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Abstract

Genome streamlining, i.e. genome size reduction, is observed in bacteria with very different life traits, including endosym
biotic bacteria and several marine bacteria, raising the question of its evolutionary origin. None of the hypotheses proposed 
in the literature is firmly established, mainly due to the many confounding factors related to the diverse habitats of species 
with streamlined genomes. Computational models may help overcome these difficulties and rigorously test hypotheses. In 
this work, we used Aevol, a platform designed to study the evolution of genome architecture, to test 2 main hypotheses: 
that an increase in population size (N) or mutation rate (μ) could cause genome reduction. In our experiments, both conditions 
lead to streamlining but have very different resulting genome structures. Under increased population sizes, genomes lose a 
significant fraction of noncoding sequences but maintain their coding size, resulting in densely packed genomes (akin to 
streamlined marine bacteria genomes). By contrast, under an increased mutation rate, genomes lose both coding and non
coding sequences (akin to endosymbiotic bacteria genomes). Hence, both factors lead to an overall reduction in genome size, 
but the coding density of the genome appears to be determined by N × μ. Thus, a broad range of genome size and density can 
be achieved by different combinations of N and μ. Our results suggest that genome size and coding density are determined by 
the interplay between selection for phenotypic adaptation and selection for robustness.

Key words: genome architecture, genome evolution, genome streamlining, mutation rate, modeling, population size.

Significance
Many bacterial species show reduced genomes. However, the diversity of these species and their life traits makes it dif
ficult to identify the mechanisms that led to this reduction. Indeed, no unifying hypothesis accounts for the whole di
versity of genome size reduction. Here, we used simulations to systematically explore the effect of population size and 
mutation rate on genome size. Our results show that the interaction between these 2 factors tightly determines the size, 
but also the density of genomes, making it possible to account for the whole diversity of reduced genomes by acting on 
these 2 parameters only. Our results suggest a theoretical model in which genome reduction is driven by a robustness/ 
fitness trade-off.

© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Genome size was one of the first studied genome charac
teristics (Leth Bak et al. 1969; Bachmann 1972), yet its 

dynamic and causal factors are still poorly understood. 
Genome size is hugely variable across life: from less than 
104 base pairs (bp) for viruses (Gago et al. 2009), to more 
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than 1011 bp for some plants (Pellicier et al. 2010). It does 
not correlate reliably with the number of genes or other 
variables throughout the different branches of life (Barow 
and Meister 2002; Westoby et al. 2021).

The observed range of genome sizes is more restricted 
when studying only bacterial organisms (Westoby et al. 
2021), ranging from 105 bp for intracellular endosymbiotic 
bacteria (Chong et al. 2019) to 107 bp for some myxobac
teria (Schneiker et al. 2007). Bacterial genomes are mostly 
dense, and within this domain of life, genome size is loosely 
correlated with the number of coding genes (Konstantinidis 
and Tiedje 2004; Almpanis et al. 2018). However, the pre
cise determinants of bacterial genome size are still un
known, as it is still impossible to accurately predict the 
total genome size from the number of coding genes 
or from other genomic characteristics (Petrov 2001; 
Barow and Meister 2002; Choi et al. 2020). Part of the de
terminants of genome size are likely to be highly lineage- 
specific and linked to the ecological or evolutionary history 
of the lineages (Martinez-Gutierrez and Aylward 2022). 
Nevertheless, it has been argued that at least a part of 
the observed variation may be due to universal mechan
isms, linked to population genetics and molecular evolu
tionary processes (Lynch and Conery 2003; Lynch 2007). 
In particular, it has been suggested that population genet
ics mechanisms could explain the reductive evolution ob
served in several bacterial strains (Lynch 2006). However, 
among the shortest bacterial genomes, one can find 2 types 
of bacteria which have very different ecological environ
ments and evolutionary history: endosymbionts such as 
Buchnera aphidicola (Moran and Mira 2001) and free-living 
marine bacteria such as Prochlorococcus marinus (Dufresne 
et al. 2005) or Pelagibacter ubique (Giovannoni et al. 2005). 
Strikingly, both types of bacteria lie at the 2 extremes 
of bacterial population sizes, questioning the mechanisms 
that led to genome reduction (Batut et al. 2014; 
Martínez-Cano et al. 2015; Wernegreen 2015).

Buchnera aphidicola, and endosymbionts more general
ly, are characterized by very small effective population sizes 
(Ne) and high mutation rates (μ). Endosymbiosis also gener
ally entails the introduction to a new stable environment 
and very close interactions with the host (Moran 1996; 
Mira and Moran 2002). These many complex factors result 
in decaying genomes, smaller in total size and with fewer 
coding genes than those of average bacteria (Heddi et al. 
1998). Endosymbionts have typically lost both coding and 
noncoding genomic content (Moran and Mira 2001; 
Wernegreen 2002), maintaining a coding fraction on the 
order of 85% (van Ham et al. 2003), which is quite typical 
for bacteria (Kuo et al. 2009).

In sharp contrast, free-living marine bacteria such as 
Prochlorococcus marinus or Pelagibacter ubique also have 
reduced genomes (Giovannoni et al. 2005; Batut et al. 
2014), but are believed to have very large effective 

population sizes (Marais et al. 2008; Flombaum et al. 
2013; Giovannoni et al. 2014), although that is an ongoing 
debate (Chen et al. 2022; Filatov and Kirkpatrick 2024). 
Noticeably, in their case, genome size reduction is primarily 
contributed by the loss of noncoding sequences rather than 
coding sequences (Giovannoni et al. 2005; Batut et al. 
2014). This phenomenon is called streamlining and could 
indicate a very effective selection (Wolf and Koonin 2013; 
Giovannoni et al. 2014). Many hypotheses have been pro
posed to account for genome size reduction and the asso
ciated changes in genome architecture in such free-living 
organisms: adaptation to a nutrient-poor environment or 
to other abiotic factors, the Black Queen hypothesis, or 
high mutation rates (Koskiniemi et al. 2012; Morris et al. 
2012; Batut et al. 2014; Ngugi et al. 2023).

Both endosymbionts and free-living marine bacteria thus 
show a marked reduction in genome size, linked to an in
crease in mutation rate (Bourguignon et al. 2020) but, strik
ingly, also linked to either an increase or a decrease in 
effective population size Ne. Indeed, while some observa
tions link the decrease in genome size to the increase in ran
dom drift (Moran 2002; Nilsson et al. 2005; Kuo et al. 
2009), this is not consensual among the scientific commu
nity since a long-term reduction in Ne is also thought to in
crease genome complexity and genome size: the increase in 
genetic drift would cause the fixation of slightly deleterious 
duplications, which would be more frequent than slightly 
deleterious deletions (Lynch and Conery 2003; Lefebure 
et al. 2017). The balance between insertion and deletion 
rates and spectra may also play a role in genome size evo
lution (Petrov 2002) and deletion biases in particular are be
lieved to contribute to the small genome size of prokaryotes 
(Bingham and Ratcliff 2024). Overall, this suggests that a 
specific study focusing on the interaction between various 
mutational biases, variations in mutation rate and variations 
in effective population size is needed.

In this study, we focus on determining the impact of 
both an increased mutation rate and a change in popula
tion size on genome size evolution. However, mutation 
rates and population sizes are difficult to estimate. The ef
fective population size is also highly variable through time, 
such that it is not totally obvious which long-term average is 
relevant at the macroevolutionary scale (Brevet and Lartillot 
2021; Müller et al. 2022). For that reason, many compara
tive analyses have relied on somewhat indirect proxies, such 
as life-history traits (Popadin et al. 2007; Romiguier et al. 
2012; Figuet et al. 2016). However, the precise quantitative 
relation between these proxies and effective population 
size is difficult to assess. Moreover, the very different living 
conditions and potential mutational biases of the bacterial 
species that have undergone genome reduction introduce 
many confounding factors. To avoid these pitfalls, we 
choose to turn to simulation, which allows us to control 
all the parameters (population size, mutation rate, and 
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mutational biases) and the magnitude of their variation. It 
also ensures that no other factor than the ones investigated 
will impact the phenomenon under study. Hence, we can 
gain a theoretical understanding of the relationship between 
the different factors at stake and genome size reduction.

In silico experimental evolution provides tools to study 
genomic architecture in detail (Adami 2006; Hindré et al. 
2012; Batut et al. 2013). For our study, we need a frame
work that provides coding and noncoding genomic 
compartments which can vary independently, and with ar
bitrary underlying mutational biases for the deletion/inser
tion balance. Then, running simulations in a perfectly 
controlled environment covering a broad range of popula
tion sizes N and mutation rates μ makes it possible to inves
tigate the conditions and mechanisms leading to genome 
size reduction. We will hence use Aevol, a simulation plat
form that provides an explicit genomic structure where 
both the coding and noncoding genome can evolve freely. 
Aevol emulates the evolution of bacteria and enables repli
cated and controlled in silico evolution experiments with 
known and fixed parameters (Knibbe et al. 2007; Banse 
et al. 2023). It provides an ideal tool to uncover links be
tween genome size and either population size or mutation 
rate, as the experimenter perfectly controls these para
meters. Throughout the experiments, fitness, genome 
size, and amounts of coding and noncoding bases are mon
itored to study the evolution of genome architecture and 
the response of genome size to changes in μ and N.

Our results show that both an increase in N or μ lead to 
genome size reduction, regardless of the underlying muta
tional bias. However, both conditions lead to very different 
genome structures, as a high μ reduces both the coding and 
noncoding compartments while a high N reduces only the 
noncoding compartment. Surprisingly, they both lead to a 
similar coding proportion when increased by the same fac
tor, such that N × μ appears as a key compound parameter 
determining this proportion. To understand this result, we 
measured both the phenotypical adaptation and the replica
tive robustness of the genomes, i.e. their capacity to trans
mit faithfully their phenotypes to their offspring. Indeed, 
while the per-base mutation rate is constant within each 
of our experiments, the genome-wide mutation rate varies 
with genome size, and the impact of the mutations depends 
on the genome structure and the type of mutation. 
Therefore, replicative robustness is tightly linked with gen
ome size and coding proportion. We show that the ob
served variations in genome size and structure are due to 
the interaction between selection for phenotypical adapta
tion to the environment and selection for robustness.

Results
We perform our experiments using Aevol, a forward-in-time 
evolutionary simulator (Knibbe et al. 2007; Banse et al. 

2023). Aevol is an individual-based model which includes 
an explicit population and in which every organism owns a 
double-stranded genome. It uses an explicit genome decod
ing algorithm directly inspired by the central dogma of mo
lecular biology to compute the phenotype, and thus the 
fitness, of each individual based on its genomic sequence. 
As Aevol also includes a large variety of mutational operators 
(including substitutions, InDels, and chromosomal rearran
gements), this nonparametric genotype-to-phenotype map 
allows for changes in the genome architecture (genome 
size, coding density, overlapping genes or operons, etc.), 
without assuming a predefined distribution of fitness effects. 
Indeed, in the model, it is possible to reach similar fitnesses in 
many ways, by adjusting the number of genes, their loci, 
their lengths, or the intergenic distances, hence the total 
amount of noncoding DNA. In Aevol, genes are typically cre
ated by duplication-divergence (Kalhor et al. 2024), but they 
can also be deleted, and some may emerge de novo. Hence, 
the impact of a given mutation highly depends on the preex
isting genome structure, which can in turn be indirectly 
selected (Knibbe et al. 2007). Aevol therefore allows study
ing changes in size and structure of genomes in response 
to changes in population size and mutation rates.

Our experiments start from 5 “Wild-Type” (WT) lines, 
each having evolved for 10 million generations within a 
population of 1,024 individuals and a mutation rate of 
10−6 mutations per base pair for each mutation type: sub
stitutions, small insertions, small deletions, duplications, 
deletions, translocations, and inversions. There is no under
lying mutational bias: the insertion and deletion of bases 
are equally probable. The 5 WTs display stable genome 
structures (with small random variations, as exemplified 
by cases N0 and μ0 on Figs. 1 and 2) although they still slow
ly gain fitness by fixing rare favorable mutations (see case 
N0 on Fig. 5a). Their fitness and genomic characteristics 
are displayed in Section 4.2, Table 1. In our experiments, 
these WTs are used as founders of new populations, which 
are confronted with new evolutionary conditions for 2 mil
lion generations. In parallel, these same WTs were evolved 
in the same conditions they first evolved in, providing per
fect control experiments. We compare the fitness, genome 
size, and genome structure of populations that evolved in 
new conditions with those of the control populations. 
Finally, we repeat part of these experiments with WTs 
that evolved with either an insertion or a deletion bias to 
understand how an underlying mutational bias might im
pact our findings.

Genome Size Evolution Following a Change in 
Population Size and Mutation Rate

Change in Population Size

In the absence of mutational bias, increasing the popula
tion size by a factor of 4 or 16 results in a reduction in 
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the total genome size (see Fig. 1a). Yet, this change does 
not impact the coding and noncoding parts of the genome 
proportionally: while the size of the coding compartment is 
barely affected (see Fig. 1b), the noncoding genome size is 
greatly reduced (see Fig. 1c). As a result, the coding propor
tion of the genome increases (see Fig. 1d). Conversely, re
ducing the population size by a factor of 4 or 16 
increases the total genome size (Fig. 1a) by increasing 
greatly the noncoding genome size (Fig. 1c). In the extreme 
condition N0/16, the coding genome size is also slightly re
duced (Fig. 1b). As a result, the coding fraction of the gen
ome is drastically reduced (Fig. 1d).

Change in Mutation Rate

In the absence of mutational bias, increasing the mutation 
rate drastically reduces the total genome size (see Fig. 2a). 
Thus, at first sight, population size and mutation rate seem 
to have a similar effect on genome evolution. However, in 
the details, the effect of these 2 variables on genome struc
ture appears to differ, as the reduction now occurs in both 
the coding and non-coding genomic compartments (see 
Fig. 2b and c). Both are nevertheless not proportionally af
fected by the decrease in mutation rate, which affects more 

strongly the noncoding part of the genome, such that the 
final coding fraction of the genome increases with μ (see 
Fig. 2d). Altogether, these results show that streamlined 
genomes, denser and shorter than their ancestors, can re
sult from either an increase in population size or in muta
tion rate.

Notably, and despite the very different dynamics dis
played in the 2 experiments, a 4-fold increase in N or in μ 
results in the same final coding proportion of approximately 
80%. The same is true for a 16-fold increase (88%). To fur
ther investigate this result, we conducted additional experi
ments to observe the combined effects of a simultaneous 
modification in both N and μ.

Linked Effect of Population Sizes and Mutation Rates

Figure 3 shows the variation in the total amount of DNA, 
coding size, and noncoding size, as well as the variation 
in coding fraction for several combinations of changes in 
N and μ (note that, in the panels of Fig. 3, the bottom 
line and the central column, respectively, correspond to 
the values presented in Figs. 1 and 2).

Overall, as N increases, the total amount of DNA de
creases, whatever the value of μ (see Fig. 3a). A higher μ 

Fig. 1. Total a), coding b) and non-coding c) genome size variation, and final coding fraction d), after 2 million generations. For each of the 5  WTs, 10 replicas 
were performed under a constant mutation rate (μ0 = 10−6 per base pair for each type of mutation) with 5 different population sizes (N0 = 1,024 being the 
control population size).
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also leads to a reduction in the total genome size, what
ever the value of N. However, the effect of population 
size and mutation rate differ when considering the cod
ing size of the genome: specifically, the coding size in
creases with N but decreases with μ (see Fig. 3b). This 
is countered by the change in the noncoding size of 
the genomes (see Fig. 3c), which strongly decreases 
with both N and μ and drives the overall change in gen
ome size.

The interplay between N and μ results in a surprisingly 
constant coding fraction across the different constant 

values of N × μ (see Fig. 3d). Indeed, we observe that under 
constant N × μ, and although these 2 factors taken indi
vidually have changed in different proportions, the coding 
fraction remains constant: 80% when N0 × μ0 is multiplied 
by 4 compared with the control conditions, and 88% when 
N0 × μ0 is multiplied by 16 (see Fig. 3d). Although the cod
ing fraction does slightly vary (from 68% to 63%) for the 
most extreme tested configuration (N0/16 and 16μ0), the 
diagonal of constant N0 × μ0 also displays an almost con
stant coding fraction (Fig. 3d).

However, strikingly, the total genome size as well as the 
coding and noncoding genome sizes vary greatly, even for 
similar coding densities (Fig. 3b, c, and d). For densities of 
63% and 65%, the total amount of DNA can be almost halved 
(from 13,821 bp to 7,561 bp) by going from N0/4 and 4μ0 to 
N0/16 and 16 μ0 on the same diagonal of constant N × μ. 
Conversely, we can reach similar values of genome size 
(11,300 bp) despite important differences in the coding per
centage (80% when μ is multiplied by 4, and 87% when N 
is multiplied by 16). Altogether, these results show that a large 
range of genome sizes and structures (here corresponding to 
coding densities) can result from a combined variation in both 
the population size N and the mutation rate μ.

Fig. 2. Total a), coding b) and non-coding c) genome size variation, and final coding fraction d), after 2 million generations. For each of the 5 WTs, 10 replicas 
were performed under a constant population size (N0 = 1,024 individuals) with 3 different mutation rates: the control μ0 = 10−6 mutations per base pair for 
each type of mutation, 4 × μ0 and 16 × μ0.

Table 1. Characteristics of the 5 WT at the start of our experiments

WT id Fitness 
(arbitrary 

unit)

Total genome 
size (bp)

Coding 
size 
(bp)

Non-coding 
size (bp)

Coding 
fraction

1 0.014903 13,599 9,395 4,204 0.69
2 0.103795 13,660 8,828 4,832 0.65
3 0.128472 14,171 9,507 4,664 0.67
4 0.035369 14,507 10,003 4,504 0.69
5 0.029588 14,290 10,644 3,646 0.74
Average 0.0624254 14,045.5 9,675.4 4,370 0.69
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Mutational Biases Change the Equilibrium Genome Size, 
but not the Role of N and μ
As genome sizes are generally thought to be heavily im
pacted by mutational biases, we control whether the effect 
of population size and mutation rate we observed is af
fected by either a deletion or an insertion bias. To this 
end, we evolved 5 WT organisms with either an insertion 
bias (twice as many duplications than large deletions), or 
a deletion bias (twice as many large deletions than duplica
tions). The rates of all other types of mutations, as well as 
the sum of all mutation rates, are the same as in the previ
ous experiments. As expected, the equilibrium genome 
sizes and coding proportions of these WT is affected by 
the balance between large deletions and duplications, 
with an average genome size of 11,623 bp in the presence 
of a deletion bias and 16,350 in the presence of a duplica
tion bias (instead of 14,046 bp without any bias). The cod
ing proportion is also affected: 0.78 and 0.61, respectively, 
instead of 0.69. This shows that the genome size and struc
ture are, as expected, strongly influenced by the underlying 
mutation biases (Kuo and Ochman 2009).

We then confronted the median (in terms of genome 
size) WT of each condition to changes in population size 
(multiplied or divided by 4) or mutation rate (multiplied by 
4) for 10 replicas. Similarly to what is observed without 
bias, an increase in N reduces the non-coding genome 

size only, while an increase in μ reduces both the coding 
and noncoding genome (see Fig. 4). Notably, a decrease 
in N increases the noncoding genome size even in the 
case of a deletion bias, although an insertion bias greatly 
amplifies this effect. As a result, and despite the strong mu
tational biases, we observe that multiplying either the 
population size or the mutation rate by the same factor 
leads to a genome compaction in similar proportions (the 
final coding fraction being 0.85 vs. 0.88 in the case of the 
deletion bias, and 0.78 vs. 0.77 in case of the insertion 
bias, respectively). Therefore, although mutational biases 
influence the equilibrium genome sizes and structures, 
they do not fundamentally change how the genomes react 
to variations in population size or mutation rate. In other 
words, our simulations show that mutational biases only 
determine the equilibrium set point around which popula
tion size and the overall mutation rate then modulate the 
genome size and structure. Similar experiments were run 
with biases in InDels and are presented in supplementary 
material S2, Supplementary Material online.

Robustness Selection as the Explanatory Mechanism

We observed that 2 distinct processes, triggered by an in
crease in either population size or mutation rate, can lead 
to genome size reduction in our experiments. However, 
both have different effects on coding and noncoding 

Fig. 3. Amount of DNA a), coding size b), noncoding size c) and coding fraction d) for the different combinations of μ and N tested, after 2 million generations. 
For each of the 5 WTs, 10 replicas were performed for each tested set of conditions. Control conditions (N = 1, 024 and μ = 1.10−6) are outlined in black. For 
the combination of both the highest mutation rate and the largest population size, only the median was tested due to computational limitations, which is 
indicated by a (*).
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sequences: while an increased μ reduces both the coding 
and noncoding genome sizes, increasing N reduces only 
the noncoding genome size.

We propose that these observations can be explained by 
an interplay between selection for phenotypic adaptation 
to the environment (hereafter called direct selection), and 
selection for replicative robustness (hereafter referred to 
as indirect selection). More specifically, we define the repli
cative robustness of an individual as its ability to transmit its 
fitness to its offspring. It hence corresponds to the propor
tion of offspring that did not acquire new deleterious mu
tations. This depends both on the number of mutations 
occurring at replication (which in turn depends on genome 
size) and on the probability for a given mutation to be dele
terious (usually called mutational robustness Wilke and 
Adami 2003), which depends on the intertwining between 
the kind of mutation and the genomic architecture. In our 
case, WT organisms are very well adapted to their environ
ment, thus most mutations will be deleterious if they affect 
the coding part of the genome. This is particularly true for 
chromosomal rearrangements, which can affect large gen
omic segments (Knibbe et al. 2007; Banse et al. 2023). 
Conversely, beneficial mutations are extremely rare. We 
therefore approximate the robustness of our organisms 
by measuring the proportion of their offspring that have 

the exact same fitness, i.e. that underwent no mutations 
or only neutral mutations.

A more robust individual has more chances to pass on 
its genomic information accurately than a less robust one, 
thus enabling its lineage to better maintain its fitness in 
the long term and to outcompete other lineages in which 
deleterious mutations would accumulate at a higher rate. 
This results in an indirect selection for replicative robust
ness. We recall that replicative robustness depends both 
on the probability for a given mutation to be neutral 
(hence on the fraction of noncoding sequences in the 
genome) and on the mean number of mutations under
gone by the genome at each generation (hence on the 
genome-wide mutation rate). Here, while the per base 
mutation rate is constant within each experiment, the to
tal amount of DNA, and hence the genome-wide muta
tion rate, varies and can thus be indirectly selected. By 
contrast, direct selection depends only on the content 
of the coding compartment, the size of which is likely to 
be positively correlated with the level of phenotypical 
adaptation (at least in our model). As a result, indirect se
lection for robustness favors shorter genomes with a low
er coding fraction, while direct selection for phenotypical 
adaptation maintains or even increases the coding size of 
the genome.

Fig. 4. Change in coding and noncoding genome sizes in reaction to changes in N or μ for the different mutational biases. Blue boxes (on the left of each 
condition) show the results with a mutational bias (left: insertion bias, right: deletion bias), and gray boxes (on the right of each condition) show the results 
without mutational bias. Depicted values are the ratio of the coding/noncoding sizes at the final generation over the value at generation 0.
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The efficacy of both direct and indirect selection increases 
with population size, since some deleterious mutations that 
were quasi-neutral for a low N can become effectively 
counter-selected in the context of a high N, changing the 
balance of beneficial vs deleterious fixed mutations. To 
quantify this effect, we measured the robustness of the indi
viduals at time 2,000,000 in the simulations without muta
tional biases. Figure 5a and b shows that the increase in 
selection efficacy induced by the increase in population 
size indeed induces both an increase in fitness (due to direct 
selection) and an increase in replicative robustness (due to in
direct selection). In terms of genomic structure, a more effi
cient direct selection (i.e. a weaker random drift) is thus 
expected to increase the coding genome size, and a more ef
ficient indirect selection is expected to decrease the overall 
genome size. The combination of both these effects leads 
to a decrease in the noncoding genome size, and mainten
ance of the coding genome size, as exemplified by Fig. 1b 
and c. Conversely when the population size is reduced, the 
increased drift leads to the loss of coding sequences and in
flation of the noncoding compartment (Fig. 1b and c). This 
reorganization of the genome structure is associated with 
a loss in robustness (Fig. 5b).

In Aevol, genomes undergo different types of mutations 
that can be roughly grouped into local mutations (substitu
tions, InDels) and chromosomal rearrangements (duplica
tions, deletions, inversions, translocations). Both kinds of 
events don’t have the same effect on robustness. Figure 5c
shows the change in robustness induced by the different 
types of events. It shows that the loss and gain in robustness 
are driven by chromosomal rearrangements. In contrast, lo
cal mutations (substitutions and InDels) do not have a signifi
cant effect on robustness.

In the case of an increased mutation rate, things are very 
different: a sudden increase in μ results in an immediate 
drop in robustness at the beginning of the experiments 
(Fig. 6a). As the proportion of offspring that bears mutations 
rises with μ, we go from an initial robustness of 92% for μ0, to 
71% for 4μ0, and only 26% for 16μ0. In these new conditions, 

organisms are no longer able to transmit their genome to the 
next generation without deleterious mutations, and thus the 
indirect selection for robustness becomes temporarily stron
ger than the direct selection for phenotypical adaptation. 
Indeed, features that would not be accurately inherited can
not be selected. This indirect selection for robustness leads 
to the fixation of mutations that drastically decrease genome 
size, even at the cost of a loss of fitness for the individuals (see 
Fig. 6b): the only lineages that survive in the long term are 
those that have undergone a decrease in genome size, allow
ing them to reduce their per-genome mutation rate, thus re
gaining some robustness (see Fig. 6c). Once the robustness 
has increased sufficiently, direct selection for phenotypical 
adaptation can resume and the fitness starts to increase again 
(see Fig. 6b). Interestingly, organisms manage here to con
tinue to lose some coding base pairs while increasing their fit
ness, probably thanks to global genome restructuring 
allowing for a more compact encoding of the phenotype, 
for example, through overlapping genes. This dynamic is 
very different from when N is increased (and so the initial ro
bustness is unaffected), as shown by Fig. 6d, e, and f.

Notably, robustness does not reach values as high as that 
observed before the increase in mutation rate and stays below 
50%. Indeed, the genome size could not be divided by 16 
while keeping a good enough phenotypical adaptation, and 
the selection for phenotypical adaptation becomes stronger 
than the selection for robustness as soon as some organisms 
can pass on their genomic information reliably enough.

The interplay between direct and indirect selection can 
therefore explain both types of genome size reduction: af
fecting both coding and noncoding compartments (al
though not proportionally) when caused by an increased 
mutation rate, and restricted to the noncoding compart
ment when caused by an increased population size.

Discussion
We found that, in our experiments, genome size reduction 
can be caused by an increase in population size, mutation 

Fig. 5. Fitness gain a) and Robustness (b: overall and c: by mutation type) at the end of the simulations, for different population sizes N and without mutational 
biases. Robustness is defined as the proportion of neutral offspring. The mutation rate is fixed to 10−6 per base pair for each type of mutation.
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rate, or both, even in case of mutational biases. These 2 fac
tors can nevertheless be distinguished, as they have different 
effects on the coding and noncoding sequences of the gen
ome. Their combination in various proportions can create a 
broad range of alternative patterns of genome size and cod
ing density. In particular, by playing independently on muta
tion rate and population size, our model can reproduce the 2 
extreme but different cases of genome size reduction that 
are seen in some endosymbionts and cyanobacteria. As 
an example, Prochlorococcus marinus is known to have 
lost both some parts of its coding and noncoding genome, 
although in different proportion such that its coding density 
has increased (Dufresne et al. 2005; Batut et al. 2014; 
Giovannoni et al. 2014). In our model, this would correspond 
to a population undergoing an increase in population size 
and a slight increase in mutation rate, which is coherent 
with the scientific literature on Prochlorococcus marinus 
(Hu and Blanchard 2008; Marais et al. 2008), although the 
large effective population size of this species has been re
cently debated (Chen et al. 2022; Filatov and Kirkpatrick 
2024). On the other hand, Buchnera aphidicola has con
served its coding proportion but greatly reduced its total 
genome size (Moran and Mira 2001), which could be ex
plained in our model by an increase in mutation rate and a 
decrease in population size, in similar proportions. This sug
gests that indirect selection for shorter genomes through ro
bustness selection could be a key factor playing on genome 
evolution (Wilke et al. 2001; Gabzi et al. 2022), and especial
ly on the evolution of genome size and structure.

Our observations confirm those made by Lynch and 
Conery (2003), namely that an increased genetic drift, here 
associated with a decreased population size, increases the 
genome size. Our results also point toward an equilibrium 
genome size: a sufficient number of genes makes it possible 
to fine-tune the phenotype to the environment, but the gen
ome also has to be short enough to prevent the degeneration 
caused by an excess of chromosomal rearrangements (Knibbe 
et al. 2007; LaBar and Adami 2020). Increasing the mutation 
rate or the population size displaces this equilibrium toward 
shorter genomes, either through a more efficient genome 
purification of noncoding sequences (when increasing N) or 
a loss of both coding and noncoding sequences to recover 
a minimal level of robustness (when increasing μ). Of course, 
mutational biases (regarding the balance between insertions 
and duplications versus deletions) also play an important 
role in determining the equilibrium genome size. In particular, 
deletion biases have been suggested as one main reason ex
plaining why bacterial genomes remain small (Mira et al. 
2001). However, we show here that, because of the indirect 
selection for robustness, a deletion bias is not needed to pre
vent a runaway inflation in the size of genomes. Instead, se
lection for robustness provides a counteracting force that 
increases with genome size, eventually offsetting any under
lying bias in favor of insertions or duplications. Importantly, 
this indirect selection was not postulated in the model but 
emerged spontaneously in the simulations.

We propose an evolutionary mechanism consisting 
of a trade-off between direct selection for phenotypical 

Fig. 6. Robustness, fitness, and genome architecture across generations for μ = 1.6 × 10−5 (16μ0) per base pair for each mutation type and N = 1,024 (N0) 
(top row, panels a, b, and c) and N = 16,384 (16 N0) and μ = 1 × 10−6 (μ0) per base pair for each mutation type (bottom row, panels d, e, and f). Lines re
present the mean values across the 50 simulations, and the shaded areas represent the standard deviations.
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adaptation and indirect selection for replicative robustness. 
In this respect, mutations appear to be a weak selective 
force, as pointed out by Lynch and Walsh (2007). 
However, the emphasis was previously on the mutational 
targets contributed by genomic features, such as introns. 
Here, we emphasize another aspect, which seems to have 
been overseen thus far: any nonfunctional DNA represents 
an additional target for initiating macroscopic mutational 
events that can eventually impact the coding genome. This 
mechanism requires no additional hypotheses and is very 
general. It should therefore be pervasive in the living world.

Sung et al. (2012) have observed that, in real popula
tions, the mutation rate scales negatively with both the 
population size and the amount of coding DNA. They pro
pose that this is a consequence of selection for lower per- 
base mutation rates induced by the amount of coding 
DNA. Here, thanks to the use of fixed mutation rates, we 
have shown that the mutation rate can select the amount 
of DNA, including both the coding and noncoding com
partments. This points towards the per-genome mutation 
rate being the relevant value, which can evolve due to 
changes in genome size and per-base mutation rate. This 
calls for further experiments in which both the genome 
size and the per-base mutation rate would be allowed to 
evolve, to study their relative speed of adaptation and their 
contribution to the variation of the per-genome mutation 
rate.

Although our main focus was on the final equilibrium 
reached by the populations after a change in N or μ, our ob
servations are broader than the end equilibrium as we can 
observe the temporal dynamics (Fig. 6 and supplementary 
S3–S15, Supplementary Material online). In particular, we 
observe that, when the mutation rate increases strongly, 
the fitness immediately drops drastically (Fig. 6b). This can 
be related to an error-threshold crossing mechanism 
(Eigen 1971; Takeuchi and Hogeweg 2007; de Boer and 
Hogeweg 2010): individuals can no longer pass on to their 
descendants all the information contained in their genome. 
They therefore lose fitness, and the lineage that survives in 
the long term is the one where genomes greatly reduced in 
size in the early phase of the experiment, thus reducing the 
number of mutations per replication event and finally 
reaching a point at which the information can be passed 
on reliably. The detailed aspects of these temporal dynam
ics could be the focus of future work. Indeed, it has been 
shown that genome reduction in endosymbionts occurred 
very quickly after the endosymbiosis became effective 
(Moran 2003; Wernegreen 2015), which is also what we 
observed in our data (Fig. 6).

In our experiments, N × μ stands out as a determining 
factor of some (although not all) aspects of genome struc
ture, as isoclines of identical N × μ values display similar 
coding densities, even in the case of reduced genomes or 
mutational biases. Understanding this invariant is one of 

the most exciting perspectives opened by our work. Its im
portance has already been highlighted by Lynch et al. 
(2006) in organelles, but our results suggest that this joined 
factor of drift and mutational pressure is a determinant of 
genome evolution throughout the tree of life. Notably, 
there is a small variation in coding fraction along N13:17μ 
isoclines, which could be due to our use here of population 
size (N) instead of effective population size (Ne). Indeed, in 
our setup, the competition is local and thus Ne is slightly 
greater than N, but this relationship is not linear (see 
supplementary material S1, Supplementary Material
online). Further versions of the model could rely on various 
measures of the effective population size to reach more ac
curate predictions, but we believe that our results can be in
terpreted nonetheless, as changes in population size and in 
effective population size are very similar over the range of 
population sizes tested here (see supplementary material 
S1, Supplementary Material online).

In order to allow for a fair quantitative comparison be
tween the effect of mutation rates and population size, 
the amplitudes of the variations applied to the 2 parameters 
were similar in our experiments. In biological species, the 
range of variation in mutation rates is much narrower than 
the range of variation in effective population size, as shown 
by Lynch et al. (2023). Hence, given our explanatory mech
anism, the observed range of variations in genome size is 
likely to be driven mainly by changes in N. However, our re
sults show that μ and N do not play an identical role. Indeed, 
variations in N change solely the noncoding size of the gen
ome, while the variation in μ impacts both the coding and 
the noncoding sizes. Therefore, even a small variation in μ 
compared with a variation in N could be significant in deter
mining genome architecture trajectories. This highlights that 
the correlation of N and genome size is not enough to under
stand genome evolution and that μ, as well as any underlying 
mutational bias, also needs to be taken into account as a de
termining factor.

In this paper, we specifically focused on the effect of the 
variation in population size and mutation rates on genome 
size. Of course, it does not imply that the mechanism we 
identified is the only one, and various additional ones can 
also impact genome size evolution. For instance, there 
can be a limitation in available resources for nucleotide pro
duction, constraining the total genome size (Ngugi et al. 
2023). In the case of endosymbiosis, exchanges can also 
happen between the host and the endosymbiont genomes, 
hence contributing to its streamlining (Bock 2017). 
Recombination could also further complicate the picture 
by adding a new type of mutation with unexpected interac
tions. More importantly, mobile genetic elements, and 
transposable elements (TE) in particular, are often proposed 
as one of the main drivers of genome expansion (Marino 
et al. 2024), especially in populations with small effective 
population sizes that could not eliminate them efficiently 
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due to the low selective pressure (Lynch and Conery 2003). 
TE invasions have been shown to increase dramatically gen
ome size in eukaryotes (Kidwell 2002; Oggenfuss et al. 
2021), although van Dijk et al. (2022) have demonstrated 
that they can also lead to streamlining in prokaryotes be
cause genome reduction prevents their invasion. We did 
not test their impact here, but our results show that the ef
fect of the variations in population size and mutation rate is 
conserved, even in case of a strong insertion bias (Fig. 4 and 
supplementary figure S2, Supplementary Material online). 
This enables us to conjecture that mobile elements 
would change the equilibrium genome size (as observed 
in our simulations, Figs. 4 and supplementary figure S2, 
Supplementary Material online), and probably drastically in
crease the variance of observed sizes, but that they are un
likely to change the response of genome size evolution to 
changes in μ or N. This remains however to be tested.

To conclude, our experiments show that genome size re
duction can occur in 2 very different conditions for bacteria. 
On the one hand, a very large population size promotes a 
more efficient selection in the face of random drift, which 
in turn enhances the robustness of genomes by decreasing 
their noncoding load. This corresponds to streamlining and 
leads to genomes with a high coding density. On the other 
hand, a higher mutation rate results in an instantaneous de
crease in the robustness of genomes in the entire popula
tion, making the selection for robustness transiently 
stronger than the selection for phenotypical adaptation. 
The genome then shrinks rapidly, with both coding and 
noncoding sequences being discarded until a new robust
ness equilibrium is reached, all this at a substantial initial 
cost in phenotypical adaptation. This corresponds to a de
caying genome and is compatible with empirical observa
tions in endosymbiotic bacteria (Moran 2003). Strikingly, 
this remains true even in the presence of a mutational 
bias. Although the model that we propose here, of a bal
ance between selection for robustness and selection for 
phenotypical adaption, can explain the tendencies we ob
serve and the final genome structures in our populations, 
further work is needed to understand the transient regimes 
and the mechanisms behind the constant coding fraction 
along the N × μ isoclines.

Materials and Methods

The Aevol Framework

Aevol (Knibbe et al. 2007; Banse et al. 2023) is an 
individual-based forward-in-time simulation software that 
has been specifically designed to study the evolution 
of genome structure. It emulates a population that is 
composed of a fixed number of individuals on a grid 
(Fig. 7a). Each individual owns a double-stranded circular 
genomic sequence, composed of 0s and 1s. To compute 

the phenotype, sequences on the genome are recognized 
as promoters and mark the start of transcription, which 
stops when a sequence able to form a hairpin structure is 
encountered. On RNAs, Shine-Dalgarno-like sequences fol
lowed by a START codon mark the beginning of translation. 
The RNA sequence is then read 3 bases at a time until a 
STOP codon is encountered on the same reading frame. 
An artificial genetic code allows for each sequence of co
dons to be converted into a mathematical function, and 
the sum of all functions encoded on the genome defines 
the phenotype of the individual (Fig. 7b). The distance be
tween this function and a target function, which represents 
the ideal phenotype in the specified environment, gives the 
fitness of the individual with a scaling factor k that tunes the 
strength of the selection. A detailed explanation can be 
found on the dedicated website www.aevol.fr.

All individuals are replaced at each generation following a 
spatialized Wright–Fisher model. The number of descen
dants of each individual depends on its fitness difference 
with its neighbors. At each reproduction event, point muta
tions or genomic rearrangements can occur (Fig. 7c). They 
create diversity in the genomes, hence in the phenotypes, 
and allow the genome size and structure to change. These 
changes can be neutral or not, depending on whether muta
tions alter coding and/or noncoding sequences. These 
changes do not have a predefined effect on the fitness of 
the offspring as their genomes will be decoded thereafter, 
thus the model does not impose an a priori genome structure 
and allows us to study the evolution of genome architecture 
in various experimental conditions.

The mutation rate (in bp−1) is set for each type of muta
tion independently. When all mutation rates are equal, 
there is in an equal probability of losing or gaining base 
pairs. The size distribution of InDels is uniform in [1, 6], 
and the size distribution of large deletions and duplications 
is uniform in [1, L] (with L the genome length).

Experimental Design

Wild Types

In order to observe changes in genome architecture in
duced by changes in the population size and/or mutation 
rates, we begin our experiments from pre-evolved organ
isms, which are called “WT”. Having already evolved for 
millions of generations under constant conditions, WTs 
are very stable in genome structure and well adapted to 
their environment (although the fitness never stops increas
ing). Five different WTs were used for our experiments, all 
having evolved for 10 million generations at the basal con
ditions of N0 = 1,024 individuals and a mutation rate of 
μ0 = 10−6 mutations per base pair per generation for 
each type of mutations (point mutations, small insertions, 
small deletions, inversions, duplications, large deletions, 
and translocations). Importantly, in this experiment, all 
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Fig. 7. The Aevol model. a) Individuals are distributed on a grid. At each generation, the whole population replicates according to a Wright–Fisher replication 
model, in which selection operates locally within a 3 × 3 neighborhood. b) Each grid cell contains a single organism described by its genome. Genomes are 
decoded through a genotype-to-phenotype map with 4 main steps (transcription, translation, computation of protein functions, and computation of the 
phenotype). Here, for illustration purposes, a random gene and the corresponding mRNA are colored in red. The red triangle represents the function of 
this gene in the mathematical world of the model. The phenotypic function is calculated by summing all protein functions. The phenotype is then compared 
with a predefined target (in green) to compute the fitness. The individual presented here has evolved in the model during 500,000 generations. c) Individuals 
may undergo mutations during replication. Two example mutations are shown: A small insertion (top) and a large deletion (bottom). Top: A 1 bp insertion 
occurs within a gene. It causes a frameshift, creating a premature stop codon. The ancestral function of the gene is lost (dashed triangle) and the truncated 
protein has a deleterious effect (red triangle). This leads to a greater divergence between the phenotype and the target (orange area on the phenotype). 
Bottom: The deletion removes 5 genes. The functions of 2 of them can be seen in the box (dotted triangles). This results in a large discrepancy between 
the phenotype and the target (orange area on the phenotype).
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types of mutations are equally probable: there is no muta
tional bias toward the insertion or deletion of base pairs. 
Bacterial populations are very large and cannot be directly 
modeled owing to computational load. We hence limit 
the population sizes in our experiments, but compensate 
by increasing the mutation rates such that the N × μ param
eter is of the same order of magnitude as for real bacterial 
populations. Finally, to limit the effect of drift, we used a se
lection strength k = 1,000, which is relatively high and 
guarantees an efficient selection. The fitnesses and genome 
structures of the WTs are listed in Table 1.

Experimental Conditions

A range of population sizes increases or decreases and muta
tion rates increases, as well as some combinations of both, are 
tested. All conditions are listed in Table 2 below. For each 
combination of conditions, 10 replications of each of the 5  
WTs are run. Initial populations are always clonal: all indivi
duals are identical to the specific WT used for the run.

Data Analyses

To analyze the simulations, we reconstruct the ancestral 
lineages of the final populations. To this end, simulations 
are run for 2,100,000 generations, and we identify all the 
ancestors of a random individual of the final population. 
We then study the data from generation 0 to generation 
2,000,000 and ignore the last 100,000 to ensure that the 
final population has coalesced and that we study the lin
eage of the whole final population.

On this lineage, we retrieve the fitness, coding, and non
coding genome size at each generation, as well as the rep
licative robustness every 1,000 generations. The replicative 
robustness is measured as the proportion of the offspring 
of an individual that has the exact same fitness as its parent, 

i.e. that underwent no mutation at all, or only purely 
neutral mutations. To estimate replicative robustness for a 
given individual of the lineage, we generate 10,000 off
springs and compare them to their parent.

To compare experimental conditions, we retrieve the indi
vidual at generation 2,000,000 in each lineage. This individ
ual is the common ancestor of the final population (at 
generation 2, 100, 000), thus ensuring that its genome 
structure has been conserved by evolution. A visualization 
of the temporal lineage data (fitness, coding fraction and to
tal, coding, and noncoding genome sizes) for the 50 replicas 
of each experimental condition is provided in supplementary 
S3 (Figures S3–S15), Supplementary Material online.

Effect of Mutational Biases

As it is often assumed that mutational biases—toward de
letions for bacteria and toward insertions for eukaryotes— 
are very important for genome size evolution (Petrov 2002), 
we also tried to confront our experiments to the impact of 
mutational biases. We tested 4 mutational biases: twice as 
many large deletions than duplications, twice as many small 
deletions than small insertions, twice as many duplications 
than large deletions, and twice as many small insertions 
than small deletions. In all cases, the sum of all mutation 
rates is conserved, such that the overall mutational pressure 
is the same as in the previous experiments.

For each mutational condition, 5 WT evolved for 
10,000,000 generations. Then, the median-sized WT of 
each mutational condition was extracted and confronted 
with either an increase or decrease in population size 
(4 × N0, N0/4) or an increase in all mutation rates proportion
ally (4 × μ0—note that, in case of bias, μ0 may be different for 
the different types of mutation) for 2,100,000 generations. 
By extracting the ancestor of the lineage at generation 
2,000,000, we could compare these experiments to the con
trol conditions (where the population size and mutation rates 
remained stable for 2,100,000 generations).

Supplementary Material
Supplementary material is available at Genome Biology and 
Evolution online.
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