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COMPLEX COMMUNICATION NETWORKS 

MANAGEMENT WITH DISTRIBUTED AI: 
CHALLENGES AND OPEN ISSUES 

 

 

ABSTRACT 
 

The rapid evolution of communication networks, particularly with the introduction of 5G and the 

anticipated arrival of 6G, has introduced new complexities in managing traffic, routing, and resource 

allocation. Distributed Artificial Intelligence (DAI) is emerging as a promising solution to address 

challenges related to scalability, adaptability, and performance in these dynamic environments. With the 

unpredictable nature of network traffic patterns and the dynamic infrastructure of modern networks, 

effective network management is crucial for ensuring optimal resource utilization and preventing 

congestion. This is essential to maintain high performance, reliability, and scalability in today’s 

communication systems. 

This paper explores the application of AI techniques in network management, with a focus on key areas 

such as congestion control, routing management, and traffic prediction. By examining both centralized and 

distributed AI approaches—such as Multi-Agent Reinforcement Learning (MARL) —it highlights their 

potential to enhance network efficiency, improve latency, increase throughput, and reduce packet loss. The 

paper also addresses the limitations of current methods, while discussing potential future directions for AI-

driven solutions in large-scale, real-time network operations. 
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1. INTRODUCTION 
 

The rapid growth of IoT devices and applications, combined with the evolving needs of network 

operators and end-users, presents significant challenges in managing modern communication 

networks. These networks must now accommodate increasing demands, including handling 

substantial data loads, providing greater bandwidth, achieving ultra-low latency, and maintaining 

energy efficiency. 

In complex communication environments, high processing demands, unpredictable 

traffic patterns, and evolving network topologies strain resources, making efficient network 

management critical for preventing congestion and maintaining performance. Dynamic 

  

 

adaptation is essential to ensure optimal Quality of Service (QoS) metrics—such as latency, 

bandwidth, and energy efficiency—while handling massive traffic loads and ensuring real- time 

responsiveness. These factors are particularly crucial for delivering seamless, time- sensitive 

services in emerging technologies like 5G, 6G, IoT, and mobile edge computing. Traditional 

network management solutions often rely on static rules, which are inadequate for the dynamic 

and evolving nature of modern networks. This has created a need for more adaptive, intelligent 

approaches capable of managing the increasing complexity of communication networks. The 



demand for ultra-low latency, high bandwidth, and consistent QoS requires innovative, flexible 

strategies that can dynamically adapt to changing 

conditions in real time. 

Current techniques also struggle with scalability and responsiveness, underscoring the 

need for decentralized, real-time solutions to meet the challenges of today’s communication 

networks. While there has been significant research on AI-driven network management, much of 

the focus has been on centralized approaches. In contrast, less attention has been paid to recent 

advancements in Distributed AI for network management. This paper seeks to address this gap by 

exploring the latest developments in Distributed AI techniques, such as Multi-Agent 

Reinforcement Learning (MARL), specifically in the context of managing complex 

communication networks. 

This study examines various approaches to network management in complex environments, 

categorizing different strategies from the literature and evaluating their potential. We provide an 

in-depth analysis of current and emerging ML applications in communication networks, focusing 

on key areas such as congestion control, traffic prediction, and routing management. Section 2 

introduces key concepts, including complex communication networks, network management, and 

the role of machine learning (ML) and distributed AI (DAI) in these contexts. Section 3 identifies 

the core challenges faced in network management, particularly as networks grow in scale and 

complexity. In Section 5, we analyze centralized ML solutions for network management, 

assessing their strengths and limitations. In Section 6, we transition to distributed AI approaches, 

exploring how these models address the limitations of centralized systems by enhancing 

scalability, adaptability, and real-time decision-making in dynamic networks. Throughout the 

paper, we highlight both the potential and the challenges of implementing these solutions, 

providing an evaluation of current trends and open issues in AI-driven network management. 

 

 

2. CONCEPTS 
 

2.1. Complex Communication Networks 
 

Complex communication networks refer to modern and advanced networks, such as 5G, 6G, 

and large-scale IoT systems, characterized by their dynamic topologies, diverse applications, and 

varying traffic patterns. These networks must accommodate a vast number of connected devices, 

provide high data throughput, and meet stringent Quality of Service (QoS) requirements, such as 

ultra-low latency and high reliability. The complexity arises from factors like the integration of 

heterogeneous technologies, the need for real-time data processing, and the management of 

fluctuating traffic loads caused by event-driven applications and services like VR/AR. These 

characteristics make managing and optimizing such networks a challenging task, requiring 

advanced and adaptive solutions. 

These networks have been defined in various ways in the literature, emphasizing their 

irregular structure, dynamic behavior, and representation of real-world systems. Table 1 

summarizes several definitions, highlighting the diversity in how these networks are understood. 

 

 

2.2. Title Network Management 
 

Building on the concept of complex communication networks, network management aims to 

ensure efficient, secure, and reliable operation within these dynamic environments. Network 

management entails a range of different activities and concepts, including congestion control, 

routing management, traffic prediction, and performance optimization. 

In these complex networks, nodes can become overloaded due to intensive processng tasks such 

as traffic routing, data analysis, video encoding/decoding, and data encryption/decryption. 



Moreover, network bandwidth often exhibits unpredictable or chaotic patterns driven by high-

bandwidth-consuming applications like virtual reality (VR), augmented reality (AR), and mixed 

reality (XR). Consequently, the application of automated reasoning algorithms is increasingly 

necessary to allow dynamic adaptation to changes in user experience and Quality of Service 

(QoS). 

 

Congestion control (CC) is vital for preventing network overload. It manages data flow 

to minimize packet loss and latency, ensuring high throughput and maintaining network stability 

even under heavy traffic conditions. 

Routing management also plays a significant role in network management by 

determining optimal paths for data transmission. Traditionally, this involves predefined 

algorithms and protocols that can be proactive, reactive, or hybrid, each offering different 

strategies for effectively directing traffic through the network. 

Traffic prediction complements these efforts by forecasting future network traffic 

patterns based on historical data and current conditions. By anticipating changes in traffic 

behavior, the network can adapt proactively, optimizing its performance and resource allocation. 

Together, these aspects form the foundation of managing complex communication networks. 

 

 
Table 1.  Definitions of Complex Networks in Literature. 

 

Reference Definition 

[1] Networks whose structure is irregular, complex and dynamically 

evolving in time. 

[2] By definition, complex networks are networks with more complex 

architectures than classical random graphs with their “simple” 

Poissonian distributions of connections. 

[3] Complex weblike structures describe a wide variety of systems of 

high technological and intellectual importance. 

[4] For instance, there may be more than one different type of vertex 

in a network, or more than one different type of edge. And vertices or edges 

may have a variety of properties, numerical or otherwise, associated with 

them. 

 

 

2.3. Machine Learning and Distributed AI 
 

Conventional automated reasoning solutions fall short of meeting these rigorous demands 

because they rely heavily on predefined rules and static knowledge bases, which are inadequate 

for capturing the dynamic and evolving nature of modern complex networks. This necessitates 

the development of new, more adaptable approaches. 

To address this, the automated network management paradigm is shifting towards the 

integration of Artificial Intelligence (AI) techniques, including Machine Learning (ML). This 

shift aims to optimize network management operations while dynamically adapting to changing 

network conditions and user requirements. Particularly in the realm of future mobile 

communication networks like 6G, the stringent QoS demands necessitate a comprehensive 

approach to an increasingly intricate communication environment. This environment is marked 

by exponential growth in network traffic due to applications, video streaming, VR/AR/XR; the 

extensive deployment of IoT devices; the proliferation of mobile edge computing; and the 

emergence of highly dynamic network topologies. 



While numerous ML techniques have been proposed for network management, most rely on a 

centralized controller for network-wide monitoring and decision-making. Despite simplifying 

network operations, these centralized ML methods face significant limitations, such as lack of 

scalability, a single point of failure, limited fault tolerance, high latency, and restricted service 

coverage. Distributed ML approaches present a promising alternative to overcome these 

limitations. 

A promising approach in Distributed AI is MARL, where multiple AI agents can either 

collaborate or operate independently to optimize network management. In MARL, agents gather 

data from their environment, learn over time through feedback (rewards) for actions that enhance 

network performance, and can adjust parameters such as bandwidth allocation or traffic routing 

in response to local conditions. Whether collaborating or acting independently, these agents 

collectively improve network efficiency without depending on a centralized controller, which 

enhances scalability and resilience to failures. 

Figure 1 illustrates the structure of MARL within a 5G core network. Each agent, such as 

Agent 2, processes local state information, observes rewards, and takes action based on these 

inputs. These agents can communicate with each other and share learned knowledge to enhance 

overall network performance. By distributing decision-making across the network, MARL allows 

for dynamic adaptation to traffic conditions in large-scale, complex networks like 5G and 6G. 

 

 
 

Figure 1: Multi-Agent Reinforcement Learning (MARL) in a 5G Core Network. 
 

 

 

3. NETWORK MANAGEMENT CHALLENGES 
 

Managing complex communication networks for optimal performance and security presents 

numerous challenges that require strategic planning and meticulous oversight. These challenges 

are outlined below: 

 

– Multi-layer interactions among interconnected nodes: The interactions between multiple layers 

in a network complicate management by making it harder to track and optimize performance 

across different layers. These interactions introduce dependencies and potential vulnerabilities 

that can affect the network’s reliability and efficiency. 

– Diversity of communication protocols: The wide range of communication protocols in 

use creates challenges for ensuring interoperability and optimal performance across the network. 



Managing this diversity requires sophisticated configuration strategies to enable seamless 

communication between devices with varying capabilities and protocol requirements. 

– Unpredictable traffic patterns: Sudden fluctuations in traffic, caused by high-demand 

applications or event-driven services, make it challenging to predict and manage network 

resources efficiently. The ability to anticipate and react to these unpredictable patterns is critical 

for maintaining optimal performance and avoiding congestion. 

– Accommodating technological advancements: Integrating new technologies with legacy 

systems poses challenges in maintaining network functionality and performance. Balancing 

innovation with backward compatibility demands careful planning to ensure that new 

advancements enhance the network without disrupting existing services. 

– Network congestion and control strategies: Network administrators must manage 

congestion and latency while balancing centralized and decentralized control. The challenge is to 

develop strategies that mitigate congestion and reduce latency without compromising the benefits 

of either management approach, ensuring efficient and responsive network operations. 

These challenges drive the need for new approaches, particularly those leveraging AI and 

machine learning. 

 

4. TRADITIONAL SOLUTIONS 
 

Traditional network management solutions have long relied on established techniques. 

Conventional adaptive congestion control (CC) protocols for Transmission Control Protocol 

(TCP) [5], ECN [6], and AQM [7] and its improvements such as BIC and CUBIC [8], are not 

well adapted to accommodate ever-evolving characteristics and requirements of communication 

networks, especially when it comes to considering unpredictable traffic patterns. This is 

particularly the case with event-driven applications (such as IoT notifications and alarms) and 

immersive scenarios like VR/AR/XR-based applications. 

In routing management, traditional techniques have predominantly been rule-based, 

following predefined algorithms. Proactive protocols like Distance Vector Routing Protocol 

(DVRP) [10] and Open Shortest Path First (OSPF) [11] maintain constantly updated routing 

tables for immediate route availability but are less scalable due to the high overhead involved. 

Reactive protocols, such as Ad hoc On-Demand Distance Vector (AODV) [12] and Dynamic 

Source Routing (DSR) [13], create routes on demand, which reduces overhead but can increase 

latency in large networks. While these methods provide basic routing solutions, they often lack 

the adaptability needed for complex and rapidly changing network environments. 

In traffic prediction, traditional techniques such as statistical models and time series 

analysis methods (e.g., Autoregressive (AR), Moving Average (MA), ARMA, and ARIMA, [9]) 

have been widely used. These models are effective for basic predictions in relatively stable 

environments but struggle to capture the complexities of modern, dynamic networks. The non-

linear and chaotic traffic patterns in contemporary networks render these methods less effective. 

The primary drawback of these traditional methods is their inability to handle the non-linear, 

chaotic, and highly variable nature of traffic in modern networks, driven by event-based 

applications and real-time services. 

 

 

 

 

 

 

 

 

5. CENTRALIZED ML SOLUTIONS 
 



In response to these challenges, AI techniques, such as ML, are gaining popularity in network 

management. ML techniques can capture non-linear relationships and dynamically adjust to 

variations. In this section, we review recent ML-based solutions for congestion control, routing 

management, and traffic prediction. 

 

5.1. Congestion Control 
 

Several researchers have explored Machine Learning (ML) approaches for optimizing 

congestion control, with a strong focus on reinforcement learning (RL) techniques. One notable 

trend is the integration of RL with traditional networking protocols. For example, Abbasloo et al. 

[14] proposed a hybrid model combining the traditional TCP (BBR) protocol with an RL agent to 

dynamically adjust the congestion window. While this approach demonstrates potential for 

enhancing network responsiveness, it operates within a centralized framework, which raises 

concerns about scalability as network sizes increase. 

Similar challenges arise in the work of S. et al. [15], where an RL-based method for wireless 

networks was developed to improve throughput. Although the results indicate performance 

improvements, the need for real-world validation highlights the gap between experimental 

outcomes and practical deployment. This underscores a common limitation across many RL-

based approaches, where theoretical gains need to be tested in more varied and complex network 

environments. 

Beyond RL, other approaches have sought to leverage alternative ML techniques in 

specific contexts. For instance, Goteti et al. [16] and Andrade-Zambrano et al. [17] explored the 

use of Q-learning and Deep Q-Networks (DQN) in Wireless Sensor Networks (WSNs) and smart 

grids. These methods offer dynamic path selection and congestion control, showing potential to 

enhance network efficiency. However, as with RL, the lack of large-scale testing raises questions 

about their scalability and robustness in real-world conditions, particularly in more heterogeneous 

network architectures. 

Meanwhile, Elbery et al. [24] introduced Machine Learning Aided Congestion Control 

(MLACC), a hybrid approach that blends heuristic-based adjustments with ML to predict 

bandwidth availability. This technique successfully reduces latency, but its reliance on predefined 

heuristic parameters limits its flexibility. Such parameters may struggle to adapt to the varied and 

unpredictable conditions characteristic of modern networks, a recurring challenge in ML-based 

congestion control. 

In a different approach, Ahamed et al. [25] employed Genetic Algorithms (GA) to 

manage congestion in Vehicular Ad Hoc Networks (VANETs) by adjusting transmission power 

and data rates. Although the algorithm proved effective in simulations, scalability concerns 

remain, particularly in mitigating channel congestion in larger, more dense networks. Table 2 

provides a summary of the advantages and limitations of these approaches. 

In conclusion, while RL, DRL, and other heuristic-driven ML approaches have led to 

significant advancements in congestion control, a consistent set of challenges emerges across 

these methods: ensuring scalability, achieving real-world validation, and maintaining adaptability 

in the face of dynamic and diverse network conditions. These techniques, while innovative and 

promising, still require further refinement and empirical testing before they can be fully realized 

in large-scale, operational environments. 

 

 

 

 

 

 

 

 



Table 2: Centralized ML Solutions for Congestion Control 

 

Reference Network 

Environment 

ML model Advantage Limitation 

[14] General TCP RL + 

traditional 

TCP (BBR) 

Adaptive  congestion 

window adjustment in 

varied scenarios 

Centralized  learning limits scalability 

in unseen environments 

[25] VANETs Genetic 

algorithms 

Reduces  latency, 

optimizes transmission 

power and data rates 

Faces channel congestion challenges in 

large networks 

[16] WSNs Q-learning Dynamically avoids 

congestion based on 

residual energy 

Requires   large- scale testing to 

confirm effectiveness 

[17] Smart Grids DQN Effective real-time 

state information for 

congestion control 

Needs   different 

neural network architectures for 

optimization 

[24] Inter-

datacenter 

Networks 

Heuristic + ML Reduces latency by 

predicting bandwidth 

availability 

Relies  on  predefined heuristic 

parameters, limiting adaptability 

[26] SDNs, Data 

Centers 

Soft Actor 

Critic 

(SAC) 

Real-time adaptation 

of congestion window 

Requires further training in 

heterogeneous environments 

[27] Data Center 

Power 

Networks 

DPG + POMDP Outperforms traditional 

algorithms in fairness and 

utilization 

Only tested in simulations, needs real 

hardware integration 

 

 

 

5.2. Routing Management  
 

Machine learning (ML) has become a powerful tool for routing tasks in communication 

networks, with diverse approaches designed to tackle dynamic traffic patterns, scalability, and 

real-time adaptability. Despite varying methodologies, they share a goal of enhancing routing 

efficiency, network performance, and quality of service (QoS). 

 

In path management, Chung et al. [36] introduced MPTCP-ML, a random forest-based 

scheme that dynamically optimizes Wi-Fi path quality. While it shows clear improvements in 

signal strength and throughput, its scalability and robustness in real-world environments remain 

to be tested. This underscores the challenge of translating promising models from controlled 

experiments to large-scale deployments.  

In Software-Defined Networking (SDN), Graph Neural Networks (GNN) have emerged as a 

sophisticated approach to improving routing decisions. Zhu et al. [34] proposed GCLR, which 

uses GNNs to optimize Multipath TCP (MPTCP) routing by predicting throughput based on 

network topology. However, prediction accuracy remains a limitation. Similarly, Ipek et al. [22] 

used various ML models, with Logistic Regression outperforming others for dynamic route 

selection. While these works demonstrate ML’s role in SDN, challenges like prediction accuracy 

and real-world validation persist. 

Reinforcement Learning (RL) and Deep RL (DRL) have also advanced routing 

optimization. Yajadda et al. [39] combined shortest path principles with RL to adjust routes based 

on real-time traffic intensity. While effective, its handling of multicast traffic and congestion 

control requires improvement. DRL has also been applied to SDN, as seen in Yu et al.’s [43] 



DROM model, which continuously updates routing decisions. However, maintaining QoS in 

large-scale deployments remains challenging. In wireless mesh networks (WMNs), RL models 

like Sun et al.’s [45] optimize Packet Delivery Probability (PDP), but frequent updates and 

complexity may impact scalability. 

RL's flexibility is evident in specialized networks like the Internet of Medical Things 

(IoMT), where Nazari et al. [48] developed an RL-based routing mechanism for medical 

applications, though real-world testing is still required. 

Hybrid models, like Almasan et al.’s [18] integration of GNN with DRL agents, show 

improvements in routing efficiency, though adding more network state features could enhance 

performance. Similarly, their extension to IP networks [20] balances computational cost and 

optimization gains. In quantum communication networks, Roik et al. [23] used Proximal Policy 

Optimization (PPO) to outperform classical algorithms, though its performance against other ML 

techniques remains uncertain. 

Table 3 summarizes the key advantages and limitations of these approaches. 

 
Table 3: Centralized ML solutions for Routing 

 

Referenc

e 

Network 

Environment 

ML model Advantage Limitation 

[36] MPTCP, Wi-Fi Random Forest- 

Based Path 

Management 

Improves signal 

strength, data rate, and throughput 

Requires real-world 

validation 

[34] SDN, MPTCP GNN for Routing 

Optimization 

Predicts through- 

put, adapts to varying topologies 

Faces challenges in 

prediction accuracy 

[22] SDN AI for Dynamic 

Route Selection 

Logistic  Regression improves 

dynamic route selection 

Needs broader real- 

world validation 

[39] General 

Networks 

RL + Shortest Path 

Routing 

Dynamically adjusts routes based 

on traffic intensity 

Limited   exploration of 

multicast and uniform traffic 

patterns 

[43] SDN DDPG-based Routing 

Optimization 

Optimizes  routing 

through continuous state analysis 

Requires strategies 

for maintaining QoS 

[45] WMNs RL for Packet De- 

livery Optimization 

Improves   PDP 

while adhering to end-to-end delay 

constraints 

Frequent updates 

may limit scalability 

[48] Internet of 

Medical 

Things (IoMT) 

RL-based QoS 

Routing 

Adapts routing 

mechanism to meet QoS demands 

Scalability and 

resource efficiency need further 

testing 

[18] General 

Networks 

GNN + DRL for 

Routing  

o ptimization 

Enhances routing 

with GNN models and DRL agents 

Lacks  additional 

network state features 

for better accuracy 

[23] Quantum 

Communication 

Networks 

PPO  Optimizes  routing in quantum error- 

prone networks 

Lacks comparison 

with other ML techniques 

 

These studies highlight the growing sophistication of ML-driven routing solutions, though 

challenges like scalability, prediction accuracy, and balancing computational overhead persist.  

 

5.3. Traffic Prediction 
 

Machine learning (ML) has greatly enhanced network management by enabling accurate traffic 

prediction, allowing for proactive decisions that improve network efficiency and performance. 



In cellular networks, the AML-CTP framework [28] clusters traffic using density-based 

algorithms like KDC and DBSCAN. Models such as Linear Regression, SVR, Decision Tree, and 

LightGBM are applied to these clusters, reducing computational time and improving model 

selection. LTE-A data shows that this framework maintains accuracy during peak hours, making 

it highly scalable. Future work will focus on traffic steering techniques to further improve Quality 

of Service (QoS). 

In optical fiber communication systems, [29] introduces an RNN and LSTM-based traffic 

prediction algorithm. This approach differentiates between actual traffic fluctuations and random 

variability, providing real-time data that helps prevent congestion and optimize resource 

allocation. The model significantly reduces mean absolute error compared to existing methods. 

For 6G networks, [65] proposes a parallel CNN architecture for traffic prediction. Using 

the Matrix Format Method (MFM) to convert traffic data into image representations, this model 

enhances resource allocation and energy management. While promising, further research is 

needed to adapt it to the evolving 6G environment. 

In fog-IoT architectures, [32] integrates edge caching and load balancing with ML-based 

traffic prediction and resource management. RNNs and LSTMs are used for forecasting, while 

Random Forests handle real-time load balancing. Future enhancements could involve hybrid 

methods, such as combining LSTMs with SVMs or incorporating reinforcement learning. 

For 5G networks, [60] presents a hybrid traffic prediction model that combines Holt 

smoothing and time series transformers to manage network traffic in dynamic slices. By using 

digital twins for real-time traffic prediction, this model improves resource management, though 

further testing is needed for scalability in IIoT environments. 

 
Table 4: Centralized ML solutions for Traffic Prediction 

 

Reference Network 

Environment 

ML model Advantage Limitation 

[28] Cellular 

Networks 

AML-CTP with 

clustering and ML 

models 

Reduces  training 

time, scalable for peak hour 

predictions 

Further exploration 

of traffic steering for 

QoS is needed 

[29] Optical Fiber 

Net- 

works 

RNNs, LSTMs for 

traffic prediction 

Differentiates traffic patterns, 

lowers mean absolute error 

Requires validation 

in real-time congestion 

prevention 

[65] 6G Networks CNN with Matrix 

Format Method 

(MFM) 

Tailored to 6G traffic, improves 

resource allocation 

Needs adaptation 

for evolving 6G 

environments 

[32] Fog-IoT 

Architectures 

RNNs, LSTMs for 

traffic prediction, 

Random Forest for 

load balancing 

Reduces latency, 

efficient resource distribution 

Potential  for  hybrid 

methods with SVMs and 

RL  for further 

optimization 

[60] 5G Networks Holt Smoothing 

and Time Series 

Transformer 

Improves resource 

allocation, dynamic 5G slice 

management 

Effectiveness 

varies by traffic 

distribution, requires real-

world testing 

 

Table 4 summarizes the advantages and limitations of these distributed AI approaches for 

network management. These works highlight the diversity of ML-based traffic prediction across 

cellular, optical fiber, 6G, and fog-IoT networks. Each solution addresses specific challenges in 

its network environment, though real-world validation is needed to ensure efficiency and 

adaptability. 

 



6. DISTRIBUTED AI SOLUTIONS 

While centralized ML solutions have shown promise in improving network performance, 

their reliance on centralized models limits scalability and adaptability, particularly in 

large and dynamic environments. To address these challenges, distributed AI approaches 

have emerged as powerful alternatives, leveraging decentralized intelligence to optimize 

traffic flow and enhance network performance in real time. 

 

6.1. Congestion Control 
 

Distributed AI approaches for congestion control have made significant strides, especially 

with the application of MARL and distributed ML models. In [68], MARL is used for network 

congestion management, where agents collaborate across network layers to adjust parameters 

such as queue lengths and sending rates. This approach demonstrates the potential of MARL in 

enhancing network performance under dynamic conditions, though its validation has been limited 

to simplified simulated environments, necessitating further research into its real-world 

applicability and scalability. 

A similar application of MARL is seen in [61], where the authors propose a framework for 

managing congestion in software-defined networks (SDNs), focusing on both host- to-host and 

switch-controller congestion. In this setup, two agents independently optimize paths and load 

balancing based on local observations like bandwidth and jitter. The approach uses a cooperative 

Q-learning algorithm to adapt to changing network conditions. However, the authors 

acknowledge that performance comparisons with existing algorithms are still needed. 

Another study, [70], presents a scalable DRL-based online routing algorithm (DRL- OR-S) 

within an SDN framework. Each node optimizes routing decisions independently based on 

factors like latency, throughput, and packet loss. Despite its scalability, the reliance on hop-by-

hop routing may not be as resource-efficient as multi-path solutions. Likewise, [71] extends the 

DDPG algorithm to MA-DDPG for decentralized congestion control in network switches, where 

each switch makes independent decisions to optimize traffic flow. This approach addresses 

millisecond-level traffic fluctuations but faces similar challenges as [72], which applies MARL to 

MPTCP networks for congestion control in IoT and 5G environments. Both methods introduce 

significant computational complexity and rely on a global state, limiting their effectiveness when 

network conditions or node behavior are not fully observable. 

For green energy harvesting in massive machine-type communications (mMTC), [69] 

introduces DDRQN for congestion control by optimizing uplink power control. Devices adjust 

policies based on historical data to mitigate traffic congestion, while sharing a centrally learned 

Q-network. This decentralized approach reduces communication and computation costs, though 

the initial training overhead presents a challenge in resource constrained environments. 

In high-speed data center networks (DCNs), the PET approach [66] leverages the 

Independent Proximal Policy Optimization (IPPO) algorithm to dynamically adjust ECN 

thresholds based on factors like queue length, data rate, and traffic composition. Operating within 

a decentralized training and execution framework, PET improves flow completion time and 

reduces queue length variance. However, further research is needed to evaluate PET’s scalability 

in real-world deployments. 

Table 5 summarizes the key advantages and limitations of these distributed AI 

approaches for congestion control. 

 

 
Table 5: Distributed AI Solutions for Congestion Control 

 



Referenc

e 

Network 

Environm

ent 

ML Model Advantage Limitation 

[68] General  

network 

 

 MARL Collaborates across network layers to 

dynamically manage traffic and optimize 

network performance 

Tested only in simplified 

simulations; needs real-

world validation for 

scalability 

[61]  SDNs Cooperative   

Q-learning

  

Optimizes   paths and load balancing, adapts 

to changing network conditions 

Lacks   comparison with 

existing Q-learning 

algorithms, limiting 

evaluation 

[70]  SDNs DRL based 

on hop-by-

hop routing 

Scalable   DRL- based routing algorithm, 

improves routing efficiency based on latency, 

throughput, and packet loss 

Hop-by-hop  routing is 

less efficient compared to 

multi- path routing 

[71] Network  

switches 

 

MA-DDPG  Each switch makes independent decisions to 

optimize traffic flow in real- time 

High   computational 

complexity and reliance on 

a global state 

[72] IoT  

 

MARL  

 

Manages subflows based on parameters like 

RTT and throughput, improving congestion 

control in dynamic environments 

Significant computational 

complexity; reliance on a 

global state reduces 

effectiveness 

[69] Green 

energy 

harvesting 

mMTC 

Deep DDQ-

Learning 

Optimizes uplink power control, 

reduces communication and computation 

costs 

High initial training 

overhead in resource- 

constrained environments 

[66] High-

speed Data 

 (DCNs) 

Independent 

PPO  

Dynamically  adjusts ECN thresholds, 

improving flow completion time and queue 

length variance 

Requires further research to 

assess scalability in real- 

world deployments 

 

Across these works, the use of distributed AI, particularly MARL, demonstrates significant 

potential for enhancing congestion control in diverse network environments. However, common 

challenges such as reliance on a global state, computational complexity, and the need for real 

world validation persist. These methods highlight the growing sophistication of AI-driven 

congestion control solutions while emphasizing the need for further exploration to ensure 

scalability, efficiency, and adaptability in practical applications. 

 

6.2. Routing Management 
 

The exploration of distributed AI approaches for network management has led to significant 

advancements, especially with the integration of RL and federated learning (FL) models. These 

methods are not only improving network efficiency and resource allocation but also reshaping 

real-time decision-making in complex network environments. 

In WSNs, a standout method involves decentralized Q-learning, as proposed in [73]. Here, sensor 

nodes operate autonomously, optimizing energy efficiency and data aggregation through local 

interactions. This distributed decision-making model is particularly promising for scaling WSNs, 

as it reduces the need for central control. The potential for extending this model into larger, more 

complex environments is clear, but real-world testing is crucial to validate its effectiveness in 

large-scale deployments. 

Federated learning (FL) also plays a transformative role, especially in UAV networks. In 

[74], the B.A.T.M.A.N. protocol integrates FL, enabling UAVs to collaboratively learn from 

localized data. This method reduces bandwidth consumption and ensures data privacy while 

making routing decisions more adaptable to dynamic topologies. The promise of this 

decentralized approach lies in its ability to optimize routing decisions without overwhelming 



network resources, though its efficacy in more complex, real-world UAV networks remains to be 

proven. A similar approach is seen in [75], where FL is used to enhance resource allocation in 

UAV-based edge computing for 5G networks. The role of FL in managing next-generation 

networks is further highlighted by the QoSPR protocol in [80], which applies federated RL to 

5G-IIoT networks. By decentralizing the task of routing and resource management to regional 

centers, this method preserves privacy and improves network performance. Challenges such as 

balancing latency and load across a larger scale still require further investigation, particularly as 

these systems scale to larger deployments in industrial applications. While these FL-based 

approaches demonstrate great potential, the models need further refinement to handle the 

complexities of real-world environments. 

Another key component of distributed AI, reinforcement learning, is playing an 

increasingly pivotal role in advancing network management strategies. For instance, in [76], the 

distributed RL model (DCRL-R) allows WSN nodes to make autonomous routing decisions 

based on local data, thus minimizing reliance on a global network view. This is especially 

valuable in infrastructureless environments, though the model’s scalability in larger networks 

needs validation. Similarly, in maritime networks, [77] applies multi-agent deep Q-learning to 

improve routing efficiency. The collaborative learning between agents provides a more informed 

decision- making process, but further testing in variable environments is needed to ensure 

robustness. Federated learning continues to show its versatility in network management. In [78], 

CNN-based agents are employed to monitor and predict congestion in WMNs. These agents 

analyze the network state, allowing for proactive rerouting and congestion avoidance. While this 

approach has demonstrated its potential in simulations, its effectiveness in real-world scenarios 

with more diverse network conditions requires further 

exploration. In [81], multi-agent deep RL is utilized for packet routing in computer networks, 

where each router acts independently based on local and neighbouring data. This decentralized 

method optimizes packet delivery efficiency, yet the simulations fail to capture the full 

complexity of real-world traffic, indicating a need for more comprehensive testing to ensure 

practical applicability. 

Lastly, in the context of IoT networks, [79] tackles energy efficiency using MARL. IoT 

devices autonomously make routing decisions, focusing on sustainable network operations. 

While this approach shows great promise for optimizing energy use in IoT systems, the 

computational overhead of deploying MARL at scale remains a considerable challenge. 

Table 6 summarizes the key advantages and limitations of these distributed AI approaches for 

routing. 

As distributed AI techniques continue to mature, they offer the potential to transform traditional 

network management strategies. These innovative approaches promise to enhance the scalability, 

adaptability, and efficiency of communication networks, but further real-world testing and 

optimization are essential to unlock their full capabilities. The journey towards smarter, more 

autonomous networks is just beginning, and these advancements lay the foundation for a more 

intelligent and efficient future in network management. 

 

 

 

 

 
Table 6: Distributed AI Solutions for Routing 

 

Reference Network 

Environment 

ML Model Advantage Limitation 



[73] WSNs Decentralized 

Q-Learning 

Autonomously optimizes 

energy efficiency and data 

aggregation 

Requires empirical 

validation for large-scale 

networks 

[74] UAV Networks FL with 

B.A.T.M.A.N 

protocol 

Maintains data privacy, 

reduces bandwidth, and adapts 

to changing topologies 

Needs real-world 

validation in complex UAV 

scenarios 

[75] 5G UAV-

based 

Edge Computing 

FL, RL Efficient data routing and 

resource allocation 

Simplified models, 

needs further testing under 

realistic conditions 

[76] Wireless

 Senso

r 

Networks (WSNs) 

Distributed RL (DCRL-R) Decentralized 

decision- making,  ideal for 

infrastructureless 

environments 

Scalability in large 

networks unproven 

[77] Maritime Networks Multi-Agent 

Deep 

Q-Learning 

Improves routing 

efficiency via agent 

collaboration 

Needs further testing in highly 

variable environments 

[78] Wireless Mesh Net- 

works 
CNN Predicts congestion 

and dynamically reroutes 

traffic 

Requires broader 

real-world testing 

[80] 5G-IIoT Networks FL RL (FRL) Preserves    data 

privacy, optimizes 

performance for regional 

challenges 

Needs real-world 

validation in large-scale 

applications 

[81] Computer 

Networks 
MA-DRL Independent  routing 

decisions based on local data 

Simulations   do 

not fully capture real-world 

network complexities 

[79] IoT Energy-

Harvesting 

Networks 

MARL Promotes  energy- 

efficient routing and 

sustainable IoT development 

High   computational 

overhead in large-scale IoT 

networks 

 

 

6.3. Traffic Prediction  
 

Shifting focus to traffic prediction, distributed AI techniques are becoming instrumental in 

forecasting network traffic patterns and optimizing resource management, ensuring more efficient 

and proactive network operations. 

 

[62] tackles the challenge through an innovative use of transfer learning. Instead of 

relying on traditional centralized models that require extensive data collection, this distributed 

approach trains models at the Network Operations Center (NOC) before fine-tuning them locally 

at each VSAT. This method effectively reduces bandwidth consumption while maintaining high 

accuracy, demonstrating how distributed AI can efficiently balance resource constraints and 

prediction precision in bandwidth-limited environments. 

 

 

 
Table 7: Distributed AI Solutions for Traffic Prediction 

 

Reference Network 

Environment 

ML model Advantage Limitation 



[62] Satellite 

Communication 

Networks 

Transfer 

Learning 

Reduces bandwidth 

usage while 

maintaining high 

prediction accuracy 

Limited   explo- 

ration of real-world scalability and gen- 

eralization across diverse satellite 

conditions 

[63] Internet Traffic 

Networks 

Distributed 

Multi- 

Agent

 Lear

ning 

(LSTM/GRU) 

Enhances  prediction 

performance through 

decentralized, 

cooperative agent 

interaction 

Fixed weight 

matrices limit adaptability in more 

complex scenarios (e.g., grid or 

graph-format predictions) 

[64] Cellular 

Networks 

Federated 

Learning 

(FL) with 

Sustainability 

Indicator 

Balances energy 

consumption with 

prediction accu- 

racy, minimizing 

environmental impact 

Further   research 

needed on model convergence speed 

and scaling FL across more diverse 

datasets and clients 

[65] at Network 

Edges 

Federated 

Learning 

(LSTM) 

Improves  privacy, 

reduces processing 

time and bandwidth 

usage in decentralized 

setups 

Handling  non-IID 

data across clients remains a 

challenge, requiring utility 

optimization for fairness 

[67] Multi-Agent  

Net- 

work 

Automation 

System 

(MANA- NMS) 

LSTM  for  

Traffic 

Prediction, 

Decision Trees 

for 

Classification 

Autonomous 

agents improve 

prediction and 

classification accuracy, 

aiding resource 

management 

Needs further integration of 

additional network services such as 

routing and QoS monitoring for a 

complete system 

 

 
A fully decentralized framework is explored by [63], which introduces a multi-agent 

learning system for Internet traffic prediction. Each agent operates autonomously, training its 

own LSTM or GRU models, with predictions synchronized through a collaborative Markov chain 

process. This decentralized structure not only enhances prediction performance but also ensures 

scalability across agents. However, the reliance on fixed weight matrices limits flexibility when 

handling complex, dynamic network topologies, highlighting a potential area for future 

enhancements in distributed AI traffic prediction systems. 

[64] takes a different approach with federated learning (FL) in cellular traffic prediction, 

addressing concerns around privacy and data transfer limitations. The introduction of a 

sustainability indicator highlights the growing need to balance the environmental cost of training 

AI models with accuracy, especially in large-scale distributed systems. While FL allows for 

distributed training without sharing raw data, its environmental footprint, particularly for larger 

models, poses a significant challenge, prompting future research into optimizing the balance 

between energy efficiency and model performance. 

For 5G networks, [65] further leverages the advantages of FL for LSTM-based traffic 

prediction at the network edge. This decentralized setup reduces processing time and enhances 

privacy compared to traditional centralized methods. However, the challenge of managing non-

IID data across clients remains, impacting prediction fairness and consistency. Future efforts 

focused on utility optimization functions could address this limitation, ensuring a more equitable 

distribution of resources across clients while preserving accuracy in distributed AI systems. 

Lastly, [67] proposes a multi-agent network automation architecture (MANA-NMS) that 

combines LSTM for traffic prediction with Decision Trees for traffic classification. These 

autonomous agents improve resource allocation and load balancing in network management. 

However, the system’s full potential has yet to be realized, with further work needed to integrate 



additional network services, such as routing and QoS monitoring, into the framework, thus 

leveraging the power of distributed AI for more comprehensive network management. 

The table 7 summarizes the advantages and limitations of distributed AI solutions for 

traffic prediction, highlighting each approach’s contribution to network management as well as 

areas that require further development. 

In conclusion, distributed AI approaches for traffic prediction show great promise in enabling 

smarter and more adaptive network management across a variety of communication 

environments. These techniques not only improve efficiency and accuracy but also offer solutions 

to privacy, scalability, and environmental challenges. As the field continues to evolve, refining 

these systems and testing them in real-world conditions will be key to fully realizing their 

potential in optimizing network performance. 

 

 

CONCLUSIONS 
 

In this paper, we have explored the evolving landscape of AI-driven solutions for 

complex communication networks, covering both centralized and distributed approaches in 

congestion control, routing management, and traffic prediction. While centralized solutions 

perform well in controlled environments, distributed AI techniques stand out for their scalability, 

adaptability, and potential to operate effectively in dynamic, large-scale network environments. 

However, despite their promise, distributed AI approaches also face challenges; mre work is 

needed to refine these techniques and address these limitations. 

 

Future research will continue to optimize these AI-driven approaches to meet the 

growing demands of modern communication networks. To tackle these ongoing challenges, our 

current research focuses on developing and evaluating a Multi-Agent Deep Reinforcement 

Learning (MA-DRL) traffic management solution. This approach is designed to dynamically 

adapt to network conditions, prevent congestion, and improve key metrics such as throughput, 

latency, and packet loss, providing a more robust and adaptive alternative to existing traffic 

management methods while addressing some of the current limitations of distributed AI. 
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