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Abstract

Acute Promyelocytic Leukaemia (APL) arises from an aberrant chromosomal translocation involving the Retinoic Acid Receptor Alpha
(RARA) gene, predominantly with the Promyelocytic Leukaemia (PML) or Promyelocytic Leukaemia Zinc Finger (PLZF) genes. The
resulting oncoproteins block the haematopoietic differentiation program promoting aberrant proliferative promyelocytes. Retinoic Acid
(RA) therapy is successful in most of the PML::RARA patients, while PLZF::RARA patients frequently become resistant and relapse. Recent
studies pointed to various underlying molecular components, but their precise contributions remain to be deciphered. We developed a
logical network model integrating signalling, transcriptional, and epigenetic regulatory mechanisms, which captures key features of the
APL cell responses to RA depending on the genetic background. The explicit inclusion of the histone methyltransferase EZH2 allowed
the assessment of its role in the resistance mechanism, distinguishing between its canonical and non-canonical activities. The model
dynamics was thoroughly analysed using tools integrated in the public software suite maintained by the CoLoMoTo consortium (https://
colomoto.github.io/). The model serves as a solid basis to assess the roles of novel regulatory mechanisms, as well as to explore novel
therapeutical approaches in silico.

Keywords: acute promyelocytic leukaemia; epigenetic regulation; gene regulatory network; logical model; therapy resistance.

Introduction
Acute Promyelocytic Leukaemia (APL) is a subtype of Acute
Myeloid Leukaemia predominantly originating from an aberrant
chromosomal translocation involving the Retinoic Acid Recep-
tor Alpha (RARA) gene with other genes. The Promyelocytic
Leukaemia (PML) gene is the most frequent fusion partner
found in patients, followed by the Promyelocytic Leukaemia Zinc
Finger (PLZF) gene [1]. The two oncoproteins (PML::RARA and
PLZF::RARA) codified by these gene fusions interfere with the
normal haematopoietic differentiation process and favour the
malignant transformation and proliferation of promyelocytes [2].

Current therapeutic approaches involve the induction of differ-
entiation of the malignant cells with Retinoic Acid (RA), which in
combination with arsenic trioxide successfully achieves complete
remission in almost 100% of PML::RARA APL patients [3]. However,
in the cases of PLZF::RARA APL patients, resistance to treatment
and relapse occur, presumably involving various transcriptional
factors, epigenetic remodelling enzymes, and signalling pathways
[4]. But how precisely these different factors contribute to treat-
ment resistance and relapse remains to be deciphered (Fig. 1).

In this study, we constructed a detailed and comprehensive
logical model to decipher the signalling and regulatory mech-
anisms at the basis of RA resistance in APL cells. The model
allows to represent the three cell populations (WT, PML::RARA,
and PLZF::RARA patients), in the context of three qualitative levels

of RA (absence, physiological level, and pharmacological level
of RA). Our model encompasses the key regulatory components,
including PML::RARA and PLZF::RARA fusion proteins, and their
interactions documented in the literature or inferred from the
analysis of single cell functional genomic data. The model also
incorporates key epigenetic regulatory mechanisms, focusing in
particular on the role of the EZH2 protein of the Polycomb Com-
plex 2 (PRC2).

To analyse the dynamical properties of the resulting model, we
took advantage of the integration of several software tools in a
common computational framework developed by the Consortium
for Logical Models and Tools (CoLoMoTo, http://www.colomoto.
org). Currently integrating over twenty logical modelling and anal-
ysis tools developed by different groups, this framework is avail-
able as a conda package or as a Docker container. Furthermore,
the use of Jupyter interactive notebooks allows the development
and extensive documentation of complex analysis workflows
combining complementary CoLoMoTo tools [5]. Figure 2 shows an
overview of the model analysis workflow followed for this study,
while more detailed descriptions of the tools used are provided in
the Methods section.

In brief, the stable states of the model recapitulate the
main phenotypes of differentiated and aberrant proliferative
cells induced by RA treatment in the different APL genetic
backgrounds. The dynamical analysis of the model further
identifies the crucial points underlying cell fate decision between

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/26/1/bbaf002/7953890 by guest on 22 January 2025

https://orcid.org/0000-0003-0271-1757

 13972
17888 a 13972 17888 a
 
mailto:estelle.duprez@inserm.fr
mailto:estelle.duprez@inserm.fr
mailto:estelle.duprez@inserm.fr

 30891 17888 a 30891 17888 a
 
mailto:denis.thieffry@ens.fr
mailto:denis.thieffry@ens.fr
mailto:denis.thieffry@ens.fr

 5643
18940 a 5643 18940 a
 
mailto:elisabeth.remy@univ-amu.fr
mailto:elisabeth.remy@univ-amu.fr
mailto:elisabeth.remy@univ-amu.fr
mailto:elisabeth.remy@univ-amu.fr
https://colomoto.github.io/
https://colomoto.github.io/
https://colomoto.github.io/
https://colomoto.github.io/
http://www.colomoto.org
http://www.colomoto.org
http://www.colomoto.org
http://www.colomoto.org


2 | Sánchez-Villanueva et al.

Figure 1. Molecular mechanism underlying APL disease. APL results from chromosomal translocation of RARA gene with the PML or the PLZF genes.
Fusion proteins PML::RARA and PLZF::RARA drive the malignant transformation and proliferation of promyelocytes, blocking the differentiation and
resulting in clonal growth of undifferentiated cells, which remain unresponsive to the normal physiological (nM) levels of RA. Current therapies are
based on the induction of differentiation with pharmacological (μM) doses of RA. Resistance to this treatment and relapse involve interactions between
the fusion proteins and several transcriptional factors, epigenetic remodelling enzymes and signalling components.

differentiation and aberrant proliferation. Furthermore, the
simulations of EZH2 perturbations allow to distinguish the
respective roles of canonical versus non-canonical activities of
EZH2, and to highlight the key role of the non-canonical activity
of EZH2 in the maintenance of the resistance to RA in APL
PLZF::RARA cells.

Results
Construction of a logical model accounting for
APL resistance to RA treatment
To build the logical model of the APL network, we gathered
information from three main sources: (i) previously published
computational models accounting for haematopoietic specifica-
tion processes [6–10] (see Supplementary Table S1 available online
at http://bib.oxfordjournals.org/ for a summary); (ii) a thorough
literature review focusing on the distinct characteristics of the
APL subtypes and their responses to RA therapy (for a review, see
[4]); and (iii) the analysis of single cell omics data (RNAseq and
ATACseq data) for RA-treated versus control cells from an APL
mouse model expressing the PLZF::RARA translocation [11]. We
have thus delineated the main regulatory and signalling mecha-
nisms involved in the differentiation of myeloid cells in response
to RA, as well as their blockade induced by APL fusion proteins.

Briefly, in the normal case (i.e. no fusion protein) and in
the absence of RA, the Retinoic Acid Receptor (RARA) and
the Retinoic X Receptor (RXR) protein heterodimers recruit
epigenetic co-repressors (NCOR1, HDACs, PRC2, etc) to silence
cell differentiation genes (CEBPA, CEBPB, CEBPE, SPI1, etc). The
presence of the ligand RA induces a switch in the behaviour
of the receptors, which results in the recruitment of epigenetic
co-activators (NCOA1, PHF8, etc), which in turn enable the
transactivation of genes provoking cell cycle arrest and triggering
cell differentiation [12].

In the APL cases, the fusion proteins PML::RARA or PLZF::RARA
predominantly recruit epigenetic co-repressors, even in the pres-
ence of RA physiological levels (nM range), which are insufficient
to induce the recruitment of co-activators. Consequently, the
differentiation program is blocked, causing cells to display an
aberrant proliferative profile and to accumulate in the promye-
locytic stage.

Pharmacological levels of RA (μM range) induce the proteaso-
mal degradation of the PML::RARA fusion proteins and rescue the
differentiation program in most of the patients with this variant
[3]. In contrast, the stability of the PLZF::RARA fusion protein is
maintained under high doses of RA, which causes the emergence
of resistant phenotypes. Several epigenetic factors have been
involved in this resistance mechanism, including HDAC enzymes,
and the PRC1 and PRC2 complexes [2, 13–15].

Analysis of single cell omics data from the APL PLZF::RARA
mouse model treated with RA revealed the presence of a cluster
of cells with resistance features, characterised by the expres-
sion of genes involved in DNA replication and proliferation [11].
Interactions inference with SCENIC [16] revealed a transcriptional
regulatory network controlled by E2F1 as a key element sustaining
the resistance to RA [11]. The histone methyltransferase EZH2
was also identified as one of the most highly expressed genes in
the resistant cluster. Further knocking down and pharmacological
inhibition experiments pointed to the non-canonical activities
of EZH2 as crucial for the E2F1 regulatory network and for the
maintenance of the resistant phenotype [11].

Implemented with the GINsim software [17], the resulting reg-
ulatory graph encompasses 36 nodes and 131 arcs (Fig. 3). To each
node is associated a Boolean variable representing the expression
level of the component (see Methods), excepting the input node
representing Retinoic Acid (RA), which is associated with a ternary
variable (with three values 0, 1, and 2, corresponding to neg-
ligible, physiological, and pharmacological levels, respectively).
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Figure 2. Computational workflow used for the APL model construction, refinement and analysis. A knowledge-based strategy was followed to build
the APL model using the GINsim software (blue box). Tools of the CoLoMoTo package (bioLQM, PyBoolNet, MaBoSS) were used to analyse the dynamics of
the model, following a workflow documented in a Jupyter interactive notebook (orange box). The resulting dynamical properties in turn served as a guide
for model refinement and predictions (green box).

Furthermore, the activity level of each node is specified by a
Boolean rule involving its regulators and logical operators (see
Methods).

Besides the node RARA representing the wild-type RA receptor,
and the nodes PML and PLZF representing respectively the wild-
type PML and PLZF proteins, the input nodes PML RARAg and
PLZF RARAg represent the two genetic fusions driving the APL
disease. The consideration of different input combinations allows
to evaluate separately the dynamical behaviour corresponding
to a wild-type cell, to an APL cell expressing the PML::RARA
translocation, or yet to an APL cell expressing the PLZF::RARA
translocation, in response to different levels of RA. Noteworthy,
in each of the two gene fusion situations considered, the model
accounts for the simultaneous presence of wild-type RARA, PML,
and PLZF encoded from the remaining wild-type alleles of these
genes, as the fusion usually affects only one copy of the corre-
sponding genes.

The APL model integrates signalling components (e.g. RARA,
various kinases) and several key transcription factors (TP53, E2F1,
SPI1, CEBPA, CEBPB, etc.) involved in the control of cell cycle of
progenitor differentiation, together with key epigenetic regula-
tory factors and complexes, such as PRC2, other co-repressors
(NCoR, HDACs) represented in the node CoRep COMP, and the
co-activatory factors (NCoA1, PHF8, etc) represented in the node
CoAct COMP. To the best of our knowledge, this is the first time

that these three different levels of regulation have been seam-
lessly integrated in a full-fledge dynamical model.

To keep our logical model compact and dynamically coherent,
we modelled receptor binding and regulatory complex formation
in terms of directed arcs from the involved partners onto the
regulatory targets, while co-occurrence requirements are encoded
in logical rules. For example, while there is no arc between RA and
RARA, the model includes arcs from both nodes onto each RARA
target.

In our model, the stabilisation of the fusion protein (PLZF::RARA)
presumably involves multiple positive regulatory circuits (also
called positive feedback loops), which engage signalling compo-
nents (CAK, USP37), transcription factors (CEBPA, CEBPB, MYC,
E2F1, RB1, CDKN1A) and epigenetic regulators (EZH2, PRC2).
More precisely, the stability of PLZF::RARA depends on the
simultaneous presence of its three activators, PLZF::RARA coding
gene, the CAK complex and the deubiquitinase USP37. The CAK
complex is activated by MYC, whereas USP37 activation requires
the presence of E2F1 and the absence of RB1.

In order to better visualise the organisation in our regulatory
graph, we generated the strongly connected component graph
(i.e. a graph gathering every subset of nodes mutually accessible
in a single node) using an algorithm implemented in the soft-
ware GINsim. The resulting graph comprises twelve components,
including one central strongly connected component gathering 25
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Figure 3. Logical regulatory graph for the APL model. Implemented with the GINsim software, this model integrates signalling, epigenetic and
transcriptional regulatory factors to decipher the mechanisms underlying the resistance of APL cell in the course of RA treatment. This logical regulatory
graph encompasses 36 nodes and 131 signed arcs. Internal nodes can be associated with four main functions: Cell cycle arrest (red); cell cycle progression
(green); granulocytic differentiation (yellow); and epigenetic regulation (orange). Oval nodes denote Boolean components, whereas the rectangular one
denotes a ternary component (RA). Green arrows and red blunt arcs denote positive and negative regulatory influences, respectively. Three input nodes
(light blue) denote the presence of translocations (PLM RARAg or PLZF RARAg), as well as the RA level considered (No RA: 0, physiological level: 1,
and pharmacological level: 2). The graph is complemented with logical rules determining the target level of each node as a function of the levels of its
regulators. The model (including logical rules and model annotations) is available in the GINsim repository (zginml and SBML qual formats).

model nodes, which are involved in cell signalling, transcriptional
regulation, and epigenetic remodelling (Supplementary Fig. S1
available online at http://bib.oxfordjournals.org/). The other com-
ponents of this strongly connected component graph correspond
to the seven input nodes and the four output nodes of the orig-
inal graph. This organisation reflects the entanglement of the
different regulatory layers underlying APL disease and resistance
to RA.

The APL model is available in the GINsim repository, with
the full list of logical rules and comprehensive annotations,
in the native GINsim and SBML qual formats (http://ginsim.
org/node/256). Furthermore, a supplementary file provides a
comprehensive documentation of the model.

The stable states of the APL model recapitulate
the behaviour of APL cells in response to RA
treatment
The state space of interest splits into nine regions, one for
each combination of input values considered, which correspond
to the three genetic backgrounds (WT, APL PML::RARA, and
APL PLZF::RARA) for the three different RA levels (absence,
physiological or pharmacological levels). The input combinations
accounting for the simultaneous presence of both fusion proteins
(PML::RARA and PLZF::RARA) were excluded from this analysis,
due to the lack of evidence of its existence in APL patients. As
the APL model includes 29 nodes besides the seven input nodes,
each of these regions thus encompasses 229 = 536 870 912 Boolean
states.

Using an efficient algorithm included in the bioLQM Java
library [18], we computed all the attractors in the APL model for
each of the relevant input combinations (i.e. all possible combina-
tions, excepting the simultaneous activation of PML RARAg and

PLZF RARAg nodes). Of note, no cyclic attractors were detected
with this analysis, a result that was further validated with the
commitment analysis described in the following section. The
resulting stable states are listed in the Fig. 4, focusing on the
values of a subset of nodes enabling the association of each stable
state with a specific cellular phenotype.

In the WT scenario, two stable states coexist in the absence
of retinoic acid (RA = 0), corresponding to a proliferative pheno-
type (WT0) and a cell cycle arrest phenotype (WT1). For higher
RA levels (level 1 or 2), a single stable state is obtained, which
corresponds to a granulocytic differentiation phenotype (WT2 and
WT3). Hence, our model recapitulates the strong differentiation
effect of RA on normal cells observed in experimental settings
[19].

Turning to the APL PML::RARA fusion scenario, in the absence
of Retinoic Acid (RA = 0), we observe a bi-stability behaviour simi-
lar to the WT case (states PM0 and PM1). Under the physiological
condition of RA (RA = 1), unlike the WT case, a proliferative sta-
ble state (PM3) coexists with a differentiated stable state (PM2).
Interestingly, when RA is at pharmacological level (RA = 2), the
proliferative stable state is lost, with only a differentiation sta-
ble state remaining (PM4). These results agree with published
experimental and clinical data demonstrating that the PML::RARA
fusion induces a form of APL responsive to high doses of RA, which
trigger the differentiation of promyelocytes [20].

Finally, in the case of the APL PLZF::RARA fusion, in the absence
or at physiological levels of RA, the model stable states are very
similar to those obtained for the PML::RARA fusion. But interest-
ingly, under pharmacological levels of RA, a proliferative stable
state persists (PZ5), suggesting that cells do not (fully) respond
to RA differentiation stimuli, even at pharmacological levels. This
result is coherent with the observation of resistance to high
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Figure 4. Stable states for the APL model. The three tables list the stable states of the model for the wild-type (WT, top), the APL PML::RARA (PM, middle),
and the APL PLZF::RARA (PZ, bottom) conditions, respectively. Each row represents a stable state characterised by the values of representative model
components (cf. Figure 3). The first column associates a label with each stable state, with a colour denoting the corresponding phenotype: Proliferative
(green), arrested (red) or differentiated (yellow). Each cell denotes the level of activity of the corresponding component (column) for the corresponding
stable state (row): 0 (white background), 1 (light background) or 2 (dark background, for RA). The stable state labelled as PZ5 and highlighted with a star
corresponds to the proliferative phenotype resistant to pharmacological doses of RA. The computation of the stable states was done with the BioLQM
software included in the CoLoMoTo package and can be reproduced with the notebook provided together with the model in the GINsim model repository.

dose of RA in APL PLZF::RARA cells in experimental and clinical
settings [20].

A cell fate commitment analysis rules out the
presence of cyclic attractors and accounts for the
decision between differentiation and aberrant
proliferation
The PyBoolNet software was used to generate a broad overview of
the full state space, revealing state commitment to each attractor
[21, 22] (see also Methods). The comparison of the sizes of the
basins of different attractors provides interesting hints regarding
the likelihood of reaching each attractor, depending on genetic
background and treatment.

The commitment analysis of the APL model outputs nine
graphs, one per combination of inputs considered, corresponding
to the WT, APL PML::RARA, and APL PLZF::RARA cases, each in the
absence or under the presence of physiological or pharmacologi-
cal levels of RA (Fig. 5). The nodes of the commitment graphs rep-
resent sets of states with common specific commitment potential,
while the arcs connecting nodes denote the existence of pathways
linking the states of the two connected state sets in the underlying
state transition graph (STG, cf. Methods).

For the WT case with RA = 1 or 2, and for the APL PML::RARA
case with RA = 2, the commitment graphs contain a single node

gathering all the states, meaning that there is a unique attractor.
Of note, these three situations lead to the same differentiation
stable state. For the six remaining situations (WT with RA = 0, APL
PML::RARA with RA = 0,1, and APL PLZF::RARA with RA = 0,1,2),
the dynamics present two stable states. Each of the six resulting
commitments graphs contain three nodes. Two nodes correspond
to the stable states (representing proliferation versus differen-
tiation cell fates) together with their basins of attraction, while
the upper node corresponds to uncommitted cells, for which cell
fate decision is still pending. In each of these graphs, the upper
node gathers the majority (∼ 74%) of the states (uncommitted
progenitors). We further observe that a small proportion (less
than 0.05%) of the states are fully committed to the stable state
denoting cell proliferation, i.e. potential leukaemia initiating cells.
Notably, in the PLZF::RARA scenario, the sizes of these basins are
not affected by the increase in RA dose, which is coherent with
the resistance and relapse features observed in this APL subtype.
Finally, the third node of these graphs gathers the remaining
states (∼ 25%–26% of all states), which are uniquely committed
to either cell differentiation or to cell cycle arrest.

Of note, the commitment analysis rules out the presence of
cyclic attractors in the dynamics of the network. The analysis
also reveals the different behaviours of the two APL subtypes
in response to pharmacological RA in terms of stable states. In
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Figure 5. Cell fate commitment analysis. A) Cell fate commitment diagrams were computed for each relevant input combination (RA levels 0, 1, and 2)
for each genetic background (WT, PLM::RARA, PLZF::RARA). Each node represents the subset of states committed to the corresponding labelled stable
state(s), the percentage indicating the corresponding proportion of full state space. The colours of the nodes denote the corresponding phenotypes:
Green for proliferative, red for arrested, yellow for differentiated. The arcs denote the existence of transitions between sets of states. These commitment
diagrams were computed with the PyBoolNet software, included in the CoLoMoTo package. The case of PLZF::RARA cells under pharmacological doses of
RA, which is the scenario for resistance and relapse, is surrounded by a dashed rectangle.

the PML::RARA APL case, there is a unique differentiated sta-
ble state, whereas an aberrant proliferative stable state coexists
with a differentiated stable state in the PLZF::RARA APL case.
This behaviour qualitatively matches the phenotypes observed in
experimental and clinical observations [3, 4, 20].

Focusing on the impact of the presence of the PLZF::RARA
fusion on cell fate decision, we aimed at further identifying
the key transitions underlying stable state commitment. This
required more accurate tracking of trajectories in the dynamics
and monitoring of updated components along the trajectories. For
this, we took advantage of an algorithm implemented in GINsim
to reduce our model and thereby ease simulations (see Methods).
We thus performed a simulation using a reduced model encom-
passing 24 nodes, starting from an initial state representing cells
in the granulocyte-monocyte progenitor stage (GMP), expressing
the PLZF::RARA fusion, and submitted to pharmacological dose
of RA. As the resulting state transition graph (STG, cf. Methods)
is too large to be displayed (it encompasses 12,296 states), we
compressed it into a hierarchical transition graph (HTG, cf.
Methods), which is displayed in Fig. 6. In this HTG, rectangular
nodes represent stable states, while each oval node gathers a set
of states sharing the same stable state reachability properties.
GINsim further enables the labelling of each arc of the HTG with
the corresponding transitions. Looking at the component values of
the 191 states fully committed towards the aberrant proliferative
attractor PZ5 (listed on the right of Fig. 6), we can visualise which
nodes are frozen at specific values, including CEBPA, CDN1A,
CDN1B, and RB1 all set to 0, and CCN2, E2F1, MYC, and POU2F1 all

set to 1 in the HTG node. This analysis reveals the key roles of the
inhibitions of CDKN1A and CEBPA/B in the commitment towards
the proliferative fate, as well as of the activation of CDKN1A and
of the inhibitions of E2F1 and MYC for the commitment towards
the cell differentiation fate.

Simulation of EZH2 perturbations highlights the
key role of the non-canonical activity of EZH2 in
maintaining the resistant phenotype
The experimental results in the APL PLZF::RARA mouse model
treated with RA pointed at the Polycomb complex subunit EZH2
as a key driver of the RA resistance. More specifically, the inhi-
bition of EZH2 canonical enzymatic activity did not suppress the
aberrant proliferative phenotype, while a complete degradation of
EZH2 erased RA resistance [11].

Based on these observations, we designed two in silico experi-
ments to assess the impact of EZH2 perturbations on the response
of APL cells to RA treatments. The software bioLQM was used to
define two variants of the APL model corresponding to (i) a com-
plete knockdown of EZH2, or the use of a specific degrader such as
MS1943 (model variant EZH2%0, also called EZH2 KO hereafter);
(ii) an edgetic perturbation amounting to block the regulatory
influence of EZH2 activity onto PCR2, mimicking the experimental
inhibition of EZH2 methyltransferase activity with a chemical
agent such as GSK126 (model variant EZH2:PRC2%0) [11]. With
this approach, we implemented and tested the hypothesis of an
additional non-canonical activity of EZH2 as a key mechanism in
the maintenance of the resistant phenotype.
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Figure 6. Hierarchical transition graph. Hierarchical transition graph (HTG) obtained for a reduced version of the model, using asynchronous updating.
Each oval node represents a set of states associated with identical commitment potential, labelled with the corresponding number of states; each
rectangular node denotes an attractor, i.e. the stable states PZ4 and PZ5 shown in Fig. 4. The arcs are labelled with the transitions underlying commitment
decisions. The computation of the HTG was done with the GINsim software, selecting an initial state representative of the granulocytic/myeloid progenitor
stage (RA set to 2, PLZF RARAg, RARA, PML, PLZF, USP37, CoAct COMP, EZH2, PRC2, CoRep COMP, CDKN2D, RB1, SKP2, MDM2, CAK, CCNA2, CCND1,
CCNE2, CDK4 6, CDK2, E2F1, MYC, DUSP6, POU2F1, RUNX1, SPI1, CEBPAB and CEBPE all set to 1, while the rest of the nodes were set to 0). The 191 states
committed to the PZ5 attractor are listed in the table on the right. Each pattern (column) represents a set of states, while each row denote the level of
activity of a model components (row): 0 (white background), 1 (light background) or free to take any of these two values (denoted by a star with a blue
background).

Interestingly, the EZH2:PRC2%0 variant model displays the
same stable states as the original model, while a complete loss of
EZH2 leads to the loss of the proliferative stable state (cf. notebook
provided with the model in the GINsim repository). To better
characterise these differences, we took advantage of the software
MaBoSS (included in the CoLoMoTo package) [23] to perform
stochastic simulations with the two model variants, using the
initial state representing cells in the GMP stage, expressing the
PLZF::RARA fusion and submitted to pharmacological dose of RA
(described in the caption of in Fig. 6), with default equiprobable
transition rates (i.e. all transition rates were left to the default
value 1).

10 000 MaBoSS simulations were computed for each of the three
conditions and average results are displayed in Fig. 7.

In the absence of perturbation (Fig. 7, top), the differentiation
marker SPI1 relatively quickly sets to a high probability (∼0.88),
while the proliferation marker E2F1 sets to a much lower proba-
bility (∼0.12). This result is consistent with the experimental and
clinical observations according to which RA exerts a potent differ-
entiation effect, but relapses occur due to residual RA-resistant
cells [4].

In the case of the edgetic perturbation of EZH2 activity
(EZH2:PRC2%0), MaBoSS simulations result are very similar to the
EZH2 WT case, as shown in the corresponding time-plots and pie
charts. This result is also coherent with published experimental
results, according to which the inhibition of EZH2 enzymatic
activity with GSK126 barely affects the emergence RA-resistant
clones [11].

Finally, in the case of a complete knock-down of EZH2, in
coherence with the stable states analysis, MaBoSS simulations
reproduce the loss of the proliferative stable state. The complete
loss of the proliferative phenotype is in line with the published
efficiency of EZH2 degrader MS1943 to eliminate RA-resistant
clones [11].

More perturbation simulations are reported in the notebook
provided with the model in the GINsim repository. These addi-
tional perturbations show the loss of the proliferative phenotype
with the full knock-down of EZH2 even under physiological levels
of RA (RA = 1).

Together, our model-based predictions points to a crucial role
of EZH2 in RA resistance and leukemogenesis, which could be
relevant for other AML subtypes [24]. This result further highlights
the potential of EZH2 degraders for combinatorial therapeutic
strategies.

A parameter sensitivity analysis delineates the
main components impacting cell fate decision
Next, still focusing on the PLZF::RARA genetic background, we
performed a parameter sensitivity analysis to evaluate the robust-
ness of the model and to further assess the impact of each
component of the network in cell fate decision. The software
MaBoSS enables the configuration of two main types of perturba-
tions for each node: full activations or inactivations, which repro-
duce loss- or gain-of-function experiments, or the assignment of
specific transition rates, which enables simulations with different
timescales [25].
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Figure 7. Stochastic simulations assessing the effects of EZH2 perturbations. The initial state defined in Fig. 6 was selected to perform stochastic
simulations of PLZF::RARA cells under three different conditions: in the absence of perturbations (above), for an EZH2 perturbation blocking only its
regulatory effect on PRC2 (middle), and for a complete EZH2 loss-of-function (below). The time plots (left) display the evolution of the probabilities
(between 0 and 1) of activation of representative components over time (arbitrary units), which denote proliferative versus differentiated phenotypes.
The piecharts (right) display the probabilities of the differentiated (yellow) versus proliferative (green) phenotypes at the end of these simulations.
10 000 simulations were performed to compute these probabilities with the MaBoSS software. These simulations can be reproduced with the notebook
provided in with the model in the GINsim repository.

Starting from the same GMP representative state, simulations
with different transition rates for the activation and the inactiva-
tion of each node pointed to the nodes whose perturbations partly
or fully affect the reachability from the initial GMP state to the
differentiated or aberrant proliferative state (Fig. 8). Noteworthy,
a decrease of the activation transition rate of PLZF RARA, or an
increase of the inactivation transition rate of MYC, both greatly

reduce the probability to reach the proliferative attractor (Fig. 8A).
This result points to the role of PLZF-RARA and MYC in promoting
RA-resistant clones. Perturbations affecting the transition rates of
CDKN1A, CEBPAB, and E2F1 also strongly impact the probability
of reaching the proliferative state (Fig. 8B). This further supports
the crucial function of these nodes in the cell fate commit-
ment decision, in coherence with the HTG of Fig. 6. Finally, this
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Figure 8. Parameter sensitivity analysis of the APL model. The initial state defined in Fig. 6 was selected to perform stochastic simulations of PLZF::RARA
cells under variations of the activation or inactivation transition rates for each node (excepting input and output nodes), by multiplying them by one of
the following factors: 0.001; 0.01; 0.1; 1; 10; 100; 1000. (A) Bi-directional bar plots displaying the sensitivity to the transition rates of the nodes MYC (left)
and PLZF RARA (right). In each vertical bar, the upper half corresponds to the activation rates, while the bottom half corresponds to the deactivation
rates. The yellow part indicates the probability of differentiation, while the green part indicates the probability of proliferation. The black horizontal
dashed lines denote the proportions of proliferation and differentiation for the default parameters set to 1. (B) Polar plot representation of the impact
of the variations of the activation (left) and deactivation (right) rates for the full set of nodes. The probability (between 0 and 1) of the proliferative
attractor under each condition is plotted as a vertex of a polygon, with the interior area filled in green. The default transition rate of 1 (white) is used
as reference. Blue polygons represent transition rates higher than the default, whereas red polygons represent transition rates lower than the default.
10 000 simulations were performed to compute these probabilities with the MaBoSS software, with a time range set to 20 000 to enable the network to
reach equilibrium. These simulations can be reproduced with the notebook provided with the model in the GINsim repository.

analysis identifies additional nodes affecting the probability of the
proliferative state, including USP37 and CAK, which were reduced
for the generation of the HTG shown in Fig. 6.

The results of our comprehensive parameter sensitivity anal-
ysis are reported in the notebook with the model in the GINsim
repository.

Discussion
In this manuscript, we report the construction and the dynam-
ical analysis of a logical model integrating the main signalling,
transcriptional and epigenetic regulatory components driving the
response of APL cells to RA therapy.

From a methodological point of view, we designed a robust
computational workflow combining four different tools, devel-
oped by different groups, but seamlessly integrated in the
CoLoMoTo software environment. The combination of these tools
enabled us to refine our model and reveal its most salient

dynamical properties. The integration of the tools in a common
framework together with the use of Jupyter notebooks further
offers solid guarantees for the reproducibility of our com-
putational results, and simultaneously greatly eases further
refinements or extensions of the current study.

From a biological point of view, our computational approach
enabled us to capture and reproduce the general behaviour of
the two most common APL variants in response to different
levels of RA, as well as to simulate more refined details of
the entangled regulatory mechanisms sustaining the resis-
tance to RA. The explicit representation of the two aberrant
translocations in addition to the wild type genes allows to
implement and test mechanistic hypotheses about the stability
of the proteins and its implication in the maintenance of
the resistance, which is crucial to the identification of key
pathways in response to treatment. Furthermore, as it explicitly
integrates signalling, transcriptional and epigenetic regulatory
components, our APL model opens novel prospects to decipher
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the interplay between these different regulatory layers in cancer
cells.

The representation of EZH2 as a separated node from the PRC2
complex enabled us to distinguish two types of EZH2 activities:
(i) its canonical enzymatic activity, i.e. the catalysis of the repres-
sive histone mark H3K27me3; and (ii) its so-called non-canonical
activities, such as the methylation of non-histone proteins or
the stabilisation of interaction partners [26, 27]. In this study,
we focused on the impact of EZH2 non-canonical activity on
the stability of the MYC oncogene, which presumably constitutes
an important mechanism underlying RA resistance. The results
from the EZH2 perturbation analysis and stochastic simulations
recapitulate the experimental observations [11]. Hence, with our
strategy, we successfully implemented the hypothesis of multiple
concurrent activities of EZH2 into a predictive computational
model, and assessed their respective impacts on a concrete sce-
nario of leukemogenesis and therapy resistance.

Our model has proven to be useful to interrogate RA resistance
in APLs and could be extended to better evaluate the EZH2 activity
and its targets involved in RA resistance. A potentially interesting
extension of this study would be the modelling of the contribution
of concurrent genetic mutations to RA-resistance and relapse
in APL, which has been frequently observed in the clinics and
typically emerge in patients with the PML::RARA genetic back-
ground [28]. However, this would require the inclusion of addi-
tional signalling proteins and transcriptional factors, such as FLT3
and WT1, together with their regulatory interactions with current
network components, which remain to be properly characterised.
The impact of additional mutations could then be explored in the
same way as we did for EZH2, or in a subtler manner, by tuning
the rates used in MaBoSS simulations.

Methods
The logical modelling framework
Our modelling approach relies primarily on the delineation of
a regulatory graph, i.e. a signed directed graph where each node
represents a biological component, connected to others by means
of signed arcs representing activations and inhibitions. A discrete
variable is associated with each node, representing the expression
level of the component. For the APL model, these nodes are
each associated with a Boolean variable, which denotes negligible
presence or inactivity (level 0), or significant presence or activity
(level 1) of the component. An exception was made for the input
node representing Retinoic Acid (RA), which is associated with a
ternary variable. The three values of RA node respectively denote
negligible concentrations (level 0), physiological differentiation
doses (level 1), and higher pharmacological doses (level 2).

Logical rules are further associated with each node of the
graph to model its behaviour as a function of the state of its
direct regulators, expressed in terms of a combination of the
corresponding Boolean variables with the logical operators AND
(&), OR (|) and NOT (!). In some cases, we could rely on existing
logical models in the literature and adopt the proposed rules. For
novel nodes, we first used a default rule stating that the target
node gets activated only in the presence of all its activators and
none of its inhibitors. Iterative adjustments and refinements of
these rules were then made to match experimental observations,
in particular to obtain consistent sets of stable states.

The dynamical behaviours of Boolean networks are usually dis-
played in terms of state transition graphs (STG), i.e. directed graphs
where each node denotes a state of the network (Boolean vector),
and where the arcs denote transitions between pairs of states,

which are enabled by the rules. We used an asynchronous updating
scheme, where only one node can update its level at a time.
The resulting dynamics is non deterministic and usually more
complex than the dynamics obtained with the more simplistic
synchronous updating scheme [29].

The characterisation of the dynamical properties of a logical
model typically starts with the identification of the attractors,
which represent the asymptotic behaviour of the model, and are
usually associated with observed phenotypes in the experimental
or clinical settings. The attractors can be of two types: stable states,
with no update call (also called fixpoints), or cyclic attractors, made
of circular sequences of two or more states. The sets of states
(exclusively) leading to a given attractor defines its (exclusive)
basin of attraction [22].

Computational tools
We used the software GINsim (v3.0.0b, http://ginsim.org) to build,
edit and analyse the logical model of the APL network [17].

To analyse the dynamical properties of the APL model, we used
a combination of software tools selected and assembled by the
Consortium for Logical Model and Tools (CoLoMoTo, http://www.
colomoto.org) [5]. Each of these tools provides specific functionali-
ties in an interoperable framework, making the analysis workflow
robust and reproducible (Fig. 2).

GINsim was used to build the regulatory graph (RG) defining
our logical model, encode the logical rules associated with the
different components of this graph, as well as to annotate each
node. We further used an algorithm based on the Tarjan algorithm
and implemented in GINsim to compress the RG into a strongly
connected component graph (SCCG, see Supplementary Fig. S1 avail-
able online at http://bib.oxfordjournals.org/), which merge the RG
nodes sharing mutual reaching properties [30].

GINsim was also used to generate state transition graphs (STG)
with the asynchronous updating scheme. For this, a reduced
model was defined using an algorithm implemented in GINsim,
which takes a list of nodes to be reduced in input and iteratively
recompute the logical rules of the targets of the reduced nodes.
The reduced model preserves the stable states and other crucial
dynamical properties of the original model [31]. Using a Tarjan-
based algorithm implemented in GINsim, STG were further com-
pressed into Hierarchical State Transition graphs (HTG, enabling a
stronger compression compared to SCCG), where the sets of states
sharing attractor reachability properties are merged into single
nodes, which are then connected by arcs denoting changes in
attractor reachability [30].

GINsim enables the encoding of different kinds of genetic or
biochemical perturbations, including gain-of-function mutations
(blocking of the values of the corresponding nodes to the level
1), loss-of-functions or full knock-downs (blocking the values of
the corresponding nodes to the level 0), and the perturbation
of specific interactions (aka edgetic perturbations) [17]. Similar
functionalities are implemented in the bioLQM library (see below),
also available in the CoLoMoTo package.

We used the bioLQM Java library W (http://www.colomoto.
org/biolqm/index.html) for the computation of the attractors
(amounting here to stable states), for the definition of variants
of the model implementing specific perturbations (e.g. loss-of-
function mutants), as well as for the conversion and export of
models between tools of the CoLoMoTo package [5, 18].

The software Pyboolnet (https://github.com/hklarner/PyBoolNet)
was used for the computation of the basins of attraction of the
stable states of the model, as well as to perform an attractor
commitment analysis. Given a Boolean model, PyBoolNet [21] relies
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on the Computational Tree Logic and uses generic model checkers
to compute the sets of states leading to the different attractors
(i.e. the basins of attraction of these attractors), as well as to
compute reachability properties [22].

Finally, we used the tool MaBoSS (https://maboss.curie.fr) to
perform stochastic Boolean simulations. Relying on continuous
time Markovian processes and on the Gillespie algorithm, MaBoSS
enables the computation of the evolution of Boolean state proba-
bilities over time [23].

Key Points

• Based on single cell multi-omics data and on an exten-
sive literature revision, we built a logical model captur-
ing and explaining key features of the responses of two
main subtypes of Acute Promyelocytic Leukaemia (APL)
cells to retinoic acid (RA) therapy.

• The stable states of the model recapitulate the pheno-
types of differentiated and aberrant proliferative cells
induced by RA treatment for the different APL genetic
backgrounds.

• A commitment analysis identifies the crucial compo-
nents underlying the decision between cell differentia-
tion and aberrant proliferation.

• The simulations of different EZH2 perturbations allow
to differentiate/distinguish the canonical and non-
canonical activities of EZH2 and highlight the key role of
the non-canonical activity of EZH2 in the maintenance
of the resistance to RA in APL PLZF::RARA cells.

• A parameter sensitivity analysis further characterises
the components of the network underlying cell fate
decisions, pointing to potential targets for novel combi-
natorial therapy strategies.
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