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POMDP-Driven Cognitive Massive MIMO Radar:
Joint Target Detection-Tracking In Unknown

Disturbances
Imad Bouhou, Stefano Fortunati, Leila Gharsalli, Alexandre Renaux.

Abstract—The joint detection and tracking of a moving target
embedded in an unknown disturbance represents a key feature
that motivates the development of the cognitive radar paradigm.
Building upon recent advancements in robust target detection
with multiple-input multiple-output (MIMO) radars, this work
explores the application of a Partially Observable Markov Deci-
sion Process (POMDP) framework to enhance the tracking and
detection tasks in a statistically unknown environment. In the
POMDP setup, the radar system is considered as an intelligent
agent that continuously senses the surrounding environment,
optimizing its actions to maximize the probability of detection
(PD) and improve the target position and velocity estimation,
all this while keeping a constant probability of false alarm
(PFA). The proposed approach employs an online algorithm
that does not require any apriori knowledge of the noise statis-
tics, and it relies on a much more general observation model
than the traditional range-azimuth-elevation model employed
by conventional tracking algorithms. Simulation results clearly
show substantial performance improvement of the POMDP-based
algorithm compared to the State-Action-Reward-State-Action
(SARSA)-based one that has been recently investigated in the
context of massive MIMO (MMIMO) radar systems.

Index Terms—Cognitive Radar, massive MIMO radars, Track-
ing, Partially Observable Markov Decision Process, Wald test.

I. INTRODUCTION

Cognitive radar, first introduced by Haykin in [1], represents
a major advancement in radar technology by incorporating
cognitive processing capabilities. Unlike traditional systems,
the cognitive radar continuously learns from its environment,
dynamically optimizing its waveforms and operational param-
eters through real-time feedback between the transmitter and
receiver. This intelligent feedback loop significantly enhances
system adaptability and performance [2].

Drawing inspiration from the biological perception-action
cycle, cognitive radar systems actively perceive their envi-
ronment, learning crucial information about the targets and
background noise. This acquired knowledge enables intelli-
gent waveform choices, as demonstrated in [3] or adaptive
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waveform selection using Bayesian approaches [4], resulting
in a highly agile and responsive systems.

Some surveys [5], [6] have examined cognitive radar’s prac-
tical applications, challenges, and efficient decision-making
capabilities in dynamic environments by linking it to machine
learning, optimization, and Bayesian filtering approaches to
make the transmitter fully cognitive and functional.

In this work, we consider a MMIMO radar whose goal is
to detect and track a target embedded in a non-Gaussian dis-
turbance with unknown statistical properties. The fact that the
radar is composed of a “massive” number of antenna channels
enables us to achieve remarkable robustness properties that
allow us to obtain performance guarantees in a much more
general scenario than the standard and unrealistic Gaussian
case. Specifically, as shown in [7], the massive amount of
virtual antenna channels allows for the derivation of a robust
Wald-type detector able to guarantee a Constant False Alarm
Rate (CFAR), even when the distribution of the noise is
unknown, as long as its second-order moment decays at a
polynomial rate.

However, despite its notable CFAR capacity, the robust
Wald-type detector cannot automatically maximize the PD, un-
like Neyman-Pearson-based detectors, since the noise statistics
remain unknown. To address this crucial aspect, the authors in
[8], [9] proposed a Reinforcement Learning (RL) strategy that
maximizes the probability of detection PD using the SARSA
algorithm to sequentially adjust the MMIMO waveform ma-
trix without needing apriori knowledge of the disturbance
statistics. While the algorithm proposed in [8], [9] effectively
detects weak targets in stationary or slow-moving scenarios,
it experiences significant performance degradation in highly
dynamic environments. In such cases, maximizing the PD is
insufficient, and tracking capabilities must be incorporated into
the MMIMO framework.

Traditional radar tracking methods model disturbances with
additive, zero-mean, Gaussian distributions (with possibly
unknown covariance matrix) and use the traditional range-
azimuth-elevation model as an observation model. This con-
ventional framework enables the application of Bayesian filter-
ing techniques, which were previously employed by cognitive
radar frameworks in [1], [10], [11] to estimate the current
environmental state and predict its evolution.

To overcome these two critical limitations, i.e., i) the need
for apriori knowledge of the disturbance statistics and ii) the
stationarity of the targets, this work proposes a cognitive
radar framework that is based on a MMIMO radar system
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able to merge the robustness/CFAR property of the Wald-
type detector [7] with the ability of Reinforcement Learning
(RL)-based algorithm to maximize the PD while enhancing
tracking performance. Specifically, to address the possible
non-stationarity of the scenario, the joint detection-tracking
problem is modeled as a Partially Observable Markov Decision
Process (POMDP) [12]. In simple terms, the “observable part”
of the process is the detection made by the robust Wald-
type detector and the inherent estimation of the target power.
However, the “unobservable part” — that must instead be
deduced from the observations — is the target’s actual state,
specifically, its Cartesian coordinates in a given reference
frame and the relevant velocity vector.

POMDPs, as opposed to a Markov Decision Process (MDP),
can handle sequential decision-making when the states are
considered to be hidden. The agent when handling POMDPs,
has to make actions based on the history of all the observations
it received in the past. POMDPs are hard to solve, so approxi-
mation approaches are used, such as Deep recurrent Q-learning
networks (DRQN) [13] or online-learning algorithms that are
based on the UCT algorithm [14] like Partially Observable
Monte-Carlo Planing (POMCP) [15].

In radar applications, some previous works have adopted
the POMDP design to track targets. For instance, in [16], the
authors proposed a DRQN equipped with an attention-head
[17] in addition to a long-short term memory (LSTM) to be
able to track a changing number of targets. In [18], [19], the
authors applied Deep Q-learning Networks (DQN) [20] and
managed to improve tracking precision. However, both DQN
and DRQN frameworks are affected by the same limitation:
they require a representative dataset of the environment. This
may be an unrealistic requirement since it would be difficult
to collect a training dataset that contains examples for all
the potential scenarios, given all the possible disturbance
distributions and all the potential target trajectories. For this
reason, it is preferable to use online algorithms that plan and
adapt themselves sequentially to the information gathered in
real-time.

Some previous works have already exploited online POMDP
solvers to handle target tracking in radar applications; for in-
stance, in [21], the authors showed that the use of Monte Carlo
Tree Search with double progressive widening (MCTS-DPW)
[22] improves tracking performance. A similar approach was
proposed in [23] but with more guidance to how the tree search
explores the action space, and this is done using Voronoi
progressive widening (MCTS-VPW)[24].

In this work, we propose an original approach able to merge
the POMCP machinery with the statistical robustness of the
robust Wald-detector [7] in order to come up with an algorithm
providing nearly optimal tracking performance in the presence
of unknown disturbance statistics. The “disturbance agnostic”
capacity represents the crucial advantage of our proposed
method with respect to competing algorithms, e.g., [23] and
[21], that require the apriori knowledge of the disturbance
distribution. Further details on this fundamental point are
detailed in II-C.

Notations: In this paper, matrices are denoted by uppercase
letters A and vectors by lowercase letters a. (·)T , (·)H , and

(·)∗ represent transpose, conjugate transpose, and complex
conjugate, respectively. IN is the N × N identity matrix
and 0N is a zero vector of size N . ⊗ denotes Kronecker
product. A closed intervals between a and b is denoted as [a, b],
and sets as {a, b}. | · | is the absolute value. For probability
distributions, the chi-squared distribution with k degrees of
freedom is denoted as χ2

k (δ), where δ is the non-centrality
parameter (then the distribution is central if δ = 0). The
real Gaussian distribution with mean µ and a variance σ2 is
represented asN

(
µ, σ2

)
(and CN

(
µ, σ2

)
when it is a circular

complex Gaussian). Finally, the exponential distribution with
a rate parameter x is written as Exp(x).

II. PROBLEM FORMULATION
This section presents the radar system model, defines math-

ematically what is a POMDP, and summarizes the POMCP
algorithm employed in this paper.

A. System Model

The MMIMO signal model considered here is the same
as the one used in [7] and [8]. To avoid redundancy, in the
following, we recall only the main points that are needed for
the subsequent derivations while we refer to [7] and [8] for
an in-depth description.

We consider a co-located MIMO radar equipped with NT

transmit and NR receive physical antennas. Following the
standard MIMO theory, we indicate as N = NTNR the
total number of virtual spatial antenna channels. The radar
field of view is assumed to be discretized into L angle bins
{θl; l = 1, .., L}, and in total the system transmits Tmax scans,
t ∈ {0, .., Tmax − 1}. Therefore, the detection problem can be
re-formulated for an angle bin l and a time step t as [8], [7]:

H0 : yt+1,l = ct+1,l,

H1 : yt+1,l = αt+1,lvt,l + ct+1,l,
(1)

where ct+1,l ∈ CN is a random vector of unknown probability
density function pC , representing the disturbance. We assume
that the N entries of the disturbance vector are sampled from
a circular complex random process {ct+1,l,n,∀n}. We only
assume that its auto-correlation function exists and decays at
least at a polynomial rate [7, Assumption 1]. The unknown
deterministic scalar αt+1,l ∈ C stands for the radar-cross sec-
tion and the two-way path loss. The known vector vt,l ∈ CN

is defined as in [7] and [8]:

vt,l = (WT
t aT (θl))⊗ aR(θl), (2)

where Wt ∈ CNT×NT is the waveform matrix and aT (θl) and
aR(θl) are the transmit and receive steering vectors, assumed
to be perfectly known. The waveform matrix Wt that focuses
the transmitted energy on angle bin θl is determined by solving
the following optimization problem [25], [26]:

maxW aTT (θl)WWHa∗T (θl)

s.t. Tr(WWH) = PT ,
(3)

where PT is the total transmit power of the radar.
Clearly, the waveform matrix Wt is a solution to (3) if and
only if it is a square-root of the matrix PT

NT
a∗T (θl)a

T
T (θl).
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As shown in [7], the hypothesis testing problem in (1) can
be solved using the following robust Wald-type test:

Λt+1,l = 2|α̂t+1,l|2
||vt,l||4

vH
t,lΣ̂t+1,lvt,l

H1

≷
H0

λ, (4)

where Σ̂t+1,l is an estimator of the disturbance covariance
matrix that can be computed the same way as in [7], [27],
while α̂t+1,l = (vH

t,lyt+1,l)/||vt,l||2 is an estimator of the
parameter αt+1,l. The threshold λ is chosen to keep the
probability of false alarm below a predetermined value, say
PFA, by solving the following equation:

PFA = Pr{Λt+1,l > λ|H0}. (5)

In [7], the authors proved that Λt+1,l|H0 ∼
N→∞

χ2
2(0). There-

fore, (5) becomes:

PFA =
N→+∞

exp(−λ/2). (6)

The threshold λ is computed by choosing a desired PFA using
λ = −2log(PFA).
The probability of detection PD is defined by the equation:

PD = Pr{Λt+1,l > λ|H1}. (7)

In [7], the authors proved that Λt+1,l|H1 ∼
N→∞

χ2
2(ζt+1,l)

where ζt+1,l = 2|αt+1,l|2||vt,l||4/(vH
t,lΣvt,l) and Σ is the

true unknown disturbance covariance. Therefore, (7) becomes:

PD =
N→+∞

Q1(
√
ζt+1,l,

√
λ), (8)

where Q1 is the Marcum Q function of order 1.
Given that the probability density function of the disturbance
pC is unknown, ζt+1,l needs to be estimated by Λt+1,l. Hence,
the probability of detection can be approximated by:

PD ≃
N→+∞

Q1

(√
2|α̂t+1,l|2

||vt,l||4
vH
t,lΣ̂t+1,lvt,l

,
√
λ

)
. (9)

The waveform matrix Wt has to be chosen to maximize the
probability of detection PD.

B. Reinforcement learning (POMDPs): a recall

Reinforcement learning (RL) is a branch of machine learn-
ing in which an agent learns to make decisions by interacting
with an environment [28]. The main goal is to maximize a
cumulative reward over time. In this framework, the agent
explores various actions, observes their consequences, and
adjusts its strategy accordingly.

A POMDP [12] can be described by the tuple
(S,O,A,P,Ω,R), where S represents the set of states, O
represents the set of observations, A the set of available
actions. The state transition probabilities

Pa
s,s′ = p(St+1 = s′|St = s,At = a), (10)

define the likelihood of transitioning from the current state s to
a new state s′ after taking action a. Similarly, the observation
probabilities

Ωa
s′,o = p(Ot+1 = o|St+1 = s′, At = a), (11)

specify the likelihood of observing o after executing action a
and arriving at state s′. Finally, Ra

s,s′ is the reward obtained
after executing action a, being in a state s and reaching state
s′. Additionally, one needs to define other quantities useful for
the following. For instance, a history ht is defined by:

ht = (a0, o1, ..., at−1, ot), (12)

which is a sequence of the previously taken actions and the
obtained observations. The agent’s goal is to develop a policy

π(a|h) = p(At = a|Ht = h), (13)

that maps histories to a probability distribution over actions.
In addition to the history, the agent can also build a posterior
distribution:

b(s|h) = p(St = s|Ht = h), (14)

called the belief state.
In the POMDP, the value function Vπ(h) is the expected return
starting from a history h and following a policy π,

Vπ(h) = E


∞∑
t=0

γtRat
st,st+1

h0 = h; s0 ∼ b(.|h0)

t ≥ 0 : at ∼ π(.|ht)

t ≥ 0 : st+1 ∼ Pat
st

t ≥ 0 : ot+1 ∼ Ωat
st+1

ht+1 = (ht, at, ot+1)

 , (15)

where γ ∈ (0, 1) is called the discount factor. The optimal
value function V ∗(h) = maxπ V (h) is the value function
computed with the optimal policy π∗.
When the agent has executed an action a and observed an
observation o, it has to update the belief state with the new
information (a, o) using the following equation:

b(s′|h, a, o) ∝ Ωa
s′,o

∑
s
Pa
s,s′b(s|h). (16)

C. POMCP algorithm

The POMCP algorithm [15] is an online planning algorithm
in large POMDPs when both the actions and observations
are discrete. It is an extension of the UCT algorithm [14] to
POMDPs by building a MDP whose states are defined by
histories.
The POMCP needs a black-box generator G(s, a) = (s′, o, r)
where r = Ra

s,s′ , instead of knowing the distributions P
and Ω explicitly. The POMCP tree is initialized at the root
with a belief set B, an estimation of the belief state b(s|h),
containing Np unweighted particles.
In Fig. 1, each red node in the tree contains
(V (h), N(h), B(h)), representing the value of the history h,
the number of times h has been visited, and the belief set,
respectively. The red nodes (V (h), N(h), B(h)) have blue
children nodes defined by (Q(h, a), N(h, a)) for all possible
actions a ∈ A. Here, N(h, a) is the number of times where
action a was taken in history h, and Q(h, a) is the value of
being in history h followed by the execution of the action
a. Blue nodes generate an observation o, leading to new
red child nodes. These new nodes are characterized by an
updated history combining the previous history h with the
new information pair (a, o).
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V (h)
N(h)
B(h)

Q(h, a1)
N(h, a1)

Q(h, a2)
N(h, a2)

V (ha1o1)
N(ha1o1)
B(ha1o1)

V (ha1o2)
N(ha1o2)
B(ha1o2) V (ha2o2)

N(ha2o2)
B(ha2o2)

Q(ha1o2, a1)
N(ha1o2, a1)

V (ha1o2a1o1)
N(ha1o2a1o1)
B(ha1o2a1o1)

a1 a2

o1 o2 o2

a1

o1

rollout

Fig. 1: POMCP Tree illustration with two actions and two
observations.

The agent runs Nsim simulations through the tree search and
computes the value of the current history V (h) at the root of
the tree. Algorithm 1 presents the simulation process. It starts
by sampling a state from the belief set B at the root of the
tree and then selecting the actions that maximize the Upper
Confidence Bound (UCB1) [29] criterion given the actions of
the child nodes QUCT (h, a) = Q(h, a) + c

√
log(N(h))
N(h,a) where

c is a hyperparameter set to balance between exploration and
exploitation. When a leaf is encountered, a new node is added,
from which the rollout stage begins, which consists of running
a simulation starting from the newly added node using some
rollout policy πrollout. To run the simulation through the tree,
the algorithm uses a black-box generator G(s, a).

As stated in Theorem 1 in [15], as the number of simulations
increases, the value function V (h) computed by the POMCP
at the root of the tree converges in probability to V ∗(h).
At the end of the simulations, the agent chooses the action
a∗ = argmaxa∈A Q(h, a), as shown in Algorithm 2.
After executing the optimal action and observing o, the belief
update proceeds as follows: the algorithm selects a random
particle s from B, generates (s′, o′, r) using G(s, a), and
compares o′ to o. If o′ = o, then s′ is added to the new
belief set B′. This process is repeated until the new belief B′

contains Np particles.

III. COGNITIVE RADAR AS A POMDP
In this section, we explain how the aforementioned POMDP

definitions can be fitted into the radar framework and provide
a full algorithm description. In this work, the algorithm is used
with the assumption of having only one single target in the
environment.

A. Action space

The action is related to the set of possible waveform
matrices from which the radar can choose. The radar’s angular

Algorithm 1 Simulate

1: procedure SIMULATE(s, h, depth)
2: if γdepth < ε then
3: return 0
4: end if
5: a← argmaxb Q(h, b) + c

√
logN(h)
N(h,b)

6: (s′, o, r) ∼ G(s, a)
7: if Node(h, a, o) /∈ Tree then
8: Add Node(h, a, o)
9: return ROLLOUT(s′, h, depth)

10: end if
11: R← r + γ · SIMULATE(s′, hao, depth+ 1)
12: if depth ̸= 0 then
13: B(h)← B(h) ∪ {s}
14: end if
15: N(h)← N(h) + 1
16: N(h, a)← N(h, a) + 1

17: Q(h, a)← Q(h, a) + R−Q(h,a)
N(h,a)

18: return R
19: end procedure
20: procedure ROLLOUT(s, h, depth)
21: if γdepth < ε then
22: return 0
23: end if
24: a ∼ πrollout(.|h)
25: (s′, o, r) ∼ G(s, a)
26: return r + γROLLOUT(s′, hao, depth+ 1)
27: end procedure

Algorithm 2 Solve

Require: Nsim ▷ Number of simulations.
Require: B ▷ Belief set at the root.

1: procedure POMCP(h)
2: for each simulation i = 1, .., Nsim do
3: s ∼ B
4: SIMULATE(s, h, 0)
5: end for
6: return argmaxa Q(h, a)
7: end procedure

resolution is represented by L angle bins, so the radar will have
L actions, which means, the radar can choose one waveform
matrix out of L that allows it to focus all the energy in a
single angle bin. At time step t, the radar simply chooses
an angle bin l ∈ {1, 2...L} associated with an angle θl, and
the waveform matrix Wt is computed as the solution of the
optimization problem (3), i.e., the matrix Wt is the square
root of the matrix PT

NT
a∗T (θl)a

T
T (θl).

B. State space

The state space consists of the target’s possible positions
and velocities. The state space consists of the target’s possible
positions and velocities. At time step t, the state is defined as
st = [xt, Vx,t, yt, Vy,t]

T where [xt, yt] and [Vx,t, Vy,t] denote
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the target position and velocity vectors respectively.
The following equation describes the dynamics of the target:

st+1 = Ast +Gwt, (17)

where A is the state transition block-matrix :

A =

[
Ab 02×2

02×2 Ab

]
,Ab =

[
1 ∆t
0 1

]
. (18)

The term Gwt represents the noise, and the matrix G can
also be written in block form as:

G =

[
Gb 02×1

02×1 Gb

]
,Gb =

[
∆t2/2
∆t

]
. (19)

wt ∼ N
(
02, σ

2
sI2
)
, (20)

where σs is the standard deviation of the process noise.
Given (17), the future state only depends on the current state,
i.e., in this case, the transition probability does not depend on
the action taken by the radar.

C. Observation space

At time step t, the radar chooses an action a associated with
an angle bin l from which a vector vt,l is computed, then the
radar observes the estimation of the parameter |αt+1,l| when
there is a detection.

ot+1 =

{
|α̂t+1,l| if Λt+1,l ≥ λ,

∅ otherwise,
(21)

In accordance with the classical “radar equation” theory, the
parameter |αt+1,l| exhibits an inverse proportional relationship
with R2

t+1 [30], where Rt+1 represents the range between the
target and radar.

|αt+1,l| ∝ 1/R2
t+1. (22)

In [7], it has been shown that the estimated parameter α̂t+1,l

is asymptotically distributed as:

α̂t+1,l − αt+1,l

σ̂t,l
∼

N→∞
CN (0, 1), (23)

where σ̂t,l =
√

vH
t,lΣ̂t+1,lvt,l/||vt,l||2 is given in [7].

The POMCP is an online POMDP solver when the observa-
tions are discrete. Since, in our case, according to (21), the
observation space is continuous, it must be transformed into
a discrete one by choosing a discretization step βl.
The result in (23) allows to approximate the distribution of
|α̂t+1,l − αt+1,l|2 with the exponential distribution Exp(σ̂2

t,l)
when N goes to infinity. Then, we define the discretization
step βl as the real number verifying the following condition:

Pr{
∣∣ |α̂t+1,l| − |αt+1,l|

∣∣ < βl} ≥ 0.95. (24)

It is enough that βl verifies the following condition:

Pr{
∣∣ α̂t+1,l − αt+1,l

∣∣2 < β2
l } = 0.95, (25)

to also verify the condition (24). Therefore, using the analytic
form of the cumulative distribution function of the exponential
distribution Exp(σ̂2

t,l), one gets βl =
√
3σ̂t,l.

D. Reward function

The reward function should encourage the radar to detect
and track the target in the environment. In the POMDP
definition, the reward function depends on the current state
s, the taken action a, and the next state s′. The action a is
about choosing an angle bin θa where the target will be located
in the future.
Let us indicate by θs′ the true future angle bin of the target.
To encourage accurate target position prediction, the reward
function is chosen as:

Ra
s,s′ = 1{θa = θs′}. (26)

Note that the reward function here does not depend on the
current state s.

E. Simulation model

As previously stated, the POMCP algorithm [15] needs a
black-box generator G(s, a) = (s′, o, r) to be able to run
simulations through the tree search.
In the context of this paper, the noise disturbance pC is as-
sumed to be unknown, which makes the observation probabili-
ties unknown and consequently makes the POMCP impossible
to use.
Fortunately, using the asymptotic distribution of the estimated
parameter α̂t+1,l, a generator can be put in place to be used
by the POMCP and the particle filter to maintain the detection
and tracking of a target in the environment.

Algorithm 3 Generator G(st, at).
Require: st = (xt, Vx,t, yt, Vy,t)

T and action at.
Require: (σ̂l)l∈{1,..,L}.

1: st+1 ← Ast +Gwt

2: θt+1 ← GetAngleBin(st+1)
3: lt ← GetAngleBin(at)
4: αt+1 ← GetRCS(st+1) ▷ (22)
5: α̂t+1 ← CN (αt+1, σ̂

2
lt
) ▷ (23)

6: Λt ← 2|α̂t+1|2/σ̂2
lt

▷ (27)
7: if lt ̸= θt+1 then ot+1 ← ∅
8: else if lt = θt+1 then
9: if Λt ≥ λ then ot+1 ← |α̂t+1|

10: else if Λt < λ then
11: ot+1 ← ∅
12: end if
13: end if
14: rt ← 1{lt = θt+1}
15: return (st+1, ot+1, rt)

In the Algorithm 3, the GetAngleBin function deter-
mines the angle bin based on the target’s coordinates or the
radar’s action. The GetRCS function computes the parameter
αt+1,l = |αt+1,l|ejϕ, where ϕ is uniformly sampled from
(0, 2π). According to (22), the magnitude |αt+1,l| depends
on the target’s position.

This proposed generator requires parameters (σ̂l)l∈{1,..,L}
to be used in the asymptotic relation (23). To simulate the
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detection, the decision statistic can be reformulated using σ̂2
t,l

to obtain the following equation:

Λt+1,l = 2|α̂t+1,l|2/σ̂2
t,l. (27)

The decision statistic inside the generator will take the same
format as in (27) by replacing σ̂t,l with σ̂l.
The generator will be used by the POMCP to run simulations
in the tree search and will also be used by the unweighted
particle filter to make predictions and fill up the belief set.

IV. COGNITIVE RADAR DESIGN

This section introduces an unweighted particle filter capable
of handling distribution agnostic observation models and then
explains how the POMCP is incorporated into the cognitive
radar framework.
Unlike standard tracking tasks with known observation mod-
els, our scenario involves an unknown observation model
due to the unspecified disturbance pC . To address this, the
typical particle filter is replaced with an unweighted version.
Additionally, note that it is employed with a non-standard
observation model, departing from the conventional range-
azimuth-elevation format used in most tracking applications.

A. The particle filter

The particle filter presented in this section is exactly the
same as the one used by the POMCP to estimate the posterior.
Here, instead of running simulations inside the tree search, this
approach only makes a prediction about the target’s position,
and given that prediction, an action is selected.
At time step t, an approximation of b(.|ht) is defined by the
set Bt. Similarly to the POMCP, which is driven with rewards,
the particle filter needs to predict the future hidden state of the
target, hence, compute E(st+1|ht).
By definition of the target dynamics, the transition probabili-
ties only depend on the previous state, therefore, Pa

s,s′ = Ps,s′ .

E(st+1|ht) =

∫
s′
s′p(st+1 = s′|Ht = ht)ds

′ (28)

=

∫
s′
s′
∫
s

Ps,s′b(s|ht)dsds
′ (29)

=

∫
s

E(st+1|st = s)b(s|ht)ds (30)

= Est∼b(.|ht)

[
E(st+1|st)

]
(31)

≈ 1

|Bt|
∑
s∈Bt

E(st+1|st = s) (32)

In essence, when the particle filter computes the prediction,
it predicts the angle bin where the target will be in the future,
therefore it makes sense to select the action related to the
predicted angle bin.

B. POMCP in the cognitive radar setup

The radar chooses the orthogonal waveform matrix Worth =√
PT

NT
INT

at the beginning until there is a detection, then
it uses the observations to estimate the coordinates of the
target and initializes the velocities uniformly using an interval

[−Vmax, Vmax], where Vmax is some maximum velocity. During
this phase, the standard deviations (σ̂l)l∈{1,..,L} to use in the
asymptotic relation (23) can be computed and saved to be used
later in the generator.
In the Algorithm 4, the full cognitive radar design is presented,
and, particularly, how the POMCP is integrated into it.

Algorithm 4 Cognitive radar design.

Require: Nsim ▷ Number of simulations.
Require: B0 ▷ Initial Belief set.
Require: G ▷ A black-box generator.
Require: (σ̂l)l∈{1,..,L} ▷ Parameters for the generator.
Require: βl =

√
3σ̂l l = 1, · · · , L ▷ Parameters for the

generator.
1: for each time step t = 0, .., Tmax − 1 do
2: at ← POMCP.Solve(Nsim, Bt). ▷ Algorithm 2
3: l← GetAngleBin(at).
4: Compute Wt from l.
5: Receive the signal yt+1,l and compute observations.
6: Observe ot+1 from (21).
7: Bt+1 ← UpdateBelief(Bt, at, ot+1).
8: end for

V. SIMULATIONS

The disturbance model used here will be the same as in [8]
and is based on an auto-regressive process (AR) of order p.

cn =
∑p

i=1
ρicn−i + wn, n ∈ (−∞,+∞), (33)

The process is driven by identically independent distributed
i.i.d. t-distributed innovations wn with a probability density
function pw defined as:

pw(wn) =
µ

σ2
wπ

(
µ

ξ

)µ(
µ

ξ
+
|wn|2
σ2
w

)−(µ+1)

, (34)

where µ ∈ (1,+∞) is the shape parameter controlling the
non-Gaussianity of wn and the scale parameter is defined as
ξ = µ

σ2
w(µ−1) . In the simulations, the parameters used are p =

6 for the order of the AR process, µ = 2, σ2
w = 1 and the

coefficient vector ρ is defined as:

ρ = [0.5e−j2π·0.4, 0.6e−j2π·0.2, 0.7e−j2π·0,

0.4e−j2π·0.1, 0.5e−j2π·0.3, 0.6e−j2π·0.35]T . (35)

The number of spatial channels N = NTNR = 104, the
number of angle bins L = NT = 100, the total power PT = 1
and the probability of false alarm PFA = 10−4.
The table I contains the parameter settings of the POMCP
algorithm.

TABLE I: POMCP parameters

Parameter Value Parameter Value
Number of simulations Nsim 104 Discount factor γ 0.8

Number of particles Np 104 Time steps 100
UCB1 parameter c

√
2 Tree Depth 2



7

50 60 70 80 90 100 110 120
−70

−60

−50

−40

−30

x (km)

y
(k
m
)

50 100−18

−17

Time (s)

S
N
R

(d
B
)

Fig. 2: Study case 1: Potential trajectories with s0 =
(60km, 0.2km/s,−60km, 0.2km/s)T and noise σs = 0.03. The
inner figure represents the average of SNR trajectories.
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Fig. 3: Study case 1: RMSE between the estimated and true
coordinates of the target for each algorithm.

A step size satisfying the condition (24) is chosen as
βl =

√
3σ̂l for all l ∈ 1, . . . , L. Results are averaged over

250 Monte Carlo simulations.
To establish a lower bound for performance evaluation, we de-
fine an Oracle algorithm. The Oracle is an idealized algorithm
that knows the future angle bin containing the target (but not
its exact coordinates or velocity) and always takes the optimal
action based on this knowledge. It receives an observation and
builds a belief state. In essence, the oracle is the equivalent of
a flawless POMCP.
The POMCP, particle filter, and Oracle are compared for the
tracking task using the root-mean-square error (RMSE) for
coordinate and velocity estimation. For the detection task,
these three algorithms, along with the SARSA algorithm
and the orthogonal waveform, are evaluated based on the
probability of detection PD.

A. Study Case 1: Slow target

In this scenario, one target is considered and initialized with
s0 = (60km, 0.2km/s,−60km, 0.2km/s)T , with noise σs =
0.03. Figure 2 shows potential trajectories and the average
SNR trajectories, which start at −17dB and decrease to −18dB
after 100-time steps, i.e., most SNR trajectories decrease.

Figure 3 shows an increasing RMSE for the particle filter,
which can be explained by the fact that the target becomes
lost early on, which is confirmed in Figure 5. However, the
POMCP estimates stay close to Oracle ones.
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Fig. 4: Study case 1: RMSE between the estimated and true
velocities of the target for each algorithm.
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Fig. 5: Study case 1: Probability of detecting a moving target
for different approaches.

Figure 4 shows a bad velocity estimation at the start of
the simulation but improves as the POMCP gathers more
observations, which leads to the filtration of particles that do
not represent the hidden state.

As shown in Figure 5, the particle filter loses the target
as it moves, eventually leading to bad position and velocity
estimations. It also shows a robust performance of the POMCP
in keeping the probability of detection high, significantly
outperforming the SARSA and the particle filter, which drops
below 0.2. Given that the SNR is low, the orthogonal wave-
form does not have a high probability of detection.

B. Study Case 2: Fast target

In this scenario, one target is considered and initialized with
s0 = (60km, 0.35km/s,−60km, 0.35km/s)T and σs = 0.005.
Figure 6 shows that the target has linear trajectories given its
high speed. In the inner plot, the SNR trajectories, on average,
start from −17dB and decrease to −20dB after 100-time steps.

Figures 9, 8 and 7 present similar patterns to the previous
study case. The RMSE values for POMCP estimates demon-
strate smaller deviations from the Oracle ones than the particle
filter estimates. The detection probabilities in Figure 9 indicate
that target detection with the POMCP remains feasible under
these conditions.

Given that the SNR in this case is much lower than the
previous one, it is normal that the probability of detection
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Fig. 6: Study case 2: Potential trajectories with s0 =
(60km, 0.35km/s,−60km, 0.35km/s)T and noise σs = 0.005.
The inner figure represents the average of SNR trajectories.
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Fig. 7: Study case 2: RMSE between the estimated and true
coordinates of the target for each algorithm. The inset high-
lights the close behavior of the POMCP and Oracle curves.

with the orthogonal waveform is low. The POMCP manages
to detect a fast moving target and maintains a probability of
detection above 0.8.

C. Tuning the depth of the tree in POMCP

In the previous study cases, the depth of the tree was chosen
to be equal to 2 for two main reasons:

• Short-term planning: A shallow tree depth (2–3 steps)
is sufficient to optimize actions for the short-term goal of
estimating the hidden state at each time step.
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Fig. 8: Study case 2: RMSE between the estimated and true
velocities of the target for each algorithm.
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Fig. 9: Study case 2: Probability of detecting a moving target
for different approaches.

• Cancel the generator’s bias: Increasing the tree depth
would cause the tree’s beliefs to be dominated by particles
generated by the proposed generator G(st, at), rather than
particles obtained from real-world observations.

We compare the results obtained when the tree depth is
increased from 2 to 5, while keeping the number of particles
the same.
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Fig. 10: Results obtained by increasing tree depth from 2 to
5. (a) Study case 1, (b) Study case 2.

Figure 10 demonstrates the effects of tree depth. Increasing
the depth from 2 to 5 slightly improved Cartesian coordinate
estimation in study case 2. In the other study case, a deeper
tree caused a slight decline in position estimation accuracy,



9

while the PD and velocity estimation remained unaffected in
both study cases.
As an illustration, in the simulations, smaller tree depths are
more suitable for the highly dynamic target (study case 1). In
contrast, stable trajectories in study case 2 may have benefited
from higher tree depths.

D. Actions taken by the POMCP

This section aims to demonstrate the actions taken by the
POMCP and how they evolve over time. Given that the particle
filter performed badly, this section will only compare the
POMCP actions against the optimal actions. In essence, the
POMCP has access to L = 100 actions, which is to select
the potential angle bin θl where the target could be, and after
that, the waveform matrix is computed given the chosen angle
bin. This suggests that optimal actions depend only on the
trajectory of the target. Figure 11 confirms this suggestion as
the six examples show that the optimal action the radar should
choose changes over time.
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Fig. 11: Examples of actions chosen by the POMCP compared
to the optimal actions. (a) Study case 1, (b) Study case 2.

E. Other hyperparameters

The algorithm involves numerous hyperparameters, some
influencing the radar’s number of virtual channels N , while
others control the POMCP algorithm’s behavior. Additional
simulations were conducted by varying the PFA and the clutter

disturbance distribution (using a Generalised Gaussian for the
innovations). However, these variations yielded results consis-
tent with our previous findings, with the POMCP successfully
tracking and detecting the target. Given the similarity of these
outcomes to the presented results, we opted not to include
these additional simulations in the paper.

VI. CONCLUSION

This work presents an original POMCP framework for the
joint detection and tracking of a moving target in disturbance-
agnostic scenarios for Massive MIMO radar systems. Our
results show that POMCP maintains reliable detection proba-
bilities even under unknown disturbances, successfully track-
ing targets across varying velocities. This study validates the
POMCP as a practical solution for real-world radar applica-
tions. Future work will focus on developing a comprehensive
understanding of the impact of hyperparameters on algorithm
performance. Additionally, efforts will be directed towards
extending this framework to multi-target scenarios. This ex-
tension would involve adapting the POMDP model to handle
multiple state spaces and exploring more efficient particle
sampling strategies to manage the increased computational
complexity while ensuring real-time performance.
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