∈ H3 (0, 2π), φ > 0. Then, the

following limit holds

eδ
−1/2φRδ(e

−δ−1/2φψ0, δ
−1u) → e(φ

′)2+u·Qψ0 in H1 (0, 2π) as δ → 0+.

Proof. The proof of Proposition 6.3 is completely similar to the proof of Proposition 3.1. We note in particular
that ψδ defined by (3.2) satisfies the Dirichlet boundary conditions at the boundaries {0, 2π}. For the definition
of g, we still use the formula (3.11) with ψδ0 given by (3.8), but we modify the definition of A0. Instead of (3.7),
we set

D(A0) := {ψ ∈ H4(0, 2π) : ψ(0) = ψ(2π) = ψ′(0) = ψ′(2π) = 0},

A0 : D(A0) → L2(0, 2π), ψ 7→ ψ(4).

One can check that A0 is a positive self-adjoint operator so that
(
etA0

)
t⩾0

is an analytic semigroup on L2(0, 2π).

We can also prove that

D
(
A

1
2
0

)
= H2

0 (0, 2π) := {ψ ∈ H2(0, 2π) : ψ(0) = ψ(2π) = ψ′(0) = ψ′(2π) = 0}

and
D
(
A

1
4
0

)
= H1

0 (0, 2π).

This shows that
(
etA0

)
t⩾0

is an analytic semigroup on H1
0 (0, 2π) and thus that

ψδ0 := eδ
1/4A0ψ0 (6.4)

satisfies, for some constant C > 0,∥∥ψδ0∥∥H1(0,2π)
⩽ C ∥ψ0∥H1(0,2π) ,

∥∥ψδ0∥∥H5(0,2π)
⩽

C

δ1/4
∥ψ0∥H1(0,2π) . (6.5)

Moreover,
ψδ0 → ψ0 in H1 (0, 2π) , as δ → 0+. (6.6)

Finally, with the definition of D(A0), we see that g defined by (3.11) satisfies

g(t, 0) = g(t, 2π) = ∂xg(t, 0) = ∂xg(t, 2π) = 0 t ⩾ 0. (6.7)

In particular, we have
v(t, 0) = v(t, 2π) = 0 t ⩾ 0. (6.8)

Then, with the boundary conditions (6.7) and (6.8), we can see that all the computations in the proof of
Proposition 3.1 are the same here, all the boundary terms in the integration by parts cancel. This yields the
result.

We are finally ready to state our approximate controllability results for (6.1). As for Theorem 1.1, we set

S (ψ0) :=
{
eφψ0 : φ ∈ H1 (0, 2π)

}
and we replace (1.2) by the following condition{

1, cos(x/2), sin(x/2)
}
⊂ span{Q0, . . . , Qq−1}. (6.9)

Then, we obtain the following result (see Theorem 1.1):

Theorem 6.4. Assume the condition (6.9). Then, for any ψ0 ∈ H1
0 (0, 2π), for any ψ1 ∈ S (ψ0), for any ε > 0

and T > 0 there exist τ ∈ (0, T ] and u ∈ L2(0, τ ;Rq) such that the solution ψ of (6.1) satisfies

∥ψ(τ, ·)− ψ1∥H1(0,2π) < ε.

Proof. The proof of Theorem 6.4 is similar to the proof of Theorem 1.1, see Section 4. One can show the validity
of an equivalent result to Proposition 4.3 and combining it with [15, Proposition 2.5], we obtain that if we have
(6.9), then

span {1, x 7→ sin(kx/2), x 7→ cos(kx/2) : k ∈ N∗} ⊂ A.

Then, we note that
{

1√
2π

}
∪
{
x 7→ 1√

π
cos(kx/2)

}
k∈N∗

is a Hilbert basis made by the eigenfunctions of the

Laplace operator AN with Neumann boundary conditions. Since D
(
A

1
2

N

)
= H1(0, 2π), we deduce that A is

dense in H1(0, 2π) and we conclude as in the proof of Theorem 1.1.
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Notice now that Corollary 1.2 can not be adapted here because the boundary conditions of ψ0 yield that ψ0

vanishes at the boundaries. We can however obtain from Theorem 6.4 a similar result to Corollary 1.3:

Corollary 6.5. Assume the condition (6.9) and assume ψ0, ψ1 ∈ H1
0 (0, 2π) with sign(ψ0) = sign(ψ1). For any

ε > 0 and T > 0, there exist τ ∈ (0, T ] and u ∈ L2(0, τ ;Rq) such that the solution ψ of (6.1) satisfies

∥ψ(τ, ·)− ψ1∥L2(0,2π) < ε.

Proof. The proof Corollary 6.5 follows the same steps of the one of Corollary 1.3 by using Theorem 6.4.

7 Controllability of the Burger equation with Neumann boundary
conditions

In this section, we study the controllability of the Burgers equation with the Neumann boundary conditions,
that is the system:  ∂tψ − ∂xxψ + ψ∂xψ = (u ·Q)ψ in (0, T )× (0, 2π),

∂xψ(·, 0) = ∂xψ(·, 2π) = 0 in (0, T ),
ψ(0, ·) = ψ0 in (0, 2π).

(7.1)

As in the previous framework, we ensure the small-time global approximate controllability of Theorem 1.1.
Then, we also prove that the exact controllability to the constant stationary states of Theorem 1.4 holds for
this framework.

7.1 Well-posedness result

Let us start by studying the well-posedness and the continuity of the solutions with respect to the initial data.
There is an additional difficulty with respect to the torus case and the Dirichlet case. Here, when multiplying
formally the first equation of (7.1) with ψ and integrate by parts, the term corresponding to ψ∂xψ does not
disappear as in the previous cases. In particular, the energy estimate is more complicated to obtain. As a
consequence, we only obtain a local well-posedness:

Proposition 7.1. Assume ψ0 ∈ H1(0, 2π), Q ∈ H2(0, 2π;Rq), and u ∈ L2
loc([0,∞);Rq). Then, there exists a

maximal T∗ ∈ (0,∞] and a unique strong solution ψ of (7.1) on (0, T∗) such that for any T ∈ (0, T∗)

ψ ∈ L2(0, T ;H2(0, 2π)) ∩ C0([0, T ];H1(0, 2π)) ∩H1(0, T ;L2(0, 2π)).

Proof. The proof is quite standard and we only give the idea: it can be done by a fixed point argument on the
mapping

f ∈ L2(0, T ;L2(0, 2π)) 7→ −ψ∂xψ,
where ψ is the solution of  ∂tψ − ∂xxψ = (u ·Q)ψ + f in (0, T )× (0, 2π),

∂xψ(·, 0) = ∂xψ(·, 2π) = 0 in (0, T ),
ψ(0, ·) = ψ0 in (0, 2π).

(7.2)

One can show that for T > 0 small enough the above mapping is a strict contraction and this shows the existence
and the uniqueness of a solution for small times.

We keep the same notation as in the case of the torus and of the Dirichlet boundary conditions: for t1 < t2
and for u ∈ L2(t1, t2;Rq), we denote by Rt,t1(ψ0;u) the solution ψ(t, ·) of ∂tψ − ∂xxψ + ψ∂xψ = (u ·Q)ψ in (t1, t2)× (0, 2π),

∂xψ(·, 0) = ∂xψ(·, 2π) = 0 in (t1, t2),
ψ(t1, ·) = ψ0 in (0, 2π).

(7.3)

This implies in particular that the time of existence of the solution is larger than t2− t1. As usual, if t1 = 0, we
simply write Rt(ψ0;u) instead of Rt,0(ψ0;u). Similarly as Proposition 2.2 and Proposition 6.2, we have here
the following result:

Proposition 7.2. Assume ψ0 ∈ H1(0, 2π), Q ∈ H2(0, 2π;Rq) and u ∈ L2
loc([0,∞);Rq). Assume that the time

of existence of R(ψ0;u) is larger than T > 0. Then there exist α > 0 and C > 0 such that for any ψ1 ∈ H1(0, 2π)

∥ψ0 − ψ1∥H1(0,2π) ⩽ α, (7.4)

the time of existence of R(ψ1;u) is larger than T and

∥R(ψ0;u)−R(ψ1;u)∥C0([0,T ];H1(0,2π)) ⩽ C ∥ψ0 − ψ1∥H1(0,2π) . (7.5)

16



Proof. Assume ψ0, ψ1 ∈ H1(0, 2π), Q ∈ H2(0, 2π;Rq), T > 0 and u ∈ L2(0, T ;Rq). Let us set

ψ := R(ψ1;u)−R(ψ0;u), ψ := R(ψ0;u).

Then  ∂tψ − ∂xxψ + ψ∂xψ + ψ∂xψ + ψ∂xψ = (u ·Q)ψ in (0, T )× (0, 2π) ,
∂xψ(·, 0) = ∂xψ(·, 2π) = 0 in (0, T ),
ψ(0, ·) = ψ1 − ψ0 in (0, 2π) .

(7.6)

Let us first multiply the first equation of the above system by ψ and integrate by parts:

1

2

d

dt

∫
(0,2π)

|ψ|2 dx+

∫
(0,2π)

|∂xψ|2 dx ⩽
∫
(0,2π)

|∂xψ|ψ2 dx+

∫
(0,2π)

|∂xψ| |ψ|
∣∣ψ∣∣ dx

+ C
(∥∥ψ∥∥

H2(0,2π)
+ |u| ∥Q∥L∞(0,2π)q

)∫
(0,2π)

ψ2 dx. (7.7)

We have ∫
(0,2π)

|∂xψ|ψ2 dx ⩽ ∥ψ∥L∞(0,2π) ∥ψ∥L2(0,2π) ∥∂xψ∥L2(0,2π)

and using the Sobolev embedding H1(0, 2π) ↪→ L∞(0, 2π), we deduce∫
(0,2π)

|∂xψ|ψ2 dx ⩽ C ∥ψ∥3H1(0,2π) .

Thus we deduce from (7.7) that

d

dt

∫
(0,2π)

|ψ|2 dx+

∫
(0,2π)

|∂xψ|2 dx ⩽ C ∥ψ∥3H1(0,2π)

+ C
(
1 +

∥∥ψ∥∥2
H2(0,2π)

+ |u|2 ∥Q∥2L∞(0,2π)q

)
∥ψ∥2L2(0,2π) . (7.8)

Second, we multiply the first equation of (7.6) by −∂xxψ and integrate by parts:

1

2

d

dt

∫
(0,2π)

|∂xψ|2 dx+

∫
(0,2π)

|∂xxψ|2 dx =

∫
(0,2π)

ψ∂xψ∂xxψ dx+

∫
(0,2π)

ψ∂xψ∂xxψ dx

+

∫
(0,2π)

ψ∂xψ∂xxψ dx−
∫
(0,2π)

(u ·Q)ψ∂xxψ dx. (7.9)

By using the Cauchy-Schwarz inequality, we deduce

d

dt

∫
(0,2π)

|∂xψ|2 dx+

∫
(0,2π)

|∂xxψ|2 dx ⩽ C
(
∥ψ∥2L∞(0,2π) +

∥∥ψ∥∥2
L∞(0,2π)

)
∥∂xψ∥2L2(0,2π)

+ C
(∥∥∂xψ∥∥2L∞(0,2π)

+ ∥Q∥2L∞(0,2π)q |u|
2
)
∥ψ∥2L2(0,2π) . (7.10)

Combining the above relation with (7.8), we deduce the existence of C1, C2 > 0 such that

d

dt
∥ψ∥2H1(0,2π) ⩽ C1 ∥ψ∥4H1(0,2π) + C2

(
1 +

∥∥ψ∥∥2
H2(0,2π)

+ |u|2 ∥Q∥2L∞(0,2π)q

)
∥ψ∥2H1(0,2π) . (7.11)

Let us now consider α ∈ (0, 1) such that

α2 exp
(
(C1 + C2)T +

∥∥ψ∥∥2
L2(0,T ;H2(0,2π))

+ ∥u∥2L2(0,T )q ∥Q∥2L∞(0,2π)q

)
< 1. (7.12)

Assuming (7.4) with this α, we have that for a maximal time T∗ ∈ (0, T ],

∥ψ(t, ·)∥H1(0,2π) < 1 (t ∈ [0, T∗]).

Using this estimate and applying the Grönwall lemma in (7.11), we find that for t ∈ [0, T∗],

∥ψ(t, ·)∥2H1(0,2π) ⩽ ∥ψ(0, ·)∥2H1(0,2π) exp
(
(C1 + C2)T +

∥∥ψ∥∥2
L2(0,T ;H2(0,2π))

+ ∥u∥2L2(0,T )q ∥Q∥2L∞(0,2π)q

)
.

(7.13)
In particular, we deduce with (7.12) that T∗ = T and we obtain (7.5).
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7.2 Small-time controllability results

We now present the controllability results for (7.1) and we start by studying the approximate controllability.
As for the case pf the torus and of the Dirichlet boundary conditions, it is associated with a saturation limit
stated as follows:

Proposition 7.3. Assume ψ0 ∈ H1
0 (0, 2π), Q ∈ H2(0, 2π;Rq), u ∈ Rq and φ ∈ H3 (0, 2π), φ > 0, with

Q′(0) = Q′(2π) = 0, φ′(0) = φ′(2π) = 0. (7.14)

Then, the following limit holds

eδ
−1/2φRδ(e

−δ−1/2φψ0, δ
−1u) → e(φ

′)2+u·Qψ0 in H1 (0, 2π) as δ → 0+.

We note in particular that, with respect to Proposition 3.1 and to Proposition 6.3, we need here the condition
(7.14), used in the proof to cancel the boundary terms appearing in the integration by parts. Let us sketch the
proof of Proposition 7.3.

Proof of Proposition 7.3. The proof is similar to the proof of Proposition 3.1 with some small differences that
we point out. We define ψ and ψδ as in the proof of Proposition 3.1. We have in particular (3.5) and (3.6) with
T replaced by (0, 2π). Moreover, with (7.14), we can check that ψδ satisfies the Neumann boundary conditions:

∂xψδ(·, 0) = ∂xψδ(·, 2π) = 0 in (0, T ).

Then we define g by (3.11), where ψδ0 is given by

ψδ0 := eδ
1/4ANψ0, (7.15)

where

D (AN) :=
{
ψ ∈ H2(0, 2π) : ψ′(0) = ψ′(2π) = 0

}
, AN : D (AN) → L2(0, 2π), ψ 7→ −ψ′′. (7.16)

The operator AN is the infinitesimal generator of an analytic semigroup
(
etAN

)
t⩾0

in L2(0, 2π) and D
(
A

1/2
N

)
=

H1(0, 2π). Thus, there exists a constant C > 0 such that∥∥ψδ0∥∥H1(0,2π)
⩽ C ∥ψ0∥H1(0,2π) ,

∥∥ψδ0∥∥H3(0,2π)
⩽

C

δ1/4
∥ψ0∥H1(0,2π) . (7.17)

Moreover,
ψδ0 → ψ0 in H1 (0, 2π) , as δ → 0+. (7.18)

With this choice and (7.14), we have that

∂xg(t, 0) = ∂xg(t, 2π) = 0 (t ⩾ 0).

In particular, v defined by (3.13) satisfies (3.14) with T replaced by (0, 2π) and with the Neumann boundary
conditions:

∂xv(·, 0) = ∂xv(·, 2π) = 0 in (0, T ).

The first estimates used when multiplying (3.14) by v are the same as in the proof of Proposition 3.1, except
for the term ∫

(0,2π)

δe
−φ√

δ v2∂xv dx

that we need to estimate directly since integration by parts:∣∣∣∣∣
∫
(0,2π)

δe
−φ√

δ v2∂xv dx

∣∣∣∣∣ ⩽ δ

4
∥∂xv∥2L2(0,2π) + Cδ ∥v∥4L4(0,2π) .

Consequently, instead of (3.18), we obtain

1

2

d

dt
∥v∥2L2(0,2π) + δ ∥∂xv∥2L2(0,2π) ⩽ C ∥F∥2L2(0,2π) + Cδ ∥v∥4L4(0,2π) + C ∥v∥2L2(0,2π) in (0, T ). (7.19)

The remaining part of the proof is the same and in particular all the integration by parts yields the same results
since the boundary terms disappear. We obtain in particular the same differential inequality (3.25) (with T
replaced by (0, 2π)).
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In order to ensure our approximate controllability result, we define A similarly as in Definition 4.1 and we
show a result similar to Proposition 4.3:

Proposition 7.4. Assume φ ∈ H3(0, 2π), φ > 0 and φ′(0) = φ′(2π) = 0 such that spanφ ⊂ A. Then

(φ′)
2 ∈ A.

Proof. Let us consider ψ0 ∈ H1(0, 2π), T > 0 and ε ∈ (0, 1). By Proposition 7.3, there exists τ1 ∈ (0, T/3) such
that ∥∥∥e φ√

τ1 Rτ1

(
e
− φ√

τ1 ψ0, 0
)
− e(φ

′)
2

ψ0

∥∥∥
H1(0,2π)

⩽
ε

3
.

We set
ψ1 := Rτ1

(
e
− φ√

τ1 ψ0, 0
)
∈ H1(0, 2π)

so that the above estimate writes ∥∥∥e φ√
τ1 ψ1 − e(φ

′)
2

ψ0

∥∥∥
H1(0,2π)

⩽
ε

3
. (7.20)

Since φ/
√
τ1 ∈ A, there exists τ2 ∈ (0, T/3), ũ2 ∈ P(0, τ2) such that∥∥∥Rτ2 (ψ1, ũ2)− e

φ√
τ1 ψ1

∥∥∥
H1(0,2π)

⩽
ε

3
. (7.21)

From Proposition 7.2, there exist α1 and C1 > 0 such that for any ψ2 ∈ H1 (0, 2π) with∥∥∥ψ2 − e
− φ√

τ1 ψ0

∥∥∥
H1(0,2π)

⩽ α1, (7.22)

then ∥∥∥R(ψ2, 0)−R(e
− φ√

τ1 ψ0, 0)
∥∥∥
C0([0,τ1];H1(0,2π))

⩽ C1

∥∥∥ψ2 − e
− φ√

τ1 ψ0

∥∥∥
H1(0,2π)

. (7.23)

Similarly, there exist α2 > 0 and C2 > 0 such that for any ψ2 ∈ H1 (0, 2π) with

∥ψ2 − ψ1∥H1(0,2π) ⩽ α2, (7.24)

then
∥R(ψ2, ũ2)−R(ψ1, ũ2)∥C0([0,τ2];H1(0,2π)) ⩽ C2 ∥ψ2 − ψ1∥H1(0,2π) . (7.25)

Since −φ/√τ1 ∈ A, there exist τ0 ∈ (0, T/3), u0 ∈ P(0, τ0) such that∥∥∥Rτ0 (ψ0, u0)− e
− φ√

τ1 ψ0

∥∥∥
H1(0,2π)

⩽ min

(
α1,

α2

C1
,

ε

3C1C2

)
. (7.26)

Combining (7.23) and (7.26), we deduce that∥∥∥Rτ1+τ0,τ0(Rτ0 (ψ0, u0) , 0)−Rτ1+τ0,τ0(e
− φ√

τ1 ψ0, 0)
∥∥∥
H1(0,2π)

=
∥∥Rτ0+τ1

(
ψ0, u01(0,τ0)

)
− ψ1

∥∥
H1(0,2π)

⩽ min

(
α2,

ε

3C2

)
. (7.27)

By translating ũ2, we deduce from (7.21) the existence of u2 ∈ P(τ0 + τ1, τ0 + τ1 + τ2) such that∥∥∥Rτ0+τ1+τ2,τ0+τ1 (ψ1, u2)− e
φ√
τ1 ψ1

∥∥∥
H1(0,2π)

⩽
ε

3
. (7.28)

Combining (7.25) and (7.27), we deduce that∥∥Rτ0+τ1+τ2

(
ψ0, u01(0,τ0) + u21(τ0+τ1,τ0+τ1+τ2)

)
−Rτ0+τ1+τ2,τ0+τ1 (ψ1, u2)

∥∥
H1(0,2π)

⩽
ε

3
. (7.29)

Combining the above estimate with (7.28) and (7.20), we deduce that∥∥∥Rτ0+τ1+τ2

(
ψ0, u01(0,τ0) + u21(τ0+τ1,τ0+τ1+τ2)

)
− e(φ

′)
2

ψ0

∥∥∥
H1(0,2π)

⩽ ε. (7.30)
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We are finally ready to state the small-time global approximate controllability for the system (7.1). First
we replace (1.2) by the following condition{

1, x 7→ cos
(x
2

)
, x 7→ cos(x)

}
⊂ span{Q0, . . . , Qq−1}. (7.31)

We also set
S (ψ0) :=

{
eφψ0 : φ ∈ H1 (0, 2π)

}
.

Theorem 7.5. Assume the condition (7.31). Then, for any ψ0 ∈ H1(0, 2π), for any ψ1 ∈ S (ψ0), for any
ε > 0 and T > 0 there exist τ ∈ (0, T ] and u ∈ L2(0, τ ;Rq) such that the solution ψ of (6.1) exists in [0, τ ] and
satisfies

∥ψ(τ, ·)− ψ1∥H1(0,2π) < ε.

The proof of Theorem 7.5 is similar to the proof of Theorem 1.1 and is based on Proposition 7.4, but with
a difference that we discuss now. The idea is to show that

span

{
1, x 7→ cos

(
kx

2

)
: k ∈ N∗

}
⊂ A (7.32)

(with A defined as in Definition 4.1) and since span {1, x 7→ cos(kx/2) : k ∈ N∗} is dense in H1(0, 2π), we can
conclude as in the proof of Theorem 1.1. Nevertheless, from (7.31) and Proposition 7.4, it seems difficult to
obtain x 7→ cos(3x/2) but only an approximation of it. We thus need to extend Proposition 7.4 in order to

show that an approximation of (φ′)
2
can be obtained. We show this result only in our case here to simplify:

Proposition 7.6. Assume

span {1, x 7→ cos(kx/2) : k ∈ {1, . . . ,K}} ⊂ A. (7.33)

Then
span {x 7→ cos((K + 1)x/2)} ⊂ A.

Proof. To simplify, we denote by ck and sk the functions x 7→ cos(kx/2) and x 7→ sin(kx/2). Assume β ∈ R∗,
ψ0 ∈ H1(0, 2π), T > 0 and ε > 0. Assume also γ ∈ [0, 1]. Then, some standard computations yield the existence
of C > 0 such that ∥∥∥eγ2s2K − 1

∥∥∥
H1(0,2π)

⩽ Cγ2.

Using the Sobolev embeddings, there exists a constant C > 0 such that∥∥∥eγ2s2K+βcK+1ψ0 − eβcK+1ψ0

∥∥∥
H1(0,2π)

⩽ C
∥∥∥eγ2s2K − 1

∥∥∥
H1(0,2π)

∥∥eβcK+1ψ0

∥∥
H1(0,2π)

In particular, there exists γ ∈ (0, 1] such that∥∥∥eγ2s2K+βcK+1ψ0 − eβcK+1ψ0

∥∥∥
H1(0,2π)

⩽
ε

2
. (7.34)

Now, let us set

φ :=

(
1 +

2|β|
γ

+
2γ

K

)
− 2β

γ
c1 +

2γ

K
cK .

We have φ ∈ H3(0, 2π), φ > 0, φ′(0) = φ′(2π) = 0 and spanφ ⊂ A. Applying (7.4), we deduce that (φ′)
2 ∈ A.

However,

(φ′)
2
=

β2

2γ2
(1− c2) + γ2s2K + β (cK+1 − cK−1) .

Using (7.33), this implies that γ2s2K + βcK+1 ∈ A: thus, there exists τ ∈ (0, T ) and u ∈ P(0, τ) such that∥∥∥Rτ (ψ0, u)− eγ
2s2K+βcK+1ψ0

∥∥∥
H1(0,2π)

⩽
ε

2
.

Combining this with (7.34), we deduce the result.

Proof of Theorem 7.5. As discussed before, Theorem 7.5 is ensured via the same techniques leading to Theo-
rem 1.1 and it is based on Proposition 7.4 and Proposition 7.6.

As a consequence of Theorem 7.5, we have the following corollaries.
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Corollary 7.7. Assume the condition (7.31) and assume ψ0, ψ1 ∈ H1 (0, 2π) with ψ0ψ1 > 0 in (0, 2π). For
any ε > 0 and T > 0, there exist τ ∈ (0, T ] and u ∈ L2(0, τ ;Rq) such that the solution ψ of (7.1) exists in [0, τ ]
and satisfies

∥ψ(τ, ·)− ψ1∥H1(0,2π) < ε.

Proof. The proof of Corollary 7.7 is the same as the one of Corollary 1.2 and exploits Theorem 7.5.

Corollary 7.8. Assume the condition (7.31) and assume ψ0, ψ1 ∈ H1(0, 2π) with sign(ψ0) = sign(ψ1). For
any ε > 0 and T > 0, there exist τ ∈ (0, T ] and u ∈ L2(0, τ ;Rq) such that the solution ψ of (6.1) exists in [0, τ ]
and it satisfies

∥ψ(τ, ·)− ψ1∥L2(0,2π) < ε.

Proof. The proof of Corollary 7.8 is the same as the one of Corollary 1.3 and exploits Theorem 7.5.

We ensure now the small-time global exact controllability to the non-zero constant states by combining
Theorem 7.5 with a local exact controllability. First, to write the hypotheses, we recall the Laplace operator
AN with Neumann boundary conditions is defined by (7.16) and its eigenvalues are

λk :=
k2

4
, ∀ k ∈ N (7.35)

and a corresponding family of eigenfunctions is

w0(x) :=
1√
2π
, wk(x) :=

1√
π
cos

(
kx

2

)
, ∀ k ∈ N∗, x ∈ (0, 2π). (7.36)

Theorem 7.9. Assume the condition (7.31) and assume that Q0 verifies

∃ b, d > 0, ∀ k ∈ N, (λdk + 1)
∣∣∣(Q0, wk)L2(0,2π)

∣∣∣ ⩾ b. (7.37)

For any T > 0, ψ0 ∈ H1(0, 2π) with ψ0 > 0 and Ψ ∈ R∗
+, there exists u ∈ L2(0, T ;Rq) such that the solution ψ

of (7.1) satisfies ψ(T, ·) = Ψ.

Proof. The proof of Theorem 7.9 follows the proof of Theorem 1.4: it is direct consequence of Theorem 7.5 and
a local exact controllability to the non-zero constant states.

Example 7.10. Let us give some examples of functions Q0 satisfying (7.37). First, if Q0(x) = x2, then one can
check that

(Q0, wk)L2(0,2π) =
16
√
π(−1)k

k2
(k ̸= 0)

and that (Q0, w0)L2(0,2π) > 0 so that (7.37) holds for d = 1. Second, we can take Q0(x) = x3(x − 2π)2. We
have

(Q0, wk)L2(0,2π) =
−128√
πk6

(
60
(
1 + (−1)k+1

)
+ k2π2

(
−3 + 9(−1)k

))
(k ∈ N∗).

We also have (Q0, w0)L2(0,2π) > 0. Thus, (7.37) holds for d = 2.
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the null controllability of parabolic systems: the effect of the condensation index of complex sequences. J.
Funct. Anal., 267(7):2077–2151, 2014.

21



[6] John M. Ball, Jerrold E. Marsden, and Marshall Slemrod. Controllability for distributed bilinear systems.
SIAM J. Control Optim., 20(4):575–597, 1982.

[7] Karine Beauchard and Eugenio Pozzoli. An example of a small-time globally approximately controllable
bilinear Schrödinger equation, 2024. https://arxiv.org/abs/2407.05698.

[8] Karine Beauchard and Eugenio Pozzoli. Small-time controllability on the group of diffeomorphisms for
Schrödinger equations. https://arxiv.org/abs/2410.02383, 2024.
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[23] Thierry Horsin. On the controllability of the Burgers equation. ESAIM Control Optim. Calc. Var., 3:83–95,
1998.
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