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ABSTRACT
A growing number of covariate modeling methods have been proposed in the field of popPK modeling, but limited information 
exists on how they all compare. The objective of this study was to perform a systematic review of all popPK covariate modeling 
methods, focusing on assessing the existing knowledge on their performances. For each method of each article included in this 
review, evaluation setting, performance metrics along with their associated values, and relative computational times were re-
ported when available. Evaluation settings report was done for uncertainty assessment of communicated results. Results showed 
that EBEs-based ML methods stood out as the best covariate selection methods. AALASSO, a hybrid genetic algorithm, FREM 
with a clinical significance criterion and SCM+ with stagewise filtering were the best covariate model selection techniques—
AALASSO being the very best one. Results also showed a lack of consensus on how to benchmark simulated datasets of differ-
ent scenarios when evaluating method performances, but also on which metrics to use for method evaluation. We propose to 
systematically report TPR (sensitivity), FPR (Type I error), FNR (Type II error), TNR (specificity), covariate parameter error bias 
(MPE) and precision (RMSE), clinical relevance, and model fitness by means of BIC, concentration prediction error bias (MPE), 
and precision (RMSE) of new proposed methods and compare them with SCM. We propose to systematically combine covariate 
selection techniques to SCM or FFEM to allow for comparison with SCM. We also highlight the need for an open-source bench-
mark of simulated datasets on a representative set of scenarios.

1   |   Introduction

Population pharmacokinetic models are mathematical models 
describing the time course of drug concentrations, usually in 

plasma. These models are used to describe processes (i.e., ab-
sorption, distribution, and elimination) and assess pharmacoki-
netic (PK) parameters and their variability within a population. 
Part of this variability can be explained through the inclusion of 
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covariates in the model, which are usually demographic, biolog-
ical, physiological, or genotypic variables.

During population pharmacokinetic (popPK) model devel-
opment, covariate modeling is of utmost importance as it ex-
plains exposure variability (e.g., area under the curve, AUC) 
and effect variability across patients. It also serves as the basis 
of dose tailoring, thereby increasing the benefit–risk ratio. The 
field of pharmacometrics is facing the need for new methods 
that can handle a larger covariate scope. The amount of data 
collected during drug development keeps increasing in an at-
tempt to better explain and predict drug pharmacology. An 
increase in covariate scope leads to an exponential increase 
in computational time of standard methods such as stepwise 
covariate modeling (SCM). Computational time is highly rele-
vant from an industry perspective, which faces tight timelines 
for model development and models with long run time due to 
the use of large datasets of pooled clinical studies and often 
complex models. In this context, new methods may help re-
duce model building time but should not add significant com-
putational burden.

This review aims at listing all existing covariate model build-
ing methods and assessing existing knowledge on their perfor-
mances both in terms of predictivity and computational time. To 
do so, performance metrics used for method evaluation together 

with their values, relative computational time when available, 
and setting used for assessing all these elements were collected 
and compared.

2   |   Methods

This systematic review was conducted following the Preferred 
Reporting Items for Systematic reviews and Meta-Analyses 
(PRISMA) guidelines [1].

For an article to be included in this review, several eligibility 
criteria were used. Inclusion criteria ensured that each article in 
the database either introduced, evaluated, or applied a covariate 
modeling method, or compared two or more covariate model-
ing methods. This implies that reviews and articles performing 
within-method comparisons or evaluations were excluded from 
this systematic review. Exclusion criteria consisted in excluding 
articles that performed a simple application of a state-of-the-
art method such as: SCM, generalized additive models (GAM), 
least absolute shrinkage and selection operator (LASSO) or full 
model-based methods.

Search for articles was conducted through a query (see Figure S1) 
launched in PubMed (PubMed: https://​pubmed.​ncbi.​nlm.​nih.​
gov/​). A single reviewer screened each record manually for eligi-
bility assessment and no automation tool was used for this process.

Methods identified in the articles included in this systematic re-
view were grouped in categories, namely: Stepwise procedures 
(SP), full model-based approaches (FMA), genetic algorithms 
(GA), empirical Bayes estimates (EBEs) based ML methods 
(ML-EBE), and Non–EBEs-based ML methods (ML-nonEBE). 
For each method of each category, four elements were systemat-
ically reported when available: (i) method objective, (ii) evalua-
tion setting used for performance assessment, (iii) metrics used 
for performance assessment and their associated values, and 
finally (iv) relative computational times of the methods. These 
elements were summarized in tables and figures.

Regarding (ii) the evaluation setting used for performance as-
sessment, the number of real datasets and the number of criteria 
used for the setup of simulated scenarios were reported. A crite-
rion is an element of the underlying true model that the authors 
decided to vary. A scenario is defined as an ensemble of criteria 
and their values used simultaneously to build one or more data-
sets. The number of built-up scenarios and the number of simu-
lated datasets per scenario were also reported.

Methods were ultimately ranked based on combined compar-
ative performance and computational time data provided in 
the article database. Ranking based on computational time 
was straightforward since time is a single metric. However, 
ranking methods based on their comparative performance 
was more complex due to the use of multiple evaluation met-
rics. To address this, we relied on the rankings provided by 
the authors in each article and verified that their conclusions 
aligned with the actual metrics. In cases where two or more 
articles presented conflicting rankings, all versions of the 
rankings were displayed.

Summary

•	 What is the current knowledge on the topic?
○	 Efficiency of SCM is compromised under scenarios 

with complex models or high number of tested co-
variates. Alternative covariate modeling approaches 
have recently emerged. Most of them claim better 
performances than SCM. Meanwhile, ML-based 
methods have the potential to run faster.

•	 What question did this study address?
○	 What are the existing covariate modeling methods, 

and which one could outperform SCM in terms of 
predictivity and computational time?

•	 What does this study add to our knowledge?
○	 We have listed 22 covariate modeling methods. All 

methods showed unreported or better computational 
times than SCM, except for Genetic Algorithms. 
EBEs-based ML methods were the best covariate se-
lection methods, and AALASSO, H-GA-ML, FREM 
with a clinical significance criterion and SCM+ with 
SF were the best covariate model selection methods. 
The different settings used for method evaluation 
and comparison, however, do not allow for system-
atic validation of the superiority of these methods 
over SCM.

•	 How might this change drug discovery, development, 
and/or therapeutics?
○	 Guiding pharmacometricians towards more per-

forming and more efficient covariate modeling 
methods can help reducing the time required for this 
task and ultimately speed up the population phar-
macokinetic model development.
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3   |   Results

3.1   |   Database of Articles

The PubMed query was launched on July 31, 2024, and re-
turned 226 articles, from which 106 were immediately ex-
cluded based on title and abstract screening. After screening of 
the actual article content, 94 additional articles were excluded 
based on the exclusion criteria, which resulted in 26 articles. 
Finally, two articles were manually added, leading to a total 
of 28 articles in the database of the systematic review. Indeed, 
articles were manually sought after to ensure that the review 
contained the introductory article of all methods mentioned, 
however, articles using a nonpharmacokinetical setting to in-
troduce a method were not included. All these steps are sum-
marized in Figure 1.

Among the 28 articles in the database, a total of 22 different co-
variate modeling methods were identified. These methods had 
different objectives: (i) covariate selection, (ii) covariate model 
(covariate and relationship to PK parameters) selection, (iii) co-
variate model and other popPK model components selection, 
and (iv) alternative. The overview of methods objectives accord-
ing to their category can be seen in Figure 2.

3.2   |   Evaluation Settings and Metrics

Settings and performance metrics used for method evaluation and 
comparison greatly varied across the articles. Settings for method 
evaluation using simulated data were mostly restricted to few cri-
teria being investigated, offering a robust evaluation on the inves-
tigated criteria, yet in some cases, no possible generalizability on 
communicated results. We therefore invite the readers to consider 
details of the evaluation settings as a mean for assessing the uncer-
tainty to be put on the communicated performance results.

Tables 1 and 2 display the different settings that were used for 
method evaluation in the reviewed articles. Table 1 informs on 
the criteria used for creating simulated scenarios, when appli-
cable. The eight criteria listed in this table represent an exhaus-
tive list of the simulation criteria encountered in the articles, 
namely: number of covariates (N-Cov), extent of covariate ef-
fect (E-Cov), correlations between covariates (C-Cov), number 
of individuals (N-Ind), sampling design (Design), correlations 
between PK parameters (PK-Cor), presence of interindividual 
variability (IIV) and residual variabilities (σ). The correspond-
ing total number of criteria used is reported in Table 2 together 
with the number of scenarios investigated and the number of 
datasets simulated per scenario. For each article, the number of 
real datasets used is also reported in Table 2. Note that a single 
article might appear several times in the tables if that article 
handled methods sharing different objectives. Tables were built 
that way to easily visualize groups of methods sharing the same 
objective. In the case of the paper from Ribbing et al. [2], the 
simulated scenarios actually correspond to a bootstrap resam-
pling of a real clinical dataset.

Overall, there was a median of 1 criterion used for simulations 
across all articles, showing how constrained most of the inves-
tigated scenarios were. Also, some criteria such as different un-
derlying structural model, presence of time-varying covariates 
or interoccasion variability were never investigated by the au-
thors. Similarly, methods which were evaluated using real clini-
cal data often only made use of a single dataset: out of 18 articles 
using real clinical data, 13 articles used a single one.

Note that symbolic regression network, clustering analysis tech-
nique, the genetic algorithm developed by Ismail et  al. (GA1), 
gene expression programming (GEP), and Wald's approximation 
method (WAM) were evaluated using a single real and/or simu-
lated dataset, limiting the generalizability of the communicated 
results for these methods.

Table 3 shows the heterogeneity of performance metrics used in 
the articles by displaying them all exhaustively. Metrics desig-
nating power and sensitivity were systematically reported under 
true-positive rate (TPR). Similarly, metrics designating Type I 
error rate were reported under false-positive rate (FPR), and 
those designating specificity under true-negative rate (TNR). 
Note, a single article might have used different performance 
metrics if it handled methods with different objectives, hence 
methods were grouped by their objective in the table. Note that 
the paper from Philipp et  al. [3] appeared twice in the same 
“method objective” group in the table, because different meth-
ods required different metrics depending on the nature of the 
method being investigated.

FIGURE 1    |    Procedure for building the database of articles. n refers 
to the number of articles when relevant.
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3.3   |   Syntheses of Results per Category of Methods

3.3.1   |   Stepwise Procedures (SP)

The database contained 14 articles handling stepwise proce-
dures, four of which were introductory articles of novel methods 
[4–7], and one of which evaluated an existing method [8]. All 
other articles were cases where SCM was only used for perfor-
mance comparison to a method belonging to another category, 
therefore they will not be mentioned in this section.

SCM aims at selecting the covariate model and involves two 
sequential phases: a forward inclusion phase followed by 
a backward elimination phase. It was formally introduced 
jointly with a FO-linearization based technique in 1998 by 
Jonsson and Karlsson [4] in an article that evaluated its per-
formance on 10 datasets simulated using a single scenario, 
meaning that no simulation criteria were used. Jonsson and 
Karlsson [4] compared the standard automated SCM to two 
different ways of applying the linearization technique in 
terms of concentrations prediction accuracy using root mean 
squared error (RMSE), and in terms of true positive (TP), 
that is the number of times the model correctly identified the 
true covariate with or without its true functional form and 
False Positive (FP), the number of times spurious covariates 
were selected. Results suggested that all methods performed 
equally well, although SCM without linearization had more 
TP (between 6 and 10 for SCM and between 2 and 10 for the 
other techniques) but at the cost of more FP (between 7 and 
9 for SCM and between 4 and 5 for the other techniques) and 

four times as many runs. In 2011, Khandelwal et al. [9] pro-
posed to upgrade SCM with linearization by means of lin-
earizing FOCE. Later occurrences of linearized-SCM in the 
review refer to this FOCE-linearization.

Since 1998, SCM has become the most well-known and broadly 
used procedure for popPK covariate models. Therefore, it is 
also the method that has been evaluated in some of the most 
robust and generalizable fashion, both in terms of numbers of 
real clinical datasets (17 real datasets) on which it has been 
assessed for comparison purposes [5], and numbers of crite-
ria (four criteria) used for building the different scenarios on 
which it has been evaluated [8]. This evaluation performed in 
2019 by Ahamadi et al. [8] where 16 scenarios were simulated 
according to 4 criteria aimed at evaluating SCM in terms of 
precision of the true covariate effect estimation (RMSE and 
conditional relative RMSE (crRMSE)) and TPR for identifying 
the correct model. SCM seemed to be sensitive to model com-
plexity and dataset sample size, as these had an impact on TPR 
to identify the true covariate model and the precision of the 
parameter estimates. Moreover, highly correlated covariates 
(correlation = 0.89) had a high likelihood of being incorrectly 
selected by SCM.

In 2021, COnditional Sampling use for Stepwise Approach 
based on Correlation tests (COSSAC) was developed by Ayral 
et  al. [5]. It is an iterative stepwise procedure aiming at se-
lecting the covariate model, alternating between deletion and 
addition of covariates based on p values of correlation tests. 
The authors used 17 different real datasets for the purpose of 

FIGURE 2    |    Methods handled in the database of articles according to their category and objective. Methods abbreviations: AALASSO, Adjusted 
Adaptive Least Absolute Shrinkage and Selection Operator; COSSAC, COnditional Sampling use for Stepwise Approach based on Correlation tests; 
FFEM, Full Fixed Effects Model; FREM, Full Random Effects Model; GA1, Genetic Algorithm developed by Ismail et al.; GA2, Genetic Algorithm 
developed by Ronchi et  al.; GAM, Generalized Additive Models; GEP, Gene Expression Programming; H-GA-ML, Hybrid-Genetic Algorithm-
Machine Learning; H-WAM-BE, Hybrid WAM with Backward Elimination; LASSO, Least Absolute Shrinkage and Selection Operator; MARS, 
Multivariate Adaptive Regression Splines; ML, Machine Learning includes: (regularized) (stepwise) linear regression, random forests, neural net-
works, extreme gradient boosting, support vector machines. REG, Regression; SAMBA, Stochastic Approximation for Model Building Algorithm; 
SCM, Stepwise covariate model; SCM+ with SF, Stepwise covariate model+ with Stage-wise Flitering; SHAP, SHapley Additive exPlanations; WAM, 
Wald's Approximation Method.
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evaluating this novel method, by comparing it to SCM based 
on the number of runs, final log likelihood (LL) and corrected 
Bayesian Information Criterion (BICc) obtained. COSSAC 
procedure completed on average with 2 to 17 times fewer runs 
than SCM. Out of the 17 datasets, 11 of them resulted in the 
exact same final covariate model between COSSAC and SCM. 
They corresponded to datasets with few relationships in the 
final model. Four other datasets led to slightly different mod-
els but for which the difference in LL was less than 4, which 
was considered nonsignificant. The two last datasets led to 
different models, one for which the SCM fit was better by 8 LL 

points than that of COSSAC, and the other one for which the 
COSSAC fit was better than that of SCM by 40 LL points. The 
difference in number of runs between the two methods grew 
linearly with the number of parameters and number of covari-
ates to be tested but decreased with the square of the number 
of relationships to be tested.

In 2022, Svensson et  al. [6] developed two upgraded SCMs, 
namely SCM+ and SCM+ with stage-wise filtering (SF). SCM+ 
is essentially the same as SCM, with extra steps including co-
variate scope reduction and retesting of previously removed 

TABLE 1    |    Criteria used for setting up the simulation scenarios, for each method and article concerned.

Method 
objective Method

Criteria used for scenario construction

ReferencesN-Cov E-Cov C-Cov N-Ind Design PK-Cor IIV σ

Covariate 
selection

LR methods, sLR 
(AIC/RMSE), 

RF, ANN, XGB

✓ [28]

RF, ANNs, SVR ✓ ✓ ✓ [27]

Covariate model 
selection

SCM, LASSO [23]

SCM, COSSAC, 
LASSO, GAM

✓ ✓ ✓ [27]

SCM, GAM [26]

SCM, COSSAC [7]

SCM, GAM ✓ [28]

SCM, GA2 ✓ [20]

FREM, FFEM ✓ ✓ [10]

FFEM ✓ ✓ ✓ ✓ ✓ [14]

SCM, FREM ✓ ✓ ✓ ✓ [15]

SCM [4]

SCM, SCM+, 
SCM+ with SF

[6]

SCM ✓ ✓ ✓ ✓ [8]

SCM, LASSO ✓ [2]

SCM, H-WAM-BE ✓ ✓ ✓ [12]

SCM, SCM+, FFEM ✓ [3]

LASSO, ALASSO, 
AALASSO

✓ ✓ ✓ ✓ ✓ ✓ ✓ [13]

Covariate model 
selection + other 
tasks

H-GA-ML [23]

SAMBA [7]

GA1 [21]

Note: Blue: method evaluated on simulated data only. Mauve: method evaluated on real data only. Beige: method evaluated on both real and simulated data.
Methods abbreviations: AALASSO, Adjusted Adaptive Least Absolute Shrinkage and Selection Operator; ALASSO, Adaptive Least Absolute Shrinkage and Selection 
Operator; ANN, Artificial Neural Networks; COSSAC, COnditional Sampling use for Stepwise Approach based on Correlation tests; ETR, Extra Tree Regressor; 
FFEM, Full Fixed Effects Model; FREM, Full Random Effects Model; GA1, Genetic Algorithm developed by Ismail et al.; GA2, Genetic Algorithm developed by 
Ronchi et al.; GAM, Generalized Additive Models; GEP, Gene Expression Programming; H-GA-ML, Hybrid—Genetic Algorithm—Machine Learning; H-WAM-BE, 
Hybrid WAM with Backward Elimination; LASSO, Least Absolute Shrinkage and Selection Operator; (s)LR, (stepwise) Linear Regression; MARS, Multivariate 
Adaptive Regression Splines; RF, Random Forests; SAMBA, Stochastic Approximation for Model Building Algorithm; SCM, stepwise covariate model; SCM+ with SF, 
stepwise covariate model+ with Stage-wise Flitering; SHAP, SHapley Additive exPlanations; SVR, Support Vector Regressor; WAM, Wald's Approximation Method; 
XGB, eXtreme Gradient Boosting. Other abbreviations, N-Cov, number of covariates; E-Cov, extent of the covariate effect; C-Cov, correlations between the covariates; 
N-Ind, number of individuals; Design, sampling design; PK-Cor, correlations between the PK parameters; IIV, presence of interindividual variability; σ, residual 
variabilities.
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TABLE 2    |    Number of real datasets, number of criteria used for scenario setup and number of simulated datasets per scenario for each method 
and article.

Method objective Method

Setting used for method evaluation

References
Criteria 
used (n)

Scenarios 
constructed 

(n)

Datasets 
simulated per 

scenario (n)

Real 
datasets 
used (n)

Covariate selection LR methods, sLR 
(AIC/RMSE), 

RF, ANN, XGB

1 2 100 1 [28]

RF, ANNs, SVR 3 36 100 1 [27]

ETR NA NA NA 6 [31]

RF NA NA NA 1 [30]

Covariate model 
selection

SCM, LASSO 0 1 1 7 [23]

SCM, COSSAC, 
LASSO, GAM

3 36 100 1 [27]

SCM, GAM 0 1 10 1 [26]

SCM, COSSAC 0 1 100 10 [7]

SCM, GAM 1 2 100 1 [28]

SCM, GA2 1 3 20 1 [20]

FREM, FFEM 2 2 189 1 [10]

FFEM 5 192 10,000 0 [14]

SCM, FREM 4 Unclear, > 15 1 0 [15]

SCM 0 1 10 0 [4]

SCM, SCM+, 
SCM+ with SF

0 1 100 0 [6]

SCM 4 16 250 0 [8]

SCM, LASSO 1 4 100 0 [2]

SCM, H-WAM-BE 3 3 300 0 [12]

SCM, SCM+, FFEM 1 2 100 0 [3]

LASSO, ALASSO, 
AALASSO

7 64 100 0 [13]

SCM, COSSAC NA NA NA 17 [5]

SCM NA NA NA 1 [19]

GEP NA NA NA 1 [22]

GAM NA NA NA 4 [25]

MARS NA NA NA 1 [29]

SHAP NA NA NA 1 [32]

WAM NA NA NA 1 [11]

Covariate model 
selection + other 
tasks

H-GA-ML 0 1 1 7 [23]

SAMBA 0 1 100 10 [7]

GA1 0 1 1 0 [21]

H-GA-ML NA NA NA 1 [19]

(Continues)
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covariate–parameter relationships. In SCM+ with SF, covariates 
are divided into three categories according to expert knowledge: 
mechanistic, structural, and exploratory. Mechanistic covari-
ates are directly included in the base model without being tested, 
whereas structural and exploratory covariates undergo stepwise 
inclusion, with structural covariates being tested before explor-
atory covariates. The authors evaluated these methods using a 
benchmark of 100 simulated datasets from a single scenario, 
meaning that no criteria were used for simulating different sce-
narios. The new methods were compared with the original SCM 
in terms of efficiency and ability to identify relevant relation-
ships. Efficiency was measured by the total number of function 
evaluations and the number of executed NON-linear Mixed 
Effects Modeling (NONMEM) models, while ability to identify 
relationships was determined by the number of correctly iden-
tified covariate-parameter relationships (TP). The two SCM+ 
methods were significantly more efficient than SCM, with a re-
duction in the number of executed models ranging of from 44% 
to 70%, while SCM and SCM+ selected comparable covariate–
parameter relationships across parameters. However, SCM+ 
with SF surpassed both SCM and SCM+ significantly in terms 
of ability to identify true covariate–parameter relationships.

The last stepwise method that was developed to this date 
is Stochastic Approximation for Model Building Algorithm 
(SAMBA), a simulation-based model building procedure for 
covariate, correlation, and error model selection introduced in 
2022 by Prague and Lavielle [7]. The authors insisted that this 
automatic method should not be blindly used, as mechanistic 
biological knowledge is irreplaceable. For performance evalua-
tion of the novel method, they gathered 10 real datasets which 
were evaluated in terms of BICc, and a benchmark of 100 sim-
ulated datasets using a single scenario (no criteria used) which 
were evaluated in terms of BICc, TPR, and FPR. Method per-
formances were compared to those of SCM and COSSAC. For 6 
out of the 10 real datasets, covariate models selected by SAMBA 
were either better or the same as the ones selected by SCM or 
COSSAC. For three other real datasets, covariate models se-
lected by SAMBA were slightly worse (BICc difference smaller 
than 6) than the ones selected by SCM or COSSAC. Lastly, there 
was one real dataset for which BICc for SAMBA was worse 
by at least 10 points compared with the other methods. In the 

simulated datasets, SAMBA correctly identified all existing co-
variate–parameter relationships in all 100 datasets, granting it 
with a TPR of 100%, and FPR (i.e., detection of spurious relation-
ship) was 2%. SAMBA always found a BICc that was equal or 
better than that of the true model, which is consistent because 
SAMBA was specifically designed to choose the model with best 
BICc in this use case. Moreover, SAMBA computational times 
were 6 to 149 times smaller than those for SCM and 2 to 11 times 
smaller than for COSSAC.

In summary, all methods in this category, namely COSSAC, 
SCM+ with or without SF, as well as SAMBA claimed equivalent 
or better performance than SCM, while requiring fewer runs.

3.3.2   |   Full-Model Based Approaches (FMA)

The database contained eight articles handling FMA, five of 
which were introductory articles [2, 10–13], two of which were 
evaluations of existing methods [14, 15] and one of which was a 
comparison of an existing method with SCM and SCM+ [3]. The 
readers should note that FMA require initial user inference of a 
full model. Some methods described below require certain post-
hoc tools to allow to consider them as covariate model selection 
techniques.

The full fixed effects model (FFEM) was introduced at a con-
ference in 2004 by Gastongay [16] and presented as an alterna-
tive to stepwise procedures. This method includes predefined 
candidate parameter–covariate relations into the model as fixed 
effects. It is systematically used in combination with a clinical 
relevance criterion to actually perform parameter–covariate se-
lection. It was first evaluated in a simulated setting in 2018 by 
Xu et al. [14] (number of criteria used for simulation = 5) on its 
ability to identify true covariates by means of FPR and the TPR, 
where a true positive was considered as such if no nonsignifi-
cant variables were identified at the same time. In their study, 
the authors concluded that the FFEM was sensitive to the num-
ber of covariates in the underlying model, an increase of 10–20 
covariates raising the chances of incorrectly selecting at least 
one covariate from 5% to 40%–70%. The authors noted that their 
estimation of false-positive effects might even be optimistic due 

Method objective Method

Setting used for method evaluation

References
Criteria 
used (n)

Scenarios 
constructed 

(n)

Datasets 
simulated per 

scenario (n)

Real 
datasets 
used (n)

Alternative Clustering NA NA NA 1 [33]

Symbolic regression 
networks

NA NA NA 1 [34]

Note: Blue: method evaluated on simulated data only. Mauve: method evaluated on real data only. Beige: method evaluated on both real and simulated data.
Methods abbreviations: AALASSO, Adjusted Adaptive Least Absolute Shrinkage and Selection Operator; ANN, Artificial Neural Networks; COSSAC, COnditional 
Sampling use for Stepwise Approach based on Correlation tests; ETR, Extra Tree Regressor; FFEM, Full Fixed Effects Model; FREM, Full Random Effects Model; 
GA1, Genetic Algorithm developed by Ismail et al.; GA2, Genetic Algorithm developed by Ronchi et al.; GAM, Generalized Additive Models; GEP, Gene Expression 
Programming; H-GA-ML, Hybrid-Genetic Algorithm-Machine Learning; H-WAM-BE, Hybrid WAM with Backward Elimination; LASSO, Least Absolute 
Shrinkage and Selection Operator; (s)LR, (stepwise) Linear Regression; MARS, Multivariate Adaptive Regression Splines; RF, Random Forests; SAMBA, Stochastic 
Approximation for Model Building Algorithm; SCM, stepwise covariate model; SCM+ with SF, stepwise covariate model+ with Stage-wise Flitering; SHAP, SHapley 
Additive exPlanations; SVR, Support Vector Regressor; WAM, Wald's Approximation Method; XGB, eXtreme Gradient Boosting.

TABLE 2    |    (Continued)
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to using an intensive PK sampling scheme, whereas real-world 
sparse sampling in late-stage clinical trials could result in larger 
estimation errors and thus higher false positive magnitudes.

FFEM was compared to SCM and SCM+ by Philipp et al. [3] in 
2024. In their article, SCM and SCM+ selected the same covari-
ate model in at least 98.5% of cases, therefore all comparison re-
sults between FFEM and SCM also applied to FFEM and SCM+. 
They used 200 simulated datasets from two simulated scenarios: 
a base model including two covariate–parameter relationships 
and a covariate model including six. They evaluated covariate 
parameter estimation by means of accuracy (estimation error 
[EE], relative estimation error [rEE]) and uncertainty (standard 
error [SE], relative standard error [rSE], empirical SE, and em-
pirical rSE). They also evaluated covariate ratios estimation by 
means of accuracy (EE and rEE), precision (relative root mean 
squared error (rRMSE)) and uncertainty (coverage rates), from 
which they constructed a clinical relevance decision-making 
process as a mean to select covariate–parameter relationships. 
They also reported percentages of correctly selected covariate-
parameter relationships (TPR) and correctly unselected co-
variate–parameter relationships (TNR) in the case of SCM/
SCM+. In summary, the three methods were all equally well 
able to identify clinical relevance of true covariate–parameter 
relationships. They were also all equally well able to either con-
sider as clinically irrelevant (FFEM) or simply not select (SCM/
SCM+) false ones. Regarding computational time, FFEM was 4 
to 20 times faster than SCM/SCM+ under the covariate model 
scenario.

The full random effects model (FREM), a technique where co-
variates are treated as random variables to capture the influ-
ence of covariates through the estimated covariances between 
individual parameters and covariates, was proposed in 2012 by 
Karlsson [17]. Unlike FFEM, FREM is designed to handle cor-
related covariates. This method also allows to retrieve the coef-
ficients of any combination of covariate inclusion by computing 
the ratio of the subcovariance matrix between parameters and 
covariates of interest, to that of the covariates of interest. Results 
of this poster presentation implied that FREM had higher pre-
cision of estimates than FFEM and that pre-defining subsets 
of covariate–parameter relationships led to biased parame-
ters with FFEM. The first introductory article was written by 
Yngman et  al. in 2022 [10], in which the authors performed 
both a real data-based and a simulation-based comparison of 
FREM with FFEM using two scenarios (number of criteria used 
for scenario setup = 2). The models built using the real dataset 
were compared subjectively based on qualitative similarity of 
the estimated coefficients, whereas the models built using the 
simulated datasets were compared in terms of accuracy of co-
efficient estimation. Results on the real dataset suggested that 
both FREM and FFEM estimated similar covariate–parameter 
relationship coefficients and IIV covariance matrices. For sim-
ulated data, FREM showed slightly higher precision in estimat-
ing the IIV covariance matrix, while both methods had similar 
accuracy in common model parameters and coefficient estima-
tions. For scenarios involving high correlation and different 
parameterizations, FREM and FFEM produced comparable re-
sults. In 2023, Amann et al. [15] performed a more generalizable 
simulation-based evaluation of FREM (number of criteria used 
for simulation = 4) by comparing it to SCM using TPR, rRMSE 

and rEE as performance metrics, reflecting power of identify-
ing true covariates, precision, and bias, respectively. In the case 
of FREM, covariate identification was defined as the covari-
ate having the highest effect size different from zero and non-
overlapping 90% confidence interval. The conclusion was that 
in small datasets, the TPR of FREM was substantially higher, 
leading to a lower rEE, compared to SCM. In larger datasets 
(n > 100), TPR, rRMSE, and rEE of FREM were comparable to 
SCM. No comparative computational times were given in nei-
ther of the articles handling FFEM, however by design of the 
methods, FFEM is expected to be more time-efficient than SCM, 
similarly as for FREM.

LASSO was introduced as a covariate model selection tool in 
2007 by Ribbing et  al. [2] in a study leveraging a benchmark 
of bootstrapped datasets generated from a real dataset, where 
different scenarios corresponding to different numbers of indi-
viduals (number of criteria used for simulation = 1) were tested. 
In this LASSO implementation, L1 regularization is performed 
on all covariate coefficients simultaneously during OFV mini-
mization of the full model. Performance was evaluated through 
the ability to correctly predict external data by means of Mean 
Absolute Error (MAE) of concentration predictions and results 
showed that LASSO surpassed SCM in that matter, regardless of 
what p value (0.05, 0.01 or 0.001) was used in the SCM procedure. 
However, the benefit of using LASSO over SCM was negligeable 
in terms of MAE for larger datasets (120 or 180 individuals). In 
2017, a method called Adjusted Adaptive LASSO (AALASSO) 
was developed for covariate modeling by Haem et al. [13], also 
performing regularization on all covariate coefficients simulta-
neously. It is an upgrade of Adaptive LASSO (ALASSO) devel-
oped by Zou [18] where weights are attributed to each coefficient 
to be estimated by LASSO, but this method was never applied 
to popPK covariate modeling to our knowledge. In AALASSO, 
these initial weights were set to the ratio of the SE of the maxi-
mum likelihood estimator to the maximum likelihood estimator 
itself of the coefficients to be estimated. For method evaluation, 
Haem et al. used a benchmark of datasets simulated using 64 
scenarios according to 7 different simulation criteria, the high-
est number of criteria used in our review. For performance as-
sessment, MAE of the concentrations and Error of the estimated 
coefficient of the first covariate were computed for LASSO, 
ALASSO and AALASSO. The results showed that AALASSO 
was the best of the three methods. Indeed, it demonstrated bet-
ter predictive performance (lower MAE) than ALASSO and 
LASSO, particularly with small sample sizes and high covari-
ates correlation (correlation = 0.7). Moreover, AALASSO consis-
tently outperformed both ALASSO and LASSO when individual 
data was less informative (smaller number of observations per 
subject and increased residual variability), even when dealing 
with a high number of subjects. AALASSO also outperformed 
both LASSO and ALASSO as the number of covariates in-
creased, regardless of correlation levels between covariates. No 
comparative computational times were provided but they are 
expected to be comparable.

The Wald's approximation method (WAM) to the likelihood ratio 
test (LRT) was introduced in 2001 by Kowalski et al. [11]. This 
method aims at finding the submodels, that is, the subcovariate–
parameters relationships from a full model that achieves the best 
LRT, without having to explicitly compute it. The authors used a 
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single real dataset for the purpose of evaluating the method and 
it was the only article handling WAM in the review database. 
There was no actual assessment of model performances; how-
ever, the authors used several bootstrapped datasets from the 
real dataset to assess stability of the model found. The author 
claimed stability of the method on their bootstrapped data.

In 2021, an upgrade of WAM was introduced by Zou et  al. 
under the name of Hybrid WAM with Backward Elimination 
(H-WAM-BE) [12]. It essentially performs backward elimina-
tion after the WAM step and is therefore a method that aims 
at finding covariate–parameter relationships too. The authors 
used a benchmark of simulated scenarios based on 2 criteria 
for method evaluation. TPR and TNR were used for method 
evaluation and comparison with SCM. It was concluded that 
best-performing H-WAM-BE methods showed TPR and TNR 
comparable to those of SCM. H-WAM-BE required shorter 
or comparable computation times than SCM regardless of 
the model structure, sample size, or sampling design used in 
this study.

To summarize, FFEM had performances comparable to FREM, 
while a study found that FREM has similar or better perfor-
mances than SCM. However, another study found that FFEM 
has similar performances to those of SCM and SCM+. WAM 
itself was not compared to any method, but H-WAM-BE was 
compared to SCM and showed equivalent performance yet with 
shorter required computational time. AALASSO and ALASSO 
showed better performances than LASSO, which itself showed 
better ability than SCM at selecting the covariate model.

3.3.3   |   Genetic Algorithm Based Methods (GA)

There were five articles in the database that handled genetic 
algorithms (GA) for covariate modeling. Four of them were 
introductions to novel methods [19–22] and one of them was a 
comparison of an existing GA with SCM [23].

The first article related to GA was published in 2006 by Bies et al. 
who introduced the Hybrid—Genetic Algorithm—Machine 
Learning (H-GA-ML) [19] in which they used a GA in combi-
nation with Downhill search after every 10 generations of GA 
to construct all components of the model, namely the structural, 
covariate, and pharmacostatistical model. They used a single 
real dataset to apply this novel method and evaluated its perfor-
mance by comparing it with SCM in terms of objective function 
value (OFV), IIV and robustness (successful covariance step) of 
parameter estimates. The results showed that OFV, IIV and pa-
rameter estimates robustness were better for Hybrid-GA than 
SCM. The authors did not provide computational time but stated 
that the genetic algorithms require dramatically more computa-
tional time, although less personnel time, than SCM.

In 2012, a comparison of a single objective hybrid genetic al-
gorithm with SCM and LASSO was performed on seven real 
clinical datasets and a single simulated dataset by Sherer et al. 
[23]. Their method was essentially the same as Bies et al.'s H-
GA-ML, therefore we refer to it as H-GA-ML in the tables, fig-
ures and text. For model evaluation based on real data, they 

used delta OFV as well as Bayesian Information Criterion (BIC) 
and Akaike Information Criterion (AIC), RMSE and Mean 
Prediction Error (MPE) of predicted concentrations, reflecting 
model fitness, precision and bias respectively. For the simulated 
dataset, performance was evaluated based on TP and FP for co-
variate identification. For clinical datasets, H-GA-ML provided 
improved model fits over the stepwise approach for 4 out of 7 
compounds based on AIC, which is consistent with Bies' re-
sults, but had slightly higher RMSE yet lower MPE compared 
to the stepwise approach. For the simulated dataset, H-GA-ML 
and SCM performed equally well at identifying true covariates 
(TP = 3) but H-GA-ML was better at avoiding spurious covari-
ates than SCM (FP = 1 for H-GA-ML and FP = 2 for SCM). Both 
methods were better than LASSO in both matters.

In 2017, the GEP was introduced by Yamashita et al. [22] for the 
first time as a method to determine the covariate model. The 
authors used a single real dataset as an example, and the eval-
uation was done by comparing the OFV of the GEP model with 
that of a literature model from Aarons et al. [24]. The GEP model 
was slightly different than that of the reported literature model 
with an extra covariate being selected for one of the two PK 
parameters that underwent covariate modeling, granting GEP 
with a better OFV.

In 2022, Ismail et  al. [21] proposed an upgrade of Bies and 
Sherer's GA (referred to as GA1 in the tables and figures) in 
which the encoding of the model (the chromosome) was done 
as character string, as opposed to binary strings. As an exam-
ple, they used a single simulated dataset on which the GA was 
compared in terms of OFV with both the true model and the 
SCM built by a pharmacometrician external to the study. The 
model identified by the GA had the right number of compart-
ments but not the right covariate model structure. The SCM was 
different from the true model but had lower OFV than the one 
discovered using the GA (OFV = −2187 for SCM, OFV = −2153 
for GA, while OFV = −2174 for the true model). True-positive 
and false-positive rates were not reported as such in the article; 
however, they could be deduced from a reported table display-
ing the selected covariate–parameter relationships. It appeared 
that GA and SCM performed equally well in selecting true co-
variates (TP = 3 out of a total of 5 true covariate–parameter re-
lationships), however SCM surpassed GA in avoiding spurious 
covariate (FP = 0 for SCM, and FP = 4 for GA, out of a total of 
five possible spurious relationships).

In 2023, Ronchi et al. introduced another GA [20] derived from 
Bies et al. (referred to as GA2 in the tables and figures), but 
this time solely dedicated to covariate model selection. They 
based their evaluation of performance on a single simulated 
dataset and on one real clinical dataset. Evaluation using the 
simulated data was performed by assessing TPR of multiple 
GA runs and the number of times where AIC was lower than 
that of the true model. Evaluation using the real data was done 
by comparing AIC between GA and SCM. Computational 
times were also provided in both cases. Results using simu-
lated data suggested that, for GA, AIC was better than that of 
the true model in 18 out of 20 cases, and for 95% of runs, GA 
selected the best solution. Results using real data suggested 
that the models resulting from GA and SCM were very similar, 

 21638306, 0, D
ow

nloaded from
 https://ascpt.onlinelibrary.w

iley.com
/doi/10.1002/psp4.13306 by Sonia K

hier - B
iu M

ontpellier , W
iley O

nline L
ibrary on [21/01/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



13 of 19

with a slightly better AIC in the case of GA. In terms of com-
putational time, GA performed worse than SCM both for the 
simulated case (GA = 1 h, SCM = 2.5 min) and the real case 
(GA = 100 h, SCM = 2.5 h).

Overall, evaluation settings of all GA-based methods had 
poor generalizability. Moreover, it is inherent to the method 
itself that genetic algorithms require long computational time. 
Although they were rarely provided, Ronchi et  al.'s article 
showed that a GA dedicated to covariate selection required 
at least 24 times longer to run than SCM. Indeed, this fam-
ily of methods has the particularity of being computationally 
expensive regarding the number of function evaluations re-
quired at each iteration. The communicated results only raise 
little hope on their ability to be an alternative approach to 
SCM, provided the low performance gain at the cost of the 
high computational time required.

3.3.4   |   EBEs Based ML Methods (ML-EBE)

There were eight articles in this category, with only one ar-
ticle introducing a new method [25], three articles compar-
ing ML to a method from another category [26–28], and four 
remaining articles being simple applications of ML to a PK 
dataset [29–32].

GAM are flexible statistical models that predict outcomes by 
summing smooth functions of predictor variables, allowing 
for non-linear relationships and easy interpretation of individ-
ual predictor effects. It was introduced in 1992 by Mandema 
et al. [25] as a covariate model selection method in which the 
EBEs are regressed on the covariates. It is the first ever ML-like 
method to be applied to covariate modeling, and it is often used 
in a stepwise manner. The authors evaluated their newly intro-
duced method using four different real clinical datasets with-
out comparing the performances with those of another method. 
However, in 2002 Wählby et al. [26] performed a comparison of 
GAM with SCM in an article that used a benchmark of simulated 
datasets from a single scenario by means of bias and precision 
(MPE and RMSE, respectively) and run time for performance 
assessment. Their results showed very similar predictive perfor-
mance between GAM and SCM both in terms of accuracy and 
precision, with GAM being quicker to run than SCM.

In 2017, Multivariate Adaptive Regression Splines (MARS) was 
first applied as a covariate modeling method by Hall et al. [29]. 
This method has the advantage of evaluating both linear and 
nonlinear relationships simultaneously. It was applied using 
a real clinical dataset, where the authors used R-squared val-
ues and mean squared error (MSE) of concentrations to select 
covariates. They also sporadically assessed explainability by 
means of explained variance on PK parameters. This article is 
the only instance of application of MARS in our database; there-
fore, no comparison of MARS with other covariate modeling 
methods has been done to this day to our knowledge.

In 2021, Sibieude et al. [27] published a comparison of ML meth-
ods (random forests [RF], artificial neural networks (ANN), 
support vector regressor [SVR]) regressed on EBEs, with more 

classical methods (SCM, COSSAC, LASSO) regarding their abil-
ity to identify clinically relevant covariates. The ML methods 
providing a ranking of covariates, they used several automated 
approaches such as top-M, order of importance and minimum 
degree of importance in order to actually perform covariate se-
lection. One real clinical dataset and one benchmark of datasets 
simulated according to 36 scenarios (number of criteria used for 
scenario construction = 3) were used for evaluation. ML meth-
ods were compared with each other using AUROC, whereas F1 
score (i.e., the harmonic mean of precision) and TPR were used 
for comparison across both ML and classical pharmacometrics 
methods. Authors reported that correlations between covariates 
didn't change the performance of any method, but effect size did. 
Indeed, when the covariate effect size was high, the importance 
scores for true covariates were consistently greater than those 
for false covariates. In contrast, low effect sizes resulted in less 
precise selections, with AUROCs for methods such as ANN and 
SVR being close to random guesses. The authors performed an 
additional comparison of the ML methods to linearized-SCM 
and GAM based on a single scenario. This comparison showed 
that the use of linearization divided SCM runtimes roughly by 4, 
in agreement with Jonsson and Karlsson's [4] FO-linearization, 
while preserving its accuracy. GAM computational time was 
similar to that of neural networks, but with the lowest F1 score 
across all considered methods. Overall, this article suggested 
that ML methods surpassed classical pharmacometrics meth-
ods, both in terms of performance for performing covariate se-
lection, and computational time.

In that same year, several cases of applications of tree-based 
methods using real clinical PK data have emerged, namely RF 
by Ibrahim et al. [30] and Extra Tree Regressors (ETR) by Tang 
et al. [31].

Later, in 2024, an article by Asiimwe et al. [28] aiming again to 
compare ML methods (linear regression-based methods includ-
ing Ridge, LASSO, GAM, stepwise Linear Regression (sLR) (both 
AIC and RMSE based), RF, ANN, eXtreme Gradient Boosting 
[XGB]) with SCM and linearized-SCM was published. Note that 
they implemented LASSO as a regressor on EBEs—it is therefore 
different from the common LASSO implementation presented in 
the next section. This implementation of LASSO will be referred 
to as LASSO-EBEs in tables and figures. The authors first used 
simulated data from a real clinical dataset to compare all meth-
ods based on their ability to select the true covariates by means 
of the F1 score proposed earlier by Sibieude et al. [27]. Then, the 
best covariate selection method found with the simulated data 
was applied on the real clinical dataset from which the data was 
simulated, after which they applied SCM. When using simulated 
data, ridge regression was the best ML technique with a F1 score 
of 0.475 ± 0.231 for both scenarios. Classical pharmacometrics 
techniques performed worse than ML methods combined with 
SCM, having an F1 score of 0.251 ± 0.274 (0.198 ± 0.240 with 
linearization) with only forward selection, and 0.206 ± 0.228 
(0.172 ± 0.213 with linearization) with backward selection too. 
On the real clinical dataset, applying a preselection of covariates 
with ridge regression followed by SCM resulted in the same final 
model as with SCM alone, yet with a runtime decrease from 1.75 
to 1 day with ML-based preselection. Using FOCE-linearization 
with SCM divided its runtime by 15.
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SHapley Additive exPlanations (SHAP) was first introduced as 
a covariate modeling method in 2022 by Janssen et al. in an ap-
plication using a real clinical dataset [32]. No performance was 
reported for this application.

To summarize this section, all ML methods regressed on EBEs 
(GAM, linear regression-based methods including LASSO, 
Ridge and elastic-net, RF, ANN, SVR, and XGB) proved to have 
equal or better performances than SCM regarding covariate se-
lection, while being more time efficient. However, it is important 
to acknowledge that these covariate selection methods require 
model parameter estimation prior and after their use in order to 
perform covariate model building.

3.3.5   |   Non-EBEs Based ML Methods (ML-non-EBE)

There were only two articles in this category, and both intro-
duced a novel method [33, 34].

Semmar et al. presented in 2005 a clustering method used for 
covariate modeling [33]. The clustering method was built with 
euclidean distance and complete-link clustering algorithm, 
allowing to create a categorical covariate describing the pa-
tients groups (clusters). They evaluated this method, using a 
single real clinical dataset, through OFV, model performances 
in terms of precision of estimates, IIV and residual variabil-
ities with or without clustering. Similar performances were 
recorded when constructing a covariate model with all orig-
inal covariates versus the single categorical covariate built 
with clustering. This method is not considered as a covariate 
model selection technique, but rather as an alternative tech-
nique. In 2023, another alternative technique was introduced 
by Wahlquist et  al. in which they used symbolic regression 
networks [34], a particular type of neural network. The spec-
ificity of this method lies in the fact that each PK parameter 
has its own symbolic regression network, and each of these 
networks are trained in parallel on their ability to correctly 
predict all together the observed concentrations. The advan-
tage of symbolic regression networks over classical neural 
networks is that they give equations of covariate relationship 
to PK parameter without requiring user pre-specification, be-
sides being constrained to the relationships dictated by the 
neural network architecture. The authors used a single real 
dataset aggregated from 30 different studies of the same drug 
for model evaluation. The model resulting from the networks 
was compared to a published state-of-the-art model on the 
same dataset through assessment of mean Median Absolute 
Logarithmic Error (mMdALE) and mean Median Absolute 
Prediction Error (mMdAPE). The article's method found a co-
variate model structure and corresponding parameter values 
with a slightly better fit, while relying on notably fewer covari-
ates than the state-of-the-art model. Although no comparison 
of computational time was reported, it is known that neural 
networks are usually faster to train than classical pharmaco-
metrics methods butthey require more data.

To summarize, clustering showed that it brought interpretabil-
ity rather than performance, and symbolic regression networks 
showed better performances than the published state-of-the-art 
model to which it was compared to.

3.4   |   Summary of Reported Comparative 
Performances With Associated Evaluation Settings

Actual meta-analyses were not possible due to the hetero-
geneity of the settings used for evaluation and comparison, 
and the heterogeneity of the methods objectives. Indeed, two 
methods with different objectives are not expected to be eval-
uated similarly. Furthermore, published comparisons may be 
conducted for different purposes, whether exploratory or con-
firmatory. Advantages of each method can vary depending on 
these different intentions. Yet, we combined in a single figure 
the comparative performances (Figure  3) and comparative 
computational times (Figure  4) between methods, allowing 
the reader to have an overview of all the articles general com-
parative conclusions. The existence of these overviews is only 
fair in presence of reminders of the methods' objectives and 
comparison settings. Therefore, lines with varying colors and 
widths were used to convey information about the setting of 
comparison. We again invite the reader to consider this infor-
mation as a mean for assessing the uncertainty to be put on 
the communicated results.

Figure  3 displays comparative performances reported within 
each paper, when available. ML methods, LASSO, AALASSO, 
H-GA-ML, FREM, and SCM+ with SF have better reported per-
formances than SCM, although one instance of LASSO compar-
ison with SCM reported better performances of the latter. ML 
methods are the only methods solely dedicated to covariate se-
lection. They are the best reported methods for this task, and 
their evaluation was performed on a great number of scenarios, 
as showed by the width of the line. AALASSO was the best re-
ported method for covariate model selection, while SCM+ with 
SF, H-GA-ML and FREM were the second best reported meth-
ods for this task. There is no information regarding the com-
parative performances of MARS, WAM, Cluster analysis, SHAP, 
Symbolic regression networks, and GEP.

Figure 4 displays the comparative computational times reported 
within each paper, when available. It shows that all methods for 
which this information is provided claim to have lower com-
putational times than the classical SCM except for GA2, with 
the ML-based methods being among the fastest methods, as 
expected. However, it is important to acknowledge that EBEs-
based ML methods involve necessary preliminary and follow-up 
runs, leading to extra computational time not account for in the 
figure.

4   |   Discussion

The objective was to list all covariate modeling techniques and 
gather all available information regarding their comparative 
performances and computational times.

We decided to focus the review on general covariate modeling 
methods and purposely did not include specific methodologi-
cal comparisons of single methods. This review did not cover 
the investigations of the impact of missing values either, al-
though some methods are implicitly designed to handle them, 
such as FREM or tree-based ML methods. It is well estab-
lished that missing covariates can have an impact on covariate 
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FIGURE 3    |    Overall reported comparative performances across methods. The dashed lines separate groups of methods having reportedly equiv-
alent performance regarding their objective. Blue line: Comparison performed only simulated data. Mauve line: Comparison performed only on 
real data. Beige line: Comparison performed on both real and simulated data. Multiple colors: The comparison has been made across articles using 
different evaluation settings. Width of the line = the number of scenarios (whether real or simulated) investigated for the comparison (the larg-
er the width, the more scenarios were investigated for the corresponding comparison). In case multiple articles made the same comparison, the 
maximum number of scenarios investigated across those articles was retrieved. There are two occurrences of LASSO in the figure, because one 
comparison of LASSO to SCM [23] contradicts all the others. Boxes are colored according to the methods objective. Light pink: Method perform-
ing covariate selection. Pink: Method performing covariate model selection. Purple: Method performing covariate model selection and other tasks. 
Orange: Alternative methods. Methods abbreviations: AALASSO, Adjusted Adaptive Least Absolute Shrinkage and Selection Operator; COSSAC, 
COnditional Sampling use for Stepwise Approach based on Correlation tests; FFEM, Full Fixed Effects Model; FREM, Full Random Effects Model; 
GA1, Genetic Algorithm developed by Ismail et al.; GA2, Genetic Algorithm developed by Ronchi et al.; GAM, Generalized Additive Models; GEP, 
Gene Expression Programming; H-GA-ML, Hybrid–Genetic Algorithm–Machine Learning; H-WAM-BE, Hybrid WAM with Backward Elimination; 
LASSO, Least Absolute Shrinkage and Selection Operator; MARS, Multivariate Adaptive Regression Splines; ML, Machine Learning. Includes: 
(regularized) (stepwise) linear regression, random forests, neural networks, extreme gradient boosting, support vector machines; REG, Regression; 
SAMBA, Stochastic Approximation for Model Building Algorithm; SCM, Stepwise covariate model; SCM+ with SF, Stepwise covariate model+ with 
Stage-wise Flitering; SHAP, SHapley Additive exPlanations; WAM, Wald's Approximation Method.
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16 of 19 CPT: Pharmacometrics & Systems Pharmacology, 2025

model building performance, and careful handling of missing 
covariates before use of any covariate model building method 
should be performed. We refer the reader to the paper of Bräm 

et al. [35], which shows that classical methods such as mean 
imputation or simple deletion can be biased under certain con-
ditions, suggesting the need for careful consideration. They 

FIGURE 4    |     Legend on next page.
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also showed the potential of ML-based imputation techniques. 
We also decided not to distinguish continuous and categorical 
covariates in the datasets used by the authors for method eval-
uation, as this level of information was not deemed necessary 
for the relative performance overview provided by our review 
and in view of the important differences in method assess-
ment across publications. However, this distinction should be 
encouraged when comparing covariate model building meth-
ods in research papers. We refer to the article of Sanghavi 
et al. [36] for interesting points of considerations in all these 
matters.

4.1   |   New Standards for Covariate Model Building: 
Roadblocks and Solutions

This review highlights two main roadblocks that prevent phar-
macometricians from moving away from the SCM standard: (i) 
lack of an open-source benchmark of simulated datasets for in-
vestigating the performance of covariate model building meth-
ods, and (ii) lack of standardized performance metrics that could 
be used across different covariate model building methods.

Indeed, despite the growing number of covariate modeling 
techniques proposed to outperform SCM in terms of speed or 
predictive performance, to date the level of evidence to support 
the use of a method over SCM is not sufficient for the latter to 
be overthrown. There is currently a need for a generalizable 
evaluation and comparison of all covariate modeling tech-
niques. From the 21 methods proposed for covariate modeling 
outside of SCM, 6 were not compared to any other covariate 
modeling method, and from the remaining 15 which under-
went comparison, 14 were compared to the standard SCM 
method. Comparison of covariate model building methods 
used different evaluation metrics, and different dataset bench-
mark with real and/or simulated dataset from different sce-
narios, preventing definite conclusions to be drawn from the 
collection of papers on the topic.

An open-source benchmark of simulated datasets on a complete 
setting of different scenarios would allow for direct cross eval-
uation of new covariate modeling methods. Simulated scenar-
ios found in the database included variability on eight criteria 

listed earlier. On top of them, the impact of underlying struc-
tural model, interoccasion variability, functional relationships 
between random effects or covariates and PK parameters could 
also be investigated in future scenarios. Distinction between 
continuous and categorical covariates, and time-varying co-
variates might allow for better discrimination of method per-
formances. Indeed, we did not come across articles handling 
time-varying covariates, although including such covariates can 
be essential to account for changes in patient characteristics that 
can affect drug pharmacokinetics over time.

Similarly, an advised set of performance metrics to universally 
assess predictive performance and efficiency across covariate 
modeling techniques is currently lacking. If applicable to the 
methods objective, we propose to systematically report TPR 
(sensitivity), FPR (Type I error), FNR (Type II error), and TNR 
(specificity) on covariate selection and covariate model selec-
tion, since all these metrics are complementary and inform on a 
methods ability to perform selection. We also propose to system-
atically report covariate parameter error bias (MPE) and preci-
sion (RMSE), and clinical relevance as Philipp et al. defined it 
[3], and model fitness by means of BIC, concentration prediction 
error bias (MPE), and precision (RMSE). If a method is solely 
dedicated to performing selection, we propose to combine it 
with SCM or another covariate model building method in order 
to compute all performance evaluation metrics. Finally, inclu-
sion of comparison with SCM alone when evaluating another 
covariate model building method would allow to move away 
from the current standard, similarly as to what was done when 
FOCE was introduced, with systematic comparison of FOCE 
performance to FO, which led to the shift in the standard mini-
mization algorithm.

4.2   |   Promising Future Covariate Model Building 
Methods

ML-based methods regressed on EBEs are promising to speedup 
covariate model building, with reported greater efficiencies 
and better performances than SCM for identifying covariates. 
Other ML-based methods like genetic algorithms seem imprac-
tical since they often prove only to be slightly better than SCM 
at the cost of many more model estimation runs. Similarly as 

FIGURE 4    |    Overall reported comparative computational speed across methods. Blue line: Comparison performed only simulated data. Mauve 
line: Comparison performed only on real data. Beige line: Comparison performed on both real and simulated data. Multiple colors: The compar-
ison has been made across articles using different evaluation settings. Width of the line = the number of scenarios (whether real or simulated) 
investigated for the comparison (the larger the width, the more scenarios were investigated for the corresponding comparison). In case several 
articles made the same comparison, the maximum number of scenarios investigated across those articles was retrieved. Black box = no magni-
tude on the difference in computational speed was reported. Boxes are colored according to the methods objective. Light pink: Method performing 
covariate selection. Pink: Method performing covariate model selection. Purple: Method performing covariate model selection and other tasks. 
Orange: Alternative methods. Methods abbreviations: AALASSO, Adjusted Adaptive Least Absolute Shrinkage and Selection Operator; COSSAC, 
COnditional Sampling use for Stepwise Approach based on Correlation tests; FFEM, Full Fixed Effects Model; FREM, Full Random Effects Model; 
GA1, Genetic Algorithm developed by Ismail et al.; GA2, Genetic Algorithm developed by Ronchi et al.; GAM, Generalized Additive Models; GEP, 
Gene Expression Programming; H-GA-ML, Hybrid–Genetic Algorithm–Machine Learning; H-WAM-BE, Hybrid WAM with Backward Elimination; 
LASSO, Least Absolute Shrinkage and Selection Operator; MARS, Multivariate Adaptive Regression Splines; ML, Machine Learning. Includes: 
(regularized) (stepwise) linear regression, random forests, neural networks, extreme gradient boosting, support vector machines; REG, Regression; 
SAMBA, Stochastic Approximation for Model Building Algorithm; SCM, Stepwise covariate model; SCM+ with SF, Stepwise covariate model+ with 
Stage-wise Flitering; SHAP, SHapley Additive exPlanations; WAM, Wald's Approximation Method.
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for SCM, FOCE-linearization could be considered for methods 
(such as GA2) searching the covariate–parameter relationship 
space from a base model—and requiring parameter estimation 
at several points in that space—to speed up their completion. 
Furthermore, all categories of methods mentioned above can be 
seen as complementary rather than as competitive. Therefore, 
combinations of methods could also be investigated in the fu-
ture. For instance, ML-based methods could be used prior to 
more classical methods. Just like Sibieude et al. [27] pointed out 
in their discussion, to enhance efficiency, ML could be integrated 
into popPK covariate model building for rapid initial covariate 
screening, and then incorporating the selected covariates into 
standard pharmacometrics approaches such as SCM, FFEM, 
and FREM. The challenge now lies in embedding ML into cur-
rent state-of-the-art methods to boost their performance. The ar-
ticle from Comets et al. [37] on stepwise strategies also suggested 
a combination of methods for covariate modeling. Including 
ML-based methods as a screening step before classical pharma-
cometrics methods was recently done by Asiimwe et al. [28] and 
showed promising results. Alternatively, ML could be fully in-
tegrated in existing methods: a recent talk on the integration of 
LASSO in the SAMBA algorithm was given by Auriane Gabaut 
[38]. This new combined method promised better and quicker 
performances than that of SAMBA used alone. Additionally, the 
R package “mlcov” [39] has recently been released for covariate 
screening based on EBEs, and so has a python package “pyDar-
win” [40] that uses several ML techniques to perform full pop-
ulation model selection, including the covariate one. It is also to 
be mentioned that ML methods require a lot of data, therefore 
the impact of dataset size on these methods shall be thoroughly 
investigated for these methods.

In the future, ML-based methods might account not only for 
EBEs, but also for their uncertainty. To date, most ML tech-
niques from the literature are applied to EBEs, and the article 
introducing GAM stated that there were no differences applying 
GAM to either EBEs or individual PK parameters. These meth-
ods from the literature however never consider the uncertainty 
of EBEs which are often the mode of some distribution, which 
could lead to biased decisions. Investigations comparing model 
selection in stepwise procedures based on either EBEs or LRTs 
concluded nevertheless that both methods provided almost iden-
tical power (sensitivity) for detecting a covariate effect, even in 
the case of high shrinkage [41].
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